RD Sharma Class 12 Exercise 18.29 Indefinite Integrals Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise 18.29 Indefinite Integrals Solutions Maths - Download PDF Free Online

Updated on 24 Jan 2022, 10:24 AM IST

RD Sharma Class 12 Solutions Indefinite Integrals Ex 18.29 examining material is one of the most staggering course books for class 12 maths explicitly for students planning simple tests. The RD Sharma solutions meets an incredible essential of maths questions. Rd Sharma Class 12th exercise 18.29 is an accomplishment for every understudy. One book that has been given to students for rehearsing and tackling for Rd Sharma Class 12th exercise 18.29.

RD Sharma Class 12 Solutions Chapter18 Indefinite Integrals - Other Exercise

Indefinite Integrals Excercise:18.29

Indefinite Integrals Exercise 18.29 Question 1

Answer : $-\frac{1}{3}\left(x^{2}-x+1\right)^{\frac{3}{2}}+\frac{3}{8}\left(2 x-1 \sqrt{x^{2}-x+1}+3 \ln \left|x+\frac{1}{2}+\sqrt{x^{2}-x+1}\right|+C\right.$
Hint: To solve the given integration, we express the linear term as a derivative of quadratic into constant plus another constant
Given : $\int(x+1) \sqrt{x^{2}-x+1} d x$
Solution :
$\begin{aligned} &x+1=a \frac{d}{d x}\left(x^{2}-x+1\right)+b \\ &\Rightarrow x+1=a(2 x-1)+b \\ &\Rightarrow x+1=2 a x-a+b \end{aligned}$
Comparing the coefficient of x and constant terms, we get
$\begin{aligned} &\Rightarrow 2 a=1 \Rightarrow a=\frac{1}{2} \\ &\Rightarrow b-a=1 \Rightarrow b=1+a \Rightarrow b=1+\frac{1}{2} \Rightarrow b=\frac{3}{2} \end{aligned}$
$\begin{aligned} &I=\int\left(\frac{1}{2}(2 x-1)+\frac{3}{2}\right) \sqrt{x^{2}-x+1} d x \\ &I=\int \frac{1}{2}(2 x-1) \sqrt{x^{2}-x+1} d x+\int \frac{3}{2} \sqrt{x^{2}-x+1} d x \end{aligned}$
For first integral let $x^{2}-x+1=t \Rightarrow(2 x-1) d x=d t$
$\begin{aligned} &I=\frac{1}{2} \int \sqrt{t} d t+\frac{3}{2} \int \sqrt{x^{2}-x+1} d x \\ &I=\frac{1}{2} \int \sqrt{t} d t+\frac{3}{2} \int \sqrt{x^{2}-2 x\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^{2}+1-\left(\frac{1}{2}\right)^{2}} d x \end{aligned}$
$I=\frac{1}{2} \frac{t^{\frac{1}{2}+1}}{\frac{3}{2}}+\frac{3}{2} \int \sqrt{\left(x-\frac{1}{2}\right)^{2}+\frac{3}{4}} d x$
$I=\frac{1}{3} t^{3 / 2}+\frac{3}{2} \int \sqrt{\left(x-\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}} d x$
Usinf formula, $\int \sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|+C$
$\\I=\frac{1}{3} t^{3 / 2}+\frac{3}{2}\left(\frac{x-\frac{1}{2}}{2}\left(\sqrt{\left(\left(x-\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}\right)}\right)+\frac{\left(\frac{\sqrt{3}}{2}\right)^{2}}{2} \log \left|x-\frac{1}{2}+\sqrt{\left(x-\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}\right|\right)+C$
$\begin{aligned} &I=\frac{1}{3} t^{3 / 2}+\frac{3}{2}\left(\frac{2 x-1}{4} \sqrt{x^{2}-x+1}+\frac{3}{8} \log \left|x-\frac{1}{2}+\sqrt{x^{2}-x+1}\right|\right)+C \\ &I=\frac{1}{3} t^{3 / 2}+\frac{3}{2}\left(\frac{2 x-1}{4} \sqrt{x^{2}-x+1}+\frac{3}{8} \log \left|x-\frac{1}{2}+\sqrt{x^{2}-x+1}\right|\right)+C \end{aligned}$
$\\I=\frac{1}{3}\left(x^{2}-x+1\right)^{3 / 2}+\frac{3}{8}(2 x-1) \sqrt{x^{2}-x+1}+\frac{9}{16} \log \left[x-\frac{1}{2}+\sqrt{x^{2}-x+1}\right]+c$

Indefinite Integrals Exercise 18.29 Question 2

Answer : $\frac{1}{6}\left(2 x^{2}+3\right)^{\frac{3}{2}}+\frac{x}{2} \sqrt{x^{2}-x+1}+\frac{3 \sqrt{2}}{4} \log \left|\frac{\sqrt{2 x}+\sqrt{2 x^{2}+3}}{\sqrt{3}}\right|+C$
Hint: To solve the given integration, we express the linear term as a derivative of quadratic into constant plus another constant
Given : $\int(x+1) \sqrt{2 x^{2}+3} d x$
Solution : $\text { Let } I=\int x \sqrt{2 x^{2}+3} d x+\int \sqrt{2 x^{2}+3} d x$
$\begin{aligned} &I_{1}=\int x \sqrt{2 x^{2}+3} d x \\ &\text { Let } 2 x^{2}+3=t \\ &4 x d x=d t \\ &x \cdot \mathrm{d} x=\frac{d t}{4} \end{aligned}$
$\begin{aligned} &I_{1}=\int \sqrt{t} \frac{d t}{4} \\ &=\frac{1}{4} \int t^{\frac{1}{2}} d x \end{aligned}$
$=\frac{1}{4} \frac{t^{1 / 2+1}}{1 / 2+1} \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \quad\left[\int x^{n} d x=\frac{x^{n}+1}{n+1}\right]$
$\begin{aligned} &=\frac{1}{4} \times 2 \frac{t^{\frac{3}{2}}}{3} \\ &=\frac{t^{\frac{3}{2}}}{6}=\frac{\left(2 x^{2}+3\right)^{\frac{3}{2}}}{6}+C_{1} \end{aligned}$ ....(i)
$I_{2}=\int \sqrt{2 x^{2}+3} d x$
Use the formula : $\int \sqrt{x^{2}+a^{2}} d x=\left[\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|+C\right]$
$\begin{aligned} &I_{2}=\int \sqrt{2\left(x^{2}+\frac{3}{2}\right)} d x \\ &I_{2}=\sqrt{2} \int \sqrt{x^{2}+\frac{3}{2}} d x \\ &I_{2}=\sqrt{2} \int \sqrt{x^{2}+\left(\frac{\sqrt{3}}{\sqrt{2}}\right)^{2}} d x \end{aligned}$
$I_{2}=\sqrt{2}\left[\frac{x}{2} \sqrt{x^{2}+\frac{3}{2}}+\frac{3}{2 \times 2} \log \left|x+\sqrt{x^{2}+\frac{3}{2}}\right|\right]+C_{2}$ ....(ii)
Adding (i) and (ii) ; $I=I_{1}+I_{2}$
$I=\int x \sqrt{2 x^{2}+3} d x+\int \sqrt{2 x^{2}+3} d x$
$\begin{aligned} &=\frac{\left(2 x^{2}+3\right)^{\frac{3}{2}}}{6}+\frac{x}{\sqrt{2}} \sqrt{x^{2}+\frac{3}{2}}+\frac{3}{2 \sqrt{2}} \log \left|x+\sqrt{x^{2}+\frac{3}{2}}\right|+C \\ &=\frac{1}{6}\left(2 x^{2}+3\right)^{\frac{3}{2}}+\frac{x}{\sqrt{2}} \frac{\sqrt{2 x^{2}+3}}{\sqrt{2}}+\frac{3}{2 \sqrt{2}} \log \left|x+\frac{\sqrt{2 x^{2}+3}}{\sqrt{2}}\right|+C \end{aligned}$
$\begin{aligned} &=\frac{1}{6}\left(2 x^{2}+3\right)^{\frac{3}{2}}+\frac{x}{2} \sqrt{2 x^{2}+3}+\frac{3}{2 \sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} \log \left|\frac{\sqrt{2} x+\sqrt{2 x^{2}+3}}{\sqrt{2}}\right|+C \\ &\int(x+1) \sqrt{2 x^{2}+3} d x=\frac{1}{6}\left(2 x^{2}+3\right)^{\frac{3}{2}}+\frac{x}{2} \sqrt{2 x^{2}+3}+\frac{3 \sqrt{2}}{4} \log \left|\frac{\sqrt{2} x+\sqrt{2 x^{2}+3}}{\sqrt{2}}\right|+c \end{aligned}$

Indefinite Integrals Exercise 18.29 Question 3

Answer :
$\\I=-\frac{2}{3}\left(2+3 x-x^{2}\right)^{3}-\left(\frac{2 x-3}{2}\right) \sqrt{2+3 x-x^{2}}-\frac{17}{4} \sin ^{-1}\left(\frac{2 x-3}{\sqrt{17}}\right)+C$
Hint: To solve the given integration, we express the linear term as a derivative of quadratic into constant plus another constant
Given : $\int(2 x-5) \sqrt{2+3 x-x^{2}} d x$
Solution :
$\begin{aligned} &2 x-5=-(5-2 x)=-(2+3-2 x)=-2-(3-2 x) \\ &I=\int(-2-(3-2 x)) \sqrt{2+3 x-x^{2}} d x \\ &I=\int-2 \sqrt{2+3 x-x^{2}} d x-\int(3-2 x) \sqrt{2+3 x-x^{2}} d x \end{aligned}$
Again, $2+3 x-x^{2}$
$\begin{aligned} &=-\left(x^{2}-3 x-2\right) \\ &=-\left(x^{2}-2 \cdot x \cdot \frac{3}{2}+\frac{9}{4}-2-\frac{9}{4}\right) \\ &=-\left(\left(x-\frac{3}{2}\right)^{2}-\frac{17}{4}\right) \\ &=\left(\left(\sqrt{\frac{17}{4}}\right)^{2}-\left(x-\frac{3}{2}\right)^{2}\right) \end{aligned}$
Now, $I=-2 \int\left[\sqrt{\left(\sqrt{\frac{17}{4}}\right)^{2}-\left(x-\frac{3}{2}\right)^{2}}\right] \mathrm{dx}-\int(3-2 x) \sqrt{2+3 x-x^{2}} d x$
For the second integral :
Let, $2+3 x-x^{2}=t^{2}$
$\Rightarrow[(3-2 x) d x=2 t d t]$
Use the formula : $\int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}+C$
$\begin{aligned} &I=-2\left[\frac{\left(x-\frac{3}{2}\right)}{2} \sqrt{\frac{17}{4}-\left(x-\frac{3}{2}\right)^{2}}+\frac{\frac{17}{4}}{2} \sin ^{-1} \frac{\left(x-\frac{3}{2}\right)}{\frac{17}{4}}\right]-\int 2 t^{2} d t \\ &I=-\left(\frac{2 x-3}{2}\right) \sqrt{2+3 x-x^{2}}-\frac{17}{4} \sin ^{-1}\left(\frac{2 x-3}{\sqrt{17}}\right)-\frac{2}{3}\left(2+3 x-x^{2}\right)^{3}+C \\ &I=-\frac{2}{3}\left(2+3 x-x^{2}\right)^{3}-\left(\frac{2 x-3}{2}\right) \sqrt{2+3 x-x^{2}}-\frac{17}{4} \sin ^{-1}\left(\frac{2 x-3}{\sqrt{17}}\right)+C \end{aligned}$

Indefinite Integrals Exercise 18.29 Question 4

Answer : $\\\frac{1}{3}\left(x^{2}+x+1\right)^{\frac{3}{2}}+\frac{3(2 x+1)}{8} \sqrt{x^{2}+x+1}+\frac{9}{16} \log \left|\left(x+\frac{1}{2}\right)+\sqrt{x^{2}+x+1}\right|+C$
Hint: To solve the given integration, we express the linear term as a derivative of quadratic into constant plus another constant
Given : $\int(x+2) \sqrt{x^{2}+x+1} d x$
Solution :
$\begin{aligned} &\text { Let }(x+2)=a \frac{d}{d x}\left(x^{2}+x+1\right)+b \\ &\Rightarrow x+2=a(2 x+1)+b \\ &\Rightarrow x+2=2 a x+a+b \end{aligned}$
Now comparing the coefficients of x and the constant term, we get
$\begin{aligned} &2 a=1 \Rightarrow a=\frac{1}{2} \text { and } \\ &a+b=2 \Rightarrow b=2-a=2-\frac{1}{2}=\frac{3}{2} \\ &I=\int\left(\frac{1}{2}(2 x+1)+\frac{3}{2}\right) \sqrt{x^{2}+x+1} d x \\ &I=\int \frac{1}{2}(2 x+1) \sqrt{x^{2}+x+1} d x+\int \frac{3}{2} \sqrt{x^{2}+x+1} d x \end{aligned}$
For the first integral, let $x^{2}+x+1=t \Rightarrow(2 x+1) d x=d t$
$\begin{aligned} &I=\frac{1}{2} \int \sqrt{t} d t+\frac{3}{2} \int \sqrt{x^{2}+2(x)\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^{2}+1-\frac{1}{4}} d x \\ &I=\frac{1}{2} \frac{t^{\frac{1}{2}+1}}{\frac{3}{2}}+\frac{3}{2} \int \sqrt{\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}} d x \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \quad\left[\int x^{n} d x=\frac{x^{n}+1}{n+1}+C\right] \end{aligned}$
$I=\frac{t^{\frac{3}{2}}}{3}+\frac{3}{2} \int \sqrt{\left(x+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}} d x$
$\left(\text { Use the formula: } \sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|+C\right)$
$\begin{aligned} &I=\frac{\left(x^{2}+x+1\right)^{\frac{3}{2}}}{3}+\frac{3}{2}\left[\frac{\left(x+\frac{1}{2}\right)}{2} \sqrt{x^{2}+x+1}+\frac{\left(\frac{\sqrt{3}}{2}\right)^{2}}{2} \log \left|\left(x+\frac{1}{2}\right)+\sqrt{x^{2}+x+1}\right|\right]+C \\ &I=\frac{1}{3}\left(x^{2}+x+1\right)^{3 / 2}+\frac{3(2 x+1)}{8} \sqrt{x^{2}+x+1}+\frac{9}{16} \log \left|\left(x+\frac{1}{2}\right)+\sqrt{x^{2}+x+1}\right|+C \end{aligned}$

Indefinite Integrals Exercise 18.29 Question 5

Answer: $\\\frac{4}{3}\left(x^{2}+x+1\right)^{\frac{3}{2}}+\frac{3(2 x+1)}{8} \sqrt{x^{2}+x+1}+\frac{27}{8} \log \left|\left(x+\frac{1}{2}\right)+\sqrt{x^{2}+x+1}\right|+C$
Hint: To solve the given integration, we express the linear team as a derivative of quadratic into constant plus another constant
Given: $I=\int(4 x+1) \sqrt{x^{2}-x-2} d x$
Solution: Let, $4 x+1=M \frac{d}{d x}\left(x^{2}-x-2\right)+N$
$\begin{aligned} &\Rightarrow 4 x+1=M(2 x-1)+N \\ &\Rightarrow 4 x+1=2 M x-M+N \end{aligned}$
Now comparing the coefficients of x and the constant term, we get
$\begin{aligned} &2 M=4 \Rightarrow M=2 \text { and }-M+N=1 \Rightarrow-2+N=1 \Rightarrow N=3 \\ &I=2 \int(2 x-1) \sqrt{x^{2}-x-2} d x+3 \int \sqrt{x^{2}-x-2} d x \end{aligned}$
For first integral, let, $x^{2}-x-2=t \Rightarrow(2 x-1) d x=d t$
For second integral, $x^{2}-x-2=x^{2}-2 \cdot x \cdot \frac{1}{2}+\left(\frac{1}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}-2=\left(x-\frac{1}{2}\right)^{2}-\frac{9}{4}=\left(x-\frac{1}{2}\right)^{2}-\left(\frac{3}{2}\right)^{2}$
So, the integral becomes
$I=2 \int \sqrt{t} d t+3 \int \sqrt{\left(x-\frac{1}{2}\right)^{2}-\left(\frac{3}{2}\right)^{2}} d x$
Use the formula : $\left[\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}-a^{2}}\right|\right]+C$
$\begin{aligned} &I=2 \frac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}+3\left[\frac{\left(x-\frac{1}{2}\right)}{2} \sqrt{x^{2}-x-2}-\frac{\frac{9}{4}}{2} \log \left|\left(x-\frac{1}{2}\right)+\sqrt{\left(x-\frac{1}{2}\right)^{2}-\left(\frac{3}{2}\right)^{2}}\right|\right]+C \\ &I=2 \times 2 \frac{t^{\frac{3}{2}}}{3}+\frac{3}{2}\left[\left(x-\frac{1}{2}\right) \sqrt{x^{2}-x-2}-\frac{9}{4} \log \left|\left(x-\frac{1}{2}\right)+\sqrt{x^{2}-x-2}\right|\right]+C \end{aligned}$
$\\I=\frac{4}{3}\left(x^{2}-x-2\right)^{3 / 2}+\frac{3}{4}(2 x-1)\sqrt{x^{2} x-2}-\frac{27}{8}\log \left|\left(x-\frac{1}{2}\right)+\sqrt{x^{2}-x-2}\right|+C$

Indefinite Integrals Exercise 18.29 Question 6

Answer : $\\I=\frac{1}{6}\left(2 x^{2}-6 x+5\right)^{3 / 2}-\frac{1}{2}\left[\frac{2 x-3}{2} \sqrt{x^{2}-3 x+\frac{5}{2}}+\frac{11}{8} \log \left|\frac{2 x-3}{\sqrt{2}}+\sqrt{2 x^{2}-6 x+5}\right|\right]+C$
Hint: We solve this integration by qualitative derivation.
Given: $\int(x-2) \sqrt{2 x^{2}-6 x+5} \; d x$
Let, $x-2=a \frac{d}{d x}\left(2 x^{2}-6 x+5\right)+b$
$\begin{aligned} &\Rightarrow x-2=a(4 x-6)+b \\ &\Rightarrow x-2=4 a x+b-6 a \end{aligned}$
Now comparing the coefficients of x and the constant term, we get
$\begin{aligned} &4 a=1 \Rightarrow a=\frac{1}{4} \text { and } \\ &b-6 a=-2 \Rightarrow b=6\left(\frac{1}{4}\right)-2 \Rightarrow b=\left(-\frac{1}{2}\right) \\ &I=\int\left[\frac{1}{4}(4 x-6)+\left(-\frac{1}{2}\right)\right] \sqrt{2 x^{2}-6 x+5} d x \end{aligned}$
$I=\int \frac{1}{4}(4 x-6) \sqrt{2 x^{2}-6 x+5} d x+\int-\frac{1}{2} \sqrt{2 x^{2}-6 x+5} d x$
For the first integral : Let, $2 x^{2}-6 x+5=t \Rightarrow(4 x-6) d x=d t$
$I=\frac{1}{4} \int \sqrt{t} d t+\left(-\frac{1}{2}\right) \int \sqrt{(\sqrt{2} x)^{2}-2(\sqrt{2} x)\left(\frac{3}{\sqrt{2}}\right)+\left(\frac{3}{\sqrt{2}}\right)^{2}+5-\frac{9}{4}} d x$
$\begin{aligned} &I=\frac{1}{4} \frac{t^{\frac{1}{2}+1}}{3 / 2}-\frac{1}{2} \int \sqrt{\left(\sqrt{2} x-\frac{3}{\sqrt{2}}\right)^{2}+\frac{11}{4}} d x \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \quad\left[\int x^{n} d x=\frac{x^{n}+1}{n+1}+C\right] \\ &I=\frac{1}{2 \times 3} t^{3 / 2}-\frac{1}{2} \int \sqrt{\left(\sqrt{2} x-\frac{3}{\sqrt{2}}\right)^{2}+\left(\frac{\sqrt{11}}{2}\right)^{2}} d x \end{aligned}$
Use the formula : $\left[\sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|\right]$
$\begin{aligned} &I=\frac{1}{6}\left(2 x^{2}-6 x+5\right)^{\frac{3}{2}}-\frac{1}{2}\left[\frac{\left(\sqrt{2} x-\frac{3}{\sqrt{2}}\right)}{2} \sqrt{2 x^{2}-6 x+5}+\frac{\frac{11}{4}}{2} \log \left|\left(\sqrt{2} x-\frac{3}{\sqrt{2}}\right)+\sqrt{2 x^{2}-6 x+5}\right|\right]+C \\ &I=\frac{1}{6}\left(2 x^{2}-6 x+5\right)^{3 / 2}-\frac{1}{2}\left[\frac{2 x-3}{2} \sqrt{x^{2}-3 x+\frac{5}{2}}+\frac{11}{8} \log \left|\frac{2 x-3}{\sqrt{2}}+\sqrt{2 x^{2}-6 x+5}\right|\right]+C \end{aligned}$

Indefinite Integrals Exercise 18.29 Question 7

Answer : $\\I=\frac{\left(x^{2}+x+1\right)}{2}+\frac{1}{2}\left[\frac{2 x+1}{4} \sqrt{x^{2}+x+1}+\frac{3}{8} \log \left|\left(x+\frac{1}{2}\right)+\sqrt{x^{2}+x+1}\right|\right]+C$
Hint : To solve the given integration, we express the linear term as a derivative of quadratic into constant plus another constant
Given : $\int(x+1) \sqrt{x^{2}+x+1} d x$
Solution :
$\begin{aligned} &I=\frac{1}{2} \int(2 x+2) \sqrt{x^{2}+x+1} d x \\ &I=\frac{1}{2} \int(2 x+1) \sqrt{x^{2}+x+1} d x+\frac{1}{2} \int 1 \sqrt{x^{2}+x+1} d x \end{aligned}$
For thr first integral: Let, $x^{2}+x+1=t^{2} \Rightarrow(2 x+1) d x=2 t d t$
$\begin{aligned} &I=\frac{1}{2} \int 2 t d t+\frac{1}{2} \int \sqrt{x^{2}+2(x)\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^{2}+1-\frac{1}{4}} d x \\ &I=\int t d t+\frac{1}{2} \int \sqrt{\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}} d x \end{aligned}$
$I=\frac{t^{1+1}}{1+1}+\frac{1}{2} \int \sqrt{\left(x+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}} d x\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \quad\left[\int x^{n} d x=\frac{x^{n}+1}{n+1}+C\right]$
$\begin{aligned} &I=\frac{t^{2}}{2}+\frac{1}{2} \int \sqrt{\left(x+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}} d x \\ &\left(\text { Use the formula: } \sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|+C\right) \end{aligned}$
$\begin{aligned} &I=\frac{\left(x^{2}+x+1\right)}{2}+\frac{1}{2}\left[\frac{\left(x+\frac{1}{2}\right)}{2} \sqrt{x^{2}+x+1}+\frac{\left(\frac{\sqrt{3}}{2}\right)^{2}}{2} \log \left|\left(x+\frac{1}{2}\right)+\sqrt{x^{2}+x+1}\right|\right]+C \\ &I=\frac{\left(x^{2}+x+1\right)}{2}+\frac{1}{2}\left[\frac{2 x+1}{4} \sqrt{x^{2}+x+1}+\frac{3}{8} \log \left|\left(x+\frac{1}{2}\right)+\sqrt{x^{2}+x+1}\right|\right]+C \end{aligned}$

Indefinite Integrals Exercise 18.29 Question 8

Answer : $\\I=\frac{2}{3}\left(x^{2}+4 x+3\right)^{3 / 2}-\frac{(x+2)}{2} \sqrt{x^{2}+4 x+3}+\frac{1}{2} \log \left|(x+2)+\sqrt{x^{2}+4 x+3}\right|+C$
Hint:To solve the given integration, we express the linear term as a derivative of quadratic into constant plus another constant
Given : $\int(2 x+3) \sqrt{x^{2}+4 x+3} d x$
Solution :
Let, $x^{2}+4 x+3=u^{2}$
$\begin{aligned} &\quad \Rightarrow(2 x+4) d x=2 u d u \\ &I=\int(2 x+3) \sqrt{x^{2}+4 x+3} d x \\ &I=\int(2 x+4-1) \sqrt{x^{2}+4 x+3} d x \end{aligned}$
$\begin{aligned} &I=\int(2 x+4) \sqrt{x^{2}+4 x+3} d x-\int \sqrt{x^{2}+4 x+3} \mathrm{dx} \\ &I=\int u(2 u) \mathrm{du}-\int \sqrt{(x+2)^{2}-1^{2}} d x \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \: \: \: \: \: \; \; \; \; \; \; \; \; \; \; \quad\left[x^{2}+4 x+3=(x+2)^{2}-1\right] \end{aligned}$
Use the formula : $\left[\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}-a^{2}}\right|\right]+C$
And $\left[\int x^{n} d x=\frac{x^{n}+1}{n+1}+C\right]$
$\begin{aligned} &I=2 \frac{u^{3}}{3}-\left[\frac{x+2}{2} \sqrt{(x+2)^{2}-1}-\frac{1}{2} \log \left|(x+2)+\sqrt{\left(x^{2}+2\right)^{2}-1}\right|\right]+C \\ &I=\frac{2}{3}\left(x^{2}+4 x+3\right)^{3 / 2}-\frac{(x+2)}{2} \sqrt{x^{2}+4 x+3}+\frac{1}{2} \log \left|(x+2)+\sqrt{x^{2}+4 x+3}\right|+C \end{aligned}$

Indefinite Integrals Exercise 18.29 Question 9

Answer : $\\I=\frac{2}{3}\left(x^{2}-4 x+3\right)^{3 / 2}-\frac{(x-2)}{2} \sqrt{x^{2}-4 x+3}-\frac{1}{2} \log \left|(x-2)+\sqrt{x^{2}-4 x+3}\right|+C$
Hint: To solve the given integration, we express the linear term as a derivative of quadratic into constant plus another constant
Given: $\int(2 x-5) \sqrt{x^{2}-4 x+3} d x$
$\begin{aligned} &I=\int\left[[(2 x-4)-1] \sqrt{x^{2}-4 x+3}\right] d x \\ &I=\int(2 x-4) \sqrt{x^{2}-4 x+3} d x-\int \sqrt{x^{2}-4 x+3} d x \end{aligned}$
For the first integral :
Let $x^{2}-4 x+3=t$
$\begin{aligned} &\Rightarrow 2 x-4=\frac{d t}{d x} \\ &\Rightarrow(2 x-4) d x=d t \end{aligned}$
$\begin{aligned} &I=\int \sqrt{t} d t-\int \sqrt{x^{2}-4 x+3} d x \\ &I=\int t^{\frac{1}{2}} d t-\int \sqrt{(x-2)^{2}-(1)^{2}} d x\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \quad\left[x^{2}-4 x+3=(x-2)^{2}-1\right] \end{aligned}$
Use the formula : $\left[\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}-a^{2}}\right|\right]+C$
And $\left[\int x^{n} d x=\frac{x^{n}+1}{n+1}+C\right]$
$\begin{aligned} &I=\frac{t^{1 / 2}+1}{\frac{1}{2}+1}-\left[\frac{x-2}{2} \sqrt{(x-2)^{2}-1}-\frac{1}{2} \log \left|(x-2)+\sqrt{(x-2)^{2}-1}\right|\right]+C \\ &I=\frac{2}{3}\left(x^{2}-4 x+3\right)^{3 / 2}-\frac{(x-2)}{2} \sqrt{x^{2}-4 x+3}-\frac{1}{2} \log \left|(x-2)+\sqrt{x^{2}-4 x+3}\right|+C \end{aligned}$

Indefinite Integrals Exercise 18.29 Question 10

Answer : $I=\frac{1}{3}\left(x^{2}+x\right)^{3 / 2}-\frac{1}{8}(2 x+1) \sqrt{x^{2}+x}+\frac{1}{16} \log \left|\left(x+\frac{1}{2}\right)+\sqrt{x^{2}+x}\right|+C$
Hint : To solve the given integration, we express the linear term as a derivative of quadratic into constant plus another constant
Given : $\int x \sqrt{x^{2}+x} d x$
Let, $x=a \frac{d}{d x}\left(x^{2}+x\right)+b$
$\begin{aligned} &\Rightarrow x=a(2 x+1)+b \\ &\Rightarrow x=2 x a+a+b \end{aligned}$
Comparing the coefficient of x and the constant terms, we get
$\begin{aligned} &\Rightarrow 2 a=1 \quad \text { and } \quad a+b=0 \\ &\Rightarrow a=1 / 2 \; \; \; \; \;\quad \Rightarrow b=-a \\ &\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \Rightarrow b=-\frac{1}{2} \\ &I=\int\left(\frac{1}{2}(2 x+1)+\left(-\frac{1}{2}\right)\right) \sqrt{x^{2}+x} d x \end{aligned}$
$I=\frac{1}{2} \int(2 x+1) \sqrt{x^{2}+x} d x+\int\left(-\frac{1}{2}\right) \sqrt{x^{2}+x} d x$
For the first integral : Let $x^{2}+x=t \Rightarrow(2 x+1) d x=d t$
$I=\frac{1}{2} \int \sqrt{t} d t+\left(-\frac{1}{2}\right) \int \sqrt{x^{2}+2(x)\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}} d x$
Use the formula : $\left[\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}-a^{2}}\right|\right]+C$
And $\left[\int x^{n} d x=\frac{x^{n}+1}{n+1}+C\right]$
$\begin{aligned} &I=\frac{1}{2} \frac{\frac{1}{2}+1}{\frac{1}{2}+1}-\frac{1}{2} \int \sqrt{\left(x+\frac{1}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}} d x \\ &I=\frac{1}{3} t^{\frac{3}{2}}-\frac{1}{2}\left[\frac{\left(x+\frac{1}{2}\right)}{2} \sqrt{\left(x+\frac{1}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}}-\frac{\frac{1}{4}}{2} \log \left|\left(x+\frac{1}{2}\right)+\sqrt{\left(x+\frac{1}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}}\right|\right]+C \end{aligned}$
$\begin{aligned} &I=\frac{1}{3}\left(x^{2}+x\right)^{3 / 2}-\frac{1}{2}\left[\frac{(2 x+1)}{4} \sqrt{x^{2}+x}-\frac{1}{8} \log \left|\left(x+\frac{1}{2}\right)+\sqrt{x^{2}+x}\right|\right]+C \\ &I=\frac{1}{3}\left(x^{2}+x\right)^{3 / 2}-\frac{1}{8}(2 x+1) \sqrt{x^{2}+x}+\frac{1}{16} \log \left|\left(x+\frac{1}{2}\right)+\sqrt{x^{2}+x}\right|+C \end{aligned}$

Indefinite Integrals Exercise 18.29 Question 11

Answer : $\\I=\frac{1}{3}(x+3 x-18)^{3 / 2}-\frac{9}{8}(2 x+3) \sqrt{x^{2}+3 x-18}+\frac{729}{16} \log \left|\left(x+\frac{3}{2}\right)+\sqrt{x^{2}+3 x-18}\right|+C$
Hint: To solve the given integration, we express the linear term as a derivative of quadratic into constant plus another constant
Given : $\int(x-3) \sqrt{x^{2}+3 x-18} d x$
Solution : $x-3=A+B \frac{d}{d x}\left(x^{2}+3 x-18\right)$
$\Rightarrow x-3=A+B(2 x+3)$
Comparing the coefficient of x and the constant terms, we get
$\Rightarrow 1=2 B \text { and } \Rightarrow-3=A+3 B$
$\Rightarrow B=1 / 2 \; \; \; \; \; \; \; \; \quad \Rightarrow-3-3 B=A$
$\begin{aligned} &\Rightarrow-3-\frac{3}{2}=A \\ &\Rightarrow A=-\frac{9}{2} \end{aligned}$
$\begin{aligned} &I=\int\left[-\frac{9}{2}+\frac{1}{2}(2 x+3)\right] \sqrt{x^{2}+3 x-18} d x \\ &I=-\frac{9}{2} \int \sqrt{x^{2}+3 x-18} d x+\frac{1}{2} \int(2 x+3) \sqrt{x^{2}+3 x-18} d x \end{aligned}$
For the second integral:
Let $x^{2}+3 x-18=t$
$\Rightarrow(2 x+3) d x=d t$
Use the formula : $\left[\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}-a^{2}}\right|\right]+C$
And $\left[\int x^{n} d x=\frac{x^{n}+1}{n+1}+C\right]$
$\\I=-\frac{9}{2}\left[\frac{\left(x+\frac{3}{2}\right)}{2} \sqrt{x^{2}+3 x-18}-\frac{81}{4 \times 2} \log \left|\left(x+\frac{3}{2}\right)+\sqrt{x^{2}+3 x-18}\right|\right]+\frac{1}{2} \frac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}+C$
$\begin{aligned} &I=-\frac{9}{2}\left[\left(\frac{2 x+3}{4}\right) \sqrt{x^{2}+3 x-18}-\frac{81}{8} \log \left|\left(x+\frac{3}{2}\right)+\sqrt{x^{2}+3 x-18}\right|+\frac{1}{3} t^{\frac{3}{2}}\right]+C \\ &I=\frac{1}{3}(x+3 x-18)^{3 / 2}-\frac{9}{8}(2 x+3) \sqrt{x^{2}+3 x-18}+\frac{729}{16} \log \left|\left(x+\frac{3}{2}\right)+\sqrt{x^{2}+3 x-18}\right|+C \end{aligned}$

Indefinite Integrals Exercise 18.29 Question 12

Answer : $I=-\frac{1}{3}\left(3-4 x-x^{2}\right)^{\frac{3}{2}}+\frac{1}{2}(x+2) \sqrt{3-4 x-x^{2}}+\frac{7}{2} \sin ^{-1}\left(\frac{x+2}{\sqrt{7}}\right)+C$
Hint: To solve the given integration, we express the linear term as a derivative of quadratic into constant plus another constant
Given : $\int(x+3) \sqrt{3-4 x-x^{2}} d x$
Solution :
$\begin{aligned} &I=\int(x+2+1) \sqrt{3-4 x-x^{2}} d x \\ &I=\int(x+2) \sqrt{3-4 x-x^{2}} d x+\int \sqrt{3-4 x-x^{2}} d x \\ &\text { Let }, 3-4 x-x^{2}=u^{2} \end{aligned}$
$\begin{aligned} &\Rightarrow(-4-2 x) d x=2 u d u \\ &\Rightarrow-2(x+2) d x=2 u d u \\ &\Rightarrow(x+2) d x=-u d u \end{aligned}$
$\begin{aligned} &I=-\int u \sqrt{u^{2}} d u+\int \sqrt{-\left(x^{2}+4 x+4-4\right)+3} d x \\ &I=-\int u^{2} d u+\int \sqrt{-(x+2)^{2}+7} d x \end{aligned}$
Use the formula : $\int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}+C$
And $\left[\int x^{n} d x=\frac{x^{n}+1}{n+1}+C\right]$
$\begin{aligned} &I=-\frac{u^{3}}{3}+\int \sqrt{(\sqrt{7})^{2}-(x+2)^{2}} d x \\ &I=\frac{-\left(3-4 x-x^{2}\right)^{3 / 2}}{3}+\frac{x+2}{2} \sqrt{3-4 x-x^{2}}+\frac{7}{2} \sin ^{-1}\left(\frac{x+2}{\sqrt{7}}\right)+C \end{aligned}$$I=-\frac{1}{3}\left(3-4 x-x^{2}\right)^{\frac{3}{2}}+\frac{1}{2}(x+2) \sqrt{3-4 x-x^{2}}+\frac{7}{2} \sin ^{-1}\left(\frac{x+2}{\sqrt{7}}\right)+C$

Indefinite Integrals Exercise 18.29 Question 13

Answer : $I=-\frac{1}{2}\left(4-3 x-2 x^{2}\right)^{\frac{3}{2}}-\frac{5}{4}\left(\frac{2 x+3}{2 \sqrt{2}} \sqrt{4-3 x-2 x^{2}}+\frac{17}{4} \sin ^{-1} \frac{(2 x+3)}{\sqrt{17}}\right)+C$
Hint: To solve the given integration, we express the linear team as a derivative of quadratic into constant plus another constant
Given : $\int(3 x+1) \sqrt{4-3 x-2 x^{2}} d x$
Solution :
$\begin{aligned} &\text { Let, }\; \; \quad 3 x+1=a \frac{d}{d x}\left(4-3 x-2 x^{2}\right)+b \\ &\Rightarrow 3 x+1=a(-3-4 x)+b \\ &\Rightarrow 3 x+1=-4 a x+b-3 a \end{aligned}$
Comparing the coefficient of x and the constant terms, we get
$4 a=-3 \Rightarrow a=-\frac{3}{4}$ and
$\begin{aligned} &b-3 a=1 \Rightarrow b=1+3\left(-\frac{3}{4}\right) \Rightarrow b=-\frac{5}{4} \\ &I=\int\left[-\frac{3}{4}(-3-4 x)-\frac{5}{4}\right] \sqrt{4-3 x-2 x^{2}} d x \end{aligned}$
$I=\int\left(-\frac{3}{4}\right)(-3-4 x) \sqrt{4-3 x-2 x^{2}} d x+\int-\frac{5}{4} \sqrt{4-3 x-2 x^{2}} d x$
For the first integral :
$\begin{aligned} &\text { Let } 4-3 x-2 x^{2}=t \\ &\Rightarrow(-3-4 x) d x=d t \end{aligned}$
$I=-\frac{3}{4} \int \sqrt{t} d t-\frac{5}{4} \int \sqrt{4+\left(\frac{3}{\sqrt{2}}\right)^{2}-\left[(\sqrt{2} x)^{2}+2 \sqrt{2} x\left(\frac{3}{\sqrt{2}}\right)+\left(\frac{3}{\sqrt{2}}\right)^{2}\right]} d x$
Use the formula : $\int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}+C$
And $\left[\int x^{n} d x=\frac{x^{n}+1}{n+1}+C\right]$
$\begin{aligned} &I=-\frac{3}{4} \frac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}-\frac{5}{4} \int \sqrt{\frac{17}{2}-\left(\sqrt{2} x+\frac{3}{\sqrt{2}}\right)^{2}} d x \\ &I=-\frac{3}{4} \frac{t^{\frac{3}{2}}}{\frac{3}{2}}-\frac{5}{4} \sqrt{\left(\frac{\sqrt{17}}{\sqrt{2}}\right)^{2}-\left(\sqrt{2} x+\frac{3}{\sqrt{2}}\right)^{2}} d x \end{aligned}$
$\begin{aligned} &I=-\frac{1}{2}\left(4-3 x-2 x^{2}\right)^{\frac{3}{2}}-\frac{5}{4}\left(\frac{\sqrt{2} x+\frac{3}{\sqrt{2}}}{2} \sqrt{4-3 x-2 x^{2}}+\frac{17}{2} \frac{1}{2} \sin ^{-1} \frac{\left(\sqrt{2} x+\frac{3}{\sqrt{2}}\right)}{\frac{\sqrt{17}}{\sqrt{2}}}\right)+C \\ &I=-\frac{1}{2}\left(4-3 x-2 x^{2}\right)^{\frac{3}{2}}-\frac{5}{4}\left(\frac{2 x+3}{2 \sqrt{2}} \sqrt{4-3 x-2 x^{2}}+\frac{17}{4} \sin ^{-1} \frac{(2 x+3)}{\sqrt{17}}\right)+C \end{aligned}$

Indefinite Integrals Exercise 18.29 Question 14

Answer : $\frac{-2}{9}\left(10-4 x-3 x^{2}\right)^{\frac{3}{2}}+\frac{11}{8}(3 x+2) \sqrt{10-4 x+3 x^{2}}+\frac{187}{9 \sqrt{3}} \sin ^{-1}\left(\frac{3 x+2}{\sqrt{34}}\right)+C$
Hint: To solve the given integration, we express the linear team as a derivative of quadratic into constant plus another constant
Given: $\int(2 x+5) \sqrt{10-4 x-3 x^{2}} d x$
Solution : $\int(2 x+5) \sqrt{10-4 x-3 x^{2}} dx$
$\begin{aligned} &\text { Let, }(2 x+5)=A \frac{d}{d x}\left(10-4 x-3 x^{2}\right)+B \\ &(2 x+5)=A(-4-6 x)+B \\ &(2 x+5)=-4 A+B-6 A x \end{aligned}$
Comparing the coefficient of x and the constant terms, we get
$\begin{aligned} &6 A=-2 \Rightarrow A=-\frac{1}{3} \text { and } \\ &-4 A+B=5 \Rightarrow B=5+4 A=5+4\left(-\frac{1}{3}\right)=\frac{11}{3} \\ &I=-\frac{1}{3} \int(-4-6 x) \sqrt{10-4 x-3 x^{2}} d x \\ &I=-\frac{1}{3} \int(-6 x-4) \sqrt{10-4 x-3 x^{2}} d x \end{aligned}$
$\begin{aligned} &I=-\frac{1}{3}\left[\int(-6 x-4) \sqrt{10-4 x-3 x^{2}} d x+\int \frac{11}{3} \sqrt{10-4 x-3 x^{2}} d x\right] \\ &I=-\frac{1}{3} \int(-6 x-4) \sqrt{10-4 x-3 x^{2}} d x+\left(\frac{11}{3}\right) \int \sqrt{10-4 x-3 x^{2}} d x \end{aligned}$
For the first integral:
$\begin{aligned} &\text { Let, } 10-4 x-3 x^{2}=t \\ &\Rightarrow(-6 x-4) d x=d t \\ &I=-\frac{1}{3} \int \sqrt{t} d t+\frac{11}{3} \times \sqrt{3} \int \sqrt{\frac{10}{3}-\frac{4}{3} x-x^{2}} d x \end{aligned}$
Use the formula : $\int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}+C$
And $\left[\int x^{n} d x=\frac{x^{n}+1}{n+1}+C\right]$
$\begin{aligned} &I=-\frac{1}{3} \frac{t^{\frac{3}{2}}}{\frac{3}{2}}+\frac{11}{3} \sqrt{3} \int \sqrt{\left(\frac{10}{3}\right)-\left\{x^{2}+2 \frac{2}{3} x+\left(\frac{2}{3}\right)^{2}\right\}+\left(\frac{2}{3}\right)^{2}} d x \\ &I=-\frac{2}{9} t^{3 / 2}+\frac{11}{\sqrt{3}} \int \sqrt{\left(\frac{\sqrt{34}}{3}\right)^{2}-\left(x+\frac{2}{3}\right)^{2}} d x \end{aligned}$
$\begin{aligned} &I=-\frac{2}{9}\left(10-4 x-3 x^{2}\right)^{\frac{3}{2}}+\frac{11}{\sqrt{3}}\left[\frac{1}{2}\left(x+\frac{2}{3}\right) \sqrt{\left(\frac{\sqrt{34}}{3}\right)^{2}-\left(x+\frac{2}{3}\right)^{2}}+\frac{34 / 9}{2} \sin ^{-1}\left[\frac{x+\frac{2}{3}}{\frac{\sqrt{34}}{3}}\right]\right]+C \\ &I=-\frac{2}{9}\left(10-4 x-3 x^{2}\right)^{\frac{3}{2}}+\frac{11}{\sqrt{3}}\left[\frac{\left(x+\frac{2}{3}\right)\left(\frac{10}{3}-\frac{4 x}{3}-x^{2}\right)^{\frac{1}{2}}}{2}\right]+\frac{187}{9 \sqrt{3}} \sin ^{-1}\left[\frac{3 x+2}{\sqrt{34}}\right]+C \end{aligned}$$\\I=-\frac{2}{9}\left(10-4 x-3 x^{2}\right)^{\frac{3}{2}}+\frac{11}{18}(3 x+2) \sqrt{10-4 x-3 x^{2}}+\frac{187}{9 \sqrt{3}} \sin ^{-1}\left[\frac{3 x+2}{\sqrt{34}}\right]+C$

Rd Sharma class 12 chapter 18 exercise 18.29 has around 14 inquiries, including its subparts, and it consolidates themes like: -

  • Assessment of integrals by utilizing mathematical replacements like first need to solve the quadratic equation then proceed with the differentiation and integration

  • Questions based on the Formula of Integration

Benefits of picking RD Sharma Mathematics Solutions from Career360 include:

  • Career360, you should get every one of the solutions, so there is no persuading inspiration to head off to someplace else.

  • You can, in like way, benchmark your show premise with these solutions.

  • Since RD Sharma is a widely utilized book, there are chances that a piece of these solicitations may show up in your year's end tests.

  • These solutions are freed from cost.

  • Noteworthy yet orchestrated demonstration of the themes

JEE Main Highest Scoring Chapters & Topics
Focus on high-weightage topics with this eBook and prepare smarter. Gain accuracy, speed, and a better chance at scoring higher.
Download E-book

RD Sharma Chapter-wise Solutions

Upcoming School Exams
Ongoing Dates
UP Board 12th Others

10 Aug'25 - 1 Sep'25 (Online)

Ongoing Dates
UP Board 10th Others

11 Aug'25 - 6 Sep'25 (Online)