Careers360 Logo
RD Sharma Class 12 Exercise 18.9 Indefinite Integrals Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise 18.9 Indefinite Integrals Solutions Maths - Download PDF Free Online

Edited By Kuldeep Maurya | Updated on Jan 24, 2022 11:58 AM IST

RD Sharma books are well known for their comprehensive and knowledgeable materials. CBSE schools and teachers widely use them to set up question papers and homework assignments. This is why RD Sharma books are the best option for students when it comes to.

RD Sharma Class 12th Exercise 18.9 deals with the chapter Indefinite Integrals. This exercise contains 72 questions that are divided into Level 1 and Level 2 based on their complexity. It consists of 62 Level 1 questions and 10 Level 2 questions. RD Sharma solutions The Level 1 questions cover concepts like the integration of trigonometric and logarithmic equations, and Level 2 questions contain more complex functions that can be solved using the given theorems.

This Story also Contains
  1. RD Sharma Class 12 Solutions Chapter18 Indefinite Integrals - Other Exercise
  2. Indefinite Integrals Excercise:18.9
  3. RD Sharma Chapter wise Solutions

RD Sharma Class 12 Solutions Chapter18 Indefinite Integrals - Other Exercise

Indefinite Integrals Excercise:18.9

Indefinite Integrals exercise 18.9 question 1

Solution: We have ,
I=log(logx)xdx
Put logx=t1xdx=dt
I=logtdt=t[logt1]+cI=logx[log(logx)1]+c

Indefinite Integrals exercise 18 .9 question 2

Answer:12[log(1+1x)]2+c
Hint: Use substitution method to solve this integral.
Given: log(1+1x)x(1+x)dx
Solution:
LetI=log(1+1x)x(1+x)dx
Put log(1+1x)=t11+1x(1x2)dx=dt
1x+1x(1x2)dx=dtxx+1(1x2)dx=dt1x(x+1)dx=dtdx=(x+1)xdt then 
I=tx(1+x)(x+1)xdt=tdt[1xdx=dtdx=xdt]
=t1+11+1+c=t22+c[xndx=xn+1n+1+c]=12{log(1+1x)}2+c[t=log(1+1x)]

Indefinite Integrals exercise 18.9 question 3

Answer: 23(1+x)3+c
Hint: Use substitution method to solve this integral.
Given: (1+x)2xdx
Solution:
Let I=(1+x)2xdx
Put 1+x=t12xdx=dt
dx=2xdt then I=t2x2xdt=2t2dt=2t2dt
=2t2+12+1+c=2t33+c[xndx=xn+1n+1+c]=23(1+x)3+c[t=1+x]

Indefinite Integrals exercise 18.9 question 4

Answer:23(1+ex)32+c
Hint: Use substitution method to solve this integral.
Given: 1+exexdx
Solution:
Let I=1+exexdx
Put 1+ex=texdx=dt then 
I=tdt=t12dt=t12+112+1+c=t3232+c[xndx=xn+1n+1+c]=23(1+ex)32+c[t=1+ex]

Indefinite Integrals exercise 18.9 question 5

Answer:35(cosx)53+c
Hint: Use substitution method to solve this integral.
Given:cos2x3sinxdx
Solution:
Let I=cos2x3sinxdx
 Put cosx=tsinxdx=dtsinxdx=dt then I=t23(dt)=t23dt
=t23+123+1+c=t5353+c[xndx=xn+1n+1+c]=35(cosx)53+c[t=cosx]

Indefinite Integrals exercise 18.9 question 6

Answer: 1(1+ex)+c
Hint: Use substitution method to solve this integral.
Given: ex(1+ex)2dx
Solution:
 Let I=ex(1+ex)2dx Put 1+ex=texdx=dt then 
I=1t2dt=t2dt=t2+12+1+c=t11+c[xndx=xn+1n+1+c]
=1t+c=1(1+ex)+c[t=1+ex]

Indefinite Integrals exercise 18.9 question 7

Answer: 14cot4x+c
Hint: Use substitution method to solve this integral.
Given: cot3xcosec2xdx
Solution:
 Let I=cot3xcosec2xdx Put cotx=tcosec2xdx=dt
cosec2xdx=dt then I=t3(dt)=t3dt
=t3+13+1+c=t44+c[xndx=xn+1n+1+c]=14cot4x+c[t=cotx]

Indefinite Integrals exercise 18.9 question 8

Answer: e2sin1x2+c
Hint: Use substitution method to solve this integral.
Given: {esin1x}21x2dx
Solution:
 Let I={esin1x}21x2dx Put sin1x=t11x2dx=dtdx=1x2dt then 
I=(et)21x21x2dt=(et)2dt=e2tdt=e2t2+c[eaxdx=eaxa+c]
=e2sin1x2+c[t=sin1x]

Indefinite Integrals exercise 18.9 question 9

Answer: 2xcosx+c
Hint: Use substitution method to solve this integral.
Given: 1+sinxxcosxdx
Solution:
 Let I=1+sinxxcosxdx
 Put xcosx=t(1+sinx)dx=dt(1+sinx)dx=dt then 
I=1tdt=t12dt=t12+112+1+c=t1212+c[xndx=xn+1n+1+c]
=2t+c
=2xcosx+c[t=xcosx]

Indefinite Integrals exercise 18.9 question 10

Answer: 1sin1x+C
Hint: Use substitution method to solve this integral.
Given:11x2(sin1x)2dx
Solution:
 Let I=11x2(sin1x)2dx Put sin1x=t11x2dx=dtdx=1x2dt then 
I=11x2t21x2dt=1t2dt=t2+12+1+c=t11+c[xndx=xn+1n+1+c]
=1t+c=1sin1x+c[t=sin1x]

Indefinite Integrals exercise 18.9 question 11

Answer:2sinx+c
Hint: Use substitution method to solve this integral.
Given: cotxsinxdx
Solution:
 Let I=cotxsinxdx Put sinx=tcosxdx=dtdx=dtcosx then 
I=cotxtdtcosx=cosxsinx1tdtcosxdt[cotx=cosxsinx]
=1t.t12dt[t=sinx]=1t1+12dt=1t32dt
I=t32dt
=t32+132+1+c=t1212+c[xndx=xn+1n+1+c]=21t+c=2sinx+c[t=sinx]

Indefinite Integrals exercise 18.9 question 12

Answer:2cosx+c
Hint: Use substitution method to solve this integral.
Given: tanxcosxdx
Solution:
 Let I=tanxcosxdx Put cosx=tsinxdx=dtdx=dtsinx then 
I=sinxttdtsinx=1t1+12dt=1t32dtI=t32dt
=t32+132+1+c=t1212+c[xndx=xn+1n+1+c]=(2)1t+c=2t+c=2cosx+c[t=cosx]

Indefinite Integrals exercise 18.9 question 13

Answer: 2sinx25(sinx)52+c
Hint: Use substitution method to solve this integral.
Given: cos3xsinxdx
Solution:
 Let I=cos3xsinxdx=cos2xcosxsinxdx=(1sin2x)cosxsinxdx[sin2x+cos2x=1cos2x=1sin2x]Putsinx=tcosxdx=dt then 
I=(1t2)tdt={1tt2t}dt=t12dtt212dt=t12dtt412dt=t12dtt32dt
=t12+112+1t32+132+1+c[xndx=xn+1n+1+c]
=t1212t5252+c
=2t1225t52+c=2sinx25(sinx)52+c[t=sinx]

Indefinite Integrals exercise 18.9 question 14

Answer: 2cosx+25(cosx)52+c
Hint: Use substitution method to solve this integral.
Given: sin3xcosxdx
Solution:
 Let I=sin3xcosxdx=sin2xsinxcosxdx=(1cos2x)sinxcosxdx[sin2x+cos2x=1sin2x=1cos2x] Put cosx=tsinxdx=dtsinxdx=dt then 
I=(1t2)t(dt)={1t2t}dt={t12t212}dt={t12t412}dt={t12t32}dt
=t12+112+1+t32+132+1+c[xndx=xn+1n+1+c]
=t1212+t5252+c
=2t12+25t52+c=2cosx+25(cosx)52+c[t=cosx]

Indefinite Integrals exercise 18.9 question 15

Answer: 2tan1x+c
Hint: Use substitution method to solve this integral.
Given: 1tan1x(1+x2)dx
Solution:
 Let I=1tan1x(1+x2)dx
 Put tan1x=t11+x2dx=dtdx=(1+x2)dt then 
I=1t(1+x2)(1+x2)dt=1tdt=t12dt=t12+112+1+c[xndx=xn+1n+1+c]
=t1212+c=2t+c=2tan1x+c[t=tan1x]

Indefinite Integrals exercise 18.9 question 16

Answer: 2tanx+c
Hint: Use substitution method to solve this integral.
Given: tanxsinxcosxdx
Solution:
I=tanxsinxcosxdx=tanxcosxsinxcosxcosxdx
=tanxcosxsinxcos2xdx=tanxsinxcosx1cos2xdx
=tanxtanxsec2xdx=(tanx)121sec2xdx=(tanx)12sec2xdx
 Put tanx=tsec2xdx=dt then 
I=t12dt=t12+112+1+c[xndx=xn+1n+1+c]
=t1212+c=2t+c=2tanx+c[t=tanx]

Indefinite Integrals exercise 18.9 question 17

Answer:13(logx)3+c
Hint:Use substitution method to solve this integral.
Given:1x(logx)2dx
Solution:
 Let I=1x(logx)2dx Put logx=t1xdx=dtdx=xdt then 
I=1xt2xdt=t2dt=t2+12+1+c[xndx=xn+1n+1+c]
=t33+c=13(logx)3+c[t=logx]

Indefinite Integrals exercise 18.9 question 18

Answer:16sin6x+c
Hint: Use substitution method to solve this integral.
Given: sin5xcosxdx
Solution:
 Let I=sin5xcosxdx Put sinx=tcosxdx=dt then 
I=t5dt=t5+15+1+c[xndx=xn+1n+1+c]
=t66+c=16sin6x+c[t=sinx]

Indefinite Integrals exercise 18.9 question 21

Answer: 43(x2+x+1)32+c
Hint: Use substitution method to solve this integral.
Given: (4x+2)x2+x+1dx
Solution:
 Let I=(4x+2)x2+x+1dxI=2(2x+1)x2+x+1dx Put x2+x+1=t(2x+1)dx=dt then 
I=2(2x+1)tdt(2x+1)=2tdt
=2t12dt=2[t21+112+1]+c[xndx=xn+1n+1+c]
=2[t3232]+C=223t32+c
=43(x2+x+1)32+c[t=x2+x+1]

Indefinite Integrals exercise 18.9 question 22

Answer: 22x2+3x+1+c
Hint:Use substitution method to solve this integral.
Given: (4x+3)2x2+3x+1dx
Solution:
 Let I=(4x+3)2x2+3x+1dx Put 2x2+3x+1=t(4x+3)dx=dt then I=1t=t12dt
=t12+112+1+c[xndx=xn+1n+1+c]
=t1212+c=2t+c=22x2+3x+1+c[t=2x2+3x+1]

Indefinite Integrals exercise 18.9 question 23

Answer: 2x2log|x+1|+c
Hint:Use substitution method to solve this integral.
Given: 11+xdx
Solution:
 Let I=11+xdx Put x=t2dx=2tdt then 
I=11+t22tdt=2t1+tdt=2t1+tdt=21+t11+tdt
=2(1+t)11+tdt=2{1+t1+t11+t}dt=2{111+t}dt=21.dt211+tdt
=21.dt211+tdt ......(i)
 Now 21.dt=2t0+10+1+c1[xndx=xn+1n+1+c]
=2t+c1 ........(ii)
 and 211+tdt Put 1+t=pdt=dp then 
211+tdt=21pdp=2log|p|+c2
=2log|t+1|+c2 .........(iii)
Putting the values of equation (ii) and (iii) in (i) then
I=2t+c1(2log|t+1|+c2)I=2t+c12log|t+1|c2I=2x2log|x+1|+c1c2
I=2x2log|x+1|+c[t2=xt=x and c=c1c2]

Indefinite Integrals exercise 18.9 question 24

Answer: ecos2x+c
Hint:Use substitution method to solve this integral.
Given: ecos2xsin2xdx
Solution:
 Let I=ecos2xsin2xdx Put cos2x=t2cosx(sinx)dx=dt
(2cosxsinx)dx=dtsin2xdx=dt [sin2x=2sinxcosx]
 Then I=et(dt)=etdt=et+c[exdx=ex+c]=ecos2x+c[t=cos2x]

Indefinite Integrals exercise 18.9 question 25

Answer:12(x+sinx)2+c
Hint:Use substitution method to solve this integral.
Given: 1+cosx(x+sinx)3dx
Solution:
 Let I=1+cosx(x+sinx)2dx Put x+sinx=t(1+cosx)dx=dt then 
I=1t3dt=t3dt=t3+13+1+c[xndx=xn+1n+1+c]
=t22+c=121t2+c
=12(x+sinx)2+c[t=x+sinx]

Indefinite Integrals exercise 18.9 question 26

Answer: 1sinx+cosx+c
Hint:Use substitution method to solve this integral.
Given: cosxsinx1+sin2xdx
Solution:
 Let I=cosxsinx1+sin2xdx
=cosxsinxsin2x+cos2x+sin2xdx[1=sin2x+cos2x]
=cosxsinxsin2x+cos2x+2sinxcosxdx[sin2x=2sinxcosx]
=cosxsinx(sinx+cosx)2dx[a2+b2+2ab=(a+b)2]
 Put sinx+cosx=t(cosxsinx)dx=dt then 
I=(cosxsinx)t2dt(cosxsinx)
=1t2=t2dt=t2+12+1+c[xndx=xn+1n+1+c]
=t11+c=1t+c
=1sinx+cosx+c[t=sinx+cosx]

Indefinite Integrals exercise 18.9 question 27

Answer: 12b(a+bcos2x)+c
Hint:Use substitution method to solve this integral.
Given: sin2x(a+bcos2x)2dx
Solution:
 Let I=sin2x(a+bcos2x)2dx
 Put a+bcos2x=tb(sin2x)2dx=dt2bsin2xdx=dtsin2xdx=dt2b
I=1t2dt2b=12b1t2dt
=12bt2dt=12bt2+12+1+c[xndx=xn+1n+1+c]
=12bt11+c=12b1t+c
=12b(a+bcos2x)+c[t=a+bcos2x]

Indefinite Integrals exercise 18.9 question 28

Answer: (logx)2+c
Hint:Use substitution method to solve this integral.
Given: logx2xdx
Solution:
 Let I=logx2xdx
=2logxxdx[logxm=mlogx]
Putlogx=t1xdx=dt, then 
I=2txxdt=2tdt=2t1+11+1+c [xndx=xn+1n+1+c]
=2t1+12+c=t2+c=(logx)2+c [t=logx]

Indefinite Integrals exercise 18.9 question 29

Answer:11+cosx+C
Hint:Use substitution method to solve this integral.
Given: sinx(1+cosx)2dx
Solution:
 Let I=sinx(1+cosx)2dxPut1+cosx=tsinxdx=dt, then 
I=1t2(dt)=1t2dt=t2dt
=[t2+12+1]+c=t11+c [xndx=xn+1n+1+c]
=1t+c=11+cosx+c [t=1+cosx]

Indefinite Integrals exercise 18.9 question 30

Answer: 12{log(sinx)}2+c
Hint:Use substitution method to solve this integral.
Given: cotxlog(sinx)dx
Solution:
 Let I=cotxlog(sinx)dx Put log(sinx)=t1sinxcosxdx=dtcotxdx=dtdx=dtcotx then 
I=cotxtdtcotx=tdt
=t1+11+1+c=t22+c[xndx=xn+1n+1+c,]
=12{log(sinx)}2+c[t=log(sinx)]

Indefinite Integrals exercise 18.9 question 31

Answer: 12{log(secx+tanx)}2+c
Hint:Use substitution method to solve this integral.
Given: secxlog(secx+tanx)dx
Solution:
 Let I=secxlog(secx+tanx)dx Put log(secx+tanx)=t
1(secx+tanx)(secxtanx+sec2x)dx=dt1(secx+tanx)secx(tanx+secx)dx=dt
secxdx=dtdx=dtsecx then I=secxtdtsecx=tdt
=t1+11+1+c=t22+c[xndx=xn+1n+1+c,]
=12{log(secx+tanx)}2+c[t=log(secx+tanx)]

Indefinite Integrals exercise 18.9 question 32

Answer:12{log(cosecxcotx)}2+c
Hint:Use substitution method to solve this integral.
Given: cosecxlog(cosecxcotx)dx
Solution:
 Let I=cosecxlog(cosecxcotx)dx Put log(cosecxcotx)=t
1(cosecxcotx)(cosecxcotx(cosec2x))dx=dt
1(cosecxcotx){cosec2xcosecxcotx}dx=dt
1(cosecxcotx)cosecx{cosecxcotx}dx=dt
cosecxdx=dtdx=dtcosecx then 
I=cosecxtdtcosecx=tdt
=t1+11+1+c=t22+c[xndx=xn+1n+1+c,]
=12{log(cosecxcotx)}2+c[t=log(cosecxcotx)]

Indefinite Integrals exercise 18.9 question 33

Answer: 14sin(x4)+c
Hint:Use substitution method to solve this integral.
Given: x3cosx4dx
Solution:
 Let I=x3cosx4dx Put x4=t4x3dx=dtdx=dt4x3 then 
I=x3costdt4x3=14costdt
=14sintdt[cosxdx=sinx+c]
=14sin(x4)+c[t=x4]

Indefinite Integrals exercise 18.9 question 34

Answer: 32(x21)23+c
Hint:Use substitution method to solve this integral.
Given: 2xx213dx
Solution:
 Let I=2xx213dx Put x21=t2xdx=dt then 
I=1t3dt=1t13dt=t13dt
=t13+113+1+c=t2323+c [xndx=xn+1n+1+c]
=32t23=32(x21)23+c[t=x21]

Indefinite Integrals exercise 18.9 question 36

Answer:cos(x4+1)4+c
Hint: Use substitution method to solve this integral.
Given: x3sin(x4+1)dx
Solution:
 Let I=x3sin(x4+1)dx Put x4+1=t4x3dx=dtdx=dt4x3 then 
I=x3sintdt4x3=14sintdt=cost4+c [sinxdx=cosx+c]
=cos(x4+1)4+c[t=x4+1]

Indefinite Integrals exercise 18.9 question 37

Answer:tan(xex)+c
Hint: Use substitution method to solve this integral.
Given: (x+1)excos2(xex)dx
Solution:
 Let I=(x+1)excos2(xex)dx Put xex=t(xex+1.ex)dx=dt(x+1)exdx=dt then 
I=1cos2tdt
=sec2tdt[1cosx=secx]
=tant+c=tan(xex)+c[t=xex]

Indefinite Integrals exercise 18.9 question 38

Answer: 13sin(ex3)+c
Hint: Use substitution method to solve this integral.
Given: x2ex3cos(ex3)dx
Solution:
 Let I=x2ex3cos(ex3)dx Put ex3=tex33x2dx=dtdx=dtex33x2 then 
I=ex3x2costdtex3.3x2=13costdt
=13sintdt[cosxdx=sinx+c]
=13sin(ex3)+c[t=ex3]

Indefinite Integrals exercise 18.9 question 39

Answer: 13sec3(x2+3)+c
Hint: Use substitution method to solve this integral.
Given: 2xsec3(x2+3)tan(x2+3)dx
Solution:
 Let I=2xsec3(x2+3)tan(x2+3)dx Put x2+3=t2xdx=dtdx=dt2x then 
I=2xsec3ttantdt2x=sec3(t)tan(t)dt=sec2(t)sec(t)tan(t)dt
 Again Put sect=usecttantdt=du then 
I=u2du=[u2+12+1]+c[xndx=xn+1n+1+c]
=u33+c=sec3t3+c[sect=u]
=13sec3(x2+3)+c[t=x2+3]

Indefinite Integrals exercise 18.9 question 40

Answer:13(logx+x)3+c
Hint: Use substitution method to solve this integral.
Given: (x+1x)(logx+x)2dx
Solution:
 Let I=(x+1x)(logx+x)2dx
=(xx+1x)(logx+x)2dx=(1+1x)(logx+x)2dx
Putlogx+x=t(1x+1)dx=dt
dx=1(1+1x) dt then 
I=(1+1x)t21(1+1x)dt=t2dt
I=[t2+12+1]+c[xndx=xn+1n+1+c]
=t33+c=13(logx+x)3+c[t=logx+x]

Indefinite Integrals exercise 18.9 question 41

Answer: 13(1tan2x)32+c
Hint: Use substitution method to solve this integral.
Given: tanxsec2x1tan2xdx
Solution:
 Let I=tanxsec2x1tan2xdx Put 1tan2x=t2tanxsec2xdx=dtdx=12tanxsec2x dt then 
I=tanxsec2xt12tanxsec2xdt
=12tdt=12t12dt
=12[t12+112+1]+c[xndx=xn+1n+1+c]
=12[t3232]+c=12×23t32+c
=13(1tan2x)32+c[t=1tan2x]

Indefinite Integrals exercise 18 .9 question 42

Answer: 12cos{1+(logx)2}+c
Hint: Use substitution method to solve this integral.
Given: logxsin{1+(logx)2}xdx
Solution:
 Let I=logxsin{1+(logx)2}xdx Put 1+(logx)2=t2logx1xdx=dtdx=xdt2logx then 
I=logxsintxxdt2logxdt=12sintdt
=12(cost)+c=12cos{1+(logx)2}+c[t=1+(logx)2]

Indefinite Integrals exercise 18.9 question 43

Answer: 12x14sin(2x)+c
Hint: Use substitution method to solve this integral.
Given: 1x2cos2(1x)dx
Solution:
 Let I=1x2cos2(1x)dx Put 1x=t1x2dx=dtdx=x2 dt then 
I=1x2cos2t(x2)dt=cos2tdt
={1+cos2t2}dt [2cos2A1=cos2A2cos2A=1+cos2Acos2A=1+cos2A2]
={12+cos2t2}dt=12dt12cos2tdt=121.dt12cos2tdt=12t0dt12cos2tdt
=12t14sin2t [xndx=xn+1n+1+ccosaxdx=sinaxa+c]
=12x14sin(2x)+c

Indefinite Integrals exercise 18.9 question 44

Answer: 12tan2x+14tan4x+c
Hint: Use substitution method to solve this integral.
Given: sec4xtanxdx
Solution:
 Let I=sec4xtanxdx Put tanx=tsec2xdx=dtdx=dtsec2x then 
I=sec4xtdtsec2x=sec2xtdt
={1+tan2x}.tdt[sec2xtan2x=1sec2x=1+tan2x]
=(1+t2).tdt[tanx=t]=(t+t2t)dt=(t+t3)dt=tdt+t3dt
=t1+11+1+t3+13+1+c[xndx=xn+1n+1+c]
=t22+t44+c=12tan2x+14tan4x+c[t=tanx]

Indefinite Integrals exercise 18.9 question 45

Answer: 2sin(ex)+c
Hint: Use substitution method to solve this integral.
Given: excos(ex)xdx
Solution:
 Let I=excos(ex)xdx Put ex=tex12xdx=dtdx=2xexdt then 
I=excostx2xexdt=2costdt
=2sint+c[cosxdx=sinx+c]
=2sin(ex)+c[t=ex]

Indefinite Integrals exercise 18.9 question 46

Answer: 14sin4xsin2x+log|sinx|+c
Hint: Use substitution method to solve this integral.
Given: cos5xsinxdx
Solution:
 Let I=cos5xsinxdx
 Put sinx=tcosxdx=dtdx=dtcosx then 
I=cos5xtdtcosx=cos4xtdt
=(cos2x)2tdt=(1sin2x)2tdt [cos2x+sin2x=1cos2x=1sin2x]
=(1t2)2tdt [sinx=t]
={1+(t2)22t2t}dt [(ab)2=a2+b22ab]
={1+(t4)2t2t}dt={1t+t4t2t2t}dt={1t+t32t}dt
=1tdt+t3dt2tdt
=log|t|+t3+13+12t1+11+1+c [xndx=xn+1n+1+c]
=log|t|+t442t22+c=14sin4xsin2x+log|sinx|+c[t=sinx]

Indefinite Integrals exercise 18.9 question 47

Answer: 2cosx+c
Hint: Use substitution method to solve this integral.
Given: sinxxdx
Solution:
 Let I=sinxxdx Put x=t12xdx=dtdx=2xdt then 
I=sintx2xdt=2sintdt
=2[cost]+c[sinxdx=cosx+c]
=2cost+c=2cosx+c[t=x]

Indefinite Integrals exercise 18.9 question 48

Answer: cot(xex)+c
Hint: Use substitution method to solve this integral.
Given: (x+1)exsin2(xex)dx
Solution:
 Let I=(x+1)exsin2(xex)dx Put xex=t(xex+1.ex)dx=dtex(x+1)dx=dt then 
I=1sin2(t)dt=cosec2tdt[1sinx=cosecx]
=[cott]+c[cosec2xdx=cotx+c]
=cot(xex)+c[t=xex]

Indefinite Integrals exercise 18.9 question 49

Answer:5x+tan1xlog5+C
Hint: Use substitution method to solve this integral.
Given: 5x+tan1x(x2+21+x2)dx
Solution:
 Let I=5x+tan1x(x2+21+x2)dx Put x+tan1x=t(1+11+x2)dx=dt((1+x2)+11+x2)dx=dt(1+x2+11+x2)dx=dt(2+x21+x2)dx=dt then 
I=5tdt=5tlog5+c[axdx=axloga+c]
=5x+tan1xlog5+c[t=x+tan1x]

Indefinite Integrals exercise 18.9 question 50

Answer: 1memsin1x+c
Hint: Use substitution method to solve this integral.
Given: emsin1x1x2dx
Solution:
 Let I=emsin1x1x2dx Put msin1x=tm11x2dx=dtdx=1x2mdt then 
I=et1x21x2mdt1metdt
=1met+c[exdx=ex+c]
=1memsin1x+c[t=msin1x]

Indefinite Integrals exercise 18.9 question 51

Answer: 2sinx+c
Hint: Use substitution method to solve this integral.
Given: cosxxdx
Solution:
 Let I=cosxxdx Put x=t12xdx=dtdx=2xdt then 
I=costx2xdt2costdt=2sint+c[cosxdx=sinx+c]=2sinx+c[t=x]

Indefinite Integrals exercise 18.9 question 52

Answer: cos(tan1x)+c
Hint: Use substitution method to solve this integral.
Given: sin(tan1x)1+x2dx
Solution:
 Let I=sin(tan1x)1+x2dx
 put tan1x=t11+x2dx=dtdx=(1+x2)dt
I=sint1+x2(1+x2)dt=sintdt
=cost+c[sinxdx=cosx+c]=cos(tan1x)+c[t=tan1x]

Indefinite Integrals exercise 18.9 question 53

Answer: cos(logx)+c
Hint: Use substitution method to solve this integral.
Given: sin(logx)xdx
Solution:
 Let I=sin(logx)xdx
 Put logx=t1xdx=dtdx=xdt Then I=sintxxdt=sintdt
=cost+c sinxdx=cosx+c]=cos(logx)+c[t=logx]

Indefinite Integrals exercise 18 .9 question 54

Answer: 1memtan1x+c
Hint: Use substitution method to solve this integral.
Given: emtan1x1+x2dx
Solution:
 Let I=emtan1x1+x2dx
 Put mtan1x=tm11+x2dx=dtdx=1+x2mdt
I=et1+x21m(1+x2)dt=etmdt
=1metdt=1m(et)+c[exdx=ex+c]
=1memtan1x+c[t=mtan1x]

Indefinite Integrals exercise 18.9 question 55

Answer: 16a2[(x2+a2)32(x2a2)32]+c
Hint: Use substitution method to solve this integral.
Given: xx2+a2+x2a2dx
Solution:
 Let I=xx2+a2+x2a2dx
On Rationalising we get
I=(xx2+a2+x2a2×x2+a2x2a2x2+a2x2a2)dx
=(x(x2+a2x2a2)(x2+a2+x2a2)(x2+a2x2a2))dx
=x(x2+a2x2a2)(x2+a2)2(x2a2)2dx
=x(x2+a2x2a2)(x2+a2)(x2a2)dx
=x(x2+a2x2a2)x2+a2x2+a2dx
=x(x2+a2x2a2)2a2dx
=12a2(xx2+a2xx2a2)dx
=12a2xx2+a2dx12a2xx2a2dx ..........(i)
 Now 12a2xx2+a2dx
 Put x2+a2=t2xdx=dtdx=aı2x Then, 12a2xx2+a2dx=12a2xtdt2x=14a2t12dt
=14a2t211+112+1+c1=14a223t32+c1[xndx=xn+1n+1+c]
=16a2(x2+a2)32+c1 ......(ii) (t=x2+a2)
 and, 12a2xx2a2dx
 Put, x2a2=u2xdx=dudx=du2x12a2xx2a2dx=12a2xudu2x=14a2u12du then, 
=14a2[u12+112+1]+c2[xndx=xn+1n+1+c]
=14a2[u3232]+c2=14a223u32+c2
=16a2(x2a2)32+c2 ....(iii) (u=x2a2)
Putting the values of eqn(ii) and eqn(iii) in (i) then,
I=16a2(x2+a2)32+c116a2(x2a2)32c2=16a2[(x2+a2)32(x2a2)32]+c(c=c1c2)

Indefinite Integrals exercise 18.9 question 56

Answer:xtan1x21+x4dx
Hint: Use substitution method to solve this integral.
Given: 14(tan1x2)2+c
Solution:
I=xtan1x21+x4dx
 Put tan1x2=t11+(x2)22xdx=dt2x1+x4dx=dtdx=1+x42xdt Then, I=xt1+x41+x42xdt=12tdt
=12t1+11+1+c[xndx=xn+1n+1+c]
=12t22+c=14t2+c=14(tan1x2)2+c[t=tan1x2]

Indefinite Integrals exercise 18.9 question 57

Answer: 14(sin1x)4+c
Hint: Use substitution method to solve this integral

Given: (sin1x)31x2dx
Solution:
 Let I=(sin1x)31x2dx
 put sin1x=t11x2dx=dtdx=1x2dt
I=t31x21x2dt=t3dt
=t3+13+1+c[xndx=xn+1n+1+c]
=14t4+c=14(sin1x)4+c[t=sin1x]

Indefinite Integrals exercise 18.9 question 58

Answer: 13cos(2+3logx)+c
Hint: Use substitution method to solve this integral

Given: sin(2+3logx)xdx
Solution:
 Let I=sin(2+3logx)xdx
 Put 2+3logx=t31xdx=dtdx=x3dt Then, I=sintxx3dt=13sintdt
=13(cost)+c[sinxdx=cosx+c]
=13cost+c=13cos(2+3logx)+c [t=2+3logx]

Indefinite Integrals exercise 18.9 question 59

Answer: 12ex2+c
Hint: Use substitution method to solve this integral

Given: xex2dx
Solution:
 Let I=xex2dx
 Put x2=t2xdx=dtdx=12xdt Then, I=xetdt2x=12etdt=12et+c [exdx=ex+c]
=12ex2+c [t=x2]

Indefinite Integrals exercise 18.9 question 60

Answer: 1+exlog|1+ex|+c
Hint: Use substitution method to solve this integral

Given: e2x1+exdx
Solution:
I=e2x1+exdx
 Put 1+ex=texdx=dtdx=dtex Then, I=e2xtdtex=(ex)2tdtex
=extdt=t1tdt[1+exex=t1]
=(tt1t)dt=(11t)dt=1.dt1tdt=t0dt1tdt
=t0+10+1log|t|+c [xndx=xn+1n+1+c1xdx=log|x|+c]
=tlog|t|+c=1+exlog|1+ex|+c[t=1+ex]

Indefinite Integrals exercise 18.9 question 61

Answer:2tan(x)+c
Hint: Use substitution method to solve this integral

Given: sec2xxdx
Solution:
 Let I=sec2xxdx
 Put x=t12xdx=dtdx=2xdt Then, I=sec2tx2xdt=2sec2tdt
=2tant+c[sec2xdx=tanx+c]
=2tanx+c[t=x]

Indefinite Integrals exercise 18.9 question 63

Answer: (x+1)+2x+12tan1(x+1)2log|x+2|+c
Hint: Use substitution method to solve this integral

Given: x+x+1x+2dx
Solution:
 Let I=x+x+1x+2
 Put x+1=t2dx=2tdt then 
I=(t21)+t2t2+12tdt=2(t21)+tt2+1tdt[x+1=t2x=t21]
I=2(t2+t1t2+1)tdt=2(t2t+t.ttt2+1)dt
I=2(t3+t2tt2+1)dt=2{t3t2+1+t2t2+1tt2+1}dtI=2[t3t2+1dt+t2t2+1dttt2+1dt]
We can write
I=2(I1+I2I3) .........(i)
 where I1=t3t2+1dt
I2=t2t2+1dt
 and I3=tt2+1dt
 Now I1=t3t2+1dt=(t3+ttt2+1)dt
=((t3+t)tt2+1)dt=(t3+tt2+1tt2+1)dt
=(t(t2+1)t2+1tt2+1)dt=(ttt2+1)dt
=tdttt2+1dt
 put t2+1=u2tdt=dutdt=du2 then I1=tdt1udu2=tdt12duu
=t1+11+112log|u|+c1[xndx=xn+1n+1+c1xdx=log|x|+c]
=t2212log|1+t2|+c1 .......(ii) [u=t2+1]
 And I2=t2t2+1dt=(t2+ttt2+1)dt
=((t2+1)1t2+1)dt=(t2+1t2+11t2+1)dt=(11t2+1)dt=t0dt1t2+1dt
=t0+10+1tan1(t)+c2[xndx=xn+1n+1+c1xdx=log|x|+c]
=ttan1(t)+c2 .......(iii)
 Also I3=tt2+1dt put t2+1=p2tdt=dptdt=dp2 then I3=1pdp2=121pdp=12log|p|+c3
=12log|1+t2|+c3 ......(iv)
 Substituting the values of I1,I2,I3 from eqn(ii), (iii) and (iv) in (i) then I=2[t2212log|1+t2|+c1+ttan1(t)+c212log|1+t2|c3]
=2[t22+ttan1(t)(12+12)log|1+t2|+c1+c2c3]
=2[t22+ttan1(t)log|1+t2|+c4][c4=c1+c2c3]
=2t22+2t2tan1(t)2log|1+t2|+2c4=t2+2t2tan1(t)2log|1+t2|+c
 [ since x+1=t2 ] =(x+1)+2x+12tan1x+12log|1+x+1|+cI=(x+1)+2x+12tan1(x+1)2log|x+2|+c

Indefinite Integrals exercise 18.9 question 64

Answer: 1(log5)3555x+c
Hint: Use substitution method to solve this integral

Given: 555x55x5xdx
Solution:
 let I=555x55x5xdx Putting 555x=t
(555xlog5.55xlog5.5xlog5)dx=dt
555555x5x(log5)3dx=dt(555x55x5x)dx=dt(log5)3 then 
I=dt(log5)3=1(log5)31dt
=1(log5)3t0dt=1(log5)3t0+10+1[xndx=xn+1n+1+c]
=1(log5)3t+c=1(log5)3555x+c[555x=t]

Indefinite Integrals exercise 18.9 question 65

Answer: 12sec1(x2)+c
Hint: Use substitution method to solve this integral

Given: 1xx41dx
Solution:
letI=1xx41dx=1x(x2)21dx Putting x2=t2xdx=dtdx=dt2x then 
I=1xt21dt2x=121x2t21dt
=121tt21dt[x2=t]
=12sec1t+c[1xx21dx=sec1x+c]
=12sec1(x2)+c[t=x2]

Indefinite Integrals exercise 18.9 question 66

Answer: 2ex12tan1(ex1)+c
Hint: Use substitution method to solve this integral

Given: ex1dx
Solution:
letI=ex1dx Putting ex1=t2exdx=2tdtdx=2tdtex then 
I=t22tdtex
=2ttt2+1dt[ex1=t2t2+1=ex]
=2t2t2+1dt=2(t2+11t2+1)dt
=2((t2+1)1t2+1)dt=2((t2+1)t2+11t2+1)dt=2(11t2+1)dt
=21dt21t2+1dt=2t0dt21t2+1dt
=2t0+10+12tan1(t)+c [xndx=xn+1n+1+c11+x2dx=tan1x+c]
=2t2tan1(t)+c=2ex12tan1(ex1)+c [t2=ex1t=ex1]

Indefinite Integrals exercise 18.9 question 67

Answer: log|x+1x2+2x+2|+c
Hint: Use substitution method to solve this integral

Given: 1(x+1)(x2+2x+2)dx
Solution:
letI=1(x+1)(x2+2x+2)dx
=1(x+1)(x2+2x+1+1)dx=1(x+1){(x2+2x+1)+1}dx
=1(x+1){(x+1)2+1}dx [(a+b)2=a2+b2+2ab]
 Putting x+1=tanu......(i)
dx=sec2udu then 
I=1tanu{tan2u+1}sec2udu
=1tanu{sec2u}sec2udu[1+tan2u=sec2u]
=1tanudu=cotudu
=log|sinu|+c ........(ii) [cotxdx=log|sinx|+c]
 Also, from (i) x+1=tanu=sinucosu[tanx=sinxcosx]
(x+1)cosu=sinu(x+1)2cos2u=sin2u[ Squaring on both sides ](x+1)2(1sin2u)=sin2u[cos2x=1sin2x](x+1)2(x+1)2sin2u=sin2u(x+1)2=sin2u+(x+1)2sin2u(x+1)2=[1+(x+1)2]sin2u
sin2u=(x+1)21+(x+1)2=(x+1)2x2+2x+1+1=(x+1)2x2+2x+2[(a+b)2=a2+b2+2ab]
sinu=(x+1)2x2+2x+2=(x+1)x2+2x+2 ........(iii)
 From (ii) and (iii) we get I=log|x+1x2+2x+2|+c

Indefinite Integrals exercise 18.9 question 68

Answer: 29(1+x3)3223(1+x3)12+c
Hint: Use substitution method to solve this integral

Given: x51+x3dx
Solution:
 Let I=x51+x3dx Put 1+x3=t23x2dx=2tdtdx=2t3x2dt then 
I=x5t22tdt3x2=23x3ttdt=23x3dt
=23(t21)dt[1+x3=t2t21=x3]
=23t2dt231dt=23t2dt23t0dt
=23t2+12+123t0+10+1+c[xndx=xn+1n+1+c]
=23t3323t+c
=29(1+x3)3223(1+x3)12+c[t2=1+x3t=1+x3]

Indefinite Integrals exercise 18.9 question 69

Answer: 203(5x2)32+45(5x2)52+c
Hint: Use substitution method to solve this integral

Given: 4x35x2dx
Solution:
 Let I=4x35x2dx Put 5x2=t22xdx=2tdtdx=txdt then 
I=4x3t2tdtx=4x2t.tdt
=4(5t2)t2dt=4(5t2t2t2)dt[5x2=t2x2=5t2]
=4(5t2t4)dt
=20t2dt+4t4dt
=20t2+12+1+4t4+14+1+c[xndx=xn+1n+1+c]
=20t33+4t55+c
=203(5x2)3+45(5x2)5+c[t2=5x2t=5x2]
=203(5x2)32+45(5x2)52+c




Indefinite Integrals exercise 18.9 question 70

Answer: 12log|1+x|+c
Hint: Use substitution method to solve this integral

Given: 1x+xdx
Solution:
 Let I=1x+xdx Put x=t12xdx=dtdx=2xdt then 
I=1t+t22xdt=1t(1+t)2xdt=211+tdt [x=tx=t2]
 Again put 1+t=udt=du then I=21udu=12log|u|+c[1xdx=log|x|+c]
=12log|t+1|+c[u=1+t]
=12log|1+x|+c[t=x]

Indefinite Integrals exercise 18.9 question 71

Answer:(1+1x4)14+c
Hint: Use substitution method to solve this integral

Given: 1x2(x4+1)34dx
Solution:
 Let I=1x2(x4+1)34dx
=1x3x2(x4+1)341x3dx[ Dividing numerator and denominator by 1x3]
I=x3x2(x4+1)34x3dx=(x4+1)34x3x2x3dx
=(x4+1)34x5x3dx=(x4+1)34x5(x4)34dx
=1x5(x4+1x4)34dx=1x5(x4x4+1x4)34dx
=1x5(1+1x4)34dx
 Put 1x4=t4dxx5=dtdx=x54dt then 
I=1x5(1+t)34x54dt=14(1+t)34dt
 Again put 1+t=udt=du then I=14(u)34du=14u34+134+1+c[xndx=xn+1n+1+c]
=14u1414+c=14×4u14+c
=u14+c=(1+t)14+c[u=1+t]
=(1+1x4)14+c[t=1x4]

Indefinite Integrals exercise 18.9 question 72

Answer: 13cos2xcosx2cosx+c
Hint: Use substitution method to solve this integral

Given: sin5xcos4xdx
Solution:
 Let I=sin5xcos4xdx Put cosx=tsinxdx=dtdx=dtsinx then 
I=sin5xt4dtsinx=sin4xt4dt
=(sin2x)2t4dt=(1cos2x)2t4dt
I=(1+cos4x2cos2x)t4dt[(ab)2=a2+b22ab]
=[1+t42t2t4]dt[cosx=t]
=[1t4+t4t42t2t4]dt=[1t4+12t2]dt
=(t4+12t2)dt=t4dtt0dt+2t2dt
=t4+14+1t0+10+1+2t2+12+1+c[xndx=xn+1n+1+c]
=t33t+2t11+c=13t3t2t11+c
=13cos2xcosx2cosx+c[t=cosx]


RD Sharma Class 12th Exercise 18.9 is the best source for students to score good marks in exams. These are the following benefits of this material:

1. Latest Version

RD Sharma books are updated to a new version every year. This material provided by Career360 contains the latest version which means that All the solutions provided are from the newest version of the book and contain all the new concepts.

2. Prepared by experts

Every solution from RD Sharma Class 12th Exercise 18.9 material undergoes a multistep checking process that ensures that every answer is clear and easy to understand. Additionally, as a group of subject experts prepare this material, students can trust its accuracy and use it to prepare for their exams. As there are different ways to solve a problem in maths, students can figure out various methods and choose which one suits them the best.

3. Helpful for homework

'Indefinite Integrals' is a vast chapter containing hundreds of sums. It becomes apparent that they would get a lot of homework from it and spend a lot of time practicing every concept. Career360 has provided RD Sharma Class 12th Exercise 18.9 solutions to help students better understand the concepts of this chapter.

4. Time-saving

Most students try to solve each and every question manually, thinking that they could only understand the topic after completing all of them. This requires a lot of effort and does not let students to focus on other topics. Instead, students should solve questions until they understand the concept. After completing, they can refer to the solutions to analyze every question, thereby saving precious time before the exam.

5. Available for free

The main advantage of RD Sharma Class 12 Chapter 18 Exercise 18.9 solutions is that it is available for free on Career360’s website. Students can access this material on any device using just a browser and internet connection.

RD Sharma Chapter wise Solutions

Frequently Asked Questions (FAQs)

1. What are the benefits of this material?

This material provided by Career360 covers the entire syllabus and contains easy to understand answers. This will help students complete the syllabus on time and score good marks in exams.

2. Can I find solutions for other exercises on the Career360 website?

Yes, students can find expert created solutions for other exercises on Career360’s website. They can access the materials by searching the chapter name and exercise number on the website.

3. What can I learn from this material?

Preparing from RD Sharma Class 12 Solutions Indefinite Integrals Ex 18.9 material will help students get a good insight on the subject and learn better ways to solve problems in maths.

4. Can I finish my homework with this material?

RD Sharma Class 12 solutions Chapter 18 Ex 18.9 material covers all concepts and contains accurate answers. This will help students in their homework and exam preparation.

5. . Are there any hidden costs?

No, this material is available for free on Career360’s website. Students can get access to the entire material with no additional costs.

Articles

Back to top