RD Sharma Class 12 Exercise 18.24 Indefinite integrals Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise 18.24 Indefinite integrals Solutions Maths - Download PDF Free Online

Updated on 24 Jan 2022, 12:27 PM IST

Students of class 12 are very well aware that the chapter of Indefinite integrals is very vast portion to cover in less time and therefore RD Sharma class 12 solution of Indefinite integrals exercise 18.24 gives an important amount of knowledge about the few basic concepts and also the high level concepts of the chapter. The RD Sharma class 12th exercise 18.24 will help the student to get a firm hold on this chapter and also help in ace the chapter to keep ahead of everyone and improve the performance gradually resulting in scoring very high marks in the board exams.

RD Sharma Class 12 Solutions Chapter18 Indefinite Integrals - Other Exercise

Indefinite Integrals Excercise: 18.24


Indefinite Integrals exercise 18.24 question 1 sub question (i)

Answer: $\frac{1}{2} x+\frac{1}{2} \log |\sin x-\cos x|+c$
Hint: $\sin x-\cos x=t \Rightarrow(\cos x+\sin x) d x=d t$
Given: $\int \frac{1}{1-\operatorname{Cot} x} d x$
Explanation:
$\begin{aligned} &\text { Let } I=\int \frac{1}{1-\operatorname{Cot} x} \mathrm{dx} \\ &\end{aligned}$
$\begin{aligned} &=\int \frac{1}{1-\frac{\cos x}{\sin x}} \mathrm{dx} \\ &=\int \frac{\sin x}{\sin x-\cos x} \mathrm{dx} \end{aligned}$
$\begin{aligned} &=\frac{1}{2} \int \frac{2 \sin x}{\sin x-\cos x} \mathrm{dx} \\ &=\frac{1}{2} \int \frac{(\sin x-\cos x)+(\sin x+\cos x)}{(\sin x-\cos x)} \mathrm{dx} \end{aligned}$
$=\frac{1}{2} \int 1 d x+\frac{1}{2} \int \frac{\sin x+\cos x}{\sin x-\cos x} \mathrm{dx}$
$\text { Let, } \quad \sin x-\cos x=t \Rightarrow(\cos x+\sin x) d x=d t$
$\begin{aligned} &\mathrm{I}=\frac{x}{2}+\frac{1}{2} \int \frac{d t}{t} \\ &=\frac{x}{2}+\frac{1}{2} \log |\mathrm{t}|+\mathrm{c} \\ &=\frac{x}{2}+\frac{1}{2} \log |\operatorname{Sin} x-\operatorname{Cos} x|+c \end{aligned}$

Indefinite Integrals exercise 18.24 question 1 sub question (ii)

Answer: $\frac{1}{2} x-\frac{1}{2} \log |\cos x-\sin x|+c$
Hint: $\text { Put, } \cos x-\sin x=t \Rightarrow(-\sin x-\cos x) d x=d t$
Given: $\int \frac{1}{1-\tan x} \mathrm{dx}$
Explanation:
$\text { Let I}=\int \frac{1}{1-\tan x} \mathrm{dx}$
$\begin{aligned} &=\int \frac{1}{1-\frac{\sin x}{\cos x}} \mathrm{dx} \\ &=\int \frac{\cos x}{\cos x-\sin x} \mathrm{dx} \end{aligned}$
$\begin{aligned} &=\frac{1}{2} \int \frac{2 \cos x}{\cos x-\sin x} \mathrm{~d} \mathrm{x} \\ &=\frac{1}{2} \int \frac{(\cos x-\sin x)+(\cos x+\sin x)}{(\cos x-\sin x)} \mathrm{dx} \end{aligned}$
$\begin{aligned} &=\frac{1}{2} \int 1 d x+\frac{1}{2} \int \frac{\cos x+\sin x}{\cos x-\sin x} \mathrm{~d} x \\ &=\frac{x}{2}+\frac{1}{2} \int \frac{\cos x+\sin x}{\cos x-\sin x} \mathrm{~d} x \end{aligned}$
$\text { Put, } \operatorname{cos} x-\sin x=t \Rightarrow(-\sin x-\cos x) d x=d t$
$\begin{aligned} &\mathrm{I}=\frac{x}{2}+\frac{1}{2} \int \frac{-(d t)}{t} \\ &=\frac{x}{2}-\frac{1}{2} \log |\mathrm{t}|+\mathrm{c} \\ &=\frac{x}{2}-\frac{1}{2} \log |\operatorname{cos} \mathrm{x}-\operatorname{sin} \mathrm{x}|+\mathrm{c} \end{aligned}$

Indefinite Integrals exercise 18.24 question 1 sub question (iii)

Answer: $\mathrm{I}=2 \mathrm{x}-3 \tan ^{-1}\left(\tan \frac{x}{2}+1\right)+\mathrm{c}$
Hint: Substitute$\tan \frac{x}{2}=\mathrm{t}$
Given: $\int \frac{3+2 \cos x+4 \sin x}{2 \sin x+\cos x+3} d x$
Explanation:
$\text { Let, } I=\int \frac{3+4 \sin x+2 \cos x}{3+2 \sin x+\cos x} d x$
$=\int \frac{6+4 \sin x+2 \cos x-3}{3+2 \sin x+\cos x} \mathrm{~d} \mathrm{x}$
$=\int \frac{6+4 \sin x+2 \cos x}{3+2 \sin x+\cos x} \mathrm{dx}-\int \frac{-3}{3+2 \sin x+\cos x} \mathrm{dx}$
$=\int \frac{2(3+2 \sin x+\cos x)}{(3+2 \sin x+\cos x)} d x-\int \frac{-3}{3+2 \sin x+\cos x} d x$
$=\int 2 d x-3 \int \frac{1}{3+2 \sin x+\cos x} d x$
substituting , $\sin x=\frac{2 \tan \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}} \text { and } \cos x=\frac{1-\tan ^{2} \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}$
$=2 x-3 \int \frac{1}{3+2 \times\left(\frac{2 \tan \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}\right)+\left(\frac{1-\tan ^{2} \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}\right)} d x$
$=2 x-3 \int \frac{1+\tan ^{2} \frac{x}{2}}{3\left(1+\tan ^{2} \frac{x}{2}\right)+4 \tan \frac{x}{2}+1-\tan ^{2} \frac{x}{2}} d x$
$=2 x-3 \int \frac{\sec ^{2} \frac{x}{2}}{2 \tan ^{2} \frac{x}{2}+4 \tan \frac{x}{2}+4} d x$
Substitute, $\tan \frac{x}{2}=\mathrm{t}$
$\Rightarrow \operatorname{Sec}^{2} \frac{x}{2}\cdot \frac{1}{2} \mathrm{dx}=\mathrm{dt}$
$\begin{aligned} &I=2 x-3 \int \frac{2}{2 t^{2}+4 t+4} d t \\ &I=2 x-3 \int \frac{2}{2\left(t^{2}+2 t+2\right)} d t \\ &I=2 x-3 \int \frac{1}{(t+1)^{2}+1} d t \end{aligned}$
$\mathrm{I}=2 \mathrm{x}-3 \tan ^{-1}(\mathrm{t}+1)+\mathrm{c} \quad\left[\because \int \frac{1}{1+x^{2}} d x=\tan ^{-1} x+c\right]$
$\mathrm{I}=2 \mathrm{x}-3 \tan ^{-1}\left(\tan \frac{x}{2}+1\right)+c$


Indefinite Integrals exercise 18.24 question 1 sub question (iv)

Answer: $\frac{p}{p^{2}+q^{2}} x+\frac{q}{p^{2}+q^{2}} \log |p \cos x+q \sin x|+c$

Hint: use the formula in which ,
Put Numerator = λ denominator+ μ (derivative of denominator)
Given: $\int \frac{1}{p+q \tan x}$
Explanation:
$\text { Let, } l=\int \frac{1}{p+q \tan x} \mathrm{dx}$
$\begin{aligned} &=\int \frac{d x}{p+q \frac{\sin x}{\cos x}} \\ &=\int \frac{\cos x}{p \cos x+q \sin x} d x \end{aligned}$
$\text { Let, } \operatorname{cos} x=\lambda(p \cos x+q \sin x)+\mu(-p \sin x+q \cos x)$
Equating coefficients of Cos x and Sin x, we get.
$\begin{aligned} &p \lambda+q \mu=1 \\ &q \lambda-p \mu=0 \end{aligned}$
Solving these, we get.
$\begin{aligned} &\frac{\lambda}{0-p}=\frac{\mu}{-q-0}=\frac{1}{-p^{2}-q^{2}} \\ &\frac{\lambda}{-p}=\frac{\mu}{-q}=\frac{1}{-\left(p^{2}+q^{2}\right)} \end{aligned}$
$\lambda=\frac{p}{p^{2}+q^{2}} \quad, \quad \mu=\frac{q}{p^{2}+q^{2}}$
$\operatorname{cos} x=\frac{p}{p^{2}+q^{2}}(p \cos x+q \sin x)+\frac{q}{p 2+q 2}(-p \sin x+q \cos x)$
$\mathrm{I}=\int \frac{\frac{p}{p_{2}+q_{2}}(\mathrm{p} \cos \mathrm{x}+\mathrm{q} \sin \mathrm{x})+\frac{q}{p_{2}+q_{2}}(-\mathrm{p} \operatorname{sin} \mathrm{x}+\mathrm{q} \cos \mathrm{x})}{p \cos x+q \sin x} d x$
$=\frac{p}{p 2+q 2} \int d x+\frac{q}{p 2+q 2} \int\left[\frac{-p \sin x+q \cos x}{p \operatorname{cos} x+q \sin x}\right] d x$
$I=\frac{p}{p 2+q 2} x+\frac{q}{p 2+q 2} \log (p \cos x+q \sin x)+c$


Indefinite Integrals exercise 18.24 question 1 sub question (v)

Answer: $2 x+\log |2 \cos x+\sin x+3|+C$
Hint: Using formula, put numerator = λ(denominator)+µ(derivative of denominator)
Given: $\int \frac{5 \cos x+6}{2 \cos x+\sin x+3} d x$
Explanation:
$\text { Let, } 1=\int \frac{5 \cos x+6}{2 \cos x+\sin x+3} d x$
$\text { Let, } 5 \cos x+6=A(2 \cos x+\sin x+3)+B(-2 \sin x+\cos x)$ $............(i)$
$\Rightarrow 5 \cos x+6=(A-2 B) \operatorname{Sin} x+(2 A+B) \operatorname{Cos} x+3 A$
Comparing co-efficient of like terms,
$\begin{aligned} &\mathrm{A}-2 \mathrm{~B}=0\quad \ldots \text { (ii) }\\ &2 \mathrm{~A}+\mathrm{B}=5 \quad \ldots \text { (iii) }\\ &3 A=6 \; \; \; \; \; \; \; \; \quad \ldots \text { (iv) } \end{aligned}$
From eqn (iv) A = 2
Put value of A in equation (ii)
$2-2B = 0 \Rightarrow B =1$
We get B = 1 and A = 2
By putting values of A, B and C in equation $(ii)$
$\therefore I=\int\left[\frac{2(2 \operatorname{cos} x+\sin x+3)+(-2 \sin x+\cos x)}{2 \cos x+\sin x+3}\right] d x$
$=2 \int \mathrm{dx}+\int \frac{(-2 \sin x+\cos x)}{(2 \cos x+\sin x+3)} \mathrm{d} \mathrm{x}$
Putting $2 \operatorname{cos} x+\sin x+3=t$
$\Rightarrow(-2 \sin x+\cos x) d x=d t$
$\therefore I=2 \int \mathrm{dx}+\int \frac{1}{\mathrm{t}} \mathrm{d} \mathrm{t}$
$\begin{aligned} &=2 x+\log |t|+C \\ &\text { Put } t=2 \cos x+\sin x+3 \\ &\therefore I=2 x+\log |2 \cos x+\sin x+3|+c \end{aligned}$

Indefinite Integrals exercise 18.24 question 1 sub question (vi)

Answer: $\frac{18 x}{25}+\frac{1}{25} \log |3 \sin x+4 \cos x|+c$
Hint: use the formula in which ,
Put Numerator = λ denominator+ μ (derivative of denominator)
Given: $\int \frac{2 \sin x+3 \cos x}{3 \sin x+4 \cos x} \mathrm{~d} x$
Explanation:
$\text { Let } I=\int \frac{2 \sin x+3 \cos x}{3 \sin x+4 \cos x} \mathrm{~d} \mathrm{x}$
$\text { Let } 2 \sin x+3 \cos x=\lambda(3 \sin x+4 \cos x)+\mu(3 \cos x-4 \sin x)$
Equating co-efficient of Cos x and Sin x, We get,
$\begin{array}{ll} 4 \lambda+3 \mu=3 & \text { i.e. } 4 \lambda+3 \mu-3=0 \\ 3 \lambda-4 \mu=2 & \text { i.e. } 3 \lambda-4 \mu-2=0 \end{array}$
Solving these, we get;
$\frac{\lambda}{-6-12}=\frac{\mu}{-9+8}=\frac{1}{-16-9}$
$\frac{\lambda}{-18}=\frac{\mu}{-1}=\frac{1}{-25}, \lambda=\frac{18}{25} \quad ; \quad \mu=\frac{1}{25}$
Therefore,
$2 \sin x+3 \cos x=\frac{18}{25}(3 \sin x+4 \cos x)+\frac{1}{25}(3 \cos x-4 \sin x)$
$\therefore I=\int \frac{\frac{18}{25}(3 \sin x+4 \cos x)+\frac{1}{25}(3 \cos x-4 \sin x)}{3 \sin x+4 \cos x} d x$

$=\frac{18}{25} \int 1 d x+\frac{1}{25} \int \frac{3 \cos x-4 \sin x}{3 \sin x+4 \cos x} d x$

Put $3sin x + 4cos x = t$ in second integral and differentiate both sides w.r.t $x$
We get , $(3 \cos x-4 \sin x) d x=d t$
$\begin{aligned} &I=\frac{18}{25} \int 1 d x+\frac{1}{25} \int \frac{1}{t} d t \\ &I=\frac{18}{25} x+\frac{1}{25} \log |t|+C \end{aligned}$
Put $t=3 \sin x+4 \cos x$
$I=\frac{18}{25} x+\frac{1}{25} \log |3 \sin x+4 \operatorname{Cos} x|+C$

Indefinite Integrals exercise 18.24 question 1 sub question (vii)

Answer: $\frac{3}{25} x-\frac{4}{25} \log |3 \sin x+4 \cos x|+C$
Hint: use the formula in which ,
Put Numerator = λ denominator+ μ (derivative of denominator)
Given: $\int \frac{1}{3+4 \cot x} \mathrm{~d} \mathrm{x}$
Explanation:
$\text { Let I} =\int \frac{1}{3+4 \operatorname{cot} x} \mathrm{dx}$
$\begin{aligned} &=\int \frac{1}{3+4\left(\frac{\cos x}{\sin x}\right)} d x \\ &=\int \frac{\sin x}{3 \sin x+4 \cos x} d x \end{aligned}$
$\operatorname{sin} x=\lambda(3 \sin x+4 \cos x)+\mu(3 \cos x-4 \sin x)$
Equating co- efficient of Cos x and Sin x, We get,
$\begin{aligned} &3 \lambda-4 \mu-1=0 \\ &4 \lambda+3 \mu-0=0 \end{aligned}$
Solving this, we get
$\frac{\lambda}{0+3}=\frac{\mu}{-4-0}=\frac{1}{9+16}, \lambda=\frac{3}{25}, \mu=\frac{-4}{25}$
Therefore,
$\therefore \sin x=3 / 25(3 \sin x+4 \cos x)-4 / 25(3 \cos x-4 \sin x)$
$I=\int \frac{\frac{3}{25}(3 \sin x+4 \operatorname{cos} x)-\frac{4}{25}(3 \operatorname{cos} x-4 \operatorname{sin} x)}{3 \sin x+4 \cos x} d x$
$\mathrm{I}=\int \frac{3}{25} \frac{(3 \sin \mathrm{x}+4 \cos \mathrm{x})}{(3 \sin x+4 \cos x)} \mathrm{d} \mathrm{x}-\frac{4}{25} \int \frac{3 \cos \mathrm{x}-4 \sin \mathrm{x}}{3 \sin x+4 \cos x} d x$
$1=\frac{3}{25} \int 1 . d x-\frac{4}{25} \int \frac{3 \operatorname{cos} x-4 \sin x}{3 \sin x+4 \cos x} d x$
put $3sin \: x + 4 cos \; x = t$ in second integral and differentiate both sides,
we get $(3 \cos x-4 \sin x) d x=d t$
$\mathrm{I}=\frac{3}{25} \int 1 . d x-\frac{4}{25} \int \frac{1}{t} d x$
$\mathrm{I}=\frac{3}{25} x-\frac{4}{25} \log |t|+c$
put $t=3 \sin x+4 \cos x$
$I=\frac{3}{25} x-\frac{4}{25} \log |3 \sin x+4 \operatorname{cos} x|+c$


Indefinite Integrals exercise 18.24 question 1 sub question (viii)

Answer: $\frac{18}{25} x+\frac{1}{25} \log |3 \operatorname{sin} x+4 \cos x|+C$
Hint: use the formula in which ,
Put Numerator = λ denominator+ μ (derivative of denominator)
Given: $\int \frac{2 \tan x+3}{3 \tan x+4} d x$
Explanation:
$\text { Let } I=\int \frac{2 \tan x+3}{3 \tan x+4} d x$
$=\int \frac{2\left(\frac{\sin x}{\cos x}\right)+3}{3\left(\frac{\sin x}{\cos x}\right)+4} \mathrm{~d} \mathrm{x}$
$=\int \frac{\frac{2 \operatorname{sin} x+3 \operatorname{cos} x}{\operatorname{cos} x}}{\frac{3 \operatorname{sin} x+4 \operatorname{cos} x}{\operatorname{cos} x}} d x$
$=\int \frac{2 \sin x+3 \cos x}{3 \sin x+4 \cos x} d x$
$\text { Let, } 2 \sin x+3 \cos x=\lambda(3 \sin x+4 \cos x)+\mu(3 \cos x-4 \sin x)$
Equating co- efficient of Cos x and Sin x, We get,
$\begin{array}{ll} 4 \lambda+3 \mu=3 & \text { i.e. } 4 \lambda+3 \mu-3=0 \\ 3 \lambda-4 \mu=2 & \text { i.e. } 3 \lambda-4 \mu-2=0 \end{array}$
Solving these, we get;
$\begin{aligned} &\frac{\lambda}{-6-12}=\frac{\mu}{-9+8}=\frac{1}{-16-9} \\ &\frac{\lambda}{-18}=\frac{\mu}{-1}=\frac{1}{-25} \\ &\lambda=\frac{18}{25} \quad, \quad \mu=\frac{1}{25} \end{aligned}$
Therefore,
$2 \sin x+3 \cos x=\frac{18}{25}(3 \sin x+4 \cos x)+\frac{1}{25}(3 \cos x-4 \sin x)$
Therefore,
$I=\frac{\frac{18}{25}(3 \sin x+4 \cos x)+\frac{1}{25}(3 \operatorname{Cos} x-4 \sin x)}{3 \sin x+4 \cos x} \mathrm{dx}$
$=\frac{18}{25} \int 1 d x+\frac{1}{25} \int \frac{3 \cos x-4 \sin x}{3 \sin x+4 \cos x} \mathrm{~d} \mathrm{x}$
$=\frac{18}{25} x+\frac{1}{25} \log |3 \operatorname{Sin} x+4 \operatorname{Cos} x|+C$

Indefinite Integrals exercise 18.24 question 1 sub question (ix)

Answer: $\frac{4}{25} x+\frac{3}{25} \log |4 \cos x+3 \operatorname{Sin} x|+C$

Hint: use the formula in which ,
Put Numerator = λ denominator+ μ (derivative of denominator)
Given: $\int \frac{1}{4+3 \tan x} d x$
Explanation:
$\text { Let } \mathrm{I}=\int \frac{1}{4+3 \tan x} \mathrm{dx}$
$\begin{aligned} &=\int \frac{1}{4+3\left(\frac{\sin x}{\cos x}\right)} \mathrm{dx} \\ &=\int \frac{\cos x}{4 \cos x+3 \sin x} \mathrm{dx} \end{aligned}$
$\cos x=\lambda(4 \cos x+3 \sin x)+\mu(-4 \sin x+3 \cos x)$
Equating co- efficient of Cos x and Sin x, We get,
$\begin{aligned} &4 \lambda+3 \mu-1=0 \ \\ &3 \lambda-4 \mu-0=0 \end{aligned}$
Solving these, we get;
$\begin{aligned} &\frac{\lambda}{0-4}=\frac{\mu}{-3+0}=\frac{1}{-16-9} \quad \lambda=\frac{4}{25} \quad, \quad \mu=\frac{3}{25} \\ &\therefore \cos x=\frac{4}{25}(4 \cos x+3 \sin x)+\frac{3}{25}(-4 \sin x+3 \cos x) \end{aligned}$
$\therefore \mathrm{I}=\int \frac{\frac{4}{25}(4 \cos x+3 \sin x)+\frac{3}{25}(-4 \sin x+3 \cos x)}{4 \cos x+3 \sin x} \mathrm{dx}$
$=\int \frac{4}{25} d x+\frac{3}{25} \cdot \int \frac{-4 \sin x+3 \cos x}{4 \cos x+3 \sin x} \mathrm{~d} \mathrm{x}$
put $4cos x + 3 sin x = t$ in second integral and differentiate both sides,
we get, $(-4 \sin x+3 \cos x) d x=d t$
$I=\int \frac{4}{25} d x+\frac{3}{25} \cdot \int \frac{1}{t} \mathrm{dt}$
$=\frac{4}{25} x+\frac{3}{25} \log |t|+C$
$\text { put } t=4 \cos x+3 \sin x$
$I=\frac{4}{25} x+\frac{3}{25} \log |4 \cos x+3 \operatorname{sin} x|+C$


Indefinite Integrals exercise 18.24 question 1 sub question (x)

Answer:$I=\log |3 \operatorname{Cos} x+2 \operatorname{Sin} x|+2 x+C$
Hint: use the formula in which ,
Put Numerator = A denominator+ B (derivative of denominator)
Given: $\int\frac{8 \cot x+1}{3 \cot x+2} \mathrm{~d} \mathrm{x}$
Explanation:
$\text { Let } \mathrm{I}=\int \frac{8 \cot x+1}{3 \cot x+2} \mathrm{~d} \mathrm{x}$
$I=\int \frac{8 \frac{\cos x}{\sin x}+1}{3 \frac{\cos x}{\sin x}+2} \mathrm{dx}$
$=\int \frac{\frac{8 \cos x+\sin x}{\sin x}}{\frac{3 \cos x+2 \sin x}{\sin x}} \mathrm{~d} \mathrm{x}$
$=\int \frac{8 \cos x+\sin x}{3 \cos x+2 \sin x} \mathrm{~d} \mathrm{x}$
So, we will take the steps as directed:
$\begin{aligned} &\sin x+8 \cos x=A \frac{d}{d x}(3 \cos x+2 \sin x)+B(3 \cos x+2 \sin x) \\ &\sin x+8 \cos x=A(-3 \sin x+2 \cos x)+B(3 \cos x+2 \sin x) \end{aligned}$
$\begin{aligned} &\left(\frac{d}{d x} \cos x=-\sin x\right) \\ &\sin x+8 \cos x=\sin x(2 B-3 A)+\operatorname{cos} x(2 A+3 B) \end{aligned}$
Comparing both the sides,
$\begin{array}{ll} 2 \mathrm{~B}-3 \mathrm{~A}=1 & \text { ...(i) } \\ 3 \mathrm{~B}+2 \mathrm{~A}=8 & \text { ...(ii) } \end{array}$
Multiplying (i) by 2 and (ii) by 3 then add;
$4B-6A+9B+6A=2+24$
On solving for A, B , We have A =1 , B = 2
Thus, I can be expressed as:
$I=\int \frac{(-3 \sin x+2 \operatorname{cos} x)+2(3 \cos x+2 \sin x)}{3 \operatorname{cos} x+2 \sin x} d x$
$\begin{aligned} &\mathrm{I}=\int \frac{(-3 \sin x+2 \cos x)+2(3 \cos x+2 \sin x)}{3 \cos x+2 \sin x} \mathrm{dx} \\ &\mathrm{I}=\int \frac{(-3 \sin x+2 \cos x)}{3 \cos x+2 \sin x} \mathrm{dx}+\int \frac{2(3 \cos x+2 \sin x)}{3 \cos x+2 \sin x} \mathrm{dx} \end{aligned}$
$\text { Let, } I_{1}=\int \frac{(-3 \sin x+2 \operatorname{Cos} x)}{3 \cos x+2 \sin x} \mathrm{dx} \quad \text { and } I_{2}=\int \frac{2(3 \cos x+2 \sin x)}{3 \cos x+2 \sin x} \mathrm{dx}$
$\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2} \quad \text { ... Eq. } (iii)$
$I_{1}=\int \frac{(-3 \sin x+2 \cos x)}{3 \cos x+2 \sin x} \mathrm{~d} \mathrm{x}$
$\begin{aligned} &\text { Let, } 3 \cos x+2 \sin x=\mu \\ &(-3 \sin x+2 \cos x)=d \mu \end{aligned}$
So,$I_{1}$ reduce to
$\mathrm{I}_{1}=\int \frac{d \mu}{\mu}=\log |\mu|+\mathrm{c}_{1}$
Therefore ,
$\begin{aligned} &I_{1}=\log |3 \operatorname{Cos} x+2 \sin x|+c_{1} \quad \ldots \text { Eq. (iv) }\\ &\text { As } I_{2}=\int 2 \frac{(3 \cos x+2 \sin x)}{3 \cos x+2 \sin x} \mathrm{dx}\\ &I_{2}=2 \int d x=2 x+c_{2} \quad \ldots\text { Eq. (v) } \end{aligned}$
From Eq. (iii) , (iv) and (v) we have
$I=\log | 3 \operatorname{cos} x+2 \sin x \mid+c_{1}+2 x+c_{2}$
Therefore,
$I=\log |3 \operatorname{Cos} x+2 \sin x|+2 x+c \quad\left[c_{1}+c_{2}=c\right]$

Indefinite Integrals exercise 18.24 question 1 sub question (xi)

Answer: $I=\frac{9}{41} \log |4 \operatorname{Cos} x+5 \sin x|+\frac{40 x}{41}+C$
Hint: use the formula in which
Put Numerator = λ denominator+ μ (derivative of denominator)
Given: $I=\int \frac{4 \sin x+5 \cos x}{5 \sin x+4 \cos x} \mathrm{~d} \mathrm{x}$
Explanation:
$\text { let, } I=\int \frac{4 \sin x+5 \cos x}{5 \sin x+4 \cos x} \mathrm{~d} \mathrm{x}$
So, we will take the steps as described
$4 \sin x+5 \cos x=A(5 \cos x-4 \sin x)+B(4 \cos x+5 \sin x)$
$\left(\frac{d}{d x} \operatorname{cos} x=-\sin x\right)$
$4 \sin x+5 \cos x=(5 B-4 A) \sin x+(5 A+4 B) \cos x$
Comparing both sides, we have
$\begin{aligned} &5 \mathrm{~B}-4 \mathrm{~A}=4 \quad \ldots (i)\\ &4 B+5 A=5 \quad \ldots(ii) \end{aligned}$
Multiplying (i) by 5 and (ii) by 4 and then add;
$25 B-20 A+16 B+20 A=20+20$
On solving for A and B , we have
$A=\frac{9}{41}, B=\frac{40}{41}$
Thus, I can be expressed as
$\mathrm{I}=\int \frac{\frac{9}{41}(5 \cos x-4 \sin x)+\frac{40}{41}(4 \cos x+5 \sin x)}{4 \cos x+5 \sin x} d x$
$I=\int \frac{9}{41}\left(\frac{5 \cos x-4 \sin x}{4 \cos x+5 \sin x}\right) \mathrm{d} \mathrm{x}+\int \frac{40}{41}\left(\frac{4 \cos x+5 \sin x}{4 \cos x+5 \sin x}\right) \mathrm{dx}$
$\begin{aligned} &\text { Let, } I_{1}=\frac{9}{41} \int\left(\frac{5 \cos x-4 \sin x}{4 \cos x+5 \sin x}\right) \mathrm{d} \mathrm{x} \\ &\mathrm{I}_{2}=\frac{40}{41} \int\left(\frac{4 \cos x+5 \sin x}{4 \cos x+5 \sin x}\right) \mathrm{d} \mathrm{x} \end{aligned}$
$\begin{array}{ll} I=I_{1}+I_{2} & \ldots \text { equ. }(iii) \end{array}$
$I_{1}=\frac{9}{41} \int\left(\frac{5 \cos x-4 \sin x}{4 \cos x+5 \sin x}\right) d x$
$\begin{aligned} &\text { Let } 4 \cos x+5 \sin x=u \\ &\Rightarrow(-4 \sin x+5 \cos x) d x=d u \end{aligned}$
So, $I_{1}$ reduces to
$I_{1}=\frac{9}{41} \int \frac{d u}{u}=\frac{9}{41} \log |u|+c_{1}$
Therefore,
$I_{1}=\frac{9}{41} \log |4 \operatorname{Cos} x+5 \sin x|+c_{1} \quad \ldots \text { Eq. (iv) }$
$\text { As, }I_{2}=\frac{40}{41} \int \frac{4 \cos x+5 \sin x}{4 \cos x+5 \sin x} \mathrm{dx}$
$I_{2}=\frac{40}{41} \int d x=\frac{40}{41} \times+c_{2} \quad \text { ... Eq. }(v)$
From Equ (iii) , (iv) , (v), we have
$I=\frac{9}{41} \log |4 \cos x+5 \sin x|+c_{1}+\frac{40}{41} x+c_{2}$
Therefore,
$I=\frac{9}{41} \log |4 \cos x+5 \sin x|+\frac{40}{41} x+c \quad\left[c_{1}+c_{2}=c\right]$

The Class 12 RD Sharma chapter 18 exercise 18.24 solution of Indefinite integrals of class 12 consists of 11 questions which deals with various topics like,

  • The formulae of fundamental integration

  • The exponential functions of integration

  • Special integrals

  • Special integration by parts

  • Important integral theorem

Benefits for using the RD Sharma class 12 solution chapter 18 exercise 18.24 :-

  • It has been observed that the RD Sharma class 12th exercise 18.24 contains questions that have frequently been asked in the board exams, so a thorough practice of the solution can help you score better.

  • A good enough practice from the RD Sharma class 12 chapter 18 exercise 18.24 can help you to solve questions from the NCERT as well and that also efficiently without any trouble.

  • The RD Sharma class 12th exercise 18.24 is available for free download from the website of the Careers360.

  • You can easily solve homeworks as well when you solve questions from the RD Sharma class 12th exercise 18.24 as teachers assign questions to you from these solutions only.

  • The solutions of the RD Sharma are prepared by experts and they provide helpful tips and tricks to solve questions in easy alternate ways that consume less time.

  • A thorough practice from the RD Sharma class 12th exercise 18.24 can help you score high and ace the board exams without much hustle.

JEE Main Highest Scoring Chapters & Topics
Focus on high-weightage topics with this eBook and prepare smarter. Gain accuracy, speed, and a better chance at scoring higher.
Download E-book

RD Sharma Chapter-wise Solutions

Upcoming School Exams
Ongoing Dates
UP Board 12th Others

11 Aug'25 - 6 Sep'25 (Online)

Ongoing Dates
UP Board 10th Others

11 Aug'25 - 6 Sep'25 (Online)