RD Sharma Class 12 Exercise 18.24 Indefinite integrals Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise 18.24 Indefinite integrals Solutions Maths - Download PDF Free Online

Edited By Kuldeep Maurya | Updated on Jan 24, 2022 12:27 PM IST

Students of class 12 are very well aware that the chapter of Indefinite integrals is very vast portion to cover in less time and therefore RD Sharma class 12 solution of Indefinite integrals exercise 18.24 gives an important amount of knowledge about the few basic concepts and also the high level concepts of the chapter. The RD Sharma class 12th exercise 18.24 will help the student to get a firm hold on this chapter and also help in ace the chapter to keep ahead of everyone and improve the performance gradually resulting in scoring very high marks in the board exams.

Also Read - RD Sharma Solutions For Class 9 to 12 Maths

RD Sharma Class 12 Solutions Chapter18 Indefinite Integrals - Other Exercise

Indefinite Integrals Excercise: 18.24

Indefinite Integrals exercise 18.24 question 1 sub question (iii)

Answer: \mathrm{I}=2 \mathrm{x}-3 \tan ^{-1}\left(\tan \frac{x}{2}+1\right)+\mathrm{c}
Hint: Substitute\tan \frac{x}{2}=\mathrm{t}
Given: \int \frac{3+2 \cos x+4 \sin x}{2 \sin x+\cos x+3} d x
Explanation:
\text { Let, } I=\int \frac{3+4 \sin x+2 \cos x}{3+2 \sin x+\cos x} d x
=\int \frac{6+4 \sin x+2 \cos x-3}{3+2 \sin x+\cos x} \mathrm{~d} \mathrm{x}
=\int \frac{6+4 \sin x+2 \cos x}{3+2 \sin x+\cos x} \mathrm{dx}-\int \frac{-3}{3+2 \sin x+\cos x} \mathrm{dx}
=\int \frac{2(3+2 \sin x+\cos x)}{(3+2 \sin x+\cos x)} d x-\int \frac{-3}{3+2 \sin x+\cos x} d x
=\int 2 d x-3 \int \frac{1}{3+2 \sin x+\cos x} d x
substituting , \sin x=\frac{2 \tan \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}} \text { and } \cos x=\frac{1-\tan ^{2} \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}
=2 x-3 \int \frac{1}{3+2 \times\left(\frac{2 \tan \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}\right)+\left(\frac{1-\tan ^{2} \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}\right)} d x
=2 x-3 \int \frac{1+\tan ^{2} \frac{x}{2}}{3\left(1+\tan ^{2} \frac{x}{2}\right)+4 \tan \frac{x}{2}+1-\tan ^{2} \frac{x}{2}} d x
=2 x-3 \int \frac{\sec ^{2} \frac{x}{2}}{2 \tan ^{2} \frac{x}{2}+4 \tan \frac{x}{2}+4} d x
Substitute, \tan \frac{x}{2}=\mathrm{t}
\Rightarrow \operatorname{Sec}^{2} \frac{x}{2}\cdot \frac{1}{2} \mathrm{dx}=\mathrm{dt}
\begin{aligned} &I=2 x-3 \int \frac{2}{2 t^{2}+4 t+4} d t \\ &I=2 x-3 \int \frac{2}{2\left(t^{2}+2 t+2\right)} d t \\ &I=2 x-3 \int \frac{1}{(t+1)^{2}+1} d t \end{aligned}
\mathrm{I}=2 \mathrm{x}-3 \tan ^{-1}(\mathrm{t}+1)+\mathrm{c} \quad\left[\because \int \frac{1}{1+x^{2}} d x=\tan ^{-1} x+c\right]
\mathrm{I}=2 \mathrm{x}-3 \tan ^{-1}\left(\tan \frac{x}{2}+1\right)+c


Indefinite Integrals exercise 18.24 question 1 sub question (iv)

Answer: \frac{p}{p^{2}+q^{2}} x+\frac{q}{p^{2}+q^{2}} \log |p \cos x+q \sin x|+c

Hint: use the formula in which ,
Put Numerator = λ denominator+ μ (derivative of denominator)
Given: \int \frac{1}{p+q \tan x}
Explanation:
\text { Let, } l=\int \frac{1}{p+q \tan x} \mathrm{dx}
\begin{aligned} &=\int \frac{d x}{p+q \frac{\sin x}{\cos x}} \\ &=\int \frac{\cos x}{p \cos x+q \sin x} d x \end{aligned}
\text { Let, } \operatorname{cos} x=\lambda(p \cos x+q \sin x)+\mu(-p \sin x+q \cos x)
Equating coefficients of Cos x and Sin x, we get.
\begin{aligned} &p \lambda+q \mu=1 \\ &q \lambda-p \mu=0 \end{aligned}
Solving these, we get.
\begin{aligned} &\frac{\lambda}{0-p}=\frac{\mu}{-q-0}=\frac{1}{-p^{2}-q^{2}} \\ &\frac{\lambda}{-p}=\frac{\mu}{-q}=\frac{1}{-\left(p^{2}+q^{2}\right)} \end{aligned}
\lambda=\frac{p}{p^{2}+q^{2}} \quad, \quad \mu=\frac{q}{p^{2}+q^{2}}
\operatorname{cos} x=\frac{p}{p^{2}+q^{2}}(p \cos x+q \sin x)+\frac{q}{p 2+q 2}(-p \sin x+q \cos x)
\mathrm{I}=\int \frac{\frac{p}{p_{2}+q_{2}}(\mathrm{p} \cos \mathrm{x}+\mathrm{q} \sin \mathrm{x})+\frac{q}{p_{2}+q_{2}}(-\mathrm{p} \operatorname{sin} \mathrm{x}+\mathrm{q} \cos \mathrm{x})}{p \cos x+q \sin x} d x
=\frac{p}{p 2+q 2} \int d x+\frac{q}{p 2+q 2} \int\left[\frac{-p \sin x+q \cos x}{p \operatorname{cos} x+q \sin x}\right] d x
I=\frac{p}{p 2+q 2} x+\frac{q}{p 2+q 2} \log (p \cos x+q \sin x)+c


Indefinite Integrals exercise 18.24 question 1 sub question (v)

Answer: 2 x+\log |2 \cos x+\sin x+3|+C
Hint: Using formula, put numerator = λ(denominator)+µ(derivative of denominator)
Given: \int \frac{5 \cos x+6}{2 \cos x+\sin x+3} d x
Explanation:
\text { Let, } 1=\int \frac{5 \cos x+6}{2 \cos x+\sin x+3} d x
\text { Let, } 5 \cos x+6=A(2 \cos x+\sin x+3)+B(-2 \sin x+\cos x) ............(i)
\Rightarrow 5 \cos x+6=(A-2 B) \operatorname{Sin} x+(2 A+B) \operatorname{Cos} x+3 A
Comparing co-efficient of like terms,
\begin{aligned} &\mathrm{A}-2 \mathrm{~B}=0\quad \ldots \text { (ii) }\\ &2 \mathrm{~A}+\mathrm{B}=5 \quad \ldots \text { (iii) }\\ &3 A=6 \; \; \; \; \; \; \; \; \quad \ldots \text { (iv) } \end{aligned}
From eqn (iv) A = 2
Put value of A in equation (ii)
2-2B = 0 \Rightarrow B =1
We get B = 1 and A = 2
By putting values of A, B and C in equation (ii)
\therefore I=\int\left[\frac{2(2 \operatorname{cos} x+\sin x+3)+(-2 \sin x+\cos x)}{2 \cos x+\sin x+3}\right] d x
=2 \int \mathrm{dx}+\int \frac{(-2 \sin x+\cos x)}{(2 \cos x+\sin x+3)} \mathrm{d} \mathrm{x}
Putting 2 \operatorname{cos} x+\sin x+3=t
\Rightarrow(-2 \sin x+\cos x) d x=d t
\therefore I=2 \int \mathrm{dx}+\int \frac{1}{\mathrm{t}} \mathrm{d} \mathrm{t}
\begin{aligned} &=2 x+\log |t|+C \\ &\text { Put } t=2 \cos x+\sin x+3 \\ &\therefore I=2 x+\log |2 \cos x+\sin x+3|+c \end{aligned}

Indefinite Integrals exercise 18.24 question 1 sub question (vi)

Answer: \frac{18 x}{25}+\frac{1}{25} \log |3 \sin x+4 \cos x|+c
Hint: use the formula in which ,
Put Numerator = λ denominator+ μ (derivative of denominator)
Given: \int \frac{2 \sin x+3 \cos x}{3 \sin x+4 \cos x} \mathrm{~d} x
Explanation:
\text { Let } I=\int \frac{2 \sin x+3 \cos x}{3 \sin x+4 \cos x} \mathrm{~d} \mathrm{x}
\text { Let } 2 \sin x+3 \cos x=\lambda(3 \sin x+4 \cos x)+\mu(3 \cos x-4 \sin x)
Equating co-efficient of Cos x and Sin x, We get,
\begin{array}{ll} 4 \lambda+3 \mu=3 & \text { i.e. } 4 \lambda+3 \mu-3=0 \\ 3 \lambda-4 \mu=2 & \text { i.e. } 3 \lambda-4 \mu-2=0 \end{array}
Solving these, we get;
\frac{\lambda}{-6-12}=\frac{\mu}{-9+8}=\frac{1}{-16-9}
\frac{\lambda}{-18}=\frac{\mu}{-1}=\frac{1}{-25}, \lambda=\frac{18}{25} \quad ; \quad \mu=\frac{1}{25}
Therefore,
2 \sin x+3 \cos x=\frac{18}{25}(3 \sin x+4 \cos x)+\frac{1}{25}(3 \cos x-4 \sin x)
\therefore I=\int \frac{\frac{18}{25}(3 \sin x+4 \cos x)+\frac{1}{25}(3 \cos x-4 \sin x)}{3 \sin x+4 \cos x} d x

=\frac{18}{25} \int 1 d x+\frac{1}{25} \int \frac{3 \cos x-4 \sin x}{3 \sin x+4 \cos x} d x

Put 3sin x + 4cos x = t in second integral and differentiate both sides w.r.t x
We get , (3 \cos x-4 \sin x) d x=d t
\begin{aligned} &I=\frac{18}{25} \int 1 d x+\frac{1}{25} \int \frac{1}{t} d t \\ &I=\frac{18}{25} x+\frac{1}{25} \log |t|+C \end{aligned}
Put t=3 \sin x+4 \cos x
I=\frac{18}{25} x+\frac{1}{25} \log |3 \sin x+4 \operatorname{Cos} x|+C

Indefinite Integrals exercise 18.24 question 1 sub question (vii)

Answer: \frac{3}{25} x-\frac{4}{25} \log |3 \sin x+4 \cos x|+C
Hint: use the formula in which ,
Put Numerator = λ denominator+ μ (derivative of denominator)
Given: \int \frac{1}{3+4 \cot x} \mathrm{~d} \mathrm{x}
Explanation:
\text { Let I} =\int \frac{1}{3+4 \operatorname{cot} x} \mathrm{dx}
\begin{aligned} &=\int \frac{1}{3+4\left(\frac{\cos x}{\sin x}\right)} d x \\ &=\int \frac{\sin x}{3 \sin x+4 \cos x} d x \end{aligned}
\operatorname{sin} x=\lambda(3 \sin x+4 \cos x)+\mu(3 \cos x-4 \sin x)
Equating co- efficient of Cos x and Sin x, We get,
\begin{aligned} &3 \lambda-4 \mu-1=0 \\ &4 \lambda+3 \mu-0=0 \end{aligned}
Solving this, we get
\frac{\lambda}{0+3}=\frac{\mu}{-4-0}=\frac{1}{9+16}, \lambda=\frac{3}{25}, \mu=\frac{-4}{25}
Therefore,
\therefore \sin x=3 / 25(3 \sin x+4 \cos x)-4 / 25(3 \cos x-4 \sin x)
I=\int \frac{\frac{3}{25}(3 \sin x+4 \operatorname{cos} x)-\frac{4}{25}(3 \operatorname{cos} x-4 \operatorname{sin} x)}{3 \sin x+4 \cos x} d x
\mathrm{I}=\int \frac{3}{25} \frac{(3 \sin \mathrm{x}+4 \cos \mathrm{x})}{(3 \sin x+4 \cos x)} \mathrm{d} \mathrm{x}-\frac{4}{25} \int \frac{3 \cos \mathrm{x}-4 \sin \mathrm{x}}{3 \sin x+4 \cos x} d x
1=\frac{3}{25} \int 1 . d x-\frac{4}{25} \int \frac{3 \operatorname{cos} x-4 \sin x}{3 \sin x+4 \cos x} d x
put 3sin \: x + 4 cos \; x = t in second integral and differentiate both sides,
we get (3 \cos x-4 \sin x) d x=d t
\mathrm{I}=\frac{3}{25} \int 1 . d x-\frac{4}{25} \int \frac{1}{t} d x
\mathrm{I}=\frac{3}{25} x-\frac{4}{25} \log |t|+c
put t=3 \sin x+4 \cos x
I=\frac{3}{25} x-\frac{4}{25} \log |3 \sin x+4 \operatorname{cos} x|+c


Indefinite Integrals exercise 18.24 question 1 sub question (viii)

Answer: \frac{18}{25} x+\frac{1}{25} \log |3 \operatorname{sin} x+4 \cos x|+C
Hint: use the formula in which ,
Put Numerator = λ denominator+ μ (derivative of denominator)
Given: \int \frac{2 \tan x+3}{3 \tan x+4} d x
Explanation:
\text { Let } I=\int \frac{2 \tan x+3}{3 \tan x+4} d x
=\int \frac{2\left(\frac{\sin x}{\cos x}\right)+3}{3\left(\frac{\sin x}{\cos x}\right)+4} \mathrm{~d} \mathrm{x}
=\int \frac{\frac{2 \operatorname{sin} x+3 \operatorname{cos} x}{\operatorname{cos} x}}{\frac{3 \operatorname{sin} x+4 \operatorname{cos} x}{\operatorname{cos} x}} d x
=\int \frac{2 \sin x+3 \cos x}{3 \sin x+4 \cos x} d x
\text { Let, } 2 \sin x+3 \cos x=\lambda(3 \sin x+4 \cos x)+\mu(3 \cos x-4 \sin x)
Equating co- efficient of Cos x and Sin x, We get,
\begin{array}{ll} 4 \lambda+3 \mu=3 & \text { i.e. } 4 \lambda+3 \mu-3=0 \\ 3 \lambda-4 \mu=2 & \text { i.e. } 3 \lambda-4 \mu-2=0 \end{array}
Solving these, we get;
\begin{aligned} &\frac{\lambda}{-6-12}=\frac{\mu}{-9+8}=\frac{1}{-16-9} \\ &\frac{\lambda}{-18}=\frac{\mu}{-1}=\frac{1}{-25} \\ &\lambda=\frac{18}{25} \quad, \quad \mu=\frac{1}{25} \end{aligned}
Therefore,
2 \sin x+3 \cos x=\frac{18}{25}(3 \sin x+4 \cos x)+\frac{1}{25}(3 \cos x-4 \sin x)
Therefore,
I=\frac{\frac{18}{25}(3 \sin x+4 \cos x)+\frac{1}{25}(3 \operatorname{Cos} x-4 \sin x)}{3 \sin x+4 \cos x} \mathrm{dx}
=\frac{18}{25} \int 1 d x+\frac{1}{25} \int \frac{3 \cos x-4 \sin x}{3 \sin x+4 \cos x} \mathrm{~d} \mathrm{x}
=\frac{18}{25} x+\frac{1}{25} \log |3 \operatorname{Sin} x+4 \operatorname{Cos} x|+C

Indefinite Integrals exercise 18.24 question 1 sub question (ix)

Answer: \frac{4}{25} x+\frac{3}{25} \log |4 \cos x+3 \operatorname{Sin} x|+C

Hint: use the formula in which ,
Put Numerator = λ denominator+ μ (derivative of denominator)
Given: \int \frac{1}{4+3 \tan x} d x
Explanation:
\text { Let } \mathrm{I}=\int \frac{1}{4+3 \tan x} \mathrm{dx}
\begin{aligned} &=\int \frac{1}{4+3\left(\frac{\sin x}{\cos x}\right)} \mathrm{dx} \\ &=\int \frac{\cos x}{4 \cos x+3 \sin x} \mathrm{dx} \end{aligned}
\cos x=\lambda(4 \cos x+3 \sin x)+\mu(-4 \sin x+3 \cos x)
Equating co- efficient of Cos x and Sin x, We get,
\begin{aligned} &4 \lambda+3 \mu-1=0 \ \\ &3 \lambda-4 \mu-0=0 \end{aligned}
Solving these, we get;
\begin{aligned} &\frac{\lambda}{0-4}=\frac{\mu}{-3+0}=\frac{1}{-16-9} \quad \lambda=\frac{4}{25} \quad, \quad \mu=\frac{3}{25} \\ &\therefore \cos x=\frac{4}{25}(4 \cos x+3 \sin x)+\frac{3}{25}(-4 \sin x+3 \cos x) \end{aligned}
\therefore \mathrm{I}=\int \frac{\frac{4}{25}(4 \cos x+3 \sin x)+\frac{3}{25}(-4 \sin x+3 \cos x)}{4 \cos x+3 \sin x} \mathrm{dx}
=\int \frac{4}{25} d x+\frac{3}{25} \cdot \int \frac{-4 \sin x+3 \cos x}{4 \cos x+3 \sin x} \mathrm{~d} \mathrm{x}
put 4cos x + 3 sin x = t in second integral and differentiate both sides,
we get, (-4 \sin x+3 \cos x) d x=d t
I=\int \frac{4}{25} d x+\frac{3}{25} \cdot \int \frac{1}{t} \mathrm{dt}
=\frac{4}{25} x+\frac{3}{25} \log |t|+C
\text { put } t=4 \cos x+3 \sin x
I=\frac{4}{25} x+\frac{3}{25} \log |4 \cos x+3 \operatorname{sin} x|+C


Indefinite Integrals exercise 18.24 question 1 sub question (x)

Answer:I=\log |3 \operatorname{Cos} x+2 \operatorname{Sin} x|+2 x+C
Hint: use the formula in which ,
Put Numerator = A denominator+ B (derivative of denominator)
Given: \int\frac{8 \cot x+1}{3 \cot x+2} \mathrm{~d} \mathrm{x}
Explanation:
\text { Let } \mathrm{I}=\int \frac{8 \cot x+1}{3 \cot x+2} \mathrm{~d} \mathrm{x}
I=\int \frac{8 \frac{\cos x}{\sin x}+1}{3 \frac{\cos x}{\sin x}+2} \mathrm{dx}
=\int \frac{\frac{8 \cos x+\sin x}{\sin x}}{\frac{3 \cos x+2 \sin x}{\sin x}} \mathrm{~d} \mathrm{x}
=\int \frac{8 \cos x+\sin x}{3 \cos x+2 \sin x} \mathrm{~d} \mathrm{x}
So, we will take the steps as directed:
\begin{aligned} &\sin x+8 \cos x=A \frac{d}{d x}(3 \cos x+2 \sin x)+B(3 \cos x+2 \sin x) \\ &\sin x+8 \cos x=A(-3 \sin x+2 \cos x)+B(3 \cos x+2 \sin x) \end{aligned}
\begin{aligned} &\left(\frac{d}{d x} \cos x=-\sin x\right) \\ &\sin x+8 \cos x=\sin x(2 B-3 A)+\operatorname{cos} x(2 A+3 B) \end{aligned}
Comparing both the sides,
\begin{array}{ll} 2 \mathrm{~B}-3 \mathrm{~A}=1 & \text { ...(i) } \\ 3 \mathrm{~B}+2 \mathrm{~A}=8 & \text { ...(ii) } \end{array}
Multiplying (i) by 2 and (ii) by 3 then add;
4B-6A+9B+6A=2+24
On solving for A, B , We have A =1 , B = 2
Thus, I can be expressed as:
I=\int \frac{(-3 \sin x+2 \operatorname{cos} x)+2(3 \cos x+2 \sin x)}{3 \operatorname{cos} x+2 \sin x} d x
\begin{aligned} &\mathrm{I}=\int \frac{(-3 \sin x+2 \cos x)+2(3 \cos x+2 \sin x)}{3 \cos x+2 \sin x} \mathrm{dx} \\ &\mathrm{I}=\int \frac{(-3 \sin x+2 \cos x)}{3 \cos x+2 \sin x} \mathrm{dx}+\int \frac{2(3 \cos x+2 \sin x)}{3 \cos x+2 \sin x} \mathrm{dx} \end{aligned}
\text { Let, } I_{1}=\int \frac{(-3 \sin x+2 \operatorname{Cos} x)}{3 \cos x+2 \sin x} \mathrm{dx} \quad \text { and } I_{2}=\int \frac{2(3 \cos x+2 \sin x)}{3 \cos x+2 \sin x} \mathrm{dx}
\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2} \quad \text { ... Eq. } (iii)
I_{1}=\int \frac{(-3 \sin x+2 \cos x)}{3 \cos x+2 \sin x} \mathrm{~d} \mathrm{x}
\begin{aligned} &\text { Let, } 3 \cos x+2 \sin x=\mu \\ &(-3 \sin x+2 \cos x)=d \mu \end{aligned}
So,I_{1} reduce to
\mathrm{I}_{1}=\int \frac{d \mu}{\mu}=\log |\mu|+\mathrm{c}_{1}
Therefore ,
\begin{aligned} &I_{1}=\log |3 \operatorname{Cos} x+2 \sin x|+c_{1} \quad \ldots \text { Eq. (iv) }\\ &\text { As } I_{2}=\int 2 \frac{(3 \cos x+2 \sin x)}{3 \cos x+2 \sin x} \mathrm{dx}\\ &I_{2}=2 \int d x=2 x+c_{2} \quad \ldots\text { Eq. (v) } \end{aligned}
From Eq. (iii) , (iv) and (v) we have
I=\log | 3 \operatorname{cos} x+2 \sin x \mid+c_{1}+2 x+c_{2}
Therefore,
I=\log |3 \operatorname{Cos} x+2 \sin x|+2 x+c \quad\left[c_{1}+c_{2}=c\right]

Indefinite Integrals exercise 18.24 question 1 sub question (xi)

Answer: I=\frac{9}{41} \log |4 \operatorname{Cos} x+5 \sin x|+\frac{40 x}{41}+C
Hint: use the formula in which
Put Numerator = λ denominator+ μ (derivative of denominator)
Given: I=\int \frac{4 \sin x+5 \cos x}{5 \sin x+4 \cos x} \mathrm{~d} \mathrm{x}
Explanation:
\text { let, } I=\int \frac{4 \sin x+5 \cos x}{5 \sin x+4 \cos x} \mathrm{~d} \mathrm{x}
So, we will take the steps as described
4 \sin x+5 \cos x=A(5 \cos x-4 \sin x)+B(4 \cos x+5 \sin x)
\left(\frac{d}{d x} \operatorname{cos} x=-\sin x\right)
4 \sin x+5 \cos x=(5 B-4 A) \sin x+(5 A+4 B) \cos x
Comparing both sides, we have
\begin{aligned} &5 \mathrm{~B}-4 \mathrm{~A}=4 \quad \ldots (i)\\ &4 B+5 A=5 \quad \ldots(ii) \end{aligned}
Multiplying (i) by 5 and (ii) by 4 and then add;
25 B-20 A+16 B+20 A=20+20
On solving for A and B , we have
A=\frac{9}{41}, B=\frac{40}{41}
Thus, I can be expressed as
\mathrm{I}=\int \frac{\frac{9}{41}(5 \cos x-4 \sin x)+\frac{40}{41}(4 \cos x+5 \sin x)}{4 \cos x+5 \sin x} d x
I=\int \frac{9}{41}\left(\frac{5 \cos x-4 \sin x}{4 \cos x+5 \sin x}\right) \mathrm{d} \mathrm{x}+\int \frac{40}{41}\left(\frac{4 \cos x+5 \sin x}{4 \cos x+5 \sin x}\right) \mathrm{dx}
\begin{aligned} &\text { Let, } I_{1}=\frac{9}{41} \int\left(\frac{5 \cos x-4 \sin x}{4 \cos x+5 \sin x}\right) \mathrm{d} \mathrm{x} \\ &\mathrm{I}_{2}=\frac{40}{41} \int\left(\frac{4 \cos x+5 \sin x}{4 \cos x+5 \sin x}\right) \mathrm{d} \mathrm{x} \end{aligned}
\begin{array}{ll} I=I_{1}+I_{2} & \ldots \text { equ. }(iii) \end{array}
I_{1}=\frac{9}{41} \int\left(\frac{5 \cos x-4 \sin x}{4 \cos x+5 \sin x}\right) d x
\begin{aligned} &\text { Let } 4 \cos x+5 \sin x=u \\ &\Rightarrow(-4 \sin x+5 \cos x) d x=d u \end{aligned}
So, I_{1} reduces to
I_{1}=\frac{9}{41} \int \frac{d u}{u}=\frac{9}{41} \log |u|+c_{1}
Therefore,
I_{1}=\frac{9}{41} \log |4 \operatorname{Cos} x+5 \sin x|+c_{1} \quad \ldots \text { Eq. (iv) }
\text { As, }I_{2}=\frac{40}{41} \int \frac{4 \cos x+5 \sin x}{4 \cos x+5 \sin x} \mathrm{dx}
I_{2}=\frac{40}{41} \int d x=\frac{40}{41} \times+c_{2} \quad \text { ... Eq. }(v)
From Equ (iii) , (iv) , (v), we have
I=\frac{9}{41} \log |4 \cos x+5 \sin x|+c_{1}+\frac{40}{41} x+c_{2}
Therefore,
I=\frac{9}{41} \log |4 \cos x+5 \sin x|+\frac{40}{41} x+c \quad\left[c_{1}+c_{2}=c\right]

The Class 12 RD Sharma chapter 18 exercise 18.24 solution of Indefinite integrals of class 12 consists of 11 questions which deals with various topics like,

  • The formulae of fundamental integration

  • The exponential functions of integration

  • Special integrals

  • Special integration by parts

  • Important integral theorem

Benefits for using the RD Sharma class 12 solution chapter 18 exercise 18.24 :-

  • It has been observed that the RD Sharma class 12th exercise 18.24 contains questions that have frequently been asked in the board exams, so a thorough practice of the solution can help you score better.

  • A good enough practice from the RD Sharma class 12 chapter 18 exercise 18.24 can help you to solve questions from the NCERT as well and that also efficiently without any trouble.

  • The RD Sharma class 12th exercise 18.24 is available for free download from the website of the Careers360.

  • You can easily solve homeworks as well when you solve questions from the RD Sharma class 12th exercise 18.24 as teachers assign questions to you from these solutions only.

  • The solutions of the RD Sharma are prepared by experts and they provide helpful tips and tricks to solve questions in easy alternate ways that consume less time.

  • A thorough practice from the RD Sharma class 12th exercise 18.24 can help you score high and ace the board exams without much hustle.

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download E-book

RD Sharma Chapter-wise Solutions

Frequently Asked Questions (FAQs)

1. What is the cost of the RD Sharma books?

The books are available free of cost on the Careers360 website for free download.


2. How many questions does this exercise contain?

It consists of a total of 11 questions for your thorough practice .

3. What does C mean in indefinite integrals?

The C in the indefinite integrals is used to refer to as the constant of the integration.

4. What is the notation for indefinite integrals?

f(x) is the notation used for mentioning antiderivatives in the  indefinite integrals.

5. From which website can I download the RD Sharma solutions?

You can download the RD Sharma study material from the Careers360 website for free.

Articles

Get answers from students and experts
Back to top