Careers360 Logo
RD Sharma Class 12 Exercise 18.29 Indefinite Integrals Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise 18.29 Indefinite Integrals Solutions Maths - Download PDF Free Online

Edited By Kuldeep Maurya | Updated on Jan 24, 2022 10:24 AM IST

RD Sharma Class 12 Solutions Indefinite Integrals Ex 18.29 examining material is one of the most staggering course books for class 12 maths explicitly for students planning simple tests. The RD Sharma solutions meets an incredible essential of maths questions. Rd Sharma Class 12th exercise 18.29 is an accomplishment for every understudy. One book that has been given to students for rehearsing and tackling for Rd Sharma Class 12th exercise 18.29.

RD Sharma Class 12 Solutions Chapter18 Indefinite Integrals - Other Exercise

Indefinite Integrals Excercise:18.29

Indefinite Integrals Exercise 18.29 Question 1

Answer : 13(x2x+1)32+38(2x1x2x+1+3ln|x+12+x2x+1|+C
Hint: To solve the given integration, we express the linear term as a derivative of quadratic into constant plus another constant
Given : (x+1)x2x+1dx
Solution :
x+1=addx(x2x+1)+bx+1=a(2x1)+bx+1=2axa+b
Comparing the coefficient of x and constant terms, we get
2a=1a=12ba=1b=1+ab=1+12b=32
I=(12(2x1)+32)x2x+1dxI=12(2x1)x2x+1dx+32x2x+1dx
For first integral let x2x+1=t(2x1)dx=dt
I=12tdt+32x2x+1dxI=12tdt+32x22x(12)+(12)2+1(12)2dx
I=12t12+132+32(x12)2+34dx
I=13t3/2+32(x12)2+(32)2dx
Usinf formula, x2+a2dx=x2x2+a2+a22log|x+x2+a2|+C
I=13t3/2+32(x122(((x12)2+(32)2))+(32)22log|x12+(x12)2+(32)2|)+C
I=13t3/2+32(2x14x2x+1+38log|x12+x2x+1|)+CI=13t3/2+32(2x14x2x+1+38log|x12+x2x+1|)+C
I=13(x2x+1)3/2+38(2x1)x2x+1+916log[x12+x2x+1]+c

Indefinite Integrals Exercise 18.29 Question 2

Answer : 16(2x2+3)32+x2x2x+1+324log|2x+2x2+33|+C
Hint: To solve the given integration, we express the linear term as a derivative of quadratic into constant plus another constant
Given : (x+1)2x2+3dx
Solution :  Let I=x2x2+3dx+2x2+3dx
I1=x2x2+3dx Let 2x2+3=t4xdx=dtxdx=dt4
I1=tdt4=14t12dx
=14t1/2+11/2+1[xndx=xn+1n+1]
=14×2t323=t326=(2x2+3)326+C1 ....(i)
I2=2x2+3dx
Use the formula : x2+a2dx=[x2x2+a2+a22log|x+x2+a2|+C]
I2=2(x2+32)dxI2=2x2+32dxI2=2x2+(32)2dx
I2=2[x2x2+32+32×2log|x+x2+32|]+C2 ....(ii)
Adding (i) and (ii) ; I=I1+I2
I=x2x2+3dx+2x2+3dx
=(2x2+3)326+x2x2+32+322log|x+x2+32|+C=16(2x2+3)32+x22x2+32+322log|x+2x2+32|+C
=16(2x2+3)32+x22x2+3+32222log|2x+2x2+32|+C(x+1)2x2+3dx=16(2x2+3)32+x22x2+3+324log|2x+2x2+32|+c

Indefinite Integrals Exercise 18.29 Question 3

Answer :
I=23(2+3xx2)3(2x32)2+3xx2174sin1(2x317)+C
Hint: To solve the given integration, we express the linear term as a derivative of quadratic into constant plus another constant
Given : (2x5)2+3xx2dx
Solution :
2x5=(52x)=(2+32x)=2(32x)I=(2(32x))2+3xx2dxI=22+3xx2dx(32x)2+3xx2dx
Again, 2+3xx2
=(x23x2)=(x22x32+94294)=((x32)2174)=((174)2(x32)2)
Now, I=2[(174)2(x32)2]dx(32x)2+3xx2dx
For the second integral :
Let, 2+3xx2=t2
[(32x)dx=2tdt]
Use the formula : a2x2dx=x2a2x2+a22sin1xa+C
I=2[(x32)2174(x32)2+1742sin1(x32)174]2t2dtI=(2x32)2+3xx2174sin1(2x317)23(2+3xx2)3+CI=23(2+3xx2)3(2x32)2+3xx2174sin1(2x317)+C

Indefinite Integrals Exercise 18.29 Question 4

Answer : 13(x2+x+1)32+3(2x+1)8x2+x+1+916log|(x+12)+x2+x+1|+C
Hint: To solve the given integration, we express the linear term as a derivative of quadratic into constant plus another constant
Given : (x+2)x2+x+1dx
Solution :
 Let (x+2)=addx(x2+x+1)+bx+2=a(2x+1)+bx+2=2ax+a+b
Now comparing the coefficients of x and the constant term, we get
2a=1a=12 and a+b=2b=2a=212=32I=(12(2x+1)+32)x2+x+1dxI=12(2x+1)x2+x+1dx+32x2+x+1dx
For the first integral, let x2+x+1=t(2x+1)dx=dt
I=12tdt+32x2+2(x)(12)+(12)2+114dxI=12t12+132+32(x+12)2+34dx[xndx=xn+1n+1+C]
I=t323+32(x+12)2+(32)2dx
( Use the formula: x2+a2dx=x2x2+a2+a22log|x+x2+a2|+C)
I=(x2+x+1)323+32[(x+12)2x2+x+1+(32)22log|(x+12)+x2+x+1|]+CI=13(x2+x+1)3/2+3(2x+1)8x2+x+1+916log|(x+12)+x2+x+1|+C

Indefinite Integrals Exercise 18.29 Question 5

Answer: 43(x2+x+1)32+3(2x+1)8x2+x+1+278log|(x+12)+x2+x+1|+C
Hint: To solve the given integration, we express the linear team as a derivative of quadratic into constant plus another constant
Given: I=(4x+1)x2x2dx
Solution: Let, 4x+1=Mddx(x2x2)+N
4x+1=M(2x1)+N4x+1=2MxM+N
Now comparing the coefficients of x and the constant term, we get
2M=4M=2 and M+N=12+N=1N=3I=2(2x1)x2x2dx+3x2x2dx
For first integral, let, x2x2=t(2x1)dx=dt
For second integral, x2x2=x22x12+(12)2(12)22=(x12)294=(x12)2(32)2
So, the integral becomes
I=2tdt+3(x12)2(32)2dx
Use the formula : [x2a2dx=x2x2a2a22log|x+x2a2|]+C
I=2t12+112+1+3[(x12)2x2x2942log|(x12)+(x12)2(32)2|]+CI=2×2t323+32[(x12)x2x294log|(x12)+x2x2|]+C
I=43(x2x2)3/2+34(2x1)x2x2278log|(x12)+x2x2|+C

Indefinite Integrals Exercise 18.29 Question 6

Answer : I=16(2x26x+5)3/212[2x32x23x+52+118log|2x32+2x26x+5|]+C
Hint: We solve this integration by qualitative derivation.
Given: (x2)2x26x+5dx
Let, x2=addx(2x26x+5)+b
x2=a(4x6)+bx2=4ax+b6a
Now comparing the coefficients of x and the constant term, we get
4a=1a=14 and b6a=2b=6(14)2b=(12)I=[14(4x6)+(12)]2x26x+5dx
I=14(4x6)2x26x+5dx+122x26x+5dx
For the first integral : Let, 2x26x+5=t(4x6)dx=dt
I=14tdt+(12)(2x)22(2x)(32)+(32)2+594dx
I=14t12+13/212(2x32)2+114dx[xndx=xn+1n+1+C]I=12×3t3/212(2x32)2+(112)2dx
Use the formula : [x2+a2dx=x2x2+a2+a22log|x+x2+a2|]
I=16(2x26x+5)3212[(2x32)22x26x+5+1142log|(2x32)+2x26x+5|]+CI=16(2x26x+5)3/212[2x32x23x+52+118log|2x32+2x26x+5|]+C

Indefinite Integrals Exercise 18.29 Question 7

Answer : I=(x2+x+1)2+12[2x+14x2+x+1+38log|(x+12)+x2+x+1|]+C
Hint : To solve the given integration, we express the linear term as a derivative of quadratic into constant plus another constant
Given : (x+1)x2+x+1dx
Solution :
I=12(2x+2)x2+x+1dxI=12(2x+1)x2+x+1dx+121x2+x+1dx
For thr first integral: Let, x2+x+1=t2(2x+1)dx=2tdt
I=122tdt+12x2+2(x)(12)+(12)2+114dxI=tdt+12(x+12)2+34dx
I=t1+11+1+12(x+12)2+(32)2dx[xndx=xn+1n+1+C]
I=t22+12(x+12)2+(32)2dx( Use the formula: x2+a2dx=x2x2+a2+a22log|x+x2+a2|+C)
I=(x2+x+1)2+12[(x+12)2x2+x+1+(32)22log|(x+12)+x2+x+1|]+CI=(x2+x+1)2+12[2x+14x2+x+1+38log|(x+12)+x2+x+1|]+C

Indefinite Integrals Exercise 18.29 Question 8

Answer : I=23(x2+4x+3)3/2(x+2)2x2+4x+3+12log|(x+2)+x2+4x+3|+C
Hint:To solve the given integration, we express the linear term as a derivative of quadratic into constant plus another constant
Given : (2x+3)x2+4x+3dx
Solution :
Let, x2+4x+3=u2
(2x+4)dx=2uduI=(2x+3)x2+4x+3dxI=(2x+41)x2+4x+3dx
I=(2x+4)x2+4x+3dxx2+4x+3dxI=u(2u)du(x+2)212dx[x2+4x+3=(x+2)21]
Use the formula : [x2a2dx=x2x2a2a22log|x+x2a2|]+C
And [xndx=xn+1n+1+C]
I=2u33[x+22(x+2)2112log|(x+2)+(x2+2)21|]+CI=23(x2+4x+3)3/2(x+2)2x2+4x+3+12log|(x+2)+x2+4x+3|+C

Indefinite Integrals Exercise 18.29 Question 9

Answer : I=23(x24x+3)3/2(x2)2x24x+312log|(x2)+x24x+3|+C
Hint: To solve the given integration, we express the linear term as a derivative of quadratic into constant plus another constant
Given: (2x5)x24x+3dx
I=[[(2x4)1]x24x+3]dxI=(2x4)x24x+3dxx24x+3dx
For the first integral :
Let x24x+3=t
2x4=dtdx(2x4)dx=dt
I=tdtx24x+3dxI=t12dt(x2)2(1)2dx[x24x+3=(x2)21]
Use the formula : [x2a2dx=x2x2a2a22log|x+x2a2|]+C
And [xndx=xn+1n+1+C]
I=t1/2+112+1[x22(x2)2112log|(x2)+(x2)21|]+CI=23(x24x+3)3/2(x2)2x24x+312log|(x2)+x24x+3|+C

Indefinite Integrals Exercise 18.29 Question 10

Answer : I=13(x2+x)3/218(2x+1)x2+x+116log|(x+12)+x2+x|+C
Hint : To solve the given integration, we express the linear term as a derivative of quadratic into constant plus another constant
Given : xx2+xdx
Let, x=addx(x2+x)+b
x=a(2x+1)+bx=2xa+a+b
Comparing the coefficient of x and the constant terms, we get
2a=1 and a+b=0a=1/2b=ab=12I=(12(2x+1)+(12))x2+xdx
I=12(2x+1)x2+xdx+(12)x2+xdx
For the first integral : Let x2+x=t(2x+1)dx=dt
I=12tdt+(12)x2+2(x)(12)+(12)2(12)2dx
Use the formula : [x2a2dx=x2x2a2a22log|x+x2a2|]+C
And [xndx=xn+1n+1+C]
I=1212+112+112(x+12)2(12)2dxI=13t3212[(x+12)2(x+12)2(12)2142log|(x+12)+(x+12)2(12)2|]+C
I=13(x2+x)3/212[(2x+1)4x2+x18log|(x+12)+x2+x|]+CI=13(x2+x)3/218(2x+1)x2+x+116log|(x+12)+x2+x|+C

Indefinite Integrals Exercise 18.29 Question 11

Answer : I=13(x+3x18)3/298(2x+3)x2+3x18+72916log|(x+32)+x2+3x18|+C
Hint: To solve the given integration, we express the linear term as a derivative of quadratic into constant plus another constant
Given : (x3)x2+3x18dx
Solution : x3=A+Bddx(x2+3x18)
x3=A+B(2x+3)
Comparing the coefficient of x and the constant terms, we get
1=2B and 3=A+3B
B=1/233B=A
332=AA=92
I=[92+12(2x+3)]x2+3x18dxI=92x2+3x18dx+12(2x+3)x2+3x18dx
For the second integral:
Let x2+3x18=t
(2x+3)dx=dt
Use the formula : [x2a2dx=x2x2a2a22log|x+x2a2|]+C
And [xndx=xn+1n+1+C]
I=92[(x+32)2x2+3x18814×2log|(x+32)+x2+3x18|]+12t12+112+1+C
I=92[(2x+34)x2+3x18818log|(x+32)+x2+3x18|+13t32]+CI=13(x+3x18)3/298(2x+3)x2+3x18+72916log|(x+32)+x2+3x18|+C

Indefinite Integrals Exercise 18.29 Question 12

Answer : I=13(34xx2)32+12(x+2)34xx2+72sin1(x+27)+C
Hint: To solve the given integration, we express the linear term as a derivative of quadratic into constant plus another constant
Given : (x+3)34xx2dx
Solution :
I=(x+2+1)34xx2dxI=(x+2)34xx2dx+34xx2dx Let ,34xx2=u2
(42x)dx=2udu2(x+2)dx=2udu(x+2)dx=udu
I=uu2du+(x2+4x+44)+3dxI=u2du+(x+2)2+7dx
Use the formula : a2x2dx=x2a2x2+a22sin1xa+C
And [xndx=xn+1n+1+C]
I=u33+(7)2(x+2)2dxI=(34xx2)3/23+x+2234xx2+72sin1(x+27)+CI=13(34xx2)32+12(x+2)34xx2+72sin1(x+27)+C

Indefinite Integrals Exercise 18.29 Question 13

Answer : I=12(43x2x2)3254(2x+32243x2x2+174sin1(2x+3)17)+C
Hint: To solve the given integration, we express the linear team as a derivative of quadratic into constant plus another constant
Given : (3x+1)43x2x2dx
Solution :
 Let, 3x+1=addx(43x2x2)+b3x+1=a(34x)+b3x+1=4ax+b3a
Comparing the coefficient of x and the constant terms, we get
4a=3a=34 and
b3a=1b=1+3(34)b=54I=[34(34x)54]43x2x2dx
I=(34)(34x)43x2x2dx+5443x2x2dx
For the first integral :
 Let 43x2x2=t(34x)dx=dt
I=34tdt544+(32)2[(2x)2+22x(32)+(32)2]dx
Use the formula : a2x2dx=x2a2x2+a22sin1xa+C
And [xndx=xn+1n+1+C]
I=34t12+112+154172(2x+32)2dxI=34t323254(172)2(2x+32)2dx
I=12(43x2x2)3254(2x+32243x2x2+17212sin1(2x+32)172)+CI=12(43x2x2)3254(2x+32243x2x2+174sin1(2x+3)17)+C

Indefinite Integrals Exercise 18.29 Question 14

Answer : 29(104x3x2)32+118(3x+2)104x+3x2+18793sin1(3x+234)+C
Hint: To solve the given integration, we express the linear team as a derivative of quadratic into constant plus another constant
Given: (2x+5)104x3x2dx
Solution : (2x+5)104x3x2dx
 Let, (2x+5)=Addx(104x3x2)+B(2x+5)=A(46x)+B(2x+5)=4A+B6Ax
Comparing the coefficient of x and the constant terms, we get
6A=2A=13 and 4A+B=5B=5+4A=5+4(13)=113I=13(46x)104x3x2dxI=13(6x4)104x3x2dx
I=13[(6x4)104x3x2dx+113104x3x2dx]I=13(6x4)104x3x2dx+(113)104x3x2dx
For the first integral:
 Let, 104x3x2=t(6x4)dx=dtI=13tdt+113×310343xx2dx
Use the formula : a2x2dx=x2a2x2+a22sin1xa+C
And [xndx=xn+1n+1+C]
I=13t3232+1133(103){x2+223x+(23)2}+(23)2dxI=29t3/2+113(343)2(x+23)2dx
I=29(104x3x2)32+113[12(x+23)(343)2(x+23)2+34/92sin1[x+23343]]+CI=29(104x3x2)32+113[(x+23)(1034x3x2)122]+18793sin1[3x+234]+CI=29(104x3x2)32+1118(3x+2)104x3x2+18793sin1[3x+234]+C

Rd Sharma class 12 chapter 18 exercise 18.29 has around 14 inquiries, including its subparts, and it consolidates themes like: -

  • Assessment of integrals by utilizing mathematical replacements like first need to solve the quadratic equation then proceed with the differentiation and integration

  • Questions based on the Formula of Integration

Benefits of picking RD Sharma Mathematics Solutions from Career360 include:

  • Career360, you should get every one of the solutions, so there is no persuading inspiration to head off to someplace else.

  • You can, in like way, benchmark your show premise with these solutions.

  • Since RD Sharma is a widely utilized book, there are chances that a piece of these solicitations may show up in your year's end tests.

  • These solutions are freed from cost.

  • Noteworthy yet orchestrated demonstration of the themes

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download E-book

RD Sharma Chapter-wise Solutions

Frequently Asked Questions (FAQs)

1. Where would i be able to download class 12 RD Sharma chapter 18 exercise 18.29 solution?

Students who wish to download the class 12 RD Sharma chapter 18 exercise 18.29 solution will track down the free duplicate of the Solution at the Career360 site.

2. Is RD Sharma class 12th exercise 18.29 useful for JEE mains solutions?

The RD Sharma class 12th exercise 18.29 covers a schedule that is normal to most exams in class 12. Therefore, students can utilize these solutions to plan for their JEE mains exams.

3. How could RD Sharma class 12 chapter 18 exercise 18.29 assistance in tackling schoolwork?

Teachers will regularly test students' advancement by giving them schoolwork from RD Sharma class 12 chapter 18 exercise 18.29. Therefore, school students can utilize these solutions to settle their schoolwork accurately.

4. Does RD Sharma class 12 solutions chapter 18 ex 18.29 have the most recent schedule?

RD Sharma class 12 solutions chapter 18 ex 18.29 is consistently refreshed so it compares to the schedule of NCERT Books. You can download the most recent adaptation of the pdf by entering your school year.

5. For what reason are RD Sharma Solutions the best NCERT solutions?

Specialists and experts in mathematics are named to draft the appropriate responses that students find in RD Sharma Solutions. Therefore they have the most top notch replies.

Articles

Back to top