RD Sharma Class 12 Exercise 18.29 Indefinite Integrals Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise 18.29 Indefinite Integrals Solutions Maths - Download PDF Free Online

Edited By Kuldeep Maurya | Updated on Jan 24, 2022 10:24 AM IST

RD Sharma Class 12 Solutions Indefinite Integrals Ex 18.29 examining material is one of the most staggering course books for class 12 maths explicitly for students planning simple tests. The RD Sharma solutions meets an incredible essential of maths questions. Rd Sharma Class 12th exercise 18.29 is an accomplishment for every understudy. One book that has been given to students for rehearsing and tackling for Rd Sharma Class 12th exercise 18.29.

RD Sharma Class 12 Solutions Chapter18 Indefinite Integrals - Other Exercise

Indefinite Integrals Excercise:18.29

Indefinite Integrals Exercise 18.29 Question 1

Answer : -\frac{1}{3}\left(x^{2}-x+1\right)^{\frac{3}{2}}+\frac{3}{8}\left(2 x-1 \sqrt{x^{2}-x+1}+3 \ln \left|x+\frac{1}{2}+\sqrt{x^{2}-x+1}\right|+C\right.
Hint: To solve the given integration, we express the linear term as a derivative of quadratic into constant plus another constant
Given : \int(x+1) \sqrt{x^{2}-x+1} d x
Solution :
\begin{aligned} &x+1=a \frac{d}{d x}\left(x^{2}-x+1\right)+b \\ &\Rightarrow x+1=a(2 x-1)+b \\ &\Rightarrow x+1=2 a x-a+b \end{aligned}
Comparing the coefficient of x and constant terms, we get
\begin{aligned} &\Rightarrow 2 a=1 \Rightarrow a=\frac{1}{2} \\ &\Rightarrow b-a=1 \Rightarrow b=1+a \Rightarrow b=1+\frac{1}{2} \Rightarrow b=\frac{3}{2} \end{aligned}
\begin{aligned} &I=\int\left(\frac{1}{2}(2 x-1)+\frac{3}{2}\right) \sqrt{x^{2}-x+1} d x \\ &I=\int \frac{1}{2}(2 x-1) \sqrt{x^{2}-x+1} d x+\int \frac{3}{2} \sqrt{x^{2}-x+1} d x \end{aligned}
For first integral let x^{2}-x+1=t \Rightarrow(2 x-1) d x=d t
\begin{aligned} &I=\frac{1}{2} \int \sqrt{t} d t+\frac{3}{2} \int \sqrt{x^{2}-x+1} d x \\ &I=\frac{1}{2} \int \sqrt{t} d t+\frac{3}{2} \int \sqrt{x^{2}-2 x\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^{2}+1-\left(\frac{1}{2}\right)^{2}} d x \end{aligned}
I=\frac{1}{2} \frac{t^{\frac{1}{2}+1}}{\frac{3}{2}}+\frac{3}{2} \int \sqrt{\left(x-\frac{1}{2}\right)^{2}+\frac{3}{4}} d x
I=\frac{1}{3} t^{3 / 2}+\frac{3}{2} \int \sqrt{\left(x-\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}} d x
Usinf formula, \int \sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|+C
\\I=\frac{1}{3} t^{3 / 2}+\frac{3}{2}\left(\frac{x-\frac{1}{2}}{2}\left(\sqrt{\left(\left(x-\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}\right)}\right)+\frac{\left(\frac{\sqrt{3}}{2}\right)^{2}}{2} \log \left|x-\frac{1}{2}+\sqrt{\left(x-\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}\right|\right)+C
\begin{aligned} &I=\frac{1}{3} t^{3 / 2}+\frac{3}{2}\left(\frac{2 x-1}{4} \sqrt{x^{2}-x+1}+\frac{3}{8} \log \left|x-\frac{1}{2}+\sqrt{x^{2}-x+1}\right|\right)+C \\ &I=\frac{1}{3} t^{3 / 2}+\frac{3}{2}\left(\frac{2 x-1}{4} \sqrt{x^{2}-x+1}+\frac{3}{8} \log \left|x-\frac{1}{2}+\sqrt{x^{2}-x+1}\right|\right)+C \end{aligned}
\\I=\frac{1}{3}\left(x^{2}-x+1\right)^{3 / 2}+\frac{3}{8}(2 x-1) \sqrt{x^{2}-x+1}+\frac{9}{16} \log \left[x-\frac{1}{2}+\sqrt{x^{2}-x+1}\right]+c

Indefinite Integrals Exercise 18.29 Question 2

Answer : \frac{1}{6}\left(2 x^{2}+3\right)^{\frac{3}{2}}+\frac{x}{2} \sqrt{x^{2}-x+1}+\frac{3 \sqrt{2}}{4} \log \left|\frac{\sqrt{2 x}+\sqrt{2 x^{2}+3}}{\sqrt{3}}\right|+C
Hint: To solve the given integration, we express the linear term as a derivative of quadratic into constant plus another constant
Given : \int(x+1) \sqrt{2 x^{2}+3} d x
Solution : \text { Let } I=\int x \sqrt{2 x^{2}+3} d x+\int \sqrt{2 x^{2}+3} d x
\begin{aligned} &I_{1}=\int x \sqrt{2 x^{2}+3} d x \\ &\text { Let } 2 x^{2}+3=t \\ &4 x d x=d t \\ &x \cdot \mathrm{d} x=\frac{d t}{4} \end{aligned}
\begin{aligned} &I_{1}=\int \sqrt{t} \frac{d t}{4} \\ &=\frac{1}{4} \int t^{\frac{1}{2}} d x \end{aligned}
=\frac{1}{4} \frac{t^{1 / 2+1}}{1 / 2+1} \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \quad\left[\int x^{n} d x=\frac{x^{n}+1}{n+1}\right]
\begin{aligned} &=\frac{1}{4} \times 2 \frac{t^{\frac{3}{2}}}{3} \\ &=\frac{t^{\frac{3}{2}}}{6}=\frac{\left(2 x^{2}+3\right)^{\frac{3}{2}}}{6}+C_{1} \end{aligned} ....(i)
I_{2}=\int \sqrt{2 x^{2}+3} d x
Use the formula : \int \sqrt{x^{2}+a^{2}} d x=\left[\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|+C\right]
\begin{aligned} &I_{2}=\int \sqrt{2\left(x^{2}+\frac{3}{2}\right)} d x \\ &I_{2}=\sqrt{2} \int \sqrt{x^{2}+\frac{3}{2}} d x \\ &I_{2}=\sqrt{2} \int \sqrt{x^{2}+\left(\frac{\sqrt{3}}{\sqrt{2}}\right)^{2}} d x \end{aligned}
I_{2}=\sqrt{2}\left[\frac{x}{2} \sqrt{x^{2}+\frac{3}{2}}+\frac{3}{2 \times 2} \log \left|x+\sqrt{x^{2}+\frac{3}{2}}\right|\right]+C_{2} ....(ii)
Adding (i) and (ii) ; I=I_{1}+I_{2}
I=\int x \sqrt{2 x^{2}+3} d x+\int \sqrt{2 x^{2}+3} d x
\begin{aligned} &=\frac{\left(2 x^{2}+3\right)^{\frac{3}{2}}}{6}+\frac{x}{\sqrt{2}} \sqrt{x^{2}+\frac{3}{2}}+\frac{3}{2 \sqrt{2}} \log \left|x+\sqrt{x^{2}+\frac{3}{2}}\right|+C \\ &=\frac{1}{6}\left(2 x^{2}+3\right)^{\frac{3}{2}}+\frac{x}{\sqrt{2}} \frac{\sqrt{2 x^{2}+3}}{\sqrt{2}}+\frac{3}{2 \sqrt{2}} \log \left|x+\frac{\sqrt{2 x^{2}+3}}{\sqrt{2}}\right|+C \end{aligned}
\begin{aligned} &=\frac{1}{6}\left(2 x^{2}+3\right)^{\frac{3}{2}}+\frac{x}{2} \sqrt{2 x^{2}+3}+\frac{3}{2 \sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} \log \left|\frac{\sqrt{2} x+\sqrt{2 x^{2}+3}}{\sqrt{2}}\right|+C \\ &\int(x+1) \sqrt{2 x^{2}+3} d x=\frac{1}{6}\left(2 x^{2}+3\right)^{\frac{3}{2}}+\frac{x}{2} \sqrt{2 x^{2}+3}+\frac{3 \sqrt{2}}{4} \log \left|\frac{\sqrt{2} x+\sqrt{2 x^{2}+3}}{\sqrt{2}}\right|+c \end{aligned}

Indefinite Integrals Exercise 18.29 Question 3

Answer :
\\I=-\frac{2}{3}\left(2+3 x-x^{2}\right)^{3}-\left(\frac{2 x-3}{2}\right) \sqrt{2+3 x-x^{2}}-\frac{17}{4} \sin ^{-1}\left(\frac{2 x-3}{\sqrt{17}}\right)+C
Hint: To solve the given integration, we express the linear term as a derivative of quadratic into constant plus another constant
Given : \int(2 x-5) \sqrt{2+3 x-x^{2}} d x
Solution :
\begin{aligned} &2 x-5=-(5-2 x)=-(2+3-2 x)=-2-(3-2 x) \\ &I=\int(-2-(3-2 x)) \sqrt{2+3 x-x^{2}} d x \\ &I=\int-2 \sqrt{2+3 x-x^{2}} d x-\int(3-2 x) \sqrt{2+3 x-x^{2}} d x \end{aligned}
Again, 2+3 x-x^{2}
\begin{aligned} &=-\left(x^{2}-3 x-2\right) \\ &=-\left(x^{2}-2 \cdot x \cdot \frac{3}{2}+\frac{9}{4}-2-\frac{9}{4}\right) \\ &=-\left(\left(x-\frac{3}{2}\right)^{2}-\frac{17}{4}\right) \\ &=\left(\left(\sqrt{\frac{17}{4}}\right)^{2}-\left(x-\frac{3}{2}\right)^{2}\right) \end{aligned}
Now, I=-2 \int\left[\sqrt{\left(\sqrt{\frac{17}{4}}\right)^{2}-\left(x-\frac{3}{2}\right)^{2}}\right] \mathrm{dx}-\int(3-2 x) \sqrt{2+3 x-x^{2}} d x
For the second integral :
Let, 2+3 x-x^{2}=t^{2}
\Rightarrow[(3-2 x) d x=2 t d t]
Use the formula : \int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}+C
\begin{aligned} &I=-2\left[\frac{\left(x-\frac{3}{2}\right)}{2} \sqrt{\frac{17}{4}-\left(x-\frac{3}{2}\right)^{2}}+\frac{\frac{17}{4}}{2} \sin ^{-1} \frac{\left(x-\frac{3}{2}\right)}{\frac{17}{4}}\right]-\int 2 t^{2} d t \\ &I=-\left(\frac{2 x-3}{2}\right) \sqrt{2+3 x-x^{2}}-\frac{17}{4} \sin ^{-1}\left(\frac{2 x-3}{\sqrt{17}}\right)-\frac{2}{3}\left(2+3 x-x^{2}\right)^{3}+C \\ &I=-\frac{2}{3}\left(2+3 x-x^{2}\right)^{3}-\left(\frac{2 x-3}{2}\right) \sqrt{2+3 x-x^{2}}-\frac{17}{4} \sin ^{-1}\left(\frac{2 x-3}{\sqrt{17}}\right)+C \end{aligned}

Indefinite Integrals Exercise 18.29 Question 4

Answer : \\\frac{1}{3}\left(x^{2}+x+1\right)^{\frac{3}{2}}+\frac{3(2 x+1)}{8} \sqrt{x^{2}+x+1}+\frac{9}{16} \log \left|\left(x+\frac{1}{2}\right)+\sqrt{x^{2}+x+1}\right|+C
Hint: To solve the given integration, we express the linear term as a derivative of quadratic into constant plus another constant
Given : \int(x+2) \sqrt{x^{2}+x+1} d x
Solution :
\begin{aligned} &\text { Let }(x+2)=a \frac{d}{d x}\left(x^{2}+x+1\right)+b \\ &\Rightarrow x+2=a(2 x+1)+b \\ &\Rightarrow x+2=2 a x+a+b \end{aligned}
Now comparing the coefficients of x and the constant term, we get
\begin{aligned} &2 a=1 \Rightarrow a=\frac{1}{2} \text { and } \\ &a+b=2 \Rightarrow b=2-a=2-\frac{1}{2}=\frac{3}{2} \\ &I=\int\left(\frac{1}{2}(2 x+1)+\frac{3}{2}\right) \sqrt{x^{2}+x+1} d x \\ &I=\int \frac{1}{2}(2 x+1) \sqrt{x^{2}+x+1} d x+\int \frac{3}{2} \sqrt{x^{2}+x+1} d x \end{aligned}
For the first integral, let x^{2}+x+1=t \Rightarrow(2 x+1) d x=d t
\begin{aligned} &I=\frac{1}{2} \int \sqrt{t} d t+\frac{3}{2} \int \sqrt{x^{2}+2(x)\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^{2}+1-\frac{1}{4}} d x \\ &I=\frac{1}{2} \frac{t^{\frac{1}{2}+1}}{\frac{3}{2}}+\frac{3}{2} \int \sqrt{\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}} d x \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \quad\left[\int x^{n} d x=\frac{x^{n}+1}{n+1}+C\right] \end{aligned}
I=\frac{t^{\frac{3}{2}}}{3}+\frac{3}{2} \int \sqrt{\left(x+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}} d x
\left(\text { Use the formula: } \sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|+C\right)
\begin{aligned} &I=\frac{\left(x^{2}+x+1\right)^{\frac{3}{2}}}{3}+\frac{3}{2}\left[\frac{\left(x+\frac{1}{2}\right)}{2} \sqrt{x^{2}+x+1}+\frac{\left(\frac{\sqrt{3}}{2}\right)^{2}}{2} \log \left|\left(x+\frac{1}{2}\right)+\sqrt{x^{2}+x+1}\right|\right]+C \\ &I=\frac{1}{3}\left(x^{2}+x+1\right)^{3 / 2}+\frac{3(2 x+1)}{8} \sqrt{x^{2}+x+1}+\frac{9}{16} \log \left|\left(x+\frac{1}{2}\right)+\sqrt{x^{2}+x+1}\right|+C \end{aligned}

Indefinite Integrals Exercise 18.29 Question 5

Answer: \\\frac{4}{3}\left(x^{2}+x+1\right)^{\frac{3}{2}}+\frac{3(2 x+1)}{8} \sqrt{x^{2}+x+1}+\frac{27}{8} \log \left|\left(x+\frac{1}{2}\right)+\sqrt{x^{2}+x+1}\right|+C
Hint: To solve the given integration, we express the linear team as a derivative of quadratic into constant plus another constant
Given: I=\int(4 x+1) \sqrt{x^{2}-x-2} d x
Solution: Let, 4 x+1=M \frac{d}{d x}\left(x^{2}-x-2\right)+N
\begin{aligned} &\Rightarrow 4 x+1=M(2 x-1)+N \\ &\Rightarrow 4 x+1=2 M x-M+N \end{aligned}
Now comparing the coefficients of x and the constant term, we get
\begin{aligned} &2 M=4 \Rightarrow M=2 \text { and }-M+N=1 \Rightarrow-2+N=1 \Rightarrow N=3 \\ &I=2 \int(2 x-1) \sqrt{x^{2}-x-2} d x+3 \int \sqrt{x^{2}-x-2} d x \end{aligned}
For first integral, let, x^{2}-x-2=t \Rightarrow(2 x-1) d x=d t
For second integral, x^{2}-x-2=x^{2}-2 \cdot x \cdot \frac{1}{2}+\left(\frac{1}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}-2=\left(x-\frac{1}{2}\right)^{2}-\frac{9}{4}=\left(x-\frac{1}{2}\right)^{2}-\left(\frac{3}{2}\right)^{2}
So, the integral becomes
I=2 \int \sqrt{t} d t+3 \int \sqrt{\left(x-\frac{1}{2}\right)^{2}-\left(\frac{3}{2}\right)^{2}} d x
Use the formula : \left[\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}-a^{2}}\right|\right]+C
\begin{aligned} &I=2 \frac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}+3\left[\frac{\left(x-\frac{1}{2}\right)}{2} \sqrt{x^{2}-x-2}-\frac{\frac{9}{4}}{2} \log \left|\left(x-\frac{1}{2}\right)+\sqrt{\left(x-\frac{1}{2}\right)^{2}-\left(\frac{3}{2}\right)^{2}}\right|\right]+C \\ &I=2 \times 2 \frac{t^{\frac{3}{2}}}{3}+\frac{3}{2}\left[\left(x-\frac{1}{2}\right) \sqrt{x^{2}-x-2}-\frac{9}{4} \log \left|\left(x-\frac{1}{2}\right)+\sqrt{x^{2}-x-2}\right|\right]+C \end{aligned}
\\I=\frac{4}{3}\left(x^{2}-x-2\right)^{3 / 2}+\frac{3}{4}(2 x-1)\sqrt{x^{2} x-2}-\frac{27}{8}\log \left|\left(x-\frac{1}{2}\right)+\sqrt{x^{2}-x-2}\right|+C

Indefinite Integrals Exercise 18.29 Question 6

Answer : \\I=\frac{1}{6}\left(2 x^{2}-6 x+5\right)^{3 / 2}-\frac{1}{2}\left[\frac{2 x-3}{2} \sqrt{x^{2}-3 x+\frac{5}{2}}+\frac{11}{8} \log \left|\frac{2 x-3}{\sqrt{2}}+\sqrt{2 x^{2}-6 x+5}\right|\right]+C
Hint: We solve this integration by qualitative derivation.
Given: \int(x-2) \sqrt{2 x^{2}-6 x+5} \; d x
Let, x-2=a \frac{d}{d x}\left(2 x^{2}-6 x+5\right)+b
\begin{aligned} &\Rightarrow x-2=a(4 x-6)+b \\ &\Rightarrow x-2=4 a x+b-6 a \end{aligned}
Now comparing the coefficients of x and the constant term, we get
\begin{aligned} &4 a=1 \Rightarrow a=\frac{1}{4} \text { and } \\ &b-6 a=-2 \Rightarrow b=6\left(\frac{1}{4}\right)-2 \Rightarrow b=\left(-\frac{1}{2}\right) \\ &I=\int\left[\frac{1}{4}(4 x-6)+\left(-\frac{1}{2}\right)\right] \sqrt{2 x^{2}-6 x+5} d x \end{aligned}
I=\int \frac{1}{4}(4 x-6) \sqrt{2 x^{2}-6 x+5} d x+\int-\frac{1}{2} \sqrt{2 x^{2}-6 x+5} d x
For the first integral : Let, 2 x^{2}-6 x+5=t \Rightarrow(4 x-6) d x=d t
I=\frac{1}{4} \int \sqrt{t} d t+\left(-\frac{1}{2}\right) \int \sqrt{(\sqrt{2} x)^{2}-2(\sqrt{2} x)\left(\frac{3}{\sqrt{2}}\right)+\left(\frac{3}{\sqrt{2}}\right)^{2}+5-\frac{9}{4}} d x
\begin{aligned} &I=\frac{1}{4} \frac{t^{\frac{1}{2}+1}}{3 / 2}-\frac{1}{2} \int \sqrt{\left(\sqrt{2} x-\frac{3}{\sqrt{2}}\right)^{2}+\frac{11}{4}} d x \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \quad\left[\int x^{n} d x=\frac{x^{n}+1}{n+1}+C\right] \\ &I=\frac{1}{2 \times 3} t^{3 / 2}-\frac{1}{2} \int \sqrt{\left(\sqrt{2} x-\frac{3}{\sqrt{2}}\right)^{2}+\left(\frac{\sqrt{11}}{2}\right)^{2}} d x \end{aligned}
Use the formula : \left[\sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|\right]
\begin{aligned} &I=\frac{1}{6}\left(2 x^{2}-6 x+5\right)^{\frac{3}{2}}-\frac{1}{2}\left[\frac{\left(\sqrt{2} x-\frac{3}{\sqrt{2}}\right)}{2} \sqrt{2 x^{2}-6 x+5}+\frac{\frac{11}{4}}{2} \log \left|\left(\sqrt{2} x-\frac{3}{\sqrt{2}}\right)+\sqrt{2 x^{2}-6 x+5}\right|\right]+C \\ &I=\frac{1}{6}\left(2 x^{2}-6 x+5\right)^{3 / 2}-\frac{1}{2}\left[\frac{2 x-3}{2} \sqrt{x^{2}-3 x+\frac{5}{2}}+\frac{11}{8} \log \left|\frac{2 x-3}{\sqrt{2}}+\sqrt{2 x^{2}-6 x+5}\right|\right]+C \end{aligned}

Indefinite Integrals Exercise 18.29 Question 7

Answer : \\I=\frac{\left(x^{2}+x+1\right)}{2}+\frac{1}{2}\left[\frac{2 x+1}{4} \sqrt{x^{2}+x+1}+\frac{3}{8} \log \left|\left(x+\frac{1}{2}\right)+\sqrt{x^{2}+x+1}\right|\right]+C
Hint : To solve the given integration, we express the linear term as a derivative of quadratic into constant plus another constant
Given : \int(x+1) \sqrt{x^{2}+x+1} d x
Solution :
\begin{aligned} &I=\frac{1}{2} \int(2 x+2) \sqrt{x^{2}+x+1} d x \\ &I=\frac{1}{2} \int(2 x+1) \sqrt{x^{2}+x+1} d x+\frac{1}{2} \int 1 \sqrt{x^{2}+x+1} d x \end{aligned}
For thr first integral: Let, x^{2}+x+1=t^{2} \Rightarrow(2 x+1) d x=2 t d t
\begin{aligned} &I=\frac{1}{2} \int 2 t d t+\frac{1}{2} \int \sqrt{x^{2}+2(x)\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^{2}+1-\frac{1}{4}} d x \\ &I=\int t d t+\frac{1}{2} \int \sqrt{\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}} d x \end{aligned}
I=\frac{t^{1+1}}{1+1}+\frac{1}{2} \int \sqrt{\left(x+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}} d x\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \quad\left[\int x^{n} d x=\frac{x^{n}+1}{n+1}+C\right]
\begin{aligned} &I=\frac{t^{2}}{2}+\frac{1}{2} \int \sqrt{\left(x+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}} d x \\ &\left(\text { Use the formula: } \sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|+C\right) \end{aligned}
\begin{aligned} &I=\frac{\left(x^{2}+x+1\right)}{2}+\frac{1}{2}\left[\frac{\left(x+\frac{1}{2}\right)}{2} \sqrt{x^{2}+x+1}+\frac{\left(\frac{\sqrt{3}}{2}\right)^{2}}{2} \log \left|\left(x+\frac{1}{2}\right)+\sqrt{x^{2}+x+1}\right|\right]+C \\ &I=\frac{\left(x^{2}+x+1\right)}{2}+\frac{1}{2}\left[\frac{2 x+1}{4} \sqrt{x^{2}+x+1}+\frac{3}{8} \log \left|\left(x+\frac{1}{2}\right)+\sqrt{x^{2}+x+1}\right|\right]+C \end{aligned}

Indefinite Integrals Exercise 18.29 Question 8

Answer : \\I=\frac{2}{3}\left(x^{2}+4 x+3\right)^{3 / 2}-\frac{(x+2)}{2} \sqrt{x^{2}+4 x+3}+\frac{1}{2} \log \left|(x+2)+\sqrt{x^{2}+4 x+3}\right|+C
Hint:To solve the given integration, we express the linear term as a derivative of quadratic into constant plus another constant
Given : \int(2 x+3) \sqrt{x^{2}+4 x+3} d x
Solution :
Let, x^{2}+4 x+3=u^{2}
\begin{aligned} &\quad \Rightarrow(2 x+4) d x=2 u d u \\ &I=\int(2 x+3) \sqrt{x^{2}+4 x+3} d x \\ &I=\int(2 x+4-1) \sqrt{x^{2}+4 x+3} d x \end{aligned}
\begin{aligned} &I=\int(2 x+4) \sqrt{x^{2}+4 x+3} d x-\int \sqrt{x^{2}+4 x+3} \mathrm{dx} \\ &I=\int u(2 u) \mathrm{du}-\int \sqrt{(x+2)^{2}-1^{2}} d x \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \: \: \: \: \: \; \; \; \; \; \; \; \; \; \; \quad\left[x^{2}+4 x+3=(x+2)^{2}-1\right] \end{aligned}
Use the formula : \left[\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}-a^{2}}\right|\right]+C
And \left[\int x^{n} d x=\frac{x^{n}+1}{n+1}+C\right]
\begin{aligned} &I=2 \frac{u^{3}}{3}-\left[\frac{x+2}{2} \sqrt{(x+2)^{2}-1}-\frac{1}{2} \log \left|(x+2)+\sqrt{\left(x^{2}+2\right)^{2}-1}\right|\right]+C \\ &I=\frac{2}{3}\left(x^{2}+4 x+3\right)^{3 / 2}-\frac{(x+2)}{2} \sqrt{x^{2}+4 x+3}+\frac{1}{2} \log \left|(x+2)+\sqrt{x^{2}+4 x+3}\right|+C \end{aligned}

Indefinite Integrals Exercise 18.29 Question 9

Answer : \\I=\frac{2}{3}\left(x^{2}-4 x+3\right)^{3 / 2}-\frac{(x-2)}{2} \sqrt{x^{2}-4 x+3}-\frac{1}{2} \log \left|(x-2)+\sqrt{x^{2}-4 x+3}\right|+C
Hint: To solve the given integration, we express the linear term as a derivative of quadratic into constant plus another constant
Given: \int(2 x-5) \sqrt{x^{2}-4 x+3} d x
\begin{aligned} &I=\int\left[[(2 x-4)-1] \sqrt{x^{2}-4 x+3}\right] d x \\ &I=\int(2 x-4) \sqrt{x^{2}-4 x+3} d x-\int \sqrt{x^{2}-4 x+3} d x \end{aligned}
For the first integral :
Let x^{2}-4 x+3=t
\begin{aligned} &\Rightarrow 2 x-4=\frac{d t}{d x} \\ &\Rightarrow(2 x-4) d x=d t \end{aligned}
\begin{aligned} &I=\int \sqrt{t} d t-\int \sqrt{x^{2}-4 x+3} d x \\ &I=\int t^{\frac{1}{2}} d t-\int \sqrt{(x-2)^{2}-(1)^{2}} d x\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \quad\left[x^{2}-4 x+3=(x-2)^{2}-1\right] \end{aligned}
Use the formula : \left[\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}-a^{2}}\right|\right]+C
And \left[\int x^{n} d x=\frac{x^{n}+1}{n+1}+C\right]
\begin{aligned} &I=\frac{t^{1 / 2}+1}{\frac{1}{2}+1}-\left[\frac{x-2}{2} \sqrt{(x-2)^{2}-1}-\frac{1}{2} \log \left|(x-2)+\sqrt{(x-2)^{2}-1}\right|\right]+C \\ &I=\frac{2}{3}\left(x^{2}-4 x+3\right)^{3 / 2}-\frac{(x-2)}{2} \sqrt{x^{2}-4 x+3}-\frac{1}{2} \log \left|(x-2)+\sqrt{x^{2}-4 x+3}\right|+C \end{aligned}

Indefinite Integrals Exercise 18.29 Question 10

Answer : I=\frac{1}{3}\left(x^{2}+x\right)^{3 / 2}-\frac{1}{8}(2 x+1) \sqrt{x^{2}+x}+\frac{1}{16} \log \left|\left(x+\frac{1}{2}\right)+\sqrt{x^{2}+x}\right|+C
Hint : To solve the given integration, we express the linear term as a derivative of quadratic into constant plus another constant
Given : \int x \sqrt{x^{2}+x} d x
Let, x=a \frac{d}{d x}\left(x^{2}+x\right)+b
\begin{aligned} &\Rightarrow x=a(2 x+1)+b \\ &\Rightarrow x=2 x a+a+b \end{aligned}
Comparing the coefficient of x and the constant terms, we get
\begin{aligned} &\Rightarrow 2 a=1 \quad \text { and } \quad a+b=0 \\ &\Rightarrow a=1 / 2 \; \; \; \; \;\quad \Rightarrow b=-a \\ &\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \Rightarrow b=-\frac{1}{2} \\ &I=\int\left(\frac{1}{2}(2 x+1)+\left(-\frac{1}{2}\right)\right) \sqrt{x^{2}+x} d x \end{aligned}
I=\frac{1}{2} \int(2 x+1) \sqrt{x^{2}+x} d x+\int\left(-\frac{1}{2}\right) \sqrt{x^{2}+x} d x
For the first integral : Let x^{2}+x=t \Rightarrow(2 x+1) d x=d t
I=\frac{1}{2} \int \sqrt{t} d t+\left(-\frac{1}{2}\right) \int \sqrt{x^{2}+2(x)\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}} d x
Use the formula : \left[\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}-a^{2}}\right|\right]+C
And \left[\int x^{n} d x=\frac{x^{n}+1}{n+1}+C\right]
\begin{aligned} &I=\frac{1}{2} \frac{\frac{1}{2}+1}{\frac{1}{2}+1}-\frac{1}{2} \int \sqrt{\left(x+\frac{1}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}} d x \\ &I=\frac{1}{3} t^{\frac{3}{2}}-\frac{1}{2}\left[\frac{\left(x+\frac{1}{2}\right)}{2} \sqrt{\left(x+\frac{1}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}}-\frac{\frac{1}{4}}{2} \log \left|\left(x+\frac{1}{2}\right)+\sqrt{\left(x+\frac{1}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}}\right|\right]+C \end{aligned}
\begin{aligned} &I=\frac{1}{3}\left(x^{2}+x\right)^{3 / 2}-\frac{1}{2}\left[\frac{(2 x+1)}{4} \sqrt{x^{2}+x}-\frac{1}{8} \log \left|\left(x+\frac{1}{2}\right)+\sqrt{x^{2}+x}\right|\right]+C \\ &I=\frac{1}{3}\left(x^{2}+x\right)^{3 / 2}-\frac{1}{8}(2 x+1) \sqrt{x^{2}+x}+\frac{1}{16} \log \left|\left(x+\frac{1}{2}\right)+\sqrt{x^{2}+x}\right|+C \end{aligned}

Indefinite Integrals Exercise 18.29 Question 11

Answer : \\I=\frac{1}{3}(x+3 x-18)^{3 / 2}-\frac{9}{8}(2 x+3) \sqrt{x^{2}+3 x-18}+\frac{729}{16} \log \left|\left(x+\frac{3}{2}\right)+\sqrt{x^{2}+3 x-18}\right|+C
Hint: To solve the given integration, we express the linear term as a derivative of quadratic into constant plus another constant
Given : \int(x-3) \sqrt{x^{2}+3 x-18} d x
Solution : x-3=A+B \frac{d}{d x}\left(x^{2}+3 x-18\right)
\Rightarrow x-3=A+B(2 x+3)
Comparing the coefficient of x and the constant terms, we get
\Rightarrow 1=2 B \text { and } \Rightarrow-3=A+3 B
\Rightarrow B=1 / 2 \; \; \; \; \; \; \; \; \quad \Rightarrow-3-3 B=A
\begin{aligned} &\Rightarrow-3-\frac{3}{2}=A \\ &\Rightarrow A=-\frac{9}{2} \end{aligned}
\begin{aligned} &I=\int\left[-\frac{9}{2}+\frac{1}{2}(2 x+3)\right] \sqrt{x^{2}+3 x-18} d x \\ &I=-\frac{9}{2} \int \sqrt{x^{2}+3 x-18} d x+\frac{1}{2} \int(2 x+3) \sqrt{x^{2}+3 x-18} d x \end{aligned}
For the second integral:
Let x^{2}+3 x-18=t
\Rightarrow(2 x+3) d x=d t
Use the formula : \left[\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}-a^{2}}\right|\right]+C
And \left[\int x^{n} d x=\frac{x^{n}+1}{n+1}+C\right]
\\I=-\frac{9}{2}\left[\frac{\left(x+\frac{3}{2}\right)}{2} \sqrt{x^{2}+3 x-18}-\frac{81}{4 \times 2} \log \left|\left(x+\frac{3}{2}\right)+\sqrt{x^{2}+3 x-18}\right|\right]+\frac{1}{2} \frac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}+C
\begin{aligned} &I=-\frac{9}{2}\left[\left(\frac{2 x+3}{4}\right) \sqrt{x^{2}+3 x-18}-\frac{81}{8} \log \left|\left(x+\frac{3}{2}\right)+\sqrt{x^{2}+3 x-18}\right|+\frac{1}{3} t^{\frac{3}{2}}\right]+C \\ &I=\frac{1}{3}(x+3 x-18)^{3 / 2}-\frac{9}{8}(2 x+3) \sqrt{x^{2}+3 x-18}+\frac{729}{16} \log \left|\left(x+\frac{3}{2}\right)+\sqrt{x^{2}+3 x-18}\right|+C \end{aligned}

Indefinite Integrals Exercise 18.29 Question 12

Answer : I=-\frac{1}{3}\left(3-4 x-x^{2}\right)^{\frac{3}{2}}+\frac{1}{2}(x+2) \sqrt{3-4 x-x^{2}}+\frac{7}{2} \sin ^{-1}\left(\frac{x+2}{\sqrt{7}}\right)+C
Hint: To solve the given integration, we express the linear term as a derivative of quadratic into constant plus another constant
Given : \int(x+3) \sqrt{3-4 x-x^{2}} d x
Solution :
\begin{aligned} &I=\int(x+2+1) \sqrt{3-4 x-x^{2}} d x \\ &I=\int(x+2) \sqrt{3-4 x-x^{2}} d x+\int \sqrt{3-4 x-x^{2}} d x \\ &\text { Let }, 3-4 x-x^{2}=u^{2} \end{aligned}
\begin{aligned} &\Rightarrow(-4-2 x) d x=2 u d u \\ &\Rightarrow-2(x+2) d x=2 u d u \\ &\Rightarrow(x+2) d x=-u d u \end{aligned}
\begin{aligned} &I=-\int u \sqrt{u^{2}} d u+\int \sqrt{-\left(x^{2}+4 x+4-4\right)+3} d x \\ &I=-\int u^{2} d u+\int \sqrt{-(x+2)^{2}+7} d x \end{aligned}
Use the formula : \int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}+C
And \left[\int x^{n} d x=\frac{x^{n}+1}{n+1}+C\right]
\begin{aligned} &I=-\frac{u^{3}}{3}+\int \sqrt{(\sqrt{7})^{2}-(x+2)^{2}} d x \\ &I=\frac{-\left(3-4 x-x^{2}\right)^{3 / 2}}{3}+\frac{x+2}{2} \sqrt{3-4 x-x^{2}}+\frac{7}{2} \sin ^{-1}\left(\frac{x+2}{\sqrt{7}}\right)+C \end{aligned}I=-\frac{1}{3}\left(3-4 x-x^{2}\right)^{\frac{3}{2}}+\frac{1}{2}(x+2) \sqrt{3-4 x-x^{2}}+\frac{7}{2} \sin ^{-1}\left(\frac{x+2}{\sqrt{7}}\right)+C

Indefinite Integrals Exercise 18.29 Question 13

Answer : I=-\frac{1}{2}\left(4-3 x-2 x^{2}\right)^{\frac{3}{2}}-\frac{5}{4}\left(\frac{2 x+3}{2 \sqrt{2}} \sqrt{4-3 x-2 x^{2}}+\frac{17}{4} \sin ^{-1} \frac{(2 x+3)}{\sqrt{17}}\right)+C
Hint: To solve the given integration, we express the linear team as a derivative of quadratic into constant plus another constant
Given : \int(3 x+1) \sqrt{4-3 x-2 x^{2}} d x
Solution :
\begin{aligned} &\text { Let, }\; \; \quad 3 x+1=a \frac{d}{d x}\left(4-3 x-2 x^{2}\right)+b \\ &\Rightarrow 3 x+1=a(-3-4 x)+b \\ &\Rightarrow 3 x+1=-4 a x+b-3 a \end{aligned}
Comparing the coefficient of x and the constant terms, we get
4 a=-3 \Rightarrow a=-\frac{3}{4} and
\begin{aligned} &b-3 a=1 \Rightarrow b=1+3\left(-\frac{3}{4}\right) \Rightarrow b=-\frac{5}{4} \\ &I=\int\left[-\frac{3}{4}(-3-4 x)-\frac{5}{4}\right] \sqrt{4-3 x-2 x^{2}} d x \end{aligned}
I=\int\left(-\frac{3}{4}\right)(-3-4 x) \sqrt{4-3 x-2 x^{2}} d x+\int-\frac{5}{4} \sqrt{4-3 x-2 x^{2}} d x
For the first integral :
\begin{aligned} &\text { Let } 4-3 x-2 x^{2}=t \\ &\Rightarrow(-3-4 x) d x=d t \end{aligned}
I=-\frac{3}{4} \int \sqrt{t} d t-\frac{5}{4} \int \sqrt{4+\left(\frac{3}{\sqrt{2}}\right)^{2}-\left[(\sqrt{2} x)^{2}+2 \sqrt{2} x\left(\frac{3}{\sqrt{2}}\right)+\left(\frac{3}{\sqrt{2}}\right)^{2}\right]} d x
Use the formula : \int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}+C
And \left[\int x^{n} d x=\frac{x^{n}+1}{n+1}+C\right]
\begin{aligned} &I=-\frac{3}{4} \frac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}-\frac{5}{4} \int \sqrt{\frac{17}{2}-\left(\sqrt{2} x+\frac{3}{\sqrt{2}}\right)^{2}} d x \\ &I=-\frac{3}{4} \frac{t^{\frac{3}{2}}}{\frac{3}{2}}-\frac{5}{4} \sqrt{\left(\frac{\sqrt{17}}{\sqrt{2}}\right)^{2}-\left(\sqrt{2} x+\frac{3}{\sqrt{2}}\right)^{2}} d x \end{aligned}
\begin{aligned} &I=-\frac{1}{2}\left(4-3 x-2 x^{2}\right)^{\frac{3}{2}}-\frac{5}{4}\left(\frac{\sqrt{2} x+\frac{3}{\sqrt{2}}}{2} \sqrt{4-3 x-2 x^{2}}+\frac{17}{2} \frac{1}{2} \sin ^{-1} \frac{\left(\sqrt{2} x+\frac{3}{\sqrt{2}}\right)}{\frac{\sqrt{17}}{\sqrt{2}}}\right)+C \\ &I=-\frac{1}{2}\left(4-3 x-2 x^{2}\right)^{\frac{3}{2}}-\frac{5}{4}\left(\frac{2 x+3}{2 \sqrt{2}} \sqrt{4-3 x-2 x^{2}}+\frac{17}{4} \sin ^{-1} \frac{(2 x+3)}{\sqrt{17}}\right)+C \end{aligned}

Indefinite Integrals Exercise 18.29 Question 14

Answer : \frac{-2}{9}\left(10-4 x-3 x^{2}\right)^{\frac{3}{2}}+\frac{11}{8}(3 x+2) \sqrt{10-4 x+3 x^{2}}+\frac{187}{9 \sqrt{3}} \sin ^{-1}\left(\frac{3 x+2}{\sqrt{34}}\right)+C
Hint: To solve the given integration, we express the linear team as a derivative of quadratic into constant plus another constant
Given: \int(2 x+5) \sqrt{10-4 x-3 x^{2}} d x
Solution : \int(2 x+5) \sqrt{10-4 x-3 x^{2}} dx
\begin{aligned} &\text { Let, }(2 x+5)=A \frac{d}{d x}\left(10-4 x-3 x^{2}\right)+B \\ &(2 x+5)=A(-4-6 x)+B \\ &(2 x+5)=-4 A+B-6 A x \end{aligned}
Comparing the coefficient of x and the constant terms, we get
\begin{aligned} &6 A=-2 \Rightarrow A=-\frac{1}{3} \text { and } \\ &-4 A+B=5 \Rightarrow B=5+4 A=5+4\left(-\frac{1}{3}\right)=\frac{11}{3} \\ &I=-\frac{1}{3} \int(-4-6 x) \sqrt{10-4 x-3 x^{2}} d x \\ &I=-\frac{1}{3} \int(-6 x-4) \sqrt{10-4 x-3 x^{2}} d x \end{aligned}
\begin{aligned} &I=-\frac{1}{3}\left[\int(-6 x-4) \sqrt{10-4 x-3 x^{2}} d x+\int \frac{11}{3} \sqrt{10-4 x-3 x^{2}} d x\right] \\ &I=-\frac{1}{3} \int(-6 x-4) \sqrt{10-4 x-3 x^{2}} d x+\left(\frac{11}{3}\right) \int \sqrt{10-4 x-3 x^{2}} d x \end{aligned}
For the first integral:
\begin{aligned} &\text { Let, } 10-4 x-3 x^{2}=t \\ &\Rightarrow(-6 x-4) d x=d t \\ &I=-\frac{1}{3} \int \sqrt{t} d t+\frac{11}{3} \times \sqrt{3} \int \sqrt{\frac{10}{3}-\frac{4}{3} x-x^{2}} d x \end{aligned}
Use the formula : \int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}+C
And \left[\int x^{n} d x=\frac{x^{n}+1}{n+1}+C\right]
\begin{aligned} &I=-\frac{1}{3} \frac{t^{\frac{3}{2}}}{\frac{3}{2}}+\frac{11}{3} \sqrt{3} \int \sqrt{\left(\frac{10}{3}\right)-\left\{x^{2}+2 \frac{2}{3} x+\left(\frac{2}{3}\right)^{2}\right\}+\left(\frac{2}{3}\right)^{2}} d x \\ &I=-\frac{2}{9} t^{3 / 2}+\frac{11}{\sqrt{3}} \int \sqrt{\left(\frac{\sqrt{34}}{3}\right)^{2}-\left(x+\frac{2}{3}\right)^{2}} d x \end{aligned}
\begin{aligned} &I=-\frac{2}{9}\left(10-4 x-3 x^{2}\right)^{\frac{3}{2}}+\frac{11}{\sqrt{3}}\left[\frac{1}{2}\left(x+\frac{2}{3}\right) \sqrt{\left(\frac{\sqrt{34}}{3}\right)^{2}-\left(x+\frac{2}{3}\right)^{2}}+\frac{34 / 9}{2} \sin ^{-1}\left[\frac{x+\frac{2}{3}}{\frac{\sqrt{34}}{3}}\right]\right]+C \\ &I=-\frac{2}{9}\left(10-4 x-3 x^{2}\right)^{\frac{3}{2}}+\frac{11}{\sqrt{3}}\left[\frac{\left(x+\frac{2}{3}\right)\left(\frac{10}{3}-\frac{4 x}{3}-x^{2}\right)^{\frac{1}{2}}}{2}\right]+\frac{187}{9 \sqrt{3}} \sin ^{-1}\left[\frac{3 x+2}{\sqrt{34}}\right]+C \end{aligned}\\I=-\frac{2}{9}\left(10-4 x-3 x^{2}\right)^{\frac{3}{2}}+\frac{11}{18}(3 x+2) \sqrt{10-4 x-3 x^{2}}+\frac{187}{9 \sqrt{3}} \sin ^{-1}\left[\frac{3 x+2}{\sqrt{34}}\right]+C

Rd Sharma class 12 chapter 18 exercise 18.29 has around 14 inquiries, including its subparts, and it consolidates themes like: -

  • Assessment of integrals by utilizing mathematical replacements like first need to solve the quadratic equation then proceed with the differentiation and integration

  • Questions based on the Formula of Integration

Benefits of picking RD Sharma Mathematics Solutions from Career360 include:

  • Career360, you should get every one of the solutions, so there is no persuading inspiration to head off to someplace else.

  • You can, in like way, benchmark your show premise with these solutions.

  • Since RD Sharma is a widely utilized book, there are chances that a piece of these solicitations may show up in your year's end tests.

  • These solutions are freed from cost.

  • Noteworthy yet orchestrated demonstration of the themes

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download E-book

RD Sharma Chapter-wise Solutions

Frequently Asked Questions (FAQs)

1. Where would i be able to download class 12 RD Sharma chapter 18 exercise 18.29 solution?

Students who wish to download the class 12 RD Sharma chapter 18 exercise 18.29 solution will track down the free duplicate of the Solution at the Career360 site.

2. Is RD Sharma class 12th exercise 18.29 useful for JEE mains solutions?

The RD Sharma class 12th exercise 18.29 covers a schedule that is normal to most exams in class 12. Therefore, students can utilize these solutions to plan for their JEE mains exams.

3. How could RD Sharma class 12 chapter 18 exercise 18.29 assistance in tackling schoolwork?

Teachers will regularly test students' advancement by giving them schoolwork from RD Sharma class 12 chapter 18 exercise 18.29. Therefore, school students can utilize these solutions to settle their schoolwork accurately.

4. Does RD Sharma class 12 solutions chapter 18 ex 18.29 have the most recent schedule?

RD Sharma class 12 solutions chapter 18 ex 18.29 is consistently refreshed so it compares to the schedule of NCERT Books. You can download the most recent adaptation of the pdf by entering your school year.

5. For what reason are RD Sharma Solutions the best NCERT solutions?

Specialists and experts in mathematics are named to draft the appropriate responses that students find in RD Sharma Solutions. Therefore they have the most top notch replies.

Articles

Upcoming School Exams

Application Date:07 October,2024 - 22 November,2024

Application Date:07 October,2024 - 22 November,2024

Application Correction Date:08 October,2024 - 27 November,2024

View All School Exams
Get answers from students and experts
Back to top