RD Sharma Class 12 Exercise 18.9 Indefinite Integrals Solutions Maths - Download PDF Free Online

# RD Sharma Class 12 Exercise 18.9 Indefinite Integrals Solutions Maths - Download PDF Free Online

Edited By Kuldeep Maurya | Updated on Jan 24, 2022 11:58 AM IST

RD Sharma books are well known for their comprehensive and knowledgeable materials. CBSE schools and teachers widely use them to set up question papers and homework assignments. This is why RD Sharma books are the best option for students when it comes to.

RD Sharma Class 12th Exercise 18.9 deals with the chapter Indefinite Integrals. This exercise contains 72 questions that are divided into Level 1 and Level 2 based on their complexity. It consists of 62 Level 1 questions and 10 Level 2 questions. RD Sharma solutions The Level 1 questions cover concepts like the integration of trigonometric and logarithmic equations, and Level 2 questions contain more complex functions that can be solved using the given theorems.

## Indefinite Integrals Excercise:18.9

Indefinite Integrals exercise 18.9 question 1

Solution: We have ,
$I=\int \frac{\log (\log x)}{x}dx$
Put $\log x=t\Rightarrow \frac{1}{x}dx=dt$
$\\ \\ I=\int \log t dt=t[\log t-1]+c\\ \\ I=\log x[\log (\log x)-1]+c$

Indefinite Integrals exercise 18 .9 question 2

Answer:$-\frac{1}{2}\left[\log \left(1+\frac{1}{x}\right)\right]^{2}+c$
Hint: Use substitution method to solve this integral.
Given: $\int \frac{\log \left(1+\frac{1}{x}\right)}{x(1+x)} d x$
Solution:
Let$I=\int \frac{\log \left(1+\frac{1}{x}\right)}{x(1+x)} d x$
Put $\log \left(1+\frac{1}{x}\right)=t \Rightarrow \frac{1}{1+\frac{1}{x}}\left(\frac{-1}{x^{2}}\right) d x=d t$
\begin{aligned} &\Rightarrow \frac{1}{\frac{x+1}{x}}\left(\frac{-1}{x^{2}}\right) d x=d t \\ &\Rightarrow \frac{x}{x+1}\left(\frac{-1}{x^{2}}\right) d x=d t \\ &\Rightarrow \frac{-1}{x(x+1)} d x=d t \Rightarrow d x=-(x+1) x \; d t \text { then } \end{aligned}
$I=\int-\frac{t}{x(1+x)}(x+1) x \; d t=-\int t d t \quad\left[\because \frac{1}{x} d x=d t \Rightarrow d x=x\; d t\right]$
\begin{aligned} &=-\frac{t^{1+1}}{1+1}+c \\ &=\frac{-t^{2}}{2}+c \quad\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right] \\ &=\frac{-1}{2}\left\{\log \left(1+\frac{1}{x}\right)\right\}^{2}+c \quad\left[\because t=\log \left(1+\frac{1}{x}\right)\right] \end{aligned}

Indefinite Integrals exercise 18.9 question 3

Answer: $\frac{2}{3}(1+\sqrt{x})^{3}+c$
Hint: Use substitution method to solve this integral.
Given: $\int \frac{(1+\sqrt{x})^{2}}{\sqrt{x}} d x$
Solution:
Let $I=\int \frac{(1+\sqrt{x})^{2}}{\sqrt{x}} d x$
Put $1+\sqrt{x}=t \Rightarrow \frac{1}{2 \sqrt{x}} d x=d t$
\begin{aligned} &\Rightarrow d x=2 \sqrt{x} d t \text { then } \\ &I=\int \frac{t^{2}}{\sqrt{x}} 2 \sqrt{x} d t=\int 2 t^{2} d t=2 \int t^{2} d t \end{aligned}
\begin{aligned} &=2 \frac{t^{2+1}}{2+1}+c=2 \frac{t^{3}}{3}+c \quad\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right] \\ &=\frac{2}{3}(1+\sqrt{x})^{3}+c \quad[\because t=1+\sqrt{x}] \end{aligned}

Indefinite Integrals exercise 18.9 question 4

Answer:$\frac{2}{3}\left(1+e^{x}\right)^{\frac{3}{2}}+c$
Hint: Use substitution method to solve this integral.
Given: $\int \sqrt{1+e^{x}} \cdot e^{x} d x$
Solution:
Let $I=\int \sqrt{1+e^{x}} \cdot e^{x} d x$
Put $1+e^{x}=t \Rightarrow e^{x} d x=d t \text { then }$
\begin{aligned} I &=\int \sqrt{t} d t=\int t^{\frac{1}{2}} d t \\ &=\frac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}+c=\frac{t^{\frac{3}{2}}}{\frac{3}{2}}+\mathrm{c} \quad\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right] \\ &=\frac{2}{3}\left(1+e^{x}\right)^{\frac{3}{2}}+c \quad\left[\because t=1+e^{x}\right] \end{aligned}

Indefinite Integrals exercise 18.9 question 5

Answer:$-\frac{3}{5}(\cos x)^{\frac{5}{3}}+c$
Hint: Use substitution method to solve this integral.
Given:$\int \sqrt[3]{\cos ^{2} x} \cdot \sin x\; d x$
Solution:
Let $I=\int \sqrt[3]{\cos ^{2} x} \cdot \sin x \; d x$
\begin{aligned} &\text { Put } \cos x=t \Rightarrow-\sin x d x=d t \\ &\Rightarrow \sin x d x=-d t \text { then } \\ &I=\int \sqrt[3]{t^{2}}(-d t)=-\int t^{\frac{2}{3}} d t \end{aligned}
\begin{aligned} &=-\frac{t^{\frac{2}{3}+1}}{\frac{2}{3}+1}+c=-\frac{t^{\frac{5}{3}}}{\frac{5}{3}}+\mathrm{c} \quad\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right] \\ &=-\frac{3}{5}(\cos x)^{\frac{5}{3}}+c \quad[\because t=\cos x] \end{aligned}

Indefinite Integrals exercise 18.9 question 6

Answer: $\frac{-1}{\left(1+e^{x}\right)}+c$
Hint: Use substitution method to solve this integral.
Given: $\int \frac{e^{x}}{\left(1+e^{x}\right)^{2}} d x$
Solution:
\begin{aligned} &\text { Let } I=\int \frac{e^{x}}{\left(1+e^{x}\right)^{2}} d x \\ &\text { Put } 1+e^{x}=t \Rightarrow e^{x} d x=d t \text { then } \end{aligned}
\begin{aligned} &I=\int \frac{1}{t^{2}} d t=\int t^{-2} d t \\ &=-\frac{t^{-2+1}}{-2+1}+c=\frac{t^{-1}}{-1}+\mathrm{c} \quad\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right] \end{aligned}
\begin{aligned} &=-\frac{1}{t}+c \\ &=\frac{-1}{\left(1+e^{x}\right)}+c \quad\left[\because t=1+e^{x}\right] \end{aligned}

Indefinite Integrals exercise 18.9 question 7

Answer: $\frac{-1}{4} \cot ^{4} x+c$
Hint: Use substitution method to solve this integral.
Given: $\int \cot ^{3} x \cdot \operatorname{cosec}^{2} x \; d x$
Solution:
\begin{aligned} &\text { Let } I=\int \cot ^{3} x \cdot \operatorname{cosec}^{2} x \; d x \\ &\text { Put } \cot \mathrm{x}=t \Rightarrow-\operatorname{cosec}^{2} x\; d x=d t \end{aligned}
\begin{aligned} &\Rightarrow \operatorname{cosec}^{2} x \; d x=-d t \text { then } \\ &I=\int t^{3}(-d t)=-\int t^{3} d t \end{aligned}
\begin{aligned} &=-\frac{t^{3+1}}{3+1}+c=-\frac{t^{4}}{4}+c \quad\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right] \\ &=\frac{-1}{4} \cot ^{4} x+c\; \; \; \; \; [\because t=\cot x] \end{aligned}

Indefinite Integrals exercise 18.9 question 8

Answer: $\frac{e^{2 \sin ^{-1} x}}{2}+c$
Hint: Use substitution method to solve this integral.
Given: $\int \frac{\left\{e^{\sin ^{-1} x}\right\}^{2}}{\sqrt{1-x^{2}}} d x$
Solution:
\begin{aligned} &\text { Let } I=\int \frac{\left\{e^{\sin ^{-1} x}\right\}^{2}}{\sqrt{1-x^{2}}} d x \\ &\text { Put } \sin ^{-1} x=t \Rightarrow \frac{1}{\sqrt{1-x^{2}}} d x=d t \\ &\Rightarrow d x=\sqrt{1-x^{2}} d t \text { then } \end{aligned}
\begin{aligned} I &=\int \frac{\left(e^{t}\right)^{2}}{\sqrt{1-x^{2}}} \sqrt{1-x^{2}} d t=\int\left(e^{t}\right)^{2} d t \\ &=\int e^{2 t} d t=\frac{e^{2 t}}{2}+c \quad\left[\because \int e^{a x} d x=\frac{e^{a x}}{a}+c\right] \end{aligned}
$=\frac{e^{2 \sin ^{-1} x}}{2}+c\; \; \; \left[\because t=\sin ^{-1} x\right]$

Indefinite Integrals exercise 18.9 question 9

Answer: $2 \sqrt{x-\cos x}+c$
Hint: Use substitution method to solve this integral.
Given: $\int \frac{1+\sin x}{\sqrt{x-\cos x}} d x$
Solution:
$\text { Let } I=\int \frac{1+\sin x}{\sqrt{x-\cos x}} d x$
\begin{aligned} &\text { Put } x-\cos x=t \Rightarrow(1+\sin x) d x=d t \\ &\Rightarrow(1+\sin x) d x=d t \text { then } \end{aligned}
\begin{aligned} I &=\int \frac{1}{\sqrt{t}} d t=\int t^{\frac{-1}{2}} d t \\ &=\frac{t^{\frac{-1}{2}+1}}{\frac{-1}{2}+1}+c=\frac{t^{\frac{1}{2}}}{\frac{1}{2}}+\mathrm{c} \quad\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right] \end{aligned}
$=2 \sqrt{t}+c$
$=2 \sqrt{x-\cos x}+c\; \; \; \; \; [\because t=x-\cos x]$

Indefinite Integrals exercise 18.9 question 10

Answer: $\frac{-1}{\sin ^{-1} x}+C$
Hint: Use substitution method to solve this integral.
Given:$\int \frac{1}{\sqrt{1-x^{2}}\left(\sin ^{-1} x\right)^{2}} d x$
Solution:
\begin{aligned} &\text { Let } I=\int \frac{1}{\sqrt{1-x^{2}}\left(\sin ^{-1} x\right)^{2}} d x \\ &\text { Put } \sin ^{-1} x=t \Rightarrow \frac{1}{\sqrt{1-x^{2}}} d x=d t \\ &\Rightarrow d x=\sqrt{1-x^{2}} d t \text { then } \end{aligned}
\begin{aligned} I &=\int \frac{1}{\sqrt{1-x^{2}} \cdot t^{2}} \sqrt{1-x^{2}} d t=\int \frac{1}{t^{2}} d t \\ &=\frac{t^{-2+1}}{-2+1}+c=\frac{t^{-1}}{-1}+\mathrm{c} \quad\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right] \end{aligned}
$=\frac{-1}{t}+c=\frac{-1}{\sin ^{-1} x}+c\; \; \; \left[\because t=\sin ^{-1} x\right]$

Indefinite Integrals exercise 18.9 question 11

Answer:$\frac{-2}{\sqrt{\sin x}}+c$
Hint: Use substitution method to solve this integral.
Given: $\int \frac{\cot x}{\sqrt{\sin x}} d x$
Solution:
\begin{aligned} &\text { Let } I=\int \frac{\cot x}{\sqrt{\sin x}} d x \\ &\text { Put } \sin x=t \Rightarrow \cos x d x=d t \\ &\Rightarrow d x=\frac{d t}{\cos x} \text { then } \end{aligned}
$I=\int \frac{\cot x}{\sqrt{t}} \frac{d t}{\cos x}=\int \frac{\cos x}{\sin x} \cdot \frac{1}{\sqrt{t}} \cdot \frac{d t}{\cos x} d t \quad\left[\because \cot x=\frac{\cos x}{\sin x}\right]$
\begin{aligned} &=\int \frac{1}{t . t^{\frac{1}{2}}} d t \quad[\because t=\sin x] \\ &=\int \frac{1}{t^{1+\frac{1}{2}}} d t=\int \frac{1}{t^{\frac{3}{2}}} \mathrm{dt} \end{aligned}
$I=\int t^{\frac{-3}{2}} d t$
\begin{aligned} &=\frac{t^{\frac{-3}{2}+1}}{\frac{-3}{2}+1}+c=\frac{t^{\frac{-1}{2}}}{\frac{-1}{2}}+\mathrm{c} \quad\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right] \\ &=-2 \frac{1}{\sqrt{t}}+c=\frac{-2}{\sqrt{\sin x}}+c\; \; \; \; [\because t=\sin x] \end{aligned}

Indefinite Integrals exercise 18.9 question 12

Answer:$\frac{2}{\sqrt{\cos x}}+c$
Hint: Use substitution method to solve this integral.
Given: $\int \frac{\tan x}{\sqrt{\cos x}} d x$
Solution:
\begin{aligned} &\text { Let } I=\int \frac{\tan x}{\sqrt{\cos x}} d x \\ &\text { Put } \cos x=t \Rightarrow-\sin x d x=d t \\ &\Rightarrow d x=\frac{-d t}{\sin x} \text { then } \end{aligned}
\begin{aligned} I &=\int \frac{\sin x}{t \sqrt{t}} \frac{-d t}{\sin x} \\ &=-\int \frac{1}{t^{1+\frac{1}{2}}} d t=-\int \frac{1}{t^{\frac{3}{2}}} d t \\ I &=-\int t^{\frac{-3}{2}} d t \end{aligned}
\begin{aligned} &=-\frac{t^{\frac{-3}{2}+1}}{\frac{-3}{2}+1}+c=-\frac{t^{\frac{-1}{2}}}{\frac{-1}{2}}+\mathrm{c} \quad\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right] \\ &=-(-2) \frac{1}{\sqrt{t}}+c=\frac{2}{\sqrt{t}}+c \\ &=\frac{2}{\sqrt{\cos x}}+c\; \; \; \; \; \; [\because t=\cos x] \end{aligned}

Indefinite Integrals exercise 18.9 question 13

Answer: $2 \sqrt{\sin x}-\frac{2}{5}(\sin x)^{\frac{5}{2}}+c$
Hint: Use substitution method to solve this integral.
Given: $\int \frac{\cos ^{3} x}{\sqrt{\sin x}} d x$
Solution:
\begin{aligned} &\text { Let } I=\int \frac{\cos ^{3} x}{\sqrt{\sin x}} d x=\int \frac{\cos ^{2} x \cdot \cos x}{\sqrt{\sin x}} d x \\ &=\int \frac{\left(1-\sin ^{2} x\right) \cdot \cos x}{\sqrt{\sin x}} d x \quad\left[\begin{array}{l} \because \sin ^{2} x+\cos ^{2} x=1 \\ \Rightarrow \cos ^{2} x=1-\sin ^{2} x \end{array}\right] \\ &\operatorname{Put} \sin x=t \Rightarrow \cos x d x=d t \text { then } \end{aligned}
\begin{aligned} I &=\int \frac{\left(1-t^{2}\right)}{\sqrt{t}} d t=\int\left\{\frac{1}{\sqrt{t}}-\frac{t^{2}}{\sqrt{t}}\right\} d t \\ &=\int t^{\frac{-1}{2}} d t-\int t^{2-\frac{1}{2}} d t=\int t^{\frac{-1}{2}} d t-\int t^{\frac{4-1}{2}} d t \\ &=\int t^{\frac{-1}{2}} d t-\int t^{\frac{3}{2}} d t \end{aligned}
$=\frac{t^{\frac{-1}{2}+1}}{\frac{-1}{2}+1}-\frac{t^{\frac{3}{2}+1}}{\frac{3}{2}+1}+\mathrm{c} \quad\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right]$
$=\frac{t^{\frac{1}{2}}}{\frac{1}{2}}-\frac{t^{\frac{5}{2}}}{\frac{5}{2}}+\mathrm{c}$
\begin{aligned} &=2 t^{\frac{1}{2}}-\frac{2}{5} t^{\frac{5}{2}}+c \\ &=2 \sqrt{\sin x}-\frac{2}{5}(\sin x)^{\frac{5}{2}}+c\; \; \; \; [\because t=\sin x] \end{aligned}

Indefinite Integrals exercise 18.9 question 14

Answer: $-2 \sqrt{\cos x}+\frac{2}{5}(\cos x)^{\frac{5}{2}}+c$
Hint: Use substitution method to solve this integral.
Given: $\int \frac{\sin ^{3} x}{\sqrt{\cos x}} d x$
Solution:
\begin{aligned} &\text { Let } I=\int \frac{\sin ^{3} x}{\sqrt{\cos x}} d x=\int \frac{\sin ^{2} x \cdot \sin x}{\sqrt{\cos x}} d x \\ &=\int \frac{\left(1-\cos ^{2} x\right) \cdot \sin x}{\sqrt{\cos x}} d x \quad\left[\begin{array}{l} \because \sin ^{2} x+\cos ^{2} x=1 \\ \Rightarrow \sin ^{2} x=1-\cos ^{2} x \end{array}\right] \\ &\text { Put } \cos x=t \Rightarrow-\sin x d x=d t \Rightarrow \sin x d x=-d t \text { then } \end{aligned}
\begin{aligned} I &=\int \frac{\left(1-t^{2}\right)}{\sqrt{t}}(-d t)=-\int\left\{\frac{1-t^{2}}{\sqrt{t}}\right\} d t \\ &=-\int\left\{t^{\frac{-1}{2}}-t^{2-\frac{1}{2}}\right\} d t=-\int\left\{t^{\frac{-1}{2}}-t^{\frac{4-1}{2}}\right\} d t \\ &=-\int\left\{t^{\frac{-1}{2}}-t^{\frac{3}{2}}\right\} d t \end{aligned}
$=-\frac{t^{\frac{-1}{2}+1}}{\frac{-1}{2}+1}+\frac{t^{\frac{3}{2}+1}}{\frac{3}{2}+1}+\mathrm{c} \quad\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right]$
$=-\frac{t^{\frac{1}{2}}}{\frac{1}{2}}+\frac{t^{\frac{5}{2}}}{\frac{5}{2}}+\mathrm{c}$
\begin{aligned} &=-2 t^{\frac{1}{2}}+\frac{2}{5} t^{\frac{5}{2}}+c \\ &=-2 \sqrt{\cos x}+\frac{2}{5}(\cos x)^{\frac{5}{2}}+c\; \; \; \; \; [\because t=\cos x] \end{aligned}

Indefinite Integrals exercise 18.9 question 15

Answer: $2 \sqrt{\tan ^{-1} x}+c$
Hint: Use substitution method to solve this integral.
Given: $\int \frac{1}{\sqrt{\tan ^{-1} x}\left(1+x^{2}\right)} d x$
Solution:
$\text { Let } I=\int \frac{1}{\sqrt{\tan ^{-1} x}\left(1+x^{2}\right)} d x$
$\text { Put } \tan ^{-1} x=t \Rightarrow \frac{1}{1+x^{2}} d x=d t \Rightarrow d x=\left(1+x^{2}\right) d t \text { then }$
\begin{aligned} I &=\int \frac{1}{\sqrt{t}\left(1+x^{2}\right)}\left(1+x^{2}\right) d t=\int \frac{1}{\sqrt{t}} d t \\ &=\int t^{\frac{-1}{2}} d t=\frac{t^{\frac{-1}{2}+1}}{\frac{-1}{2}+1}+\mathrm{c} \quad\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right] \end{aligned}
\begin{aligned} &=\frac{t^{\frac{1}{2}}}{\frac{1}{2}}+\mathrm{c}=2 \sqrt{t}+c \\ &=2 \sqrt{\tan ^{-1} x}+c\left[\because t=\tan ^{-1} x\right] \end{aligned}

Indefinite Integrals exercise 18.9 question 16

Answer: $2 \sqrt{\tan x}+c$
Hint: Use substitution method to solve this integral.
Given: $\int \frac{\sqrt{\tan x}}{\sin x \cdot \cos x} d x$
Solution:
\begin{aligned} &I=\int \frac{\sqrt{\tan x}}{\sin x \cdot \cos x} d x \\ &=\int \frac{\sqrt{\tan x} \cdot \cos x}{\sin x \cdot \cos x \cdot \cos x} d x \end{aligned}
$=\int \frac{\sqrt{\tan x} \cdot \cos x}{\sin x \cdot \cos ^{2} x} d x=\int \frac{\sqrt{\tan x}}{\frac{\sin x}{\cos x}} \cdot \frac{1}{\cos ^{2} x} d x$
\begin{aligned} &=\int \frac{\sqrt{\tan x}}{\tan x} \cdot \sec ^{2} x\; d x=\int(\tan x)^{\frac{1}{2}-1} \cdot \sec ^{2} x\; d x \\ &=\int(\tan x)^{\frac{-1}{2}} \sec ^{2} x \; d x \end{aligned}
$\text { Put } \tan x=t \Rightarrow \sec ^{2} x d x=d t \text { then }$
$I=\int t^{\frac{-1}{2}} d t=\frac{t^{\frac{-1}{2}+1}}{\frac{-1}{2}+1}+\mathrm{c} \quad\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right]$
\begin{aligned} &=\frac{t^{\frac{1}{2}}}{\frac{1}{2}}+\mathrm{c}=2 \sqrt{t}+c \\ &=2 \sqrt{\tan x}+c\; \; \; \; [\because t=\tan x] \end{aligned}

Indefinite Integrals exercise 18.9 question 17

Answer:$\frac{1}{3}(\log x)^{3}+c$
Hint:Use substitution method to solve this integral.
Given:$\int \frac{1}{x}(\log x)^{2} d x$
Solution:
\begin{aligned} &\text { Let } I=\int \frac{1}{x}(\log x)^{2} d x \\ &\text { Put } \log x=t \Rightarrow \frac{1}{x} d x=d t \\ &\Rightarrow d x=x \; d t \text { then } \end{aligned}
\begin{aligned} I &=\int \frac{1}{x} t^{2} \cdot x d t=\int t^{2} d t \\ &=\frac{t^{2+1}}{2+1}+c \quad\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right] \end{aligned}
\begin{aligned} &=\frac{t^{3}}{3}+c \\ &=\frac{1}{3}(\log x)^{3}+c \quad[\because t=\log x] \end{aligned}

Indefinite Integrals exercise 18.9 question 18

Answer:$\frac{1}{6} \sin ^{6} x+c$
Hint: Use substitution method to solve this integral.
Given: $\int \sin ^{5} x \cos x\; d x$
Solution:
\begin{aligned} &\text { Let } I=\int \sin ^{5} x \cos x d x \\ &\text { Put } \sin x=t \Rightarrow \cos x d x=d t \text { then } \end{aligned}
\begin{aligned} I &=\int t^{5} d t \\ &=\frac{t^{5+1}}{5+1}+\mathrm{c} \quad \quad\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right] \end{aligned}
\begin{aligned} &=\frac{t^{6}}{6}+c \\ &=\frac{1}{6} \sin ^{6} x+c \quad \quad[\because t=\sin x] \end{aligned}

Indefinite Integrals exercise 18.9 question 21

Answer: $\frac{4}{3}\left(x^{2}+x+1\right)^{\frac{3}{2}}+c$
Hint: Use substitution method to solve this integral.
Given: $\int(4 x+2) \sqrt{x^{2}+x+1} d x$
Solution:
\begin{aligned} &\text { Let } I=\int(4 x+2) \sqrt{x^{2}+x+1} d x \\ &\Rightarrow I=2 \int(2 x+1) \sqrt{x^{2}+x+1} d x \\ &\text { Put } x^{2}+x+1=t \Rightarrow(2 x+1) d x=d t \text { then } \end{aligned}
$I=2 \int(2 x+1) \sqrt{t} \cdot \frac{d t}{(2 x+1)}=2 \int \sqrt{t} d t$
$=2 \int t^{\frac{1}{2}} d t=2\left[\frac{t_{2}^{\frac{1}{+1}}}{\frac{1}{2}+1}\right]+\mathrm{c} \quad\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right]$
$=2\left[\frac{t^{\frac{3}{2}}}{\frac{3}{2}}\right]+\mathrm{C}=2 \cdot \frac{2}{3} t^{\frac{3}{2}}+c$
$=\frac{4}{3}\left(x^{2}+x+1\right)^{\frac{3}{2}}+c \quad\left[\because t=x^{2}+x+1\right]$

Indefinite Integrals exercise 18.9 question 22

Answer: $2 \sqrt{2 x^{2}+3 x+1}+c$
Hint:Use substitution method to solve this integral.
Given: $\int \frac{(4 x+3)}{\sqrt{2 x^{2}+3 x+1}} d x$
Solution:
\begin{aligned} &\text { Let } I=\int \frac{(4 x+3)}{\sqrt{2 x^{2}+3 x+1}} d x \\ &\text { Put } 2 x^{2}+3 x+1=t \Rightarrow(4 x+3) d x=d t \text { then } \\ &I=\int \frac{1}{\sqrt{t}}=\int t^{\frac{-1}{2}} d t \end{aligned}
$=\frac{t^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}+c \quad\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right]$
\begin{aligned} &=\frac{t^{\frac{1}{2}}}{\frac{1}{2}}+c=2 \sqrt{t}+c \\ &=2 \sqrt{2 x^{2}+3 x+1}+c \quad \quad\left[\because t=2 x^{2}+3 x+1\right] \end{aligned}

Indefinite Integrals exercise 18.9 question 23

Answer: $2 \sqrt{x}-2 \log |\sqrt{x}+1|+c$
Hint:Use substitution method to solve this integral.
Given: $\int \frac{1}{1+\sqrt{x}} d x$
Solution:
\begin{aligned} &\text { Let }\; I=\int \frac{1}{1+\sqrt{x}} d x \\ &\text { Put } x=t^{2} \Rightarrow d x=2 t \; d t \text { then } \end{aligned}
\begin{aligned} I &=\int \frac{1}{1+\sqrt{t^{2}}} 2 t d t=\int \frac{2 t}{1+t} d t \\ &=2 \int \frac{t}{1+t} d t=2 \int \frac{1+t-1}{1+t} d t \end{aligned}
\begin{aligned} &=2 \int \frac{(1+t)-1}{1+t} d t=2 \int\left\{\frac{1+t}{1+t}-\frac{1}{1+t}\right\} d t \\ &=2 \int\left\{1-\frac{1}{1+t}\right\} d t=2 \int 1 . d t-2 \int \frac{1}{1+t} d t \end{aligned}
$=2 \int 1 . d t-2 \int \frac{1}{1+t} d t$ ......$(i)$
$\text { Now } 2 \int 1 . d t=2 \frac{t^{0+1}}{0+1}+c_{1} \quad\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right]$
$=2 t+c_{1}$ ........$(ii)$
\begin{aligned} &\text { and } 2 \int \frac{1}{1+t} d t \\ &\text { Put } 1+t=p \Rightarrow d t=d p \text { then } \end{aligned}
$2 \int \frac{1}{1+t} d t=2 \int \frac{1}{p} d p=2 \log |p|+c_{2}$
$=2 \log |t+1|+c_{2}$ .........$(iii)$
Putting the values of equation (ii) and (iii) in (i) then
\begin{aligned} &I=2 t+c_{1}-\left(2 \log |t+1|+c_{2}\right) \\ &\Rightarrow I=2 t+c_{1}-2 \log |t+1|-c_{2} \\ &\therefore I=2 \sqrt{x}-2 \log |\sqrt{x}+1|+c_{1}-c_{2} \end{aligned}
$\therefore I=2 \sqrt{x}-2 \log |\sqrt{x}+1|+c \quad\left[\begin{array}{c} \because t^{2}=x \Rightarrow t=\sqrt{x} \\ \text { and } c=c_{1}-c_{2} \end{array}\right]$

Indefinite Integrals exercise 18.9 question 24

Answer: $-e^{\cos ^{2} x}+c$
Hint:Use substitution method to solve this integral.
Given: $\int e^{\cos ^{2} x} \sin 2 x\; d x$
Solution:
\begin{aligned} &\text { Let } I=\int e^{\cos ^{2} x} \sin 2 x d x \\ &\text { Put } \cos ^{2} x=t \Rightarrow 2 \cos x(-\sin x) d x=d t \end{aligned}
\begin{aligned} &\Rightarrow-(2 \cos x \sin x) d x=d t\\ &\Rightarrow-\sin 2 x\; d x=d t \end{aligned} $[\because \sin 2 x=2 \sin x \; \cos x]$
\begin{aligned} &\text { Then }\\ &I=\int e^{t}(-d t)=-\int e^{t} d t=-e^{t}+c \quad\left[\because \int e^{x} d x=e^{x}+c\right]\\ &=-e^{\cos ^{2} x}+c \; \; \; \; \; \; \; \; \; \; \; \; \; \; \quad\left[\because t=\cos ^{2} x\right] \end{aligned}

Indefinite Integrals exercise 18.9 question 25

Answer:$\frac{-1}{2(x+\sin x)^{2}}+c$
Hint:Use substitution method to solve this integral.
Given: $\int \frac{1+\cos x}{(x+\sin x)^{3}} d x$
Solution:
\begin{aligned} &\text { Let } I=\int \frac{1+\cos x}{(x+\sin x)^{2}} d x \\ &\text { Put } x+\sin x=t \Rightarrow(1+\cos x) d x=d t \text { then } \end{aligned}
$I=\int \frac{1}{t^{3}} d t=\int t^{-3} d t=\frac{t^{-3+1}}{-3+1}+c \quad\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right]$
$=\frac{t^{-2}}{-2}+c=\frac{-1}{2} \frac{1}{t^{2}}+c$
$=\frac{-1}{2(x+\sin x)^{2}}+c \quad[\because t=x+\sin x]$

Indefinite Integrals exercise 18.9 question 26

Answer: $\frac{-1}{\sin x+\cos x}+c$
Hint:Use substitution method to solve this integral.
Given: $\int \frac{\cos x-\sin x}{1+\sin 2 x} d x$
Solution:
$\text { Let } I=\int \frac{\cos x-\sin x}{1+\sin 2 x} d x$
$=\int \frac{\cos x-\sin x}{\sin ^{2} x+\cos ^{2} x+\sin 2 x} d x \quad\left[\because 1=\sin ^{2} x+\cos ^{2} x\right]$
$=\int \frac{\cos x-\sin x}{\sin ^{2} x+\cos ^{2} x+2 \sin x \cos x} d x \quad[\because \sin 2 x=2 \sin x \cos x]$
$=\int \frac{\cos x-\sin x}{(\sin x+\cos x)^{2}} d x \quad\left[\because a^{2}+b^{2}+2 a b=(a+b)^{2}\right]$
$\text { Put } \sin x+\cos x=t \Rightarrow(\cos x-\sin x) d x=d t \text { then }$
$I=\int \frac{(\cos x-\sin x)}{t^{2}} \frac{d t}{(\cos x-\sin x)}$
$=\int \frac{1}{t^{2}}=\int t^{-2} d t=\frac{t^{-2+1}}{-2+1}+c \quad\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right]$
$=\frac{t^{-1}}{-1}+c=\frac{-1}{t}+c$
$=\frac{-1}{\sin x+\cos x}+c \quad[\because t=\sin x+\cos x]$

Indefinite Integrals exercise 18.9 question 27

Answer: $\frac{1}{2 b(a+b \cos 2 x)}+c$
Hint:Use substitution method to solve this integral.
Given: $\int \frac{\sin 2 x}{(a+b \cos 2 x)^{2}} d x$
Solution:
$\text { Let } I=\int \frac{\sin 2 x}{(a+b \cos 2 x)^{2}} d x$
\begin{aligned} &\text { Put } a+b \cos 2 x=t \\ &\Rightarrow b(-\sin 2 x) \cdot 2 d x=d t \\ &\Rightarrow-2 b \sin 2 x \; d x=d t \\ &\Rightarrow \sin 2 x \; d x=\frac{d t}{-2 b} \end{aligned}
$I=\int \frac{1}{t^{2}} \cdot \frac{d t}{-2 b}=\frac{-1}{2 b} \int \frac{1}{t^{2}} d t$
$=\frac{-1}{2 b} \int t^{-2} d t=\frac{-1}{2 b} \frac{t^{-2+1}}{-2+1}+c \quad\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right]$
$=\frac{-1}{2 b} \cdot \frac{t^{-1}}{-1}+c=\frac{1}{2 b} \cdot \frac{1}{t}+c$
$=\frac{1}{2 b(a+b \cos 2 x)}+c \quad \quad[\because t=a+b \cos 2 x]$

Indefinite Integrals exercise 18.9 question 28

Answer: $(\log x)^{2}+c$
Hint:Use substitution method to solve this integral.
Given: $\int \frac{\log x^{2}}{x} d x$
Solution:
$\text { Let } I=\int \frac{\log x^{2}}{x} d x$
$=\int \frac{2 \log x}{x} d x\left[\because \log x^{m}=m \log x\right]$
$\operatorname{Put} \log x=t \Rightarrow \frac{1}{x} d x=d t, \text { then }$
$I=\int 2 \cdot \frac{t}{x} \cdot x \; d t=2 \int t\; d t=2 \int \frac{t^{1+1}}{1+1}+c$ $\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right]$
$=2 \frac{t^{1+1}}{2}+c=t^{2}+c=(\log x)^{2}+c$ $[\because t=\log x]$

Indefinite Integrals exercise 18.9 question 29

Answer:$\frac{1}{1+\cos x}+C$
Hint:Use substitution method to solve this integral.
Given: $\int \frac{\sin x}{(1+\cos x)^{2}} d x$
Solution:
\begin{aligned} &\text { Let } I=\int \frac{\sin x}{(1+\cos x)^{2}} d x \\ &\operatorname{Put} 1+\cos x=t \Rightarrow-\sin x d x=d t, \text { then } \end{aligned}
$I=\int \frac{1}{t^{2}}(-d t)=-\int \frac{1}{t^{2}} d t=-\int t^{-2} d t$
$=-\left[\frac{t^{-2+1}}{-2+1}\right]+c=-\frac{-t^{-1}}{-1}+c$ $\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right]$
$=\frac{1}{t}+c=\frac{1}{1+\cos x}+c$ $[\because t=1+\cos x]$

Indefinite Integrals exercise 18.9 question 30

Answer: $\frac{1}{2}\{\log (\sin x)\}^{2}+c$
Hint:Use substitution method to solve this integral.
Given: $\int \cot x \cdot \log (\sin x) d x$
Solution:
\begin{aligned} &\text { Let } I=\int \cot x \cdot \log (\sin x) d x \\ &\text { Put } \log (\sin x)=t \Rightarrow \frac{1}{\sin x} \cos x\; d x=d t \\ &\Rightarrow \cot x\; d x=d t \Rightarrow d x=\frac{d t}{\cot x} \text { then } \end{aligned}
$\Rightarrow I=\int \cot x \cdot t \cdot \frac{d t}{\cot x}=\int t \; d t$
$=\frac{t^{1+1}}{1+1}+c=\frac{t^{2}}{2}+c \quad\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c,\right]$
$=\frac{1}{2}\{\log (\sin x)\}^{2}+c \quad[\because t=\log (\sin x)]$

Indefinite Integrals exercise 18.9 question 31

Answer: $\frac{1}{2}\{\log (\sec x+\tan x)\}^{2}+c$
Hint:Use substitution method to solve this integral.
Given: $\int \sec x \cdot \log (\sec x+\tan x) d x$
Solution:
\begin{aligned} &\text { Let } I=\int \sec x \cdot \log (\sec x+\tan x) d x \\ &\text { Put } \log (\sec x+\tan x)=t \end{aligned}
\begin{aligned} &\Rightarrow \frac{1}{(\sec x+\tan x)}\left(\sec x \tan x+\sec ^{2} x\right) d x=d t \\ &\Rightarrow \frac{1}{(\sec x+\tan x)} \sec x(\tan x+\sec x) d x=d t \end{aligned}
\begin{aligned} &\Rightarrow \sec x\; d x=d t \Rightarrow d x=\frac{d t}{\sec x} \text { then } \\ &\Rightarrow I=\int \sec x \cdot t \cdot \frac{d t}{\sec x}=\int t \; d t \end{aligned}
$=\frac{t^{1+1}}{1+1}+c=\frac{t^{2}}{2}+c \quad\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c,\right]$
$=\frac{1}{2}\{\log (\sec x+\tan x)\}^{2}+c \quad[\because t=\log (\sec x+\tan x)]$

Indefinite Integrals exercise 18.9 question 32

Answer:$\frac{1}{2}\{\log (\operatorname{cosec} x-\cot x)\}^{2}+c$
Hint:Use substitution method to solve this integral.
Given: $\int \operatorname{cosec} x \cdot \log (\operatorname{cosec} x-\cot x) d x$
Solution:
\begin{aligned} &\text { Let } I=\int \operatorname{cosec} x \cdot \log (\operatorname{cosec} x-\cot x) d x \\ &\text { Put } \log (\operatorname{cosec} x-\cot x)=t \end{aligned}
$\Rightarrow \frac{1}{(\operatorname{cosec} x-\cot x)}\left(-\operatorname{cosec} x \cdot \cot x-\left(-\operatorname{cosec}^{2} x\right)\right) d x=d t$
$\Rightarrow \frac{1}{(\operatorname{cosec} x-\cot x)}\left\{\operatorname{cosec}^{2} x-\operatorname{cosec} x \cdot \cot x\right\} d x=d t$
$\Rightarrow \frac{1}{(\operatorname{cosec} x-\cot x)} \operatorname{cosec} x\{\operatorname{cosec} x-\cot x\} d x=d t$
$\Rightarrow \operatorname{cosec} x d x=d t \Rightarrow d x=\frac{d t}{\operatorname{cosec} x} \text { then }$
$\Rightarrow I=\int \operatorname{cosec} x \cdot t \cdot \frac{d t}{\operatorname{cosec} x}=\int t \; d t$
$=\frac{t^{1+1}}{1+1}+c=\frac{t^{2}}{2}+c \quad\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c,\right]$
$=\frac{1}{2}\{\log (\operatorname{cosec} x-\cot x)\}^{2}+c \quad \quad[\because t=\log (\operatorname{cosec} x-\cot x)]$

Indefinite Integrals exercise 18.9 question 33

Answer: $\frac{1}{4} \sin \left(x^{4}\right)+c$
Hint:Use substitution method to solve this integral.
Given: $\int x^{3} \cos x^{4} d x$
Solution:
\begin{aligned} &\text { Let } I=\int x^{3} \cos x^{4} d x \\ &\text { Put } x^{4}=t \Rightarrow 4 x^{3} d x=d t \Rightarrow d x=\frac{d t}{4 x^{3}} \text { then } \end{aligned}
$\Rightarrow I=\int x^{3} \cos t \frac{d t}{4 x^{3}}=\frac{1}{4} \int \cos t \; d t$
$=\frac{1}{4} \int \sin t \; d t \quad\left[\because \int \cos x \; d x=\sin x+c\right]$
$=\frac{1}{4} \sin \left(x^{4}\right)+c \quad\left[\because t=x^{4}\right]$

Indefinite Integrals exercise 18.9 question 34

Answer: $\frac{3}{2}\left(x^{2}-1\right)^{\frac{2}{3}}+c$
Hint:Use substitution method to solve this integral.
Given: $\int \frac{2 x}{\sqrt[3]{x^{2}-1}} d x$
Solution:
\begin{aligned} &\text { Let } I=\int \frac{2 x}{\sqrt[3]{x^{2}-1}} d x \\ &\text { Put } x^{2}-1=t \Rightarrow 2 x d x=d t \text { then } \end{aligned}
$\Rightarrow I=\int \frac{1}{\sqrt[3]{t}} d t=\int \frac{1}{t^{\frac{1}{3}}} d t=\int t^{-\frac{1}{3}} d t$
$=\frac{t^{-\frac{1}{3}+1}}{-\frac{1}{3}+1}+c=\frac{t^{\frac{2}{3}}}{\frac{2}{3}}+c$ $\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right]$
\begin{aligned} &=\frac{3}{2} t^{\frac{2}{3}} \\ &=\frac{3}{2}\left(x^{2}-1\right)^{\frac{2}{3}}+c \quad\left[\because t=x^{2}-1\right] \end{aligned}

Indefinite Integrals exercise 18.9 question 36

Answer:$-\frac{\cos \left(x^{4}+1\right)}{4}+c$
Hint: Use substitution method to solve this integral.
Given: $\int x^{3} \sin \left(x^{4}+1\right) d x$
Solution:
\begin{aligned} &\text { Let } I=\int x^{3} \sin \left(x^{4}+1\right) d x \\ &\text { Put } x^{4}+1=t \Rightarrow 4 x^{3} d x=d t \\ &\Rightarrow d x=\frac{d t}{4 x^{3}} \text { then } \end{aligned}
\begin{aligned} \Rightarrow I &=\int x^{3} \sin t \frac{d t}{4 x^{3}}=\frac{1}{4} \int \sin t\; d t \\ &=-\frac{\cos t}{4}+c \end{aligned} $\left[\because \int \sin x\; d x=-\cos x+c\right]$
$=-\frac{\cos \left(x^{4}+1\right)}{4}+c \quad\left[\because t=x^{4}+1\right]$

Indefinite Integrals exercise 18.9 question 37

Answer:$\tan \left(x e^{x}\right)+c$
Hint: Use substitution method to solve this integral.
Given: $\int \frac{(x+1) e^{x}}{\cos ^{2}\left(x e^{x}\right)} d x$
Solution:
\begin{aligned} &\text { Let } I=\int \frac{(x+1) e^{x}}{\cos ^{2}\left(x e^{x}\right)} d x \\ &\text { Put } x e^{x}=t \Rightarrow\left(x e^{x}+1 . e^{x}\right) d x=d t \\ &\Rightarrow(x+1) e^{x} d x=d t \quad \text { then } \end{aligned}
$\Rightarrow I=\int \frac{1}{\cos ^{2} t} d t$
$=\int \sec ^{2} t d t \quad\left[\because \frac{1}{\cos x}=\sec x\right]$
\begin{aligned} &=\tan t+c \\ &=\tan \left(x e^{x}\right)+c \quad\left[\because t=x e^{x}\right] \end{aligned}

Indefinite Integrals exercise 18.9 question 38

Answer: $\frac{1}{3} \sin \left(e^{x^{3}}\right)+c$
Hint: Use substitution method to solve this integral.
Given: $\int x^{2} e^{x^{3}} \cos \left(e^{x^{3}}\right) d x$
Solution:
\begin{aligned} &\text { Let } I=\int x^{2} e^{x^{3}} \cos \left(e^{x^{3}}\right) d x \\ &\text { Put } e^{x^{3}}=t \Rightarrow e^{x^{3}} \cdot 3 x^{2} d x=d t \\ &\Rightarrow d x=\frac{d t}{e^{x^{3}} \cdot 3 x^{2}} \text { then } \end{aligned}
$\Rightarrow I=\int e^{x^{3}} \cdot x^{2} \cdot \cos t \frac{d t}{e^{x^{3}} .3 x^{2}}=\frac{1}{3} \int \cos t\; d t$
$=\frac{1}{3} \sin t \; d t \quad\left[\because \int \cos x \; d x=\sin x+c\right]$
$=\frac{1}{3} \sin \left(e^{x^{3}}\right)+c \quad\left[\because t=e^{x^{3}}\right]$

Indefinite Integrals exercise 18.9 question 39

Answer: $\frac{1}{3} \sec ^{3}\left(x^{2}+3\right)+c$
Hint: Use substitution method to solve this integral.
Given: $\int 2 x \cdot \sec ^{3}\left(x^{2}+3\right) \tan \left(x^{2}+3\right) d x$
Solution:
\begin{aligned} &\text { Let } I=\int 2 x \cdot \sec ^{3}\left(x^{2}+3\right) \tan \left(x^{2}+3\right) d x \\ &\text { Put } x^{2}+3=t \Rightarrow 2 x d x=d t \\ &\Rightarrow d x=\frac{d t}{2 x} \text { then } \end{aligned}
\begin{aligned} \Rightarrow I &=\int 2 x \sec ^{3} t \cdot \tan t \frac{d t}{2 x}=\int \sec ^{3}(t) \cdot \tan (t) d t \\ &=\int \sec ^{2}(t) \sec (t) \tan (t) d t \end{aligned}
$\text { Again Put } \sec t=u \Rightarrow \sec t \tan t \; d t=d u \text { then }$
$I=\int u^{2} d u=\left[\frac{u^{2+1}}{2+1}\right]+c \quad\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right]$
$\begin{array}{ll} =\frac{u^{3}}{3}+c=\frac{\sec ^{3} t}{3}+c & {[\because \sec t=u]} \end{array}$
$=\frac{1}{3} \sec ^{3}\left(x^{2}+3\right)+c \quad\left[\because t=x^{2}+3\right]$

Indefinite Integrals exercise 18.9 question 40

Answer:$\frac{1}{3}(\log x+x)^{3}+c$
Hint: Use substitution method to solve this integral.
Given: $\int\left(\frac{x+1}{x}\right)(\log x+x)^{2} d x$
Solution:
$\text { Let } I=\int\left(\frac{x+1}{x}\right)(\log x+x)^{2} d x$
\begin{aligned} &=\int\left(\frac{x}{x}+\frac{1}{x}\right)(\log x+x)^{2} d x \\ &=\int\left(1+\frac{1}{x}\right)(\log x+x)^{2} d x \end{aligned}
$\operatorname{Put} \log x+x=t \Rightarrow\left(\frac{1}{x}+1\right) d x=d t$
$\Rightarrow d x=\frac{1}{\left(1+\frac{1}{x}\right)} \text { dt then }$
$I=\int\left(1+\frac{1}{x}\right) t^{2} \frac{1}{\left(1+\frac{1}{x}\right)} d t=\int t^{2} d t$
$I=\left[\frac{t^{2+1}}{2+1}\right]+c \quad\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right]$
$=\frac{t^{3}}{3}+c=\frac{1}{3}(\log x+x)^{3}+c \quad[\because t=\log x+x]$

Indefinite Integrals exercise 18.9 question 41

Answer: $-\frac{1}{3}\left(1-\tan ^{2} x\right)^{\frac{3}{2}}+c$
Hint: Use substitution method to solve this integral.
Given: $\int \tan x \cdot \sec ^{2} x \sqrt{1-\tan ^{2} x}\; d x$
Solution:
\begin{aligned} &\text { Let } I=\int \tan x \cdot \sec ^{2} x \sqrt{1-\tan ^{2} x} d x \\ &\text { Put } \quad 1-\tan ^{2} x=t \Rightarrow-2 \tan x \cdot \sec ^{2} x d x=d t \\ &\Rightarrow d x=\frac{1}{-2 \tan x \cdot \sec ^{2} x} \text { dt then } \end{aligned}
$\Rightarrow I=\int \tan x \cdot \sec ^{2} x \cdot \sqrt{t} \frac{1}{-2 \tan x \cdot \sec ^{2} x} \mathrm{dt}$
$=-\frac{1}{2} \int \sqrt{t} d t=-\frac{1}{2} \int t^{\frac{1}{2}} d t$
$=-\frac{1}{2}\left[\frac{t_{}^{\frac{1}{2}+1}}{\frac{1}{2}+1}\right]+c \quad\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right]$
$=-\frac{1}{2}\left[\frac{t^{\frac{3}{2}}}{\frac{3}{2}}\right]+c=-\frac{1}{2} \times \frac{2}{3} t^{\frac{3}{2}}+c$
$=-\frac{1}{3}\left(1-\tan ^{2} x\right)^{\frac{3}{2}}+c \quad\left[\because t=1-\tan ^{2} x\right]$

Indefinite Integrals exercise 18 .9 question 42

Answer: $-\frac{1}{2} \cos \left\{1+(\log x)^{2}\right\}+c$
Hint: Use substitution method to solve this integral.
Given: $\int \log x \cdot \frac{\sin \left\{1+(\log x)^{2}\right\}}{x} d x$
Solution:
\begin{aligned} &\text { Let } I=\int \log x \cdot \frac{\sin \left\{1+(\log x)^{2}\right\}}{x} d x \\ &\text { Put } 1+(\log x)^{2}=t \Rightarrow 2 \log x \cdot \frac{1}{x} \cdot d x=d t \\ &\Rightarrow d x=\frac{x \cdot d t}{2 \log x} \text { then } \end{aligned}
\begin{aligned} \Rightarrow I &=\int \log x \cdot \frac{\sin t}{x} \cdot \frac{x \; d t}{2 \log x} d t \\ &=\frac{1}{2} \int \sin t\; d t \end{aligned}
\begin{aligned} &=\frac{1}{2}(-\cos t)+c \\ &=-\frac{1}{2} \cos \left\{1+(\log x)^{2}\right\}+c \quad\left[\because t=1+(\log x)^{2}\right] \end{aligned}

Indefinite Integrals exercise 18.9 question 43

Answer: $-\frac{1}{2 x}-\frac{1}{4} \sin \left(\frac{2}{x}\right)+c$
Hint: Use substitution method to solve this integral.
Given: $\int \frac{1}{x^{2}} \cos ^{2}\left(\frac{1}{x}\right) d x$
Solution:
\begin{aligned} &\text { Let } I=\int \frac{1}{x^{2}} \cos ^{2}\left(\frac{1}{x}\right) d x \\ &\text { Put } \frac{1}{x}=t \Rightarrow-\frac{1}{x^{2}} d x=d t \\ &\Rightarrow d x=-x^{2} \text { dt then } \end{aligned}
$I=\int \frac{1}{x^{2}} \cdot \cos ^{2} t \cdot\left(-x^{2}\right) d t=-\int \cos ^{2} t \; d t$
$=-\int\left\{\frac{1+\cos 2 t}{2}\right\} d t$ $\left[\begin{array}{l} \because 2 \cos ^{2} A-1=\cos 2 A \\ \Rightarrow 2 \cos ^{2} A=1+\cos 2 A \\ \Rightarrow \cos ^{2} A=\frac{1+\cos 2 A}{2} \end{array}\right]$
\begin{aligned} &=-\int\left\{\frac{1}{2}+\frac{\cos 2 t}{2}\right\} d t=-\int \frac{1}{2} d t-\frac{1}{2} \int \cos 2 t d t \\ &=-\frac{1}{2} \int 1 . d t-\frac{1}{2} \int \cos 2 t d t=-\frac{1}{2} \int t^{0} d t-\frac{1}{2} \int \cos 2 t d t \end{aligned}
$=-\frac{1}{2} t-\frac{1}{4} \sin 2\; t$ $\left[\begin{array}{c} \because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c \\ \int \cos a\; x \; d x=\frac{\sin a x}{a}+c \end{array}\right]$
$=-\frac{1}{2 x}-\frac{1}{4} \sin \left(\frac{2}{x}\right)+c$

Indefinite Integrals exercise 18.9 question 44

Answer: $\frac{1}{2} \tan ^{2} x+\frac{1}{4} \tan ^{4} x+c$
Hint: Use substitution method to solve this integral.
Given: $\int \sec ^{4} x \tan x\; d x$
Solution:
\begin{aligned} &\text { Let } I=\int \sec ^{4} x \tan x \; d x \\ &\text { Put } \tan x=t \Rightarrow \sec ^{2} x \; d x=d t \\ &\Rightarrow d x=\frac{d t}{\sec ^{2} x} \text { then } \end{aligned}
$I=\int \sec ^{4} x \cdot t \cdot \frac{d t}{\sec ^{2} x}=\int \sec ^{2} x \cdot t\; d t$
$=\int\left\{1+\tan ^{2} x\right\} . t \; d t \quad\left[\begin{array}{l} \because \sec ^{2} x-\tan ^{2} x=1 \\ \Rightarrow \sec ^{2} x=1+\tan ^{2} x \end{array}\right]$
\begin{aligned} &=\int\left(1+t^{2}\right) . t\; d t \quad[\because \tan x=t] \\ &=\int\left(t+t^{2} t\right) d t=\int\left(t+t^{3}\right) d t \\ &=\int t \; d t+\int t^{3} d t \end{aligned}
$=\frac{t^{1+1}}{1+1}+\frac{t^{3+1}}{3+1}+c \quad\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right]$
\begin{aligned} &=\frac{t^{2}}{2}+\frac{t^{4}}{4}+c \\ &=\frac{1}{2} \tan ^{2} x+\frac{1}{4} \tan ^{4} x+c \quad[\because t=\tan x] \end{aligned}

Indefinite Integrals exercise 18.9 question 45

Answer: $2 \sin \left(e^{\sqrt{x}}\right)+c$
Hint: Use substitution method to solve this integral.
Given: $\int \frac{e^{\sqrt{x}} \cos \left(e^{\sqrt{x}}\right)}{\sqrt{x}} d x$
Solution:
\begin{aligned} &\text { Let } I=\int \frac{e^{\sqrt{x}} \cos \left(e^{\sqrt{x}}\right)}{\sqrt{x}} d x \\ &\text { Put } e^{\sqrt{x}}=t \Rightarrow e^{\sqrt{x}} \frac{1}{2 \sqrt{x}} d x=d t \\ &\Rightarrow d x=\frac{2 \sqrt{x}}{e^{\sqrt{x}}} \mathrm{dt} \text { then } \end{aligned}
\begin{aligned} &I=\int \frac{e^{\sqrt{x}} \cos t}{\sqrt{x}} \frac{2 \sqrt{x}}{e^{\sqrt{x}}} d t \\ &=2 \int \cos t \; d t \end{aligned}
$=2 \sin t+c \quad\left[\because \int \cos x\; d x=\sin x+c\right]$
$=2 \sin \left(e^{\sqrt{x}}\right)+c \quad\left[\because t=e^{\sqrt{x}}\right]$

Indefinite Integrals exercise 18.9 question 46

Answer: $\frac{1}{4} \sin ^{4} x-\sin ^{2} x+\log |\sin x|+c$
Hint: Use substitution method to solve this integral.
Given: $\int \frac{\cos ^{5} x}{\sin x} d x$
Solution:
$\text { Let } I=\int \frac{\cos ^{5} x}{\sin x} d x$
\begin{aligned} &\text { Put } \sin x=t \Rightarrow \cos x \; d x=d t \\ &\Rightarrow d x=\frac{d t}{\cos x} \text { then } \end{aligned}
$I=\int \frac{\cos ^{5} x}{t} \frac{d t}{\cos x}=\int \frac{\cos ^{4} x}{t} d t$
$=\int \frac{\left(\cos ^{2} x\right)^{2}}{t} d t=\int \frac{\left(1-\sin ^{2} x\right)^{2}}{t} d t$ $\left[\begin{array}{l} \because \cos ^{2} x+\sin ^{2} x=1 \\ \Rightarrow \cos ^{2} x=1-\sin ^{2} x \end{array}\right]$
$=\int \frac{\left(1-t^{2}\right)^{2}}{t} d t$ $[\because \sin x=t]$
$=\int\left\{\frac{1+\left(t^{2}\right)^{2}-2 t^{2}}{t}\right\} d t$ $\left[\because(a-b)^{2}=a^{2}+b^{2}-2 a b\right]$
\begin{aligned} &=\int\left\{\frac{1+\left(t^{4}\right)-2 t^{2}}{t}\right\} d t \\ &=\int\left\{\frac{1}{t}+\frac{t^{4}}{t}-\frac{2 t^{2}}{t}\right\} d t \\ &=\int\left\{\frac{1}{t}+t^{3}-2 t\right\} d t \end{aligned}
$=\int \frac{1}{t} d t+\int t^{3} d t-2 \int t\; d t$
$=\log |t|+\frac{t^{3+1}}{3+1}-2 \frac{t^{1+1}}{1+1}+c$ $\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right]$
\begin{aligned} &=\log |t|+\frac{t^{4}}{4}-2 \frac{t^{2}}{2}+c \\ &=\frac{1}{4} \sin ^{4} x-\sin ^{2} x+\log |\sin x|+c \quad[\because t=\sin x] \end{aligned}

Indefinite Integrals exercise 18.9 question 47

Answer: $-2 \cos \sqrt{x}+c$
Hint: Use substitution method to solve this integral.
Given: $\int \frac{\sin \sqrt{x}}{\sqrt{x}} d x$
Solution:
\begin{aligned} &\text { Let } I=\int \frac{\sin \sqrt{x}}{\sqrt{x}} d x \\ &\text { Put } \sqrt{x}=t \Rightarrow \frac{1}{2 \sqrt{x}}\; d x=d t \\ &\Rightarrow d x=2 \sqrt{x} \; d t \text { then } \end{aligned}
$I=\int \frac{\sin t}{\sqrt{x}} 2 \sqrt{x} d t=2 \int \sin t\; d t$
$=2[-\cos t]+\mathrm{c} \quad\left[\because \int \sin x \; d x=-\cos x+c\right]$
\begin{aligned} &=-2 \cos t+c \\ &=-2 \cos \sqrt{x}+c \quad[\because t=\sqrt{x}] \end{aligned}

Indefinite Integrals exercise 18.9 question 48

Answer: $-\cot \left(x e^{x}\right)+c$
Hint: Use substitution method to solve this integral.
Given: $\int \frac{(x+1) e^{x}}{\sin ^{2}\left(x e^{x}\right)} d x$
Solution:
\begin{aligned} &\text { Let } I=\int \frac{(x+1) e^{x}}{\sin ^{2}\left(x e^{x}\right)} d x \\ &\text { Put } x e^{x}=t \Rightarrow\left(x e^{x}+1 . e^{x}\right) d x=d t \\ &\Rightarrow e^{x}(x+1) d x=d t \quad \text { then } \end{aligned}
$I=\int \frac{1}{\sin ^{2}(t)} d t=\int \operatorname{cosec}^{2} t \; d t \quad\left[\because \frac{1}{\sin x}=\operatorname{cosec\; x}\right]$
$=[-\cot t]+\mathrm{c} \quad\left[\because \int \operatorname{cosec}^{2} x \; d x=-\cot x+c\right]$
$=-\cot \left(x e^{x}\right)+c \quad\left[\because t=x e^{x}\right]$

Indefinite Integrals exercise 18.9 question 49

Answer:$\frac{5^{x+\tan ^{-1} x}}{\log 5}+C$
Hint: Use substitution method to solve this integral.
Given: $\int 5^{x+\tan ^{-1} x} \cdot\left(\frac{x^{2}+2}{1+x^{2}}\right) d x$
Solution:
\begin{aligned} &\text { Let } I=\int 5^{x+\tan ^{-1} x} \cdot\left(\frac{x^{2}+2}{1+x^{2}}\right) d x \\ &\text { Put } x+\tan ^{-1} x=t \\ &\Rightarrow\left(1+\frac{1}{1+x^{2}}\right) d x=d t \Rightarrow\left(\frac{\left(1+x^{2}\right)+1}{1+x^{2}}\right) d x=d t \\ &\Rightarrow\left(\frac{1+x^{2}+1}{1+x^{2}}\right) d x=d t \Rightarrow\left(\frac{2+x^{2}}{1+x^{2}}\right) d x=d t \text { then } \end{aligned}
$I=\int 5^{t} d t=\frac{5^{t}}{\log 5}+c \quad\left[\because \int a^{x} d x=\frac{a^{x}}{\log a}+c\right]$
$=\frac{5^{x+\tan ^{-1} x}}{\log 5}+c \quad\left[\because t=x+\tan ^{-1} x\right]$

Indefinite Integrals exercise 18.9 question 50

Answer: $\frac{1}{m} e^{m \sin ^{-1} x}+c$
Hint: Use substitution method to solve this integral.
Given: $\int \frac{e^{m \sin ^{-1} x}}{\sqrt{1-x^{2}}} d x$
Solution:
\begin{aligned} &\text { Let } I=\int \frac{e^{m \sin ^{-1} x}}{\sqrt{1-x^{2}}} d x \\ &\text { Put } m \sin ^{-1} x=t \Rightarrow m \frac{1}{\sqrt{1-x^{2}}} d x=d t \\ &\Rightarrow \mathrm{d} \mathrm{x}=\frac{\sqrt{1-x^{2}}}{m} \mathrm{dt} \text { then } \end{aligned}
$I=\int \frac{e^{t}}{\sqrt{1-x^{2}}} \cdot \frac{\sqrt{1-x^{2}}}{m} d t \Rightarrow \frac{1}{m} \int e^{t} d t$
$=\frac{1}{m} e^{t}+c \quad\left[\because \int e^{x} d x=e^{x}+c\right]$
$=\frac{1}{m} e^{m \sin ^{-1} x}+c \quad\left[\because t=m \sin ^{-1} x\right]$

Indefinite Integrals exercise 18.9 question 51

Answer: $2 \sin \sqrt{x}+c$
Hint: Use substitution method to solve this integral.
Given: $\int \frac{\cos \sqrt{x}}{\sqrt{x}} d x$
Solution:
\begin{aligned} &\text { Let } I=\int \frac{\cos \sqrt{x}}{\sqrt{x}} d x \\ &\text { Put } \sqrt{x}=t \Rightarrow \frac{1}{2 \sqrt{x}} d x=d t \\ &\Rightarrow d x=2 \sqrt{x}\; d t \text { then } \end{aligned}
\begin{aligned} I &=\int \frac{\cos t}{\sqrt{x}} \cdot 2 \sqrt{x} \; d t \Rightarrow 2 \int \cos t \; d t \\ &=2 \sin t+\mathrm{c} \quad\left[\because \int \cos x\; d x=\sin x+c\right] \\ &=2 \sin \sqrt{x}+c \quad[\because t=\sqrt{x}] \end{aligned}

Indefinite Integrals exercise 18.9 question 52

Answer: $-\cos \left(\tan ^{-1} x\right)+c$
Hint: Use substitution method to solve this integral.
Given: $\int \frac{\sin \left(\tan ^{-1} x\right)}{1+x^{2}} d x$
Solution:
$\text { Let } I=\int \frac{\sin \left(\tan ^{-1} x\right)}{1+x^{2}} d x$
\begin{aligned} \text { put } \tan ^{-1} x=t & \Rightarrow \frac{1}{1+x^{2}} d x=d t \\ & \Rightarrow d x=\left(1+x^{2}\right) d t \end{aligned}
$I=\int \frac{\sin t}{1+x^{2}}\left(1+x^{2}\right) d t=\int \sin t \; d t$
$\begin{array}{ll} =-\cos t+c & {\left[\because \int \sin x \; d x=-\cos x+c\right]} \\ =-\cos \left(\tan ^{-1} x\right)+c & {\left[\because t=\tan ^{-1} x\right]} \end{array}$

Indefinite Integrals exercise 18.9 question 53

Answer: $-\cos (\log x)+c$
Hint: Use substitution method to solve this integral.
Given: $\int \frac{\sin (\log x)}{x} d x$
Solution:
$\text { Let } I=\int \frac{\sin (\log x)}{x} d x$
\begin{aligned} &\text { Put } \log x=t \Rightarrow \frac{1}{x} d x=d t \Rightarrow d x=x \; d t \\ &\text { Then } I=\int \frac{\sin t}{x} \cdot x d t=\int \sin t \; d t \end{aligned}
$\begin{array}{ll} =-\cos t+c & \ \because \sin x \; d x=-\cos x+c] \\ =-\cos (\log x)+c & {[\because t=\log x]} \end{array}$

Indefinite Integrals exercise 18 .9 question 54

Answer: $\frac{1}{m} e^{m \tan ^{-1} x}+c$
Hint: Use substitution method to solve this integral.
Given: $\int \frac{e^{m \tan ^{-1} x}}{1+x^{2}} d x$
Solution:
$\text { Let } I=\int \frac{e^{m \tan ^{-1} x}}{1+x^{2}} d x$
\begin{aligned} &\text { Put } m \tan ^{-1} x=t \Rightarrow m \frac{1}{1+x^{2}} d x=d t \\ &\Rightarrow d x=\frac{1+x^{2}}{m} d t \end{aligned}
\begin{aligned} &I=\int \frac{e^{t}}{1+x^{2}} \cdot \frac{1}{m} \cdot\left(1+x^{2}\right) d t \\ &=\int \frac{e^{t}}{m} d t \end{aligned}
$=\frac{1}{m} \int e^{t} d t=\frac{1}{m}\left(e^{t}\right)+c \quad\left[\because \int e^{x} d x=e^{x}+c\right]$
$=\frac{1}{m} e^{m \tan ^{-1} x}+c \quad\left[\because t=m \tan ^{-1} x\right]$

Indefinite Integrals exercise 18.9 question 55

Answer: $\frac{1}{6 a^{2}}\left[\left(x^{2}+a^{2}\right)^{\frac{3}{2}}-\left(x^{2}-a^{2}\right)^{\frac{3}{2}}\right]+c$
Hint: Use substitution method to solve this integral.
Given: $\int \frac{x}{\sqrt{x^{2}+a^{2}}+\sqrt{x^{2}-a^{2}}} d x$
Solution:
$\text { Let } I=\int \frac{x}{\sqrt{x^{2}+a^{2}}+\sqrt{x^{2}-a^{2}}} d x$
On Rationalising we get
$I=\int\left(\frac{x}{\sqrt{x^{2}+a^{2}}+\sqrt{x^{2}-a^{2}}} \times \frac{\sqrt{x^{2}+a^{2}}-\sqrt{x^{2}-a^{2}}}{\sqrt{x^{2}+a^{2}}-\sqrt{x^{2}-a^{2}}}\right) d x$
$=\int\left(\frac{x\left(\sqrt{x^{2}+a^{2}}-\sqrt{x^{2}-a^{2}}\right)}{\left(\sqrt{x^{2}+a^{2}}+\sqrt{x^{2}-a^{2}}\right)\left(\sqrt{x^{2}+a^{2}}-\sqrt{x^{2}-a^{2}}\right)}\right) d x$
$=\int \frac{x\left(\sqrt{x^{2}+a^{2}}-\sqrt{x^{2}-a^{2}}\right)}{\left(\sqrt{x^{2}+a^{2}}\right)^{2}-\left(\sqrt{x^{2}-a^{2}}\right)^{2}} d x$
$=\int \frac{x\left(\sqrt{x^{2}+a^{2}}-\sqrt{x^{2}-a^{2}}\right)}{\left(x^{2}+a^{2}\right)-\left(x^{2}-a^{2}\right)} d x$
$=\int \frac{x\left(\sqrt{x^{2}+a^{2}}-\sqrt{x^{2}-a^{2}}\right)}{x^{2}+a^{2}-x^{2}+a^{2}} d x$
$=\int \frac{x\left(\sqrt{x^{2}+a^{2}}-\sqrt{x^{2}-a^{2}}\right)}{2 a^{2}} d x$
$=\frac{1}{2 a^{2}} \int\left(x \sqrt{x^{2}+a^{2}}-x \sqrt{x^{2}-a^{2}}\right) d x$
$=\frac{1}{2 a^{2}} \int x \sqrt{x^{2}+a^{2}} d x-\frac{1}{2 a^{2}} \int x \sqrt{x^{2}-a^{2}} d x$ ..........$(i)$
$\text { Now } \frac{1}{2 a^{2}} \int x \sqrt{x^{2}+a^{2}} d x$
\begin{aligned} &\text { Put } x^{2}+a^{2}=t \Rightarrow 2 x \; d x=d t \Rightarrow d x=\frac{a \imath}{2 x} \\ &\text { Then, } \frac{1}{2 a^{2}} \int x \sqrt{x^{2}+a^{2}} d x=\frac{1}{2 a^{2}} \int x \sqrt{t} \cdot \frac{d t}{2 x}=\frac{1}{4 a^{2}} \int t^{\frac{1}{2}} d t \end{aligned}
$=\frac{1}{4 a^{2}} \cdot \frac{t_{2}^{\frac{1}{1}+1}}{\frac{1}{2}+1}+c_{1}=\frac{1}{4 a^{2}} \cdot \frac{2}{3} \cdot t^{\frac{3}{2}}+c_{1} \quad\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right]$
$=\frac{1}{6 a^{2}}\left(x^{2}+a^{2}\right)^{\frac{3}{2}}+c_{1}$ ......$(ii)$ $\left(\because t=x^{2}+a^{2}\right)$
$\text { and, } \frac{1}{2 a^{2}} \int x \sqrt{x^{2}-a^{2}} d x$
\begin{aligned} &\text { Put, } x^{2}-a^{2}=u \Rightarrow 2 x d x=d u \Rightarrow d x=\frac{d u}{2 x} \\ &\frac{1}{2 a^{2}} \int x \sqrt{x^{2}-a^{2}} d x=\frac{1}{2 a^{2}} \int x \cdot \sqrt{u} \cdot \frac{d u}{2 x}=\frac{1}{4 a^{2}} \int u_{}^{\frac{1}{2}} d u \text { then, } \end{aligned}
$=\frac{1}{4 a^{2}}\left[\frac{u^{\frac{1}{2}+1}}{\frac{1}{2}+1}\right]+c_{2} \quad\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right]$
\begin{aligned} &=\frac{1}{4 a^{2}}\left[\frac{u^{\frac{3}{2}}}{\frac{3}{2}}\right]+c_{2} \\ &=\frac{1}{4 a^{2}} \cdot \frac{2}{3} u_{}^{\frac{3}{2}}+c_{2} \end{aligned}
$=\frac{1}{6 a^{2}}\left(x^{2}-a^{2}\right)^{\frac{3}{2}}+c_{2}$ ....$(iii)$ $\left(\because u=x^{2}-a^{2}\right)$
Putting the values of eqn$(ii)$ and eqn$(iii)$ in $(i)$ then,
\begin{aligned} &I=\frac{1}{6 a^{2}}\left(x^{2}+a^{2}\right)^{\frac{3}{2}}+c_{1}-\frac{1}{6 a^{2}}\left(x^{2}-a^{2}\right)^{\frac{3}{2}}-c_{2} \\ &=\frac{1}{6 a^{2}}\left[\left(x^{2}+a^{2}\right)^{\frac{3}{2}}-\left(x^{2}-a^{2}\right)^{\frac{3}{2}}\right]+c \quad\left(\because c=c_{1}-c_{2}\right) \end{aligned}

Indefinite Integrals exercise 18.9 question 56

Answer:$\int \frac{x \tan ^{-1} x^{2}}{1+x^{4}} d x$
Hint: Use substitution method to solve this integral.
Given: $\frac{1}{4}\left(\tan ^{-1} x^{2}\right)^{2}+c$
Solution:
$I=\int \frac{x \tan ^{-1} x^{2}}{1+x^{4}} d x$
\begin{aligned} &\text { Put } \tan ^{-1} x^{2}=t \Rightarrow \frac{1}{1+\left(x^{2}\right)^{2}} 2 x\; d x=d t \\ &\Rightarrow \frac{2 x}{1+x^{4}}\; d x=d t \Rightarrow d x=\frac{1+x^{4}}{2 x} d t \\ &\text { Then, } I=\int \frac{x t}{1+x^{4}} \cdot \frac{1+x^{4}}{2 x} d t=\frac{1}{2} \int t\; d t \end{aligned}
$=\frac{1}{2} \frac{t^{1+1}}{1+1}+c \quad\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right]$
\begin{aligned} &=\frac{1}{2} \cdot \frac{t^{2}}{2}+c=\frac{1}{4} t^{2}+c \\ &=\frac{1}{4}\left(\tan ^{-1} x^{2}\right)^{2}+c \quad\left[\because t=\tan ^{-1} x^{2}\right] \end{aligned}

Indefinite Integrals exercise 18.9 question 57

Answer: $\frac{1}{4}\left(\sin ^{-1} x\right)^{4}+c$
Hint: Use substitution method to solve this integral

Given: $\int \frac{\left(\sin ^{-1} x\right)^{3}}{\sqrt{1-x^{2}}} d x$
Solution:
$\text { Let } I=\int \frac{\left(\sin ^{-1} x\right)^{3}}{\sqrt{1-x^{2}}} d x$
\begin{aligned} &\text { put } \sin ^{-1} x=t \Rightarrow \frac{1}{\sqrt{1-x^{2}}} d x=d t \\ &\Rightarrow d x=\sqrt{1-x^{2}} d t \end{aligned}
$I=\int \frac{t^{3}}{\sqrt{1-x^{2}}} \cdot \sqrt{1-x^{2}} d t=\int t^{3} d t$
$=\frac{t^{3+1}}{3+1}+c \quad\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right]$
$=\frac{1}{4} t^{4}+c=\frac{1}{4}\left(\sin ^{-1} x\right)^{4}+c \quad\left[\because t=\sin ^{-1} x\right]$

Indefinite Integrals exercise 18.9 question 58

Answer: $-\frac{1}{3} \cos (2+3 \log x)+c$
Hint: Use substitution method to solve this integral

Given: $\int \frac{\sin (2+3 \log x)}{x} d x$
Solution:
$\text { Let } I=\int \frac{\sin (2+3 \log x)}{x} d x$
\begin{aligned} &\text { Put } 2+3 \log x=t \Rightarrow 3 \cdot \frac{1}{x} d x=d t \Rightarrow d x=\frac{x}{3} d t \\ &\text { Then, } I=\int \frac{\sin t}{x} \cdot \frac{x}{3} d t=\frac{1}{3} \int \sin t \; d t \end{aligned}
$=\frac{1}{3}(-\cos t)+c \quad\left[\because \int \sin x\; d x=-\cos x+c\right]$
\begin{aligned} &=\frac{-1}{3} \cos t+c \\ &=\frac{-1}{3} \cos (2+3 \log x)+c \end{aligned} $[\because t=2+3 \log x]$

Indefinite Integrals exercise 18.9 question 59

Answer: $\frac{1}{2} e^{x^{2}}+c$
Hint: Use substitution method to solve this integral

Given: $\int x\: e^{x^{2}} d x$
Solution:
$\text { Let } I=\int x\: e^{x^{2}} d x$
\begin{aligned} &\text { Put } x^{2}=t \Rightarrow 2 x d x=d t \Rightarrow d x=\frac{1}{2 x} d t \\ &\text { Then, } I=\int x \cdot e^{t} \cdot \frac{d t}{2 x}=\frac{1}{2} \int e^{t} d t=\frac{1}{2} e^{t}+c \end{aligned} $\left[\because \int e^{x} d x=e^{x}+c\right]$
$=\frac{1}{2} e^{x^{2}}+c$ $\left[\because t=x^{2}\right]$

Indefinite Integrals exercise 18.9 question 60

Answer: $1+e^{x}-\log \left|1+e^{x}\right|+c$
Hint: Use substitution method to solve this integral

Given: $\int \frac{e^{2 x}}{1+e^{x}} d x$
Solution:
$I=\int \frac{e^{2 x}}{1+e^{x}} d x$
\begin{aligned} &\text { Put } 1+e^{x}=t \Rightarrow e^{x} d x=d t \Rightarrow d x=\frac{d t}{e^{x}} \\ &\text { Then, } I=\int \frac{e^{2 x}}{t} \cdot \frac{d t}{e^{x}}=\int \frac{\left(e^{x}\right)^{2}}{t} \cdot \frac{d t}{e^{x}} \end{aligned}
$=\int \frac{e^{x}}{t} d t=\int \frac{t-1}{t} d t \quad\left[\because 1+e^{x} \Rightarrow e^{x}=t-1\right]$
\begin{aligned} &=\int\left(\frac{t}{t}-\frac{1}{t}\right) d t=\int\left(1-\frac{1}{t}\right) d t \\ &=\int 1 . d t-\int \frac{1}{t} d t=\int t^{0} d t-\int \frac{1}{t} d t \end{aligned}
$=\frac{t^{0+1}}{0+1}-\log |t|+c$ $\left[\begin{array}{l} \because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c \\ \int \frac{1}{x} d x=\log |x|+c \end{array}\right]$
\begin{aligned} &=t-\log |t|+c \\ &=1+e^{x}-\log \left|1+e^{x}\right|+c\; \; \; \; \; \; \; \; \; \left[\because t=1+e^{x}\right] \end{aligned}

Indefinite Integrals exercise 18.9 question 61

Answer:$2 \tan (\sqrt{x})+c$
Hint: Use substitution method to solve this integral

Given: $\int \frac{\sec ^{2} \sqrt{x}}{\sqrt{x}} d x$
Solution:
$\text { Let } I=\int \frac{\sec ^{2} \sqrt{x}}{\sqrt{x}} d x$
\begin{aligned} &\text { Put } \sqrt{x}=t \Rightarrow \frac{1}{2 \sqrt{x}} d x=d t \Rightarrow d x=2 \sqrt{x}\; d t \\ &\text { Then, } I=\int \frac{\sec ^{2} t}{\sqrt{x}} \cdot 2 \sqrt{x}\; d t=2 \int \sec ^{2} t \; d t \end{aligned}
$=2 \tan t+c \quad\left[\because \int \sec ^{2} x d x=\tan x+c\right]$
$=2 \tan \sqrt{x}+c \quad[\because t=\sqrt{x}]$

Indefinite Integrals exercise 18.9 question 63

Answer: $(x+1)+2 \sqrt{x+1}-2 \tan ^{-1}(\sqrt{x+1})-2 \log |x+2|+c$
Hint: Use substitution method to solve this integral

Given: $\int \frac{x+\sqrt{x+1}}{x+2} d x$
Solution:
$\text { Let } \mathrm{I}=\int \frac{x+\sqrt{x+1}}{x+2}$
$\text { Put } x+1=t^{2} \Rightarrow d x=2 t\; d t \text { then }$
$I=\int \frac{\left(t^{2}-1\right)+\sqrt{t^{2}}}{t^{2}+1} 2 t \; d t=2 \int \frac{\left(t^{2}-1\right)+t}{t^{2}+1} t\; d t \quad\left[\begin{array}{l} \because x+1=t^{2} \\ \Rightarrow x=t^{2}-1 \end{array}\right]$
$\Rightarrow I=2 \int\left(\frac{t^{2}+t-1}{t^{2}+1}\right) t \; d t=2 \int\left(\frac{t^{2} \cdot t+t . t-t}{t^{2}+1}\right) d t$
\begin{aligned} &\Rightarrow I=2 \int\left(\frac{t^{3}+t^{2}-t}{t^{2}+1}\right) d t=2 \int\left\{\frac{t^{3}}{t^{2}+1}+\frac{t^{2}}{t^{2}+1}-\frac{t}{t^{2}+1}\right\} d t \\ &\Rightarrow I=2\left[\int \frac{t^{3}}{t^{2}+1} d t+\int \frac{t^{2}}{t^{2}+1} d t-\int \frac{t}{t^{2}+1} d t\right] \end{aligned}
We can write
$I=2\left(I_{1}+I_{2}-I_{3}\right)$ $.........(i)$
\begin{aligned} \text { where } I_{1}=\int \frac{t^{3}}{t^{2}+1} d t \end{aligned}
$I_{2}=\int \frac{t^{2}}{t^{2}+1} d t$
$\text { and } I_{3}=\int \frac{t}{t^{2}+1} d t$
$\text { Now } I_{1}=\int \frac{t^{3}}{t^{2}+1} d t=\int\left(\frac{t^{3}+t-t}{t^{2}+1}\right) d t$
$=\int\left(\frac{\left(t^{3}+t\right)-t}{t^{2}+1}\right) d t=\int\left(\frac{t^{3}+t}{t^{2}+1}-\frac{t}{t^{2}+1}\right) d t$
$=\int\left(\frac{t\left(t^{2}+1\right)}{t^{2}+1}-\frac{t}{t^{2}+1}\right) d t=\int\left(t-\frac{t}{t^{2}+1}\right) d t$
$=\int t\; d t-\int \frac{t}{t^{2}+1} d t$
\begin{aligned} &\text { put } t^{2}+1=u \Rightarrow 2 t \; d t=d u \Rightarrow t \; d t=\frac{d u}{2} \text { then } \\ &I_{1}=\int t \; d t-\int \frac{1}{u} \frac{d u}{2}=\int t\; d t-\frac{1}{2} \int \frac{d u}{u} \end{aligned}
$=\frac{t^{1+1}}{1+1}-\frac{1}{2} \log |u|+c_{1}\left[\begin{array}{l} \because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c \\ \int \frac{1}{x} d x=\log |x|+c \end{array}\right]$
$=\frac{t^{2}}{2}-\frac{1}{2} \log \left|1+t^{2}\right|+c_{1}$ $.......(ii)$ $\left[\because u=t^{2}+1\right]$
$\text { And } I_{2}=\int \frac{t^{2}}{t^{2}+1} d t=\int\left(\frac{t^{2}+t-t}{t^{2}+1}\right) d t$
\begin{aligned} &=\int\left(\frac{\left(t^{2}+1\right)-1}{t^{2}+1}\right) d t=\int\left(\frac{t^{2}+1}{t^{2}+1}-\frac{1}{t^{2}+1}\right) d t \\ &=\int\left(1-\frac{1}{t^{2}+1}\right) d t=\int t^{0} d t-\int \frac{1}{t^{2}+1} d t \end{aligned}
$=\frac{t^{0+1}}{0+1}-\tan ^{-1}(t)+c_{2}\left[\begin{array}{l} \because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c \\ \int \frac{1}{x} d x=\log |x|+c \end{array}\right]$
$=t-\tan ^{-1}(t)+c_{2}$ $.......(iii)$
\begin{aligned} &\text { Also } I_{3}=\int \frac{t}{t^{2}+1} d t \\ &\text { put } t^{2}+1=p \Rightarrow 2 t d t=d p \Rightarrow t d t=\frac{d p}{2} \text { then } \\ &I_{3}=\int \frac{1}{p} \frac{d p}{2}=\frac{1}{2} \int \frac{1}{p} d p=\frac{1}{2} \log |p|+c_{3} \end{aligned}
$=\frac{1}{2} \log \left|1+t^{2}\right|+c_{3}$ $......(iv)$
\begin{aligned} &\text { Substituting the values of } I_{1}, I_{2}, I_{3} \text { from eqn(ii), (iii) and (iv) in }(i) \text { then }\\ &I=2\left[\frac{t^{2}}{2}-\frac{1}{2} \log \left|1+t^{2}\right|+c_{1}+t-\tan ^{-1}(t)+c_{2}-\frac{1}{2} \log \left|1+t^{2}\right|-c_{3}\right] \end{aligned}
$=2\left[\frac{t^{2}}{2}+t-\tan ^{-1}(t)-\left(\frac{1}{2}+\frac{1}{2}\right) \log \left|1+t^{2}\right|+c_{1}+c_{2}-c_{3}\right]$
$=2\left[\frac{t^{2}}{2}+t-\tan ^{-1}(t)-\log \left|1+t^{2}\right|+c_{4}\right] \quad\left[\because c_{4}=c_{1}+c_{2}-c_{3}\right]$
\begin{aligned} &=2 \cdot \frac{t^{2}}{2}+2 t-2 \tan ^{-1}(t)-2 \log \left|1+t^{2}\right|+2 c_{4} \\ &=t^{2}+2 t-2 \tan ^{-1}(t)-2 \log \left|1+t^{2}\right|+c \end{aligned}
\begin{aligned} &\text { [ since } x+1=t^{2} \text { ] } \\ &=(x+1)+2 \sqrt{x+1}-2 \tan ^{-1} \sqrt{x+1}-2 \log |1+x+1|+c \\ &\mathrm{I}=(x+1)+2 \sqrt{x+1}-2 \tan ^{-1}(\sqrt{x+1})-2 \log |x+2|+c \end{aligned}

Indefinite Integrals exercise 18.9 question 64

Answer: $\frac{1}{(\log 5)^{3}} \cdot 5^{5^{5^{x}}}+c$
Hint: Use substitution method to solve this integral

Given: $\int 5^{5^{5^{x}}} 5^{5^{x}} 5^{x} d x$
Solution:
\begin{aligned} &\text { let } I=\int 5^{5^{5^{x}}} 5^{5^{x}} 5^{x} d x \\ &\text { Putting } 5^{5^{5^{x}}}=t \end{aligned}
$\Rightarrow\left(5^{5^{5^{x}}} \cdot \log 5.5^{5^{x}} \cdot \log 5.5^{x} \log 5\right) d x=d t$
\begin{aligned} &\Rightarrow 5^{5^{5^{5}}} 5^{5^{x}} 5^{x}(\log 5)^{3} d x=d t \\ &\Rightarrow\left(5^{5^{5^{x}}} 5^{5^{x}} 5^{x}\right) d x=\frac{d t}{(\log 5)^{3}} \text { then } \end{aligned}
$I=\int \frac{d t}{(\log 5)^{3}}=\frac{1}{(\log 5)^{3}} \int 1 d t$
$=\frac{1}{(\log 5)^{3}} \int t^{0} d t=\frac{1}{(\log 5)^{3}} \frac{t^{0+1}}{0+1} \quad\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right]$
$=\frac{1}{(\log 5)^{3}} \cdot t+c=\frac{1}{(\log 5)^{3}} \cdot 5^{5^{5^{x}}}+c\left[\because 5^{5^{5^{x}}}=t\right]$

Indefinite Integrals exercise 18.9 question 65

Answer: $\frac{1}{2} \sec ^{-1}\left(x^{2}\right)+c$
Hint: Use substitution method to solve this integral

Given: $\int \frac{1}{x \sqrt{x^{4}-1}} d x$
Solution:
\begin{aligned} &\operatorname{let} I=\int \frac{1}{x \sqrt{x^{4}-1}} d x=\int \frac{1}{x \sqrt{\left(x^{2}\right)^{2}-1}} d x \\ &\text { Putting } x^{2}=t \Rightarrow 2 x \; d x=d t \Rightarrow d x=\frac{d t}{2 x} \text { then } \end{aligned}
$I=\int \frac{1}{x \sqrt{t^{2}-1}} \frac{d t}{2 x}=\frac{1}{2} \int \frac{1}{x^{2} \sqrt{t^{2}-1}} d t$
$=\frac{1}{2} \int \frac{1}{t \sqrt{t^{2}-1}} d t \quad\left[\because x^{2}=t\right]$
$=\frac{1}{2} \sec ^{-1} \mathrm{t}+c \quad\left[\because \int \frac{1}{x \sqrt{x^{2}-1}} d x=\sec ^{-1} x+c\right]$
$=\frac{1}{2} \sec ^{-1}\left(x^{2}\right)+c \quad\left[\because t=x^{2}\right]$

Indefinite Integrals exercise 18.9 question 66

Answer: $2 \sqrt{e^{x}-1}-2 \tan ^{-1}\left(\sqrt{e^{x}-1}\right)+c$
Hint: Use substitution method to solve this integral

Given: $\int \sqrt{e^{x}-1} \; d x$
Solution:
\begin{aligned} &\operatorname{let} I=\int \sqrt{e^{x}-1} d x \\ &\text { Putting } \mathrm{e}^{x}-1=t^{2} \Rightarrow e^{x} d x=2 t d t \Rightarrow d x=\frac{2 t \cdot d t}{e^{x}} \text { then } \end{aligned}
$I=\int \sqrt{t^{2}} \frac{2 t \; d t}{e^{x}}$
$=2 \int \frac{t \cdot t}{t^{2}+1} d t \quad\left[\because e^{x}-1=t^{2} \Rightarrow t^{2}+1=e^{x}\right]$
\begin{aligned} &=2 \int \frac{t^{2}}{t^{2}+1} d t \\ &=2 \int\left(\frac{t^{2}+1-1}{t^{2}+1}\right) d t \end{aligned}
\begin{aligned} &=2 \int\left(\frac{\left(t^{2}+1\right)-1}{t^{2}+1}\right) d t \\ &=2 \int\left(\frac{\left(t^{2}+1\right)}{t^{2}+1}-\frac{1}{t^{2}+1}\right) d t=2 \int\left(1-\frac{1}{t^{2}+1}\right) d t \end{aligned}
$=2 \int 1 d t-2 \int \frac{1}{t^{2}+1} d t=2 \int t^{0} d t-2 \int \frac{1}{t^{2}+1} d t$
$=2 \frac{t^{0+1}}{0+1}-2 \tan ^{-1}(t)+c$ $\left[\begin{array}{l} \because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c \\ \int \frac{1}{1+x^{2}} d x=\tan ^{-1} x+c \end{array}\right]$
\begin{aligned} &=2 t-2 \tan ^{-1}(t)+c \\ &=2 \sqrt{e^{x}-1}-2 \tan ^{-1}\left(\sqrt{e^{x}-1}\right)+\mathrm{c} \end{aligned} $\left[\because t^{2}=e^{x}-1 \Rightarrow t=\sqrt{e^{x}-1}\right]$

Indefinite Integrals exercise 18.9 question 67

Answer: $\log \left|\frac{x+1}{\sqrt{x^{2}+2 x+2}}\right|+c$
Hint: Use substitution method to solve this integral

Given: $\int \frac{1}{(x+1)\left(x^{2}+2 x+2\right)} d x$
Solution:
$\operatorname{let} I=\int \frac{1}{(x+1)\left(x^{2}+2 x+2\right)} d x$
\begin{aligned} &=\int \frac{1}{(x+1)\left(x^{2}+2 x+1+1\right)} d x \\ &=\int \frac{1}{(x+1)\left\{\left(x^{2}+2 x+1\right)+1\right\}} d x \end{aligned}
$=\int \frac{1}{(x+1)\left\{(x+1)^{2}+1\right\}} d x$ $\left[\because(a+b)^{2}=a^{2}+b^{2}+2 a b\right]$
$\text { Putting } x+1=\tan u$$......(i)$
$\Rightarrow d x=\sec ^{2} u \; d u \text { then }$
$I=\int \frac{1}{\tan u\left\{\tan ^{2} u+1\right\}} \sec ^{2} u\; d u$
$=\int \frac{1}{\tan u\left\{\sec ^{2} u\right\}} \sec ^{2} u \; d u\left[\because 1+\tan ^{2} u=\sec ^{2} u\right]$
$=\int \frac{1}{\tan u} d u=\int \cot u\; d u$
$=\log |\sin u|+c$ $........(ii)$ $\left[\because \int \cot x \; d x=\log |\sin x|+c\right]$
$\text { Also, from (i) } x+1=\tan u=\frac{\sin u}{\cos u} \quad\left[\because \tan x=\frac{\sin x}{\cos x}\right]$
\begin{aligned} &\Rightarrow(x+1) \cos u=\sin u \\ &\Rightarrow(x+1)^{2} \cos ^{2} u=\sin ^{2} u \quad[\text { Squaring on both sides }] \\ &\Rightarrow(x+1)^{2}\left(1-\sin ^{2} u\right)=\sin ^{2} u \quad\left[\because \cos ^{2} x=1-\sin ^{2} x\right] \\ &\Rightarrow(x+1)^{2}-(x+1)^{2} \sin ^{2} u=\sin ^{2} u \\ &\Rightarrow(x+1)^{2}=\sin ^{2} u+(x+1)^{2} \sin ^{2} u \\ &\Rightarrow(x+1)^{2}=\left[1+(x+1)^{2}\right] \sin ^{2} u \end{aligned}
$\Rightarrow \sin ^{2} u=\frac{(x+1)^{2}}{1+(x+1)^{2}}=\frac{(x+1)^{2}}{x^{2}+2 x+1+1}=\frac{(x+1)^{2}}{x^{2}+2 x+2} \quad\left[\because(a+b)^{2}=a^{2}+b^{2}+2 a b\right]$
$\Rightarrow \sin u=\sqrt{\frac{(x+1)^{2}}{x^{2}+2 x+2}}=\frac{(x+1)}{\sqrt{x^{2}+2 x+2}}$ $........(iii)$
\begin{aligned} &\text { From (ii) and (iii) we get }\\ &I=\log \left|\frac{x+1}{\sqrt{x^{2}+2 x+2}}\right|+c \end{aligned}

Indefinite Integrals exercise 18.9 question 68

Answer: $\frac{2}{9}\left(1+x^{3}\right)^{\frac{3}{2}}-\frac{2}{3}\left(1+x^{3}\right)^{\frac{1}{2}}+c$
Hint: Use substitution method to solve this integral

Given: $\int \frac{x^{5}}{\sqrt{1+x^{3}}} d x$
Solution:
\begin{aligned} &\text { Let } I=\int \frac{x^{5}}{\sqrt{1+x^{3}}} d x \\ &\text { Put } 1+x^{3}=t^{2} \Rightarrow 3 x^{2} d x=2 t \; d t \\ &\Rightarrow d x=\frac{2 t}{3 x^{2}} d t \text { then } \end{aligned}
$I=\int \frac{x^{5}}{\sqrt{t^{2}}} \frac{2 t \; d t}{3 x^{2}}=\int \frac{2}{3} \frac{x^{3} \cdot t}{t} d t=\frac{2}{3} \int x^{3} d t$
$=\frac{2}{3} \int\left(t^{2}-1\right) \mathrm{dt} \quad\left[\because 1+x^{3}=t^{2} \Rightarrow t^{2}-1=x^{3}\right]$
$=\frac{2}{3} \int t^{2} d t-\frac{2}{3} \int 1 d t=\frac{2}{3} \int t^{2} d t-\frac{2}{3} \int t^{0} d t$
$=\frac{2}{3} \frac{t^{2+1}}{2+1}-\frac{2}{3} \frac{t^{0+1}}{0+1}+\mathrm{c} \quad\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right]$
$=\frac{2}{3} \cdot \frac{t^{3}}{3}-\frac{2}{3} t+c$
$=\frac{2}{9}\left(1+x^{3}\right)^{\frac{3}{2}}-\frac{2}{3}\left(1+x^{3}\right)^{\frac{1}{2}}+\mathrm{c} \quad\left[\because t^{2}=1+x^{3} \Rightarrow t=\sqrt{1+x^{3}}\right]$

Indefinite Integrals exercise 18.9 question 69

Answer: $-\frac{20}{3}\left(5-x^{2}\right)^{\frac{3}{2}}+\frac{4}{5}\left(5-x^{2}\right)^{\frac{5}{2}}+c$
Hint: Use substitution method to solve this integral

Given: $\int 4 x^{3} \sqrt{5-x^{2}} \; d x$
Solution:
\begin{aligned} &\text { Let } I=\int 4 x^{3} \sqrt{5-x^{2}} \; d x \\ &\text { Put } 5-x^{2}=t^{2} \Rightarrow-2 x \; d x=2 t\; d t \\ &\Rightarrow d x=\frac{t}{-x} d t \text { then } \end{aligned}
$I=\int 4 x^{3} \sqrt{t^{2}} \frac{t \cdot d t}{-x}=-\int 4 x^{2} \cdot t . t \; d t$
$=-4 \int\left(5-t^{2}\right) t^{2} d t=-4 \int\left(5 t^{2}-t^{2} \cdot t^{2}\right) d t \quad\left[\because 5-x^{2}=t^{2} \Rightarrow x^{2}=5-t^{2}\right]$
$=-4 \int\left(5 t^{2}-t^{4}\right) d t$
$=-20 \int t^{2} d t+4 \int t^{4} d t$
$=-20 \cdot \frac{t^{2+1}}{2+1}+4 \cdot \frac{t^{4+1}}{4+1}+\mathrm{c} \quad\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right]$
$=-20 \cdot \frac{t^{3}}{3}+4 \frac{t^{5}}{5}+c$
$=-\frac{20}{3}\left(\sqrt{5-x^{2}}\right)^{3}+\frac{4}{5}\left(\sqrt{5-x^{2}}\right)^{5}+c \quad\left[\because t^{2}=5-x^{2} \Rightarrow t=\sqrt{5-x^{2}}\right]$
$=-\frac{20}{3}\left(5-x^{2}\right)^{\frac{3}{2}}+\frac{4}{5}\left(5-x^{2}\right)^{\frac{5}{2}}+c$

Indefinite Integrals exercise 18.9 question 70

Answer: $\frac{1}{2} \log |1+\sqrt{x}|+c$
Hint: Use substitution method to solve this integral

Given: $\int \frac{1}{\sqrt{x}+x} d x$
Solution:
\begin{aligned} &\text { Let } I=\int \frac{1}{\sqrt{x}+x} d x \\ &\text { Put } \sqrt{x}=t \Rightarrow \frac{1}{2 \sqrt{x}} d x=d t \\ &\Rightarrow d x=2 \sqrt{x} \; d t \text { then } \end{aligned}
\begin{aligned} &I=\int \frac{1}{t+t^{2}} 2 \sqrt{x} \; d t \\ &=\int \frac{1}{t(1+t)} 2 \sqrt{x} \; d t=2 \int \frac{1}{1+t} d t \end{aligned} $\left[\begin{array}{l} \because \sqrt{x}=t \\ \Rightarrow x=t^{2} \end{array}\right]$
\begin{aligned} &\text { Again put } 1+t=u \Rightarrow d t=d u \text { then }\\ &I=2 \int \frac{1}{u} d u=\frac{1}{2} \log |u|+c \end{aligned}$\left[\because \int \frac{1}{x} d x=\log |x|+c\right]$
$=\frac{1}{2} \log |t+1|+c \quad[\because u=1+t]$
$=\frac{1}{2} \log |1+\sqrt{x}|+c \quad[\because t=\sqrt{x}]$

Indefinite Integrals exercise 18.9 question 71

Answer:$-\left(1+\frac{1}{x^{4}}\right)^{\frac{1}{4}}+c$
Hint: Use substitution method to solve this integral

Given: $\int \frac{1}{x^{2}\left(x^{4}+1\right)^{\frac{3}{4}}} d x$
Solution:
$\text { Let } I=\int \frac{1}{x^{2}\left(x^{4}+1\right)^{\frac{3}{4}}} d x$
$=\int \frac{\frac{1}{x^{3}}}{x^{2}\left(x^{4}+1\right)^{\frac{3}{4}} \cdot \frac{1}{x^{3}}} d x \quad\left[\text { Dividing numerator and denominator by } \frac{1}{x^{3}}\right]$
$I=\int \frac{x^{-3}}{x^{2}\left(x^{4}+1\right)^{\frac{3}{4}} \cdot x^{-3}} d x=\int \frac{\left(x^{4}+1\right)^{-\frac{3}{4}}}{x^{3} x^{2} x^{-3}} d x$
$=\int \frac{\left(x^{4}+1\right)^{-\frac{3}{4}}}{x^{5} x^{-3}} d x=\int \frac{\left(x^{4}+1\right)^{-\frac{3}{4}}}{x^{5}\left(x^{4}\right)^{\frac{-3}{4}}} d x$
$=\int \frac{1}{x^{5}}\left(\frac{x^{4}+1}{x^{4}}\right)^{\frac{-3}{4}} d x=\int \frac{1}{x^{5}}\left(\frac{x^{4}}{x^{4}}+\frac{1}{x^{4}}\right)^{\frac{-3}{4}} d x$
$=\int \frac{1}{x^{5}}\left(1+\frac{1}{x^{4}}\right)^{\frac{-3}{4}} d x$
\begin{aligned} &\text { Put } \frac{1}{x^{4}}=\mathrm{t} \Rightarrow \frac{-4 d x}{x^{5}}=d t \\ &\Rightarrow d x=\frac{x^{5}}{-4} d t \text { then } \end{aligned}
$I=\int \frac{1}{x^{5}}(1+t)^{\frac{-3}{4}} \frac{x^{5}}{-4} d t=\frac{-1}{4} \int(1+t)^{\frac{-3}{4}} d t$
\begin{aligned} &\text { Again put } 1+t=u \Rightarrow d t=d u \text { then }\\ &I=\frac{-1}{4} \int(u)^{\frac{-3}{4}} d u=\frac{-1}{4} \frac{u^{\frac{-3}{4}+1}}{\frac{-3}{4}+1}+\mathrm{c} \quad\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right] \end{aligned}
$=\frac{-1}{4} \frac{u^{\frac{1}{4}}}{\frac{1}{4}}+c=\frac{-1}{4} \times 4 \cdot u^{\frac{1}{4}}+c$
$=-u^{\frac{1}{4}}+c=-(1+t)^{\frac{1}{4}}+c \quad[\because u=1+t]$
$=-\left(1+\frac{1}{x^{4}}\right)^{\frac{1}{4}}+c \quad\left[\because t=\frac{1}{x^{4}}\right]$

Indefinite Integrals exercise 18.9 question 72

Answer: $\frac{1}{3 \cos ^{2} x}-\cos x-\frac{2}{\cos x}+c$
Hint: Use substitution method to solve this integral

Given: $\int \frac{\sin ^{5} x}{\cos ^{4} x} d x$
Solution:
\begin{aligned} &\text { Let } I=\int \frac{\sin ^{5} x}{\cos ^{4} x} d x \\ &\text { Put } \cos \mathrm{x}=t \Rightarrow-\sin x \; d x=d t \\ &\Rightarrow d x=\frac{d t}{-\sin x} \text { then } \end{aligned}
$I=\int \frac{\sin ^{5} x}{t^{4} } \frac{d t}{-\sin x}=-\int \frac{\sin ^{4} x}{t^{4}} d t$
$=-\int \frac{\left(\sin ^{2} x\right)^{2}}{t^{4}} d t=-\int \frac{\left(1-\cos ^{2} x\right)^{2}}{t^{4}} d t$
$I=-\int \frac{\left(1+\cos ^{4} x-2 \cos ^{2} x\right)}{t^{4}} d t \quad\left[\because(a-b)^{2}=a^{2}+b^{2}-2 a b\right]$
$=-\int\left[\frac{1+t^{4}-2 t^{2}}{t^{4}}\right] d t \quad[\because \cos x=t]$
\begin{aligned} &=-\int\left[\frac{1}{t^{4}}+\frac{t^{4}}{t^{4}}-\frac{2 t^{2}}{t^{4}}\right] d t \\ &=-\int\left[\frac{1}{t^{4}}+1-\frac{2}{t^{2}}\right] d t \end{aligned}
\begin{aligned} &=-\int\left(t^{-4}+1-2 t^{-2}\right) d t \\ &=-\int t^{-4} d t-\int t^{0} d t+2 \int t^{-2} d t \end{aligned}
$=-\frac{t^{-4+1}}{-4+1}-\frac{t^{0+1}}{0+1}+2 \frac{t^{-2+1}}{-2+1}+\mathrm{c} \quad\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right]$
\begin{aligned} &=-\frac{t^{-3}}{-3}-t+2 \frac{t^{-1}}{-1}+c \\ &=\frac{1}{3 t^{3}}-t-2 \cdot \frac{t^{-1}}{1}+c \end{aligned}
$=\frac{1}{3 \cos ^{2} x}-\cos x-\frac{2}{\cos x}+c \quad[\because t=\cos x]$

RD Sharma Class 12th Exercise 18.9 is the best source for students to score good marks in exams. These are the following benefits of this material:

RD Sharma books are updated to a new version every year. This material provided by Career360 contains the latest version which means that All the solutions provided are from the newest version of the book and contain all the new concepts.

2. Prepared by experts

Every solution from RD Sharma Class 12th Exercise 18.9 material undergoes a multistep checking process that ensures that every answer is clear and easy to understand. Additionally, as a group of subject experts prepare this material, students can trust its accuracy and use it to prepare for their exams. As there are different ways to solve a problem in maths, students can figure out various methods and choose which one suits them the best.

'Indefinite Integrals' is a vast chapter containing hundreds of sums. It becomes apparent that they would get a lot of homework from it and spend a lot of time practicing every concept. Career360 has provided RD Sharma Class 12th Exercise 18.9 solutions to help students better understand the concepts of this chapter.

4. Time-saving

Most students try to solve each and every question manually, thinking that they could only understand the topic after completing all of them. This requires a lot of effort and does not let students to focus on other topics. Instead, students should solve questions until they understand the concept. After completing, they can refer to the solutions to analyze every question, thereby saving precious time before the exam.

The main advantage of RD Sharma Class 12 Chapter 18 Exercise 18.9 solutions is that it is available for free on Career360’s website. Students can access this material on any device using just a browser and internet connection.

## RD Sharma Chapter wise Solutions

1. What are the benefits of this material?

This material provided by Career360 covers the entire syllabus and contains easy to understand answers. This will help students complete the syllabus on time and score good marks in exams.

2. Can I find solutions for other exercises on the Career360 website?

Yes, students can find expert created solutions for other exercises on Career360’s website. They can access the materials by searching the chapter name and exercise number on the website.

3. What can I learn from this material?

Preparing from RD Sharma Class 12 Solutions Indefinite Integrals Ex 18.9 material will help students get a good insight on the subject and learn better ways to solve problems in maths.

4. Can I finish my homework with this material?

RD Sharma Class 12 solutions Chapter 18 Ex 18.9 material covers all concepts and contains accurate answers. This will help students in their homework and exam preparation.

5. . Are there any hidden costs?

## Upcoming School Exams

#### National Means Cum-Merit Scholarship

Application Date:01 August,2024 - 16 September,2024

#### National Rural Talent Scholarship Examination

Application Date:05 September,2024 - 20 September,2024

#### Nagaland Board High School Leaving Certificate Examination

Application Date:17 September,2024 - 30 September,2024

#### Nagaland Board of Secondary Education 12th Examination

Application Date:17 September,2024 - 30 September,2024