RD Sharma books are well known for their comprehensive and knowledgeable materials. CBSE schools and teachers widely use them to set up question papers and homework assignments. This is why RD Sharma books are the best option for students when it comes to.
RD Sharma Class 12th Exercise 18.9 deals with the chapter Indefinite Integrals. This exercise contains 72 questions that are divided into Level 1 and Level 2 based on their complexity. It consists of 62 Level 1 questions and 10 Level 2 questions. RD Sharma solutions The Level 1 questions cover concepts like the integration of trigonometric and logarithmic equations, and Level 2 questions contain more complex functions that can be solved using the given theorems.
This Story also Contains
RD Sharma Class 12 Solutions Chapter18 Indefinite Integrals - Other Exercise Indefinite Integrals Excercise:18.9 RD Sharma Chapter wise Solutions RD Sharma Class 12 Solutions Chapter18 Indefinite Integrals - Other Exercise Indefinite Integrals exercise 18 .9 question 2
Answer:− 1 2 [ log ( 1 + 1 x ) ] 2 + c Hint: Use substitution method to solve this integral.
Given: ∫ log ( 1 + 1 x ) x ( 1 + x ) d x Solution: Let
I = ∫ log ( 1 + 1 x ) x ( 1 + x ) d x Put
log ( 1 + 1 x ) = t ⇒ 1 1 + 1 x ( − 1 x 2 ) d x = d t ⇒ 1 x + 1 x ( − 1 x 2 ) d x = d t ⇒ x x + 1 ( − 1 x 2 ) d x = d t ⇒ − 1 x ( x + 1 ) d x = d t ⇒ d x = − ( x + 1 ) x d t then I = ∫ − t x ( 1 + x ) ( x + 1 ) x d t = − ∫ t d t [ ∵ 1 x d x = d t ⇒ d x = x d t ] = − t 1 + 1 1 + 1 + c = − t 2 2 + c [ ∵ ∫ x n d x = x n + 1 n + 1 + c ] = − 1 2 { log ( 1 + 1 x ) } 2 + c [ ∵ t = log ( 1 + 1 x ) ] Indefinite Integrals exercise 18.9 question 3
Answer: 2 3 ( 1 + x ) 3 + c Hint: Use substitution method to solve this integral.
Given: ∫ ( 1 + x ) 2 x d x Solution: Let
I = ∫ ( 1 + x ) 2 x d x Put
1 + x = t ⇒ 1 2 x d x = d t ⇒ d x = 2 x d t then I = ∫ t 2 x 2 x d t = ∫ 2 t 2 d t = 2 ∫ t 2 d t = 2 t 2 + 1 2 + 1 + c = 2 t 3 3 + c [ ∵ ∫ x n d x = x n + 1 n + 1 + c ] = 2 3 ( 1 + x ) 3 + c [ ∵ t = 1 + x ] Indefinite Integrals exercise 18.9 question 4
Answer:2 3 ( 1 + e x ) 3 2 + c Hint: Use substitution method to solve this integral.
Given: ∫ 1 + e x ⋅ e x d x Solution: Let
I = ∫ 1 + e x ⋅ e x d x Put
1 + e x = t ⇒ e x d x = d t then I = ∫ t d t = ∫ t 1 2 d t = t 1 2 + 1 1 2 + 1 + c = t 3 2 3 2 + c [ ∵ ∫ x n d x = x n + 1 n + 1 + c ] = 2 3 ( 1 + e x ) 3 2 + c [ ∵ t = 1 + e x ] Indefinite Integrals exercise 18.9 question 5
Answer:− 3 5 ( cos x ) 5 3 + c Hint: Use substitution method to solve this integral.
Given:∫ cos 2 x 3 ⋅ sin x d x Solution: Let
I = ∫ cos 2 x 3 ⋅ sin x d x Put cos x = t ⇒ − sin x d x = d t ⇒ sin x d x = − d t then I = ∫ t 2 3 ( − d t ) = − ∫ t 2 3 d t = − t 2 3 + 1 2 3 + 1 + c = − t 5 3 5 3 + c [ ∵ ∫ x n d x = x n + 1 n + 1 + c ] = − 3 5 ( cos x ) 5 3 + c [ ∵ t = cos x ] Indefinite Integrals exercise 18.9 question 6
Answer: − 1 ( 1 + e x ) + c Hint: Use substitution method to solve this integral.
Given: ∫ e x ( 1 + e x ) 2 d x Solution: Let I = ∫ e x ( 1 + e x ) 2 d x Put 1 + e x = t ⇒ e x d x = d t then I = ∫ 1 t 2 d t = ∫ t − 2 d t = − t − 2 + 1 − 2 + 1 + c = t − 1 − 1 + c [ ∵ ∫ x n d x = x n + 1 n + 1 + c ] = − 1 t + c = − 1 ( 1 + e x ) + c [ ∵ t = 1 + e x ] Indefinite Integrals exercise 18.9 question 7
Answer: − 1 4 cot 4 x + c Hint: Use substitution method to solve this integral.
Given: ∫ cot 3 x ⋅ cosec 2 x d x Solution: Let I = ∫ cot 3 x ⋅ cosec 2 x d x Put cot x = t ⇒ − cosec 2 x d x = d t ⇒ cosec 2 x d x = − d t then I = ∫ t 3 ( − d t ) = − ∫ t 3 d t = − t 3 + 1 3 + 1 + c = − t 4 4 + c [ ∵ ∫ x n d x = x n + 1 n + 1 + c ] = − 1 4 cot 4 x + c [ ∵ t = cot x ] Indefinite Integrals exercise 18.9 question 8
Answer: e 2 sin − 1 x 2 + c Hint: Use substitution method to solve this integral.
Given: ∫ { e sin − 1 x } 2 1 − x 2 d x Solution: Let I = ∫ { e sin − 1 x } 2 1 − x 2 d x Put sin − 1 x = t ⇒ 1 1 − x 2 d x = d t ⇒ d x = 1 − x 2 d t then I = ∫ ( e t ) 2 1 − x 2 1 − x 2 d t = ∫ ( e t ) 2 d t = ∫ e 2 t d t = e 2 t 2 + c [ ∵ ∫ e a x d x = e a x a + c ] = e 2 sin − 1 x 2 + c [ ∵ t = sin − 1 x ] Indefinite Integrals exercise 18.9 question 9
Answer: 2 x − cos x + c Hint: Use substitution method to solve this integral.
Given: ∫ 1 + sin x x − cos x d x Solution: Let I = ∫ 1 + sin x x − cos x d x Put x − cos x = t ⇒ ( 1 + sin x ) d x = d t ⇒ ( 1 + sin x ) d x = d t then I = ∫ 1 t d t = ∫ t − 1 2 d t = t − 1 2 + 1 − 1 2 + 1 + c = t 1 2 1 2 + c [ ∵ ∫ x n d x = x n + 1 n + 1 + c ] = 2 t + c = 2 x − cos x + c [ ∵ t = x − cos x ] Indefinite Integrals exercise 18.9 question 10
Answer: − 1 sin − 1 x + C Hint: Use substitution method to solve this integral.
Given:∫ 1 1 − x 2 ( sin − 1 x ) 2 d x Solution: Let I = ∫ 1 1 − x 2 ( sin − 1 x ) 2 d x Put sin − 1 x = t ⇒ 1 1 − x 2 d x = d t ⇒ d x = 1 − x 2 d t then I = ∫ 1 1 − x 2 ⋅ t 2 1 − x 2 d t = ∫ 1 t 2 d t = t − 2 + 1 − 2 + 1 + c = t − 1 − 1 + c [ ∵ ∫ x n d x = x n + 1 n + 1 + c ] = − 1 t + c = − 1 sin − 1 x + c [ ∵ t = sin − 1 x ] Indefinite Integrals exercise 18.9 question 11
Answer:− 2 sin x + c Hint: Use substitution method to solve this integral.
Given: ∫ cot x sin x d x Solution: Let I = ∫ cot x sin x d x Put sin x = t ⇒ cos x d x = d t ⇒ d x = d t cos x then I = ∫ cot x t d t cos x = ∫ cos x sin x ⋅ 1 t ⋅ d t cos x d t [ ∵ cot x = cos x sin x ] = ∫ 1 t . t 1 2 d t [ ∵ t = sin x ] = ∫ 1 t 1 + 1 2 d t = ∫ 1 t 3 2 dt I = ∫ t − 3 2 d t = t − 3 2 + 1 − 3 2 + 1 + c = t − 1 2 − 1 2 + c [ ∵ ∫ x n d x = x n + 1 n + 1 + c ] = − 2 1 t + c = − 2 sin x + c [ ∵ t = sin x ] Indefinite Integrals exercise 18.9 question 12
Answer:2 cos x + c Hint: Use substitution method to solve this integral.
Given: ∫ tan x cos x d x Solution: Let I = ∫ tan x cos x d x Put cos x = t ⇒ − sin x d x = d t ⇒ d x = − d t sin x then I = ∫ sin x t t − d t sin x = − ∫ 1 t 1 + 1 2 d t = − ∫ 1 t 3 2 d t I = − ∫ t − 3 2 d t = − t − 3 2 + 1 − 3 2 + 1 + c = − t − 1 2 − 1 2 + c [ ∵ ∫ x n d x = x n + 1 n + 1 + c ] = − ( − 2 ) 1 t + c = 2 t + c = 2 cos x + c [ ∵ t = cos x ] Indefinite Integrals exercise 18.9 question 13
Answer: 2 sin x − 2 5 ( sin x ) 5 2 + c Hint: Use substitution method to solve this integral.
Given: ∫ cos 3 x sin x d x Solution: Let I = ∫ cos 3 x sin x d x = ∫ cos 2 x ⋅ cos x sin x d x = ∫ ( 1 − sin 2 x ) ⋅ cos x sin x d x [ ∵ sin 2 x + cos 2 x = 1 ⇒ cos 2 x = 1 − sin 2 x ] Put sin x = t ⇒ cos x d x = d t then I = ∫ ( 1 − t 2 ) t d t = ∫ { 1 t − t 2 t } d t = ∫ t − 1 2 d t − ∫ t 2 − 1 2 d t = ∫ t − 1 2 d t − ∫ t 4 − 1 2 d t = ∫ t − 1 2 d t − ∫ t 3 2 d t = t − 1 2 + 1 − 1 2 + 1 − t 3 2 + 1 3 2 + 1 + c [ ∵ ∫ x n d x = x n + 1 n + 1 + c ] = t 1 2 1 2 − t 5 2 5 2 + c = 2 t 1 2 − 2 5 t 5 2 + c = 2 sin x − 2 5 ( sin x ) 5 2 + c [ ∵ t = sin x ] Indefinite Integrals exercise 18.9 question 14
Answer: − 2 cos x + 2 5 ( cos x ) 5 2 + c Hint: Use substitution method to solve this integral.
Given: ∫ sin 3 x cos x d x Solution: Let I = ∫ sin 3 x cos x d x = ∫ sin 2 x ⋅ sin x cos x d x = ∫ ( 1 − cos 2 x ) ⋅ sin x cos x d x [ ∵ sin 2 x + cos 2 x = 1 ⇒ sin 2 x = 1 − cos 2 x ] Put cos x = t ⇒ − sin x d x = d t ⇒ sin x d x = − d t then I = ∫ ( 1 − t 2 ) t ( − d t ) = − ∫ { 1 − t 2 t } d t = − ∫ { t − 1 2 − t 2 − 1 2 } d t = − ∫ { t − 1 2 − t 4 − 1 2 } d t = − ∫ { t − 1 2 − t 3 2 } d t = − t − 1 2 + 1 − 1 2 + 1 + t 3 2 + 1 3 2 + 1 + c [ ∵ ∫ x n d x = x n + 1 n + 1 + c ] = − t 1 2 1 2 + t 5 2 5 2 + c = − 2 t 1 2 + 2 5 t 5 2 + c = − 2 cos x + 2 5 ( cos x ) 5 2 + c [ ∵ t = cos x ] Indefinite Integrals exercise 18.9 question 15
Answer: 2 tan − 1 x + c Hint: Use substitution method to solve this integral.
Given: ∫ 1 tan − 1 x ( 1 + x 2 ) d x Solution: Let I = ∫ 1 tan − 1 x ( 1 + x 2 ) d x Put tan − 1 x = t ⇒ 1 1 + x 2 d x = d t ⇒ d x = ( 1 + x 2 ) d t then I = ∫ 1 t ( 1 + x 2 ) ( 1 + x 2 ) d t = ∫ 1 t d t = ∫ t − 1 2 d t = t − 1 2 + 1 − 1 2 + 1 + c [ ∵ ∫ x n d x = x n + 1 n + 1 + c ] = t 1 2 1 2 + c = 2 t + c = 2 tan − 1 x + c [ ∵ t = tan − 1 x ] Indefinite Integrals exercise 18.9 question 16
Answer: 2 tan x + c Hint: Use substitution method to solve this integral.
Given: ∫ tan x sin x ⋅ cos x d x Solution: I = ∫ tan x sin x ⋅ cos x d x = ∫ tan x ⋅ cos x sin x ⋅ cos x ⋅ cos x d x = ∫ tan x ⋅ cos x sin x ⋅ cos 2 x d x = ∫ tan x sin x cos x ⋅ 1 cos 2 x d x = ∫ tan x tan x ⋅ sec 2 x d x = ∫ ( tan x ) 1 2 − 1 ⋅ sec 2 x d x = ∫ ( tan x ) − 1 2 sec 2 x d x Put tan x = t ⇒ sec 2 x d x = d t then I = ∫ t − 1 2 d t = t − 1 2 + 1 − 1 2 + 1 + c [ ∵ ∫ x n d x = x n + 1 n + 1 + c ] = t 1 2 1 2 + c = 2 t + c = 2 tan x + c [ ∵ t = tan x ] Indefinite Integrals exercise 18.9 question 17
Answer:1 3 ( log x ) 3 + c Hint: Use substitution method to solve this integral.
Given:∫ 1 x ( log x ) 2 d x Solution: Let I = ∫ 1 x ( log x ) 2 d x Put log x = t ⇒ 1 x d x = d t ⇒ d x = x d t then I = ∫ 1 x t 2 ⋅ x d t = ∫ t 2 d t = t 2 + 1 2 + 1 + c [ ∵ ∫ x n d x = x n + 1 n + 1 + c ] = t 3 3 + c = 1 3 ( log x ) 3 + c [ ∵ t = log x ] Indefinite Integrals exercise 18.9 question 18
Answer:1 6 sin 6 x + c Hint: Use substitution method to solve this integral.
Given: ∫ sin 5 x cos x d x Solution: Let I = ∫ sin 5 x cos x d x Put sin x = t ⇒ cos x d x = d t then I = ∫ t 5 d t = t 5 + 1 5 + 1 + c [ ∵ ∫ x n d x = x n + 1 n + 1 + c ] = t 6 6 + c = 1 6 sin 6 x + c [ ∵ t = sin x ] Indefinite Integrals exercise 18.9 question 21
Answer: 4 3 ( x 2 + x + 1 ) 3 2 + c Hint: Use substitution method to solve this integral.
Given: ∫ ( 4 x + 2 ) x 2 + x + 1 d x Solution: Let I = ∫ ( 4 x + 2 ) x 2 + x + 1 d x ⇒ I = 2 ∫ ( 2 x + 1 ) x 2 + x + 1 d x Put x 2 + x + 1 = t ⇒ ( 2 x + 1 ) d x = d t then I = 2 ∫ ( 2 x + 1 ) t ⋅ d t ( 2 x + 1 ) = 2 ∫ t d t = 2 ∫ t 1 2 d t = 2 [ t 2 1 + 1 1 2 + 1 ] + c [ ∵ ∫ x n d x = x n + 1 n + 1 + c ] = 2 [ t 3 2 3 2 ] + C = 2 ⋅ 2 3 t 3 2 + c = 4 3 ( x 2 + x + 1 ) 3 2 + c [ ∵ t = x 2 + x + 1 ] Indefinite Integrals exercise 18.9 question 22
Answer: 2 2 x 2 + 3 x + 1 + c Hint :Use substitution method to solve this integral.
Given :
∫ ( 4 x + 3 ) 2 x 2 + 3 x + 1 d x Solution: Let I = ∫ ( 4 x + 3 ) 2 x 2 + 3 x + 1 d x Put 2 x 2 + 3 x + 1 = t ⇒ ( 4 x + 3 ) d x = d t then I = ∫ 1 t = ∫ t − 1 2 d t = t − 1 2 + 1 − 1 2 + 1 + c [ ∵ ∫ x n d x = x n + 1 n + 1 + c ] = t 1 2 1 2 + c = 2 t + c = 2 2 x 2 + 3 x + 1 + c [ ∵ t = 2 x 2 + 3 x + 1 ] Indefinite Integrals exercise 18.9 question 23
Answer: 2 x − 2 log | x + 1 | + c Hint :Use substitution method to solve this integral.
Given :
∫ 1 1 + x d x Solution: Let I = ∫ 1 1 + x d x Put x = t 2 ⇒ d x = 2 t d t then I = ∫ 1 1 + t 2 2 t d t = ∫ 2 t 1 + t d t = 2 ∫ t 1 + t d t = 2 ∫ 1 + t − 1 1 + t d t = 2 ∫ ( 1 + t ) − 1 1 + t d t = 2 ∫ { 1 + t 1 + t − 1 1 + t } d t = 2 ∫ { 1 − 1 1 + t } d t = 2 ∫ 1 . d t − 2 ∫ 1 1 + t d t = 2 ∫ 1 . d t − 2 ∫ 1 1 + t d t ......( i ) Now 2 ∫ 1 . d t = 2 t 0 + 1 0 + 1 + c 1 [ ∵ ∫ x n d x = x n + 1 n + 1 + c ] = 2 t + c 1 ........( i i ) and 2 ∫ 1 1 + t d t Put 1 + t = p ⇒ d t = d p then 2 ∫ 1 1 + t d t = 2 ∫ 1 p d p = 2 log | p | + c 2 = 2 log | t + 1 | + c 2 .........( i i i ) Putting the values of equation (ii) and (iii) in (i) then
I = 2 t + c 1 − ( 2 log | t + 1 | + c 2 ) ⇒ I = 2 t + c 1 − 2 log | t + 1 | − c 2 ∴ I = 2 x − 2 log | x + 1 | + c 1 − c 2 ∴ I = 2 x − 2 log | x + 1 | + c [ ∵ t 2 = x ⇒ t = x and c = c 1 − c 2 ] Indefinite Integrals exercise 18.9 question 24
Answer: − e cos 2 x + c Hint :Use substitution method to solve this integral.
Given :
∫ e cos 2 x sin 2 x d x Solution: Let I = ∫ e cos 2 x sin 2 x d x Put cos 2 x = t ⇒ 2 cos x ( − sin x ) d x = d t ⇒ − ( 2 cos x sin x ) d x = d t ⇒ − sin 2 x d x = d t [ ∵ sin 2 x = 2 sin x cos x ] Then I = ∫ e t ( − d t ) = − ∫ e t d t = − e t + c [ ∵ ∫ e x d x = e x + c ] = − e cos 2 x + c [ ∵ t = cos 2 x ] Indefinite Integrals exercise 18.9 question 25
Answer: − 1 2 ( x + sin x ) 2 + c Hint :Use substitution method to solve this integral.
Given :
∫ 1 + cos x ( x + sin x ) 3 d x Solution: Let I = ∫ 1 + cos x ( x + sin x ) 2 d x Put x + sin x = t ⇒ ( 1 + cos x ) d x = d t then I = ∫ 1 t 3 d t = ∫ t − 3 d t = t − 3 + 1 − 3 + 1 + c [ ∵ ∫ x n d x = x n + 1 n + 1 + c ] = t − 2 − 2 + c = − 1 2 1 t 2 + c = − 1 2 ( x + sin x ) 2 + c [ ∵ t = x + sin x ] Indefinite Integrals exercise 18.9 question 26
Answer: − 1 sin x + cos x + c Hint :Use substitution method to solve this integral.
Given :
∫ cos x − sin x 1 + sin 2 x d x Solution: Let I = ∫ cos x − sin x 1 + sin 2 x d x = ∫ cos x − sin x sin 2 x + cos 2 x + sin 2 x d x [ ∵ 1 = sin 2 x + cos 2 x ] = ∫ cos x − sin x sin 2 x + cos 2 x + 2 sin x cos x d x [ ∵ sin 2 x = 2 sin x cos x ] = ∫ cos x − sin x ( sin x + cos x ) 2 d x [ ∵ a 2 + b 2 + 2 a b = ( a + b ) 2 ] Put sin x + cos x = t ⇒ ( cos x − sin x ) d x = d t then I = ∫ ( cos x − sin x ) t 2 d t ( cos x − sin x ) = ∫ 1 t 2 = ∫ t − 2 d t = t − 2 + 1 − 2 + 1 + c [ ∵ ∫ x n d x = x n + 1 n + 1 + c ] = t − 1 − 1 + c = − 1 t + c = − 1 sin x + cos x + c [ ∵ t = sin x + cos x ] Indefinite Integrals exercise 18.9 question 27
Answer: 1 2 b ( a + b cos 2 x ) + c Hint :Use substitution method to solve this integral.
Given :
∫ sin 2 x ( a + b cos 2 x ) 2 d x Solution: Let I = ∫ sin 2 x ( a + b cos 2 x ) 2 d x Put a + b cos 2 x = t ⇒ b ( − sin 2 x ) ⋅ 2 d x = d t ⇒ − 2 b sin 2 x d x = d t ⇒ sin 2 x d x = d t − 2 b I = ∫ 1 t 2 ⋅ d t − 2 b = − 1 2 b ∫ 1 t 2 d t = − 1 2 b ∫ t − 2 d t = − 1 2 b t − 2 + 1 − 2 + 1 + c [ ∵ ∫ x n d x = x n + 1 n + 1 + c ] = − 1 2 b ⋅ t − 1 − 1 + c = 1 2 b ⋅ 1 t + c = 1 2 b ( a + b cos 2 x ) + c [ ∵ t = a + b cos 2 x ] Indefinite Integrals exercise 18.9 question 28
Answer: ( log x ) 2 + c Hint :Use substitution method to solve this integral.
Given :
∫ log x 2 x d x Solution: Let I = ∫ log x 2 x d x = ∫ 2 log x x d x [ ∵ log x m = m log x ] Put log x = t ⇒ 1 x d x = d t , then I = ∫ 2 ⋅ t x ⋅ x d t = 2 ∫ t d t = 2 ∫ t 1 + 1 1 + 1 + c [ ∵ ∫ x n d x = x n + 1 n + 1 + c ] = 2 t 1 + 1 2 + c = t 2 + c = ( log x ) 2 + c [ ∵ t = log x ] Indefinite Integrals exercise 18.9 question 29
Answer:1 1 + cos x + C Hint :Use substitution method to solve this integral.
Given :
∫ sin x ( 1 + cos x ) 2 d x Solution: Let I = ∫ sin x ( 1 + cos x ) 2 d x Put 1 + cos x = t ⇒ − sin x d x = d t , then I = ∫ 1 t 2 ( − d t ) = − ∫ 1 t 2 d t = − ∫ t − 2 d t = − [ t − 2 + 1 − 2 + 1 ] + c = − − t − 1 − 1 + c [ ∵ ∫ x n d x = x n + 1 n + 1 + c ] = 1 t + c = 1 1 + cos x + c [ ∵ t = 1 + cos x ] Indefinite Integrals exercise 18.9 question 30
Answer: 1 2 { log ( sin x ) } 2 + c Hint :Use substitution method to solve this integral.
Given :
∫ cot x ⋅ log ( sin x ) d x Solution: Let I = ∫ cot x ⋅ log ( sin x ) d x Put log ( sin x ) = t ⇒ 1 sin x cos x d x = d t ⇒ cot x d x = d t ⇒ d x = d t cot x then ⇒ I = ∫ cot x ⋅ t ⋅ d t cot x = ∫ t d t = t 1 + 1 1 + 1 + c = t 2 2 + c [ ∵ ∫ x n d x = x n + 1 n + 1 + c , ] = 1 2 { log ( sin x ) } 2 + c [ ∵ t = log ( sin x ) ] Indefinite Integrals exercise 18.9 question 31
Answer: 1 2 { log ( sec x + tan x ) } 2 + c Hint :Use substitution method to solve this integral.
Given :
∫ sec x ⋅ log ( sec x + tan x ) d x Solution: Let I = ∫ sec x ⋅ log ( sec x + tan x ) d x Put log ( sec x + tan x ) = t ⇒ 1 ( sec x + tan x ) ( sec x tan x + sec 2 x ) d x = d t ⇒ 1 ( sec x + tan x ) sec x ( tan x + sec x ) d x = d t ⇒ sec x d x = d t ⇒ d x = d t sec x then ⇒ I = ∫ sec x ⋅ t ⋅ d t sec x = ∫ t d t = t 1 + 1 1 + 1 + c = t 2 2 + c [ ∵ ∫ x n d x = x n + 1 n + 1 + c , ] = 1 2 { log ( sec x + tan x ) } 2 + c [ ∵ t = log ( sec x + tan x ) ] Indefinite Integrals exercise 18.9 question 32
Answer:1 2 { log ( cosec x − cot x ) } 2 + c Hint :Use substitution method to solve this integral.
Given :
∫ cosec x ⋅ log ( cosec x − cot x ) d x Solution: Let I = ∫ cosec x ⋅ log ( cosec x − cot x ) d x Put log ( cosec x − cot x ) = t ⇒ 1 ( cosec x − cot x ) ( − cosec x ⋅ cot x − ( − cosec 2 x ) ) d x = d t ⇒ 1 ( cosec x − cot x ) { cosec 2 x − cosec x ⋅ cot x } d x = d t ⇒ 1 ( cosec x − cot x ) cosec x { cosec x − cot x } d x = d t ⇒ cosec x d x = d t ⇒ d x = d t cosec x then ⇒ I = ∫ cosec x ⋅ t ⋅ d t cosec x = ∫ t d t = t 1 + 1 1 + 1 + c = t 2 2 + c [ ∵ ∫ x n d x = x n + 1 n + 1 + c , ] = 1 2 { log ( cosec x − cot x ) } 2 + c [ ∵ t = log ( cosec x − cot x ) ] Indefinite Integrals exercise 18.9 question 33
Answer: 1 4 sin ( x 4 ) + c Hint :Use substitution method to solve this integral.
Given :
∫ x 3 cos x 4 d x Solution: Let I = ∫ x 3 cos x 4 d x Put x 4 = t ⇒ 4 x 3 d x = d t ⇒ d x = d t 4 x 3 then ⇒ I = ∫ x 3 cos t d t 4 x 3 = 1 4 ∫ cos t d t = 1 4 ∫ sin t d t [ ∵ ∫ cos x d x = sin x + c ] = 1 4 sin ( x 4 ) + c [ ∵ t = x 4 ] Indefinite Integrals exercise 18.9 question 34
Answer: 3 2 ( x 2 − 1 ) 2 3 + c Hint :Use substitution method to solve this integral.
Given :
∫ 2 x x 2 − 1 3 d x Solution: Let I = ∫ 2 x x 2 − 1 3 d x Put x 2 − 1 = t ⇒ 2 x d x = d t then ⇒ I = ∫ 1 t 3 d t = ∫ 1 t 1 3 d t = ∫ t − 1 3 d t = t − 1 3 + 1 − 1 3 + 1 + c = t 2 3 2 3 + c [ ∵ ∫ x n d x = x n + 1 n + 1 + c ] = 3 2 t 2 3 = 3 2 ( x 2 − 1 ) 2 3 + c [ ∵ t = x 2 − 1 ] Indefinite Integrals exercise 18.9 question 36
Answer:− cos ( x 4 + 1 ) 4 + c Hint : Use substitution method to solve this integral.
Given :
∫ x 3 sin ( x 4 + 1 ) d x Solution: Let I = ∫ x 3 sin ( x 4 + 1 ) d x Put x 4 + 1 = t ⇒ 4 x 3 d x = d t ⇒ d x = d t 4 x 3 then ⇒ I = ∫ x 3 sin t d t 4 x 3 = 1 4 ∫ sin t d t = − cos t 4 + c [ ∵ ∫ sin x d x = − cos x + c ] = − cos ( x 4 + 1 ) 4 + c [ ∵ t = x 4 + 1 ] Indefinite Integrals exercise 18.9 question 37
Answer:tan ( x e x ) + c Hint : Use substitution method to solve this integral.
Given :
∫ ( x + 1 ) e x cos 2 ( x e x ) d x Solution: Let I = ∫ ( x + 1 ) e x cos 2 ( x e x ) d x Put x e x = t ⇒ ( x e x + 1 . e x ) d x = d t ⇒ ( x + 1 ) e x d x = d t then ⇒ I = ∫ 1 cos 2 t d t = ∫ sec 2 t d t [ ∵ 1 cos x = sec x ] = tan t + c = tan ( x e x ) + c [ ∵ t = x e x ] Indefinite Integrals exercise 18.9 question 38
Answer: 1 3 sin ( e x 3 ) + c Hint : Use substitution method to solve this integral.
Given :
∫ x 2 e x 3 cos ( e x 3 ) d x Solution: Let I = ∫ x 2 e x 3 cos ( e x 3 ) d x Put e x 3 = t ⇒ e x 3 ⋅ 3 x 2 d x = d t ⇒ d x = d t e x 3 ⋅ 3 x 2 then ⇒ I = ∫ e x 3 ⋅ x 2 ⋅ cos t d t e x 3 .3 x 2 = 1 3 ∫ cos t d t = 1 3 sin t d t [ ∵ ∫ cos x d x = sin x + c ] = 1 3 sin ( e x 3 ) + c [ ∵ t = e x 3 ] Indefinite Integrals exercise 18.9 question 39
Answer: 1 3 sec 3 ( x 2 + 3 ) + c Hint : Use substitution method to solve this integral.
Given :
∫ 2 x ⋅ sec 3 ( x 2 + 3 ) tan ( x 2 + 3 ) d x Solution: Let I = ∫ 2 x ⋅ sec 3 ( x 2 + 3 ) tan ( x 2 + 3 ) d x Put x 2 + 3 = t ⇒ 2 x d x = d t ⇒ d x = d t 2 x then ⇒ I = ∫ 2 x sec 3 t ⋅ tan t d t 2 x = ∫ sec 3 ( t ) ⋅ tan ( t ) d t = ∫ sec 2 ( t ) sec ( t ) tan ( t ) d t Again Put sec t = u ⇒ sec t tan t d t = d u then I = ∫ u 2 d u = [ u 2 + 1 2 + 1 ] + c [ ∵ ∫ x n d x = x n + 1 n + 1 + c ] = u 3 3 + c = sec 3 t 3 + c [ ∵ sec t = u ] = 1 3 sec 3 ( x 2 + 3 ) + c [ ∵ t = x 2 + 3 ] Indefinite Integrals exercise 18.9 question 40
Answer: 1 3 ( log x + x ) 3 + c Hint : Use substitution method to solve this integral.
Given :
∫ ( x + 1 x ) ( log x + x ) 2 d x Solution: Let I = ∫ ( x + 1 x ) ( log x + x ) 2 d x = ∫ ( x x + 1 x ) ( log x + x ) 2 d x = ∫ ( 1 + 1 x ) ( log x + x ) 2 d x Put log x + x = t ⇒ ( 1 x + 1 ) d x = d t ⇒ d x = 1 ( 1 + 1 x ) dt then I = ∫ ( 1 + 1 x ) t 2 1 ( 1 + 1 x ) d t = ∫ t 2 d t I = [ t 2 + 1 2 + 1 ] + c [ ∵ ∫ x n d x = x n + 1 n + 1 + c ] = t 3 3 + c = 1 3 ( log x + x ) 3 + c [ ∵ t = log x + x ] Indefinite Integrals exercise 18.9 question 41
Answer: − 1 3 ( 1 − tan 2 x ) 3 2 + c Hint : Use substitution method to solve this integral.
Given :
∫ tan x ⋅ sec 2 x 1 − tan 2 x d x Solution: Let I = ∫ tan x ⋅ sec 2 x 1 − tan 2 x d x Put 1 − tan 2 x = t ⇒ − 2 tan x ⋅ sec 2 x d x = d t ⇒ d x = 1 − 2 tan x ⋅ sec 2 x dt then ⇒ I = ∫ tan x ⋅ sec 2 x ⋅ t 1 − 2 tan x ⋅ sec 2 x dt = − 1 2 ∫ t d t = − 1 2 ∫ t 1 2 d t = − 1 2 [ t 1 2 + 1 1 2 + 1 ] + c [ ∵ ∫ x n d x = x n + 1 n + 1 + c ] = − 1 2 [ t 3 2 3 2 ] + c = − 1 2 × 2 3 t 3 2 + c = − 1 3 ( 1 − tan 2 x ) 3 2 + c [ ∵ t = 1 − tan 2 x ] Indefinite Integrals exercise 18 .9 question 42
Answer: − 1 2 cos { 1 + ( log x ) 2 } + c Hint : Use substitution method to solve this integral.
Given :
∫ log x ⋅ sin { 1 + ( log x ) 2 } x d x Solution: Let I = ∫ log x ⋅ sin { 1 + ( log x ) 2 } x d x Put 1 + ( log x ) 2 = t ⇒ 2 log x ⋅ 1 x ⋅ d x = d t ⇒ d x = x ⋅ d t 2 log x then ⇒ I = ∫ log x ⋅ sin t x ⋅ x d t 2 log x d t = 1 2 ∫ sin t d t = 1 2 ( − cos t ) + c = − 1 2 cos { 1 + ( log x ) 2 } + c [ ∵ t = 1 + ( log x ) 2 ] Indefinite Integrals exercise 18.9 question 43
Answer: − 1 2 x − 1 4 sin ( 2 x ) + c Hint : Use substitution method to solve this integral.
Given :
∫ 1 x 2 cos 2 ( 1 x ) d x Solution: Let I = ∫ 1 x 2 cos 2 ( 1 x ) d x Put 1 x = t ⇒ − 1 x 2 d x = d t ⇒ d x = − x 2 dt then I = ∫ 1 x 2 ⋅ cos 2 t ⋅ ( − x 2 ) d t = − ∫ cos 2 t d t = − ∫ { 1 + cos 2 t 2 } d t [ ∵ 2 cos 2 A − 1 = cos 2 A ⇒ 2 cos 2 A = 1 + cos 2 A ⇒ cos 2 A = 1 + cos 2 A 2 ] = − ∫ { 1 2 + cos 2 t 2 } d t = − ∫ 1 2 d t − 1 2 ∫ cos 2 t d t = − 1 2 ∫ 1 . d t − 1 2 ∫ cos 2 t d t = − 1 2 ∫ t 0 d t − 1 2 ∫ cos 2 t d t = − 1 2 t − 1 4 sin 2 t [ ∵ ∫ x n d x = x n + 1 n + 1 + c ∫ cos a x d x = sin a x a + c ] = − 1 2 x − 1 4 sin ( 2 x ) + c Indefinite Integrals exercise 18.9 question 44
Answer: 1 2 tan 2 x + 1 4 tan 4 x + c Hint : Use substitution method to solve this integral.
Given :
∫ sec 4 x tan x d x Solution: Let I = ∫ sec 4 x tan x d x Put tan x = t ⇒ sec 2 x d x = d t ⇒ d x = d t sec 2 x then I = ∫ sec 4 x ⋅ t ⋅ d t sec 2 x = ∫ sec 2 x ⋅ t d t = ∫ { 1 + tan 2 x } . t d t [ ∵ sec 2 x − tan 2 x = 1 ⇒ sec 2 x = 1 + tan 2 x ] = ∫ ( 1 + t 2 ) . t d t [ ∵ tan x = t ] = ∫ ( t + t 2 t ) d t = ∫ ( t + t 3 ) d t = ∫ t d t + ∫ t 3 d t = t 1 + 1 1 + 1 + t 3 + 1 3 + 1 + c [ ∵ ∫ x n d x = x n + 1 n + 1 + c ] = t 2 2 + t 4 4 + c = 1 2 tan 2 x + 1 4 tan 4 x + c [ ∵ t = tan x ] Indefinite Integrals exercise 18.9 question 45
Answer: 2 sin ( e x ) + c Hint : Use substitution method to solve this integral.
Given :
∫ e x cos ( e x ) x d x Solution: Let I = ∫ e x cos ( e x ) x d x Put e x = t ⇒ e x 1 2 x d x = d t ⇒ d x = 2 x e x dt then I = ∫ e x cos t x 2 x e x d t = 2 ∫ cos t d t = 2 sin t + c [ ∵ ∫ cos x d x = sin x + c ] = 2 sin ( e x ) + c [ ∵ t = e x ] Indefinite Integrals exercise 18.9 question 46
Answer: 1 4 sin 4 x − sin 2 x + log | sin x | + c Hint : Use substitution method to solve this integral.
Given :
∫ cos 5 x sin x d x Solution: Let I = ∫ cos 5 x sin x d x Put sin x = t ⇒ cos x d x = d t ⇒ d x = d t cos x then I = ∫ cos 5 x t d t cos x = ∫ cos 4 x t d t = ∫ ( cos 2 x ) 2 t d t = ∫ ( 1 − sin 2 x ) 2 t d t [ ∵ cos 2 x + sin 2 x = 1 ⇒ cos 2 x = 1 − sin 2 x ] = ∫ ( 1 − t 2 ) 2 t d t [ ∵ sin x = t ] = ∫ { 1 + ( t 2 ) 2 − 2 t 2 t } d t [ ∵ ( a − b ) 2 = a 2 + b 2 − 2 a b ] = ∫ { 1 + ( t 4 ) − 2 t 2 t } d t = ∫ { 1 t + t 4 t − 2 t 2 t } d t = ∫ { 1 t + t 3 − 2 t } d t = ∫ 1 t d t + ∫ t 3 d t − 2 ∫ t d t = log | t | + t 3 + 1 3 + 1 − 2 t 1 + 1 1 + 1 + c [ ∵ ∫ x n d x = x n + 1 n + 1 + c ] = log | t | + t 4 4 − 2 t 2 2 + c = 1 4 sin 4 x − sin 2 x + log | sin x | + c [ ∵ t = sin x ] Indefinite Integrals exercise 18.9 question 47
Answer: − 2 cos x + c Hint : Use substitution method to solve this integral.
Given :
∫ sin x x d x Solution: Let I = ∫ sin x x d x Put x = t ⇒ 1 2 x d x = d t ⇒ d x = 2 x d t then I = ∫ sin t x 2 x d t = 2 ∫ sin t d t = 2 [ − cos t ] + c [ ∵ ∫ sin x d x = − cos x + c ] = − 2 cos t + c = − 2 cos x + c [ ∵ t = x ] Indefinite Integrals exercise 18.9 question 48
Answer: − cot ( x e x ) + c Hint : Use substitution method to solve this integral.
Given :
∫ ( x + 1 ) e x sin 2 ( x e x ) d x Solution: Let I = ∫ ( x + 1 ) e x sin 2 ( x e x ) d x Put x e x = t ⇒ ( x e x + 1 . e x ) d x = d t ⇒ e x ( x + 1 ) d x = d t then I = ∫ 1 sin 2 ( t ) d t = ∫ cosec 2 t d t [ ∵ 1 sin x = cosec x ] = [ − cot t ] + c [ ∵ ∫ cosec 2 x d x = − cot x + c ] = − cot ( x e x ) + c [ ∵ t = x e x ] Indefinite Integrals exercise 18.9 question 49
Answer:5 x + tan − 1 x log 5 + C Hint : Use substitution method to solve this integral.
Given :
∫ 5 x + tan − 1 x ⋅ ( x 2 + 2 1 + x 2 ) d x Solution: Let I = ∫ 5 x + tan − 1 x ⋅ ( x 2 + 2 1 + x 2 ) d x Put x + tan − 1 x = t ⇒ ( 1 + 1 1 + x 2 ) d x = d t ⇒ ( ( 1 + x 2 ) + 1 1 + x 2 ) d x = d t ⇒ ( 1 + x 2 + 1 1 + x 2 ) d x = d t ⇒ ( 2 + x 2 1 + x 2 ) d x = d t then I = ∫ 5 t d t = 5 t log 5 + c [ ∵ ∫ a x d x = a x log a + c ] = 5 x + tan − 1 x log 5 + c [ ∵ t = x + tan − 1 x ] Indefinite Integrals exercise 18.9 question 50
Answer: 1 m e m sin − 1 x + c Hint : Use substitution method to solve this integral.
Given :
∫ e m sin − 1 x 1 − x 2 d x Solution: Let I = ∫ e m sin − 1 x 1 − x 2 d x Put m sin − 1 x = t ⇒ m 1 1 − x 2 d x = d t ⇒ d x = 1 − x 2 m dt then I = ∫ e t 1 − x 2 ⋅ 1 − x 2 m d t ⇒ 1 m ∫ e t d t = 1 m e t + c [ ∵ ∫ e x d x = e x + c ] = 1 m e m sin − 1 x + c [ ∵ t = m sin − 1 x ] Indefinite Integrals exercise 18.9 question 51
Answer: 2 sin x + c Hint : Use substitution method to solve this integral.
Given :
∫ cos x x d x Solution: Let I = ∫ cos x x d x Put x = t ⇒ 1 2 x d x = d t ⇒ d x = 2 x d t then I = ∫ cos t x ⋅ 2 x d t ⇒ 2 ∫ cos t d t = 2 sin t + c [ ∵ ∫ cos x d x = sin x + c ] = 2 sin x + c [ ∵ t = x ] Indefinite Integrals exercise 18.9 question 52
Answer: − cos ( tan − 1 x ) + c Hint : Use substitution method to solve this integral.
Given :
∫ sin ( tan − 1 x ) 1 + x 2 d x Solution: Let I = ∫ sin ( tan − 1 x ) 1 + x 2 d x put tan − 1 x = t ⇒ 1 1 + x 2 d x = d t ⇒ d x = ( 1 + x 2 ) d t I = ∫ sin t 1 + x 2 ( 1 + x 2 ) d t = ∫ sin t d t = − cos t + c [ ∵ ∫ sin x d x = − cos x + c ] = − cos ( tan − 1 x ) + c [ ∵ t = tan − 1 x ] Indefinite Integrals exercise 18.9 question 53
Answer: − cos ( log x ) + c Hint : Use substitution method to solve this integral.
Given :
∫ sin ( log x ) x d x Solution: Let I = ∫ sin ( log x ) x d x Put log x = t ⇒ 1 x d x = d t ⇒ d x = x d t Then I = ∫ sin t x ⋅ x d t = ∫ sin t d t = − cos t + c ∵ sin x d x = − cos x + c ] = − cos ( log x ) + c [ ∵ t = log x ] Indefinite Integrals exercise 18 .9 question 54
Answer: 1 m e m tan − 1 x + c Hint : Use substitution method to solve this integral.
Given :
∫ e m tan − 1 x 1 + x 2 d x Solution: Let I = ∫ e m tan − 1 x 1 + x 2 d x Put m tan − 1 x = t ⇒ m 1 1 + x 2 d x = d t ⇒ d x = 1 + x 2 m d t I = ∫ e t 1 + x 2 ⋅ 1 m ⋅ ( 1 + x 2 ) d t = ∫ e t m d t = 1 m ∫ e t d t = 1 m ( e t ) + c [ ∵ ∫ e x d x = e x + c ] = 1 m e m tan − 1 x + c [ ∵ t = m tan − 1 x ] Indefinite Integrals exercise 18.9 question 55
Answer: 1 6 a 2 [ ( x 2 + a 2 ) 3 2 − ( x 2 − a 2 ) 3 2 ] + c Hint : Use substitution method to solve this integral.
Given :
∫ x x 2 + a 2 + x 2 − a 2 d x Solution: Let I = ∫ x x 2 + a 2 + x 2 − a 2 d x On Rationalising we get
I = ∫ ( x x 2 + a 2 + x 2 − a 2 × x 2 + a 2 − x 2 − a 2 x 2 + a 2 − x 2 − a 2 ) d x = ∫ ( x ( x 2 + a 2 − x 2 − a 2 ) ( x 2 + a 2 + x 2 − a 2 ) ( x 2 + a 2 − x 2 − a 2 ) ) d x = ∫ x ( x 2 + a 2 − x 2 − a 2 ) ( x 2 + a 2 ) 2 − ( x 2 − a 2 ) 2 d x = ∫ x ( x 2 + a 2 − x 2 − a 2 ) ( x 2 + a 2 ) − ( x 2 − a 2 ) d x = ∫ x ( x 2 + a 2 − x 2 − a 2 ) x 2 + a 2 − x 2 + a 2 d x = ∫ x ( x 2 + a 2 − x 2 − a 2 ) 2 a 2 d x = 1 2 a 2 ∫ ( x x 2 + a 2 − x x 2 − a 2 ) d x = 1 2 a 2 ∫ x x 2 + a 2 d x − 1 2 a 2 ∫ x x 2 − a 2 d x ..........
( i ) Now 1 2 a 2 ∫ x x 2 + a 2 d x Put x 2 + a 2 = t ⇒ 2 x d x = d t ⇒ d x = a ı 2 x Then, 1 2 a 2 ∫ x x 2 + a 2 d x = 1 2 a 2 ∫ x t ⋅ d t 2 x = 1 4 a 2 ∫ t 1 2 d t = 1 4 a 2 ⋅ t 2 1 1 + 1 1 2 + 1 + c 1 = 1 4 a 2 ⋅ 2 3 ⋅ t 3 2 + c 1 [ ∵ ∫ x n d x = x n + 1 n + 1 + c ] = 1 6 a 2 ( x 2 + a 2 ) 3 2 + c 1 ......
( i i ) ( ∵ t = x 2 + a 2 ) and, 1 2 a 2 ∫ x x 2 − a 2 d x Put, x 2 − a 2 = u ⇒ 2 x d x = d u ⇒ d x = d u 2 x 1 2 a 2 ∫ x x 2 − a 2 d x = 1 2 a 2 ∫ x ⋅ u ⋅ d u 2 x = 1 4 a 2 ∫ u 1 2 d u then, = 1 4 a 2 [ u 1 2 + 1 1 2 + 1 ] + c 2 [ ∵ ∫ x n d x = x n + 1 n + 1 + c ] = 1 4 a 2 [ u 3 2 3 2 ] + c 2 = 1 4 a 2 ⋅ 2 3 u 3 2 + c 2 = 1 6 a 2 ( x 2 − a 2 ) 3 2 + c 2 ....
( i i i ) ( ∵ u = x 2 − a 2 ) Putting the values of eqn
( i i ) and eqn
( i i i ) in
( i ) then,
I = 1 6 a 2 ( x 2 + a 2 ) 3 2 + c 1 − 1 6 a 2 ( x 2 − a 2 ) 3 2 − c 2 = 1 6 a 2 [ ( x 2 + a 2 ) 3 2 − ( x 2 − a 2 ) 3 2 ] + c ( ∵ c = c 1 − c 2 ) Indefinite Integrals exercise 18.9 question 56
Answer: ∫ x tan − 1 x 2 1 + x 4 d x Hint : Use substitution method to solve this integral.
Given :
1 4 ( tan − 1 x 2 ) 2 + c Solution: I = ∫ x tan − 1 x 2 1 + x 4 d x Put tan − 1 x 2 = t ⇒ 1 1 + ( x 2 ) 2 2 x d x = d t ⇒ 2 x 1 + x 4 d x = d t ⇒ d x = 1 + x 4 2 x d t Then, I = ∫ x t 1 + x 4 ⋅ 1 + x 4 2 x d t = 1 2 ∫ t d t = 1 2 t 1 + 1 1 + 1 + c [ ∵ ∫ x n d x = x n + 1 n + 1 + c ] = 1 2 ⋅ t 2 2 + c = 1 4 t 2 + c = 1 4 ( tan − 1 x 2 ) 2 + c [ ∵ t = tan − 1 x 2 ] Indefinite Integrals exercise 18.9 question 57
Answer: 1 4 ( sin − 1 x ) 4 + c Hint: Use substitution method to solve this integral
Given: ∫ ( sin − 1 x ) 3 1 − x 2 d x Solution: Let I = ∫ ( sin − 1 x ) 3 1 − x 2 d x put sin − 1 x = t ⇒ 1 1 − x 2 d x = d t ⇒ d x = 1 − x 2 d t I = ∫ t 3 1 − x 2 ⋅ 1 − x 2 d t = ∫ t 3 d t = t 3 + 1 3 + 1 + c [ ∵ ∫ x n d x = x n + 1 n + 1 + c ] = 1 4 t 4 + c = 1 4 ( sin − 1 x ) 4 + c [ ∵ t = sin − 1 x ] Indefinite Integrals exercise 18.9 question 58
Answer: − 1 3 cos ( 2 + 3 log x ) + c Hint: Use substitution method to solve this integral
Given: ∫ sin ( 2 + 3 log x ) x d x Solution: Let I = ∫ sin ( 2 + 3 log x ) x d x Put 2 + 3 log x = t ⇒ 3 ⋅ 1 x d x = d t ⇒ d x = x 3 d t Then, I = ∫ sin t x ⋅ x 3 d t = 1 3 ∫ sin t d t = 1 3 ( − cos t ) + c [ ∵ ∫ sin x d x = − cos x + c ] = − 1 3 cos t + c = − 1 3 cos ( 2 + 3 log x ) + c [ ∵ t = 2 + 3 log x ] Indefinite Integrals exercise 18.9 question 59
Answer: 1 2 e x 2 + c Hint: Use substitution method to solve this integral
Given: ∫ x e x 2 d x Solution: Let I = ∫ x e x 2 d x Put x 2 = t ⇒ 2 x d x = d t ⇒ d x = 1 2 x d t Then, I = ∫ x ⋅ e t ⋅ d t 2 x = 1 2 ∫ e t d t = 1 2 e t + c [ ∵ ∫ e x d x = e x + c ] = 1 2 e x 2 + c [ ∵ t = x 2 ] Indefinite Integrals exercise 18.9 question 60
Answer: 1 + e x − log | 1 + e x | + c Hint: Use substitution method to solve this integral
Given: ∫ e 2 x 1 + e x d x Solution: I = ∫ e 2 x 1 + e x d x Put 1 + e x = t ⇒ e x d x = d t ⇒ d x = d t e x Then, I = ∫ e 2 x t ⋅ d t e x = ∫ ( e x ) 2 t ⋅ d t e x = ∫ e x t d t = ∫ t − 1 t d t [ ∵ 1 + e x ⇒ e x = t − 1 ] = ∫ ( t t − 1 t ) d t = ∫ ( 1 − 1 t ) d t = ∫ 1 . d t − ∫ 1 t d t = ∫ t 0 d t − ∫ 1 t d t = t 0 + 1 0 + 1 − log | t | + c [ ∵ ∫ x n d x = x n + 1 n + 1 + c ∫ 1 x d x = log | x | + c ] = t − log | t | + c = 1 + e x − log | 1 + e x | + c [ ∵ t = 1 + e x ] Indefinite Integrals exercise 18.9 question 61
Answer:2 tan ( x ) + c Hint: Use substitution method to solve this integral
Given: ∫ sec 2 x x d x Solution: Let I = ∫ sec 2 x x d x Put x = t ⇒ 1 2 x d x = d t ⇒ d x = 2 x d t Then, I = ∫ sec 2 t x ⋅ 2 x d t = 2 ∫ sec 2 t d t = 2 tan t + c [ ∵ ∫ sec 2 x d x = tan x + c ] = 2 tan x + c [ ∵ t = x ] Indefinite Integrals exercise 18.9 question 63
Answer: ( x + 1 ) + 2 x + 1 − 2 tan − 1 ( x + 1 ) − 2 log | x + 2 | + c Hint: Use substitution method to solve this integral
Given: ∫ x + x + 1 x + 2 d x Solution: Let I = ∫ x + x + 1 x + 2 Put x + 1 = t 2 ⇒ d x = 2 t d t then I = ∫ ( t 2 − 1 ) + t 2 t 2 + 1 2 t d t = 2 ∫ ( t 2 − 1 ) + t t 2 + 1 t d t [ ∵ x + 1 = t 2 ⇒ x = t 2 − 1 ] ⇒ I = 2 ∫ ( t 2 + t − 1 t 2 + 1 ) t d t = 2 ∫ ( t 2 ⋅ t + t . t − t t 2 + 1 ) d t ⇒ I = 2 ∫ ( t 3 + t 2 − t t 2 + 1 ) d t = 2 ∫ { t 3 t 2 + 1 + t 2 t 2 + 1 − t t 2 + 1 } d t ⇒ I = 2 [ ∫ t 3 t 2 + 1 d t + ∫ t 2 t 2 + 1 d t − ∫ t t 2 + 1 d t ] We can write
I = 2 ( I 1 + I 2 − I 3 ) . . . . . . . . . ( i ) where I 1 = ∫ t 3 t 2 + 1 d t I 2 = ∫ t 2 t 2 + 1 d t and I 3 = ∫ t t 2 + 1 d t Now I 1 = ∫ t 3 t 2 + 1 d t = ∫ ( t 3 + t − t t 2 + 1 ) d t = ∫ ( ( t 3 + t ) − t t 2 + 1 ) d t = ∫ ( t 3 + t t 2 + 1 − t t 2 + 1 ) d t = ∫ ( t ( t 2 + 1 ) t 2 + 1 − t t 2 + 1 ) d t = ∫ ( t − t t 2 + 1 ) d t = ∫ t d t − ∫ t t 2 + 1 d t put t 2 + 1 = u ⇒ 2 t d t = d u ⇒ t d t = d u 2 then I 1 = ∫ t d t − ∫ 1 u d u 2 = ∫ t d t − 1 2 ∫ d u u = t 1 + 1 1 + 1 − 1 2 log | u | + c 1 [ ∵ ∫ x n d x = x n + 1 n + 1 + c ∫ 1 x d x = log | x | + c ] = t 2 2 − 1 2 log | 1 + t 2 | + c 1 . . . . . . . ( i i ) [ ∵ u = t 2 + 1 ] And I 2 = ∫ t 2 t 2 + 1 d t = ∫ ( t 2 + t − t t 2 + 1 ) d t = ∫ ( ( t 2 + 1 ) − 1 t 2 + 1 ) d t = ∫ ( t 2 + 1 t 2 + 1 − 1 t 2 + 1 ) d t = ∫ ( 1 − 1 t 2 + 1 ) d t = ∫ t 0 d t − ∫ 1 t 2 + 1 d t = t 0 + 1 0 + 1 − tan − 1 ( t ) + c 2 [ ∵ ∫ x n d x = x n + 1 n + 1 + c ∫ 1 x d x = log | x | + c ] = t − tan − 1 ( t ) + c 2 . . . . . . . ( i i i ) Also I 3 = ∫ t t 2 + 1 d t put t 2 + 1 = p ⇒ 2 t d t = d p ⇒ t d t = d p 2 then I 3 = ∫ 1 p d p 2 = 1 2 ∫ 1 p d p = 1 2 log | p | + c 3 = 1 2 log | 1 + t 2 | + c 3 . . . . . . ( i v ) Substituting the values of I 1 , I 2 , I 3 from eqn(ii), (iii) and (iv) in ( i ) then I = 2 [ t 2 2 − 1 2 log | 1 + t 2 | + c 1 + t − tan − 1 ( t ) + c 2 − 1 2 log | 1 + t 2 | − c 3 ] = 2 [ t 2 2 + t − tan − 1 ( t ) − ( 1 2 + 1 2 ) log | 1 + t 2 | + c 1 + c 2 − c 3 ] = 2 [ t 2 2 + t − tan − 1 ( t ) − log | 1 + t 2 | + c 4 ] [ ∵ c 4 = c 1 + c 2 − c 3 ] = 2 ⋅ t 2 2 + 2 t − 2 tan − 1 ( t ) − 2 log | 1 + t 2 | + 2 c 4 = t 2 + 2 t − 2 tan − 1 ( t ) − 2 log | 1 + t 2 | + c [ since x + 1 = t 2 ] = ( x + 1 ) + 2 x + 1 − 2 tan − 1 x + 1 − 2 log | 1 + x + 1 | + c I = ( x + 1 ) + 2 x + 1 − 2 tan − 1 ( x + 1 ) − 2 log | x + 2 | + c Indefinite Integrals exercise 18.9 question 64
Answer: 1 ( log 5 ) 3 ⋅ 5 5 5 x + c Hint: Use substitution method to solve this integral
Given: ∫ 5 5 5 x 5 5 x 5 x d x Solution: let I = ∫ 5 5 5 x 5 5 x 5 x d x Putting 5 5 5 x = t ⇒ ( 5 5 5 x ⋅ log 5.5 5 x ⋅ log 5.5 x log 5 ) d x = d t ⇒ 5 5 5 5 5 5 x 5 x ( log 5 ) 3 d x = d t ⇒ ( 5 5 5 x 5 5 x 5 x ) d x = d t ( log 5 ) 3 then I = ∫ d t ( log 5 ) 3 = 1 ( log 5 ) 3 ∫ 1 d t = 1 ( log 5 ) 3 ∫ t 0 d t = 1 ( log 5 ) 3 t 0 + 1 0 + 1 [ ∵ ∫ x n d x = x n + 1 n + 1 + c ] = 1 ( log 5 ) 3 ⋅ t + c = 1 ( log 5 ) 3 ⋅ 5 5 5 x + c [ ∵ 5 5 5 x = t ] Indefinite Integrals exercise 18.9 question 65
Answer: 1 2 sec − 1 ( x 2 ) + c Hint: Use substitution method to solve this integral
Given: ∫ 1 x x 4 − 1 d x Solution: let I = ∫ 1 x x 4 − 1 d x = ∫ 1 x ( x 2 ) 2 − 1 d x Putting x 2 = t ⇒ 2 x d x = d t ⇒ d x = d t 2 x then I = ∫ 1 x t 2 − 1 d t 2 x = 1 2 ∫ 1 x 2 t 2 − 1 d t = 1 2 ∫ 1 t t 2 − 1 d t [ ∵ x 2 = t ] = 1 2 sec − 1 t + c [ ∵ ∫ 1 x x 2 − 1 d x = sec − 1 x + c ] = 1 2 sec − 1 ( x 2 ) + c [ ∵ t = x 2 ] Indefinite Integrals exercise 18.9 question 66
Answer: 2 e x − 1 − 2 tan − 1 ( e x − 1 ) + c Hint: Use substitution method to solve this integral
Given: ∫ e x − 1 d x Solution: let I = ∫ e x − 1 d x Putting e x − 1 = t 2 ⇒ e x d x = 2 t d t ⇒ d x = 2 t ⋅ d t e x then I = ∫ t 2 2 t d t e x = 2 ∫ t ⋅ t t 2 + 1 d t [ ∵ e x − 1 = t 2 ⇒ t 2 + 1 = e x ] = 2 ∫ t 2 t 2 + 1 d t = 2 ∫ ( t 2 + 1 − 1 t 2 + 1 ) d t = 2 ∫ ( ( t 2 + 1 ) − 1 t 2 + 1 ) d t = 2 ∫ ( ( t 2 + 1 ) t 2 + 1 − 1 t 2 + 1 ) d t = 2 ∫ ( 1 − 1 t 2 + 1 ) d t = 2 ∫ 1 d t − 2 ∫ 1 t 2 + 1 d t = 2 ∫ t 0 d t − 2 ∫ 1 t 2 + 1 d t = 2 t 0 + 1 0 + 1 − 2 tan − 1 ( t ) + c [ ∵ ∫ x n d x = x n + 1 n + 1 + c ∫ 1 1 + x 2 d x = tan − 1 x + c ] = 2 t − 2 tan − 1 ( t ) + c = 2 e x − 1 − 2 tan − 1 ( e x − 1 ) + c [ ∵ t 2 = e x − 1 ⇒ t = e x − 1 ] Indefinite Integrals exercise 18.9 question 67
Answer: log | x + 1 x 2 + 2 x + 2 | + c Hint: Use substitution method to solve this integral
Given: ∫ 1 ( x + 1 ) ( x 2 + 2 x + 2 ) d x Solution: let I = ∫ 1 ( x + 1 ) ( x 2 + 2 x + 2 ) d x = ∫ 1 ( x + 1 ) ( x 2 + 2 x + 1 + 1 ) d x = ∫ 1 ( x + 1 ) { ( x 2 + 2 x + 1 ) + 1 } d x = ∫ 1 ( x + 1 ) { ( x + 1 ) 2 + 1 } d x [ ∵ ( a + b ) 2 = a 2 + b 2 + 2 a b ] Putting x + 1 = tan u . . . . . . ( i ) ⇒ d x = sec 2 u d u then I = ∫ 1 tan u { tan 2 u + 1 } sec 2 u d u = ∫ 1 tan u { sec 2 u } sec 2 u d u [ ∵ 1 + tan 2 u = sec 2 u ] = ∫ 1 tan u d u = ∫ cot u d u = log | sin u | + c . . . . . . . . ( i i ) [ ∵ ∫ cot x d x = log | sin x | + c ] Also, from (i) x + 1 = tan u = sin u cos u [ ∵ tan x = sin x cos x ] ⇒ ( x + 1 ) cos u = sin u ⇒ ( x + 1 ) 2 cos 2 u = sin 2 u [ Squaring on both sides ] ⇒ ( x + 1 ) 2 ( 1 − sin 2 u ) = sin 2 u [ ∵ cos 2 x = 1 − sin 2 x ] ⇒ ( x + 1 ) 2 − ( x + 1 ) 2 sin 2 u = sin 2 u ⇒ ( x + 1 ) 2 = sin 2 u + ( x + 1 ) 2 sin 2 u ⇒ ( x + 1 ) 2 = [ 1 + ( x + 1 ) 2 ] sin 2 u ⇒ sin 2 u = ( x + 1 ) 2 1 + ( x + 1 ) 2 = ( x + 1 ) 2 x 2 + 2 x + 1 + 1 = ( x + 1 ) 2 x 2 + 2 x + 2 [ ∵ ( a + b ) 2 = a 2 + b 2 + 2 a b ] ⇒ sin u = ( x + 1 ) 2 x 2 + 2 x + 2 = ( x + 1 ) x 2 + 2 x + 2 . . . . . . . . ( i i i ) From (ii) and (iii) we get I = log | x + 1 x 2 + 2 x + 2 | + c Indefinite Integrals exercise 18.9 question 68
Answer: 2 9 ( 1 + x 3 ) 3 2 − 2 3 ( 1 + x 3 ) 1 2 + c Hint: Use substitution method to solve this integral
Given: ∫ x 5 1 + x 3 d x Solution: Let I = ∫ x 5 1 + x 3 d x Put 1 + x 3 = t 2 ⇒ 3 x 2 d x = 2 t d t ⇒ d x = 2 t 3 x 2 d t then I = ∫ x 5 t 2 2 t d t 3 x 2 = ∫ 2 3 x 3 ⋅ t t d t = 2 3 ∫ x 3 d t = 2 3 ∫ ( t 2 − 1 ) dt [ ∵ 1 + x 3 = t 2 ⇒ t 2 − 1 = x 3 ] = 2 3 ∫ t 2 d t − 2 3 ∫ 1 d t = 2 3 ∫ t 2 d t − 2 3 ∫ t 0 d t = 2 3 t 2 + 1 2 + 1 − 2 3 t 0 + 1 0 + 1 + c [ ∵ ∫ x n d x = x n + 1 n + 1 + c ] = 2 3 ⋅ t 3 3 − 2 3 t + c = 2 9 ( 1 + x 3 ) 3 2 − 2 3 ( 1 + x 3 ) 1 2 + c [ ∵ t 2 = 1 + x 3 ⇒ t = 1 + x 3 ] Indefinite Integrals exercise 18.9 question 69
Answer: − 20 3 ( 5 − x 2 ) 3 2 + 4 5 ( 5 − x 2 ) 5 2 + c Hint: Use substitution method to solve this integral
Given: ∫ 4 x 3 5 − x 2 d x Solution: Let I = ∫ 4 x 3 5 − x 2 d x Put 5 − x 2 = t 2 ⇒ − 2 x d x = 2 t d t ⇒ d x = t − x d t then I = ∫ 4 x 3 t 2 t ⋅ d t − x = − ∫ 4 x 2 ⋅ t . t d t = − 4 ∫ ( 5 − t 2 ) t 2 d t = − 4 ∫ ( 5 t 2 − t 2 ⋅ t 2 ) d t [ ∵ 5 − x 2 = t 2 ⇒ x 2 = 5 − t 2 ] = − 4 ∫ ( 5 t 2 − t 4 ) d t = − 20 ∫ t 2 d t + 4 ∫ t 4 d t = − 20 ⋅ t 2 + 1 2 + 1 + 4 ⋅ t 4 + 1 4 + 1 + c [ ∵ ∫ x n d x = x n + 1 n + 1 + c ] = − 20 ⋅ t 3 3 + 4 t 5 5 + c = − 20 3 ( 5 − x 2 ) 3 + 4 5 ( 5 − x 2 ) 5 + c [ ∵ t 2 = 5 − x 2 ⇒ t = 5 − x 2 ] = − 20 3 ( 5 − x 2 ) 3 2 + 4 5 ( 5 − x 2 ) 5 2 + c Indefinite Integrals exercise 18.9 question 70
Answer: 1 2 log | 1 + x | + c Hint: Use substitution method to solve this integral
Given: ∫ 1 x + x d x Solution: Let I = ∫ 1 x + x d x Put x = t ⇒ 1 2 x d x = d t ⇒ d x = 2 x d t then I = ∫ 1 t + t 2 2 x d t = ∫ 1 t ( 1 + t ) 2 x d t = 2 ∫ 1 1 + t d t [ ∵ x = t ⇒ x = t 2 ] Again put 1 + t = u ⇒ d t = d u then I = 2 ∫ 1 u d u = 1 2 log | u | + c [ ∵ ∫ 1 x d x = log | x | + c ] = 1 2 log | t + 1 | + c [ ∵ u = 1 + t ] = 1 2 log | 1 + x | + c [ ∵ t = x ] Indefinite Integrals exercise 18.9 question 71
Answer:− ( 1 + 1 x 4 ) 1 4 + c Hint: Use substitution method to solve this integral
Given: ∫ 1 x 2 ( x 4 + 1 ) 3 4 d x Solution: Let I = ∫ 1 x 2 ( x 4 + 1 ) 3 4 d x = ∫ 1 x 3 x 2 ( x 4 + 1 ) 3 4 ⋅ 1 x 3 d x [ Dividing numerator and denominator by 1 x 3 ] I = ∫ x − 3 x 2 ( x 4 + 1 ) 3 4 ⋅ x − 3 d x = ∫ ( x 4 + 1 ) − 3 4 x 3 x 2 x − 3 d x = ∫ ( x 4 + 1 ) − 3 4 x 5 x − 3 d x = ∫ ( x 4 + 1 ) − 3 4 x 5 ( x 4 ) − 3 4 d x = ∫ 1 x 5 ( x 4 + 1 x 4 ) − 3 4 d x = ∫ 1 x 5 ( x 4 x 4 + 1 x 4 ) − 3 4 d x = ∫ 1 x 5 ( 1 + 1 x 4 ) − 3 4 d x Put 1 x 4 = t ⇒ − 4 d x x 5 = d t ⇒ d x = x 5 − 4 d t then I = ∫ 1 x 5 ( 1 + t ) − 3 4 x 5 − 4 d t = − 1 4 ∫ ( 1 + t ) − 3 4 d t Again put 1 + t = u ⇒ d t = d u then I = − 1 4 ∫ ( u ) − 3 4 d u = − 1 4 u − 3 4 + 1 − 3 4 + 1 + c [ ∵ ∫ x n d x = x n + 1 n + 1 + c ] = − 1 4 u 1 4 1 4 + c = − 1 4 × 4 ⋅ u 1 4 + c = − u 1 4 + c = − ( 1 + t ) 1 4 + c [ ∵ u = 1 + t ] = − ( 1 + 1 x 4 ) 1 4 + c [ ∵ t = 1 x 4 ] Indefinite Integrals exercise 18.9 question 72
Answer: 1 3 cos 2 x − cos x − 2 cos x + c Hint: Use substitution method to solve this integral
Given: ∫ sin 5 x cos 4 x d x Solution: Let I = ∫ sin 5 x cos 4 x d x Put cos x = t ⇒ − sin x d x = d t ⇒ d x = d t − sin x then I = ∫ sin 5 x t 4 d t − sin x = − ∫ sin 4 x t 4 d t = − ∫ ( sin 2 x ) 2 t 4 d t = − ∫ ( 1 − cos 2 x ) 2 t 4 d t I = − ∫ ( 1 + cos 4 x − 2 cos 2 x ) t 4 d t [ ∵ ( a − b ) 2 = a 2 + b 2 − 2 a b ] = − ∫ [ 1 + t 4 − 2 t 2 t 4 ] d t [ ∵ cos x = t ] = − ∫ [ 1 t 4 + t 4 t 4 − 2 t 2 t 4 ] d t = − ∫ [ 1 t 4 + 1 − 2 t 2 ] d t = − ∫ ( t − 4 + 1 − 2 t − 2 ) d t = − ∫ t − 4 d t − ∫ t 0 d t + 2 ∫ t − 2 d t = − t − 4 + 1 − 4 + 1 − t 0 + 1 0 + 1 + 2 t − 2 + 1 − 2 + 1 + c [ ∵ ∫ x n d x = x n + 1 n + 1 + c ] = − t − 3 − 3 − t + 2 t − 1 − 1 + c = 1 3 t 3 − t − 2 ⋅ t − 1 1 + c = 1 3 cos 2 x − cos x − 2 cos x + c [ ∵ t = cos x ] RD Sharma Class 12th Exercise 18.9 is the best source for students to score good marks in exams. These are the following benefits of this material:
1. Latest Version
RD Sharma books are updated to a new version every year. This material provided by Career360 contains the latest version which means that All the solutions provided are from the newest version of the book and contain all the new concepts.
2. Prepared by experts
Every solution from RD Sharma Class 12th Exercise 18.9 material undergoes a multistep checking process that ensures that every answer is clear and easy to understand. Additionally, as a group of subject experts prepare this material, students can trust its accuracy and use it to prepare for their exams. As there are different ways to solve a problem in maths, students can figure out various methods and choose which one suits them the best.
3. Helpful for homework
'Indefinite Integrals' is a vast chapter containing hundreds of sums. It becomes apparent that they would get a lot of homework from it and spend a lot of time practicing every concept. Career360 has provided RD Sharma Class 12th Exercise 18.9 solutions to help students better understand the concepts of this chapter.
4. Time-saving
Most students try to solve each and every question manually, thinking that they could only understand the topic after completing all of them. This requires a lot of effort and does not let students to focus on other topics. Instead, students should solve questions until they understand the concept. After completing, they can refer to the solutions to analyze every question, thereby saving precious time before the exam.
5. Available for free
The main advantage of RD Sharma Class 12 Chapter 18 Exercise 18.9 solutions is that it is available for free on Career360’s website. Students can access this material on any device using just a browser and internet connection.
RD Sharma Chapter wise Solutions