Careers360 Logo
RD Sharma Class 12 Exercise 18.25 Indefinite integrals Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise 18.25 Indefinite integrals Solutions Maths - Download PDF Free Online

Edited By Kuldeep Maurya | Updated on Jan 24, 2022 09:27 AM IST

Class 12 RD Sharma chapter 18 exercise 18.25 solution provides the best material for maths for CBSE students. It has been highly recommended by students, teachers as well as experts for the thorough practice to perform well in the board exams. The RD Sharma class 12th exercise 18.25 will give you the best solution so that you will not find any need to refer to any resource for help while solving maths.

This Story also Contains
  1. RD Sharma Class 12 Solutions Chapter18 Indefinite Integrals - Other Exercise
  2. Indefinite Integrals Excercise:18.25
  3. The advantages for using the RD Sharma Class 12th exercise 18.25 solution are listed below:-

Also Read - RD Sharma Solutions For Class 9 to 12 Maths

RD Sharma Class 12 Solutions Chapter18 Indefinite Integrals - Other Exercise

Indefinite Integrals Excercise:18.25


Indefinite Integrals Exercise 18.25 Question 1

Answer: xsinx+cosx+c
Hint: uvdx=uvdxddxuvdx
Given: I=xcosxdx
Solution:Using integration by parts
I=xcosxdxddxxcosxdx
We have,sinxdx=cosx,cosxdx=sinx
=x×sinxsinxdx=xsinx+cosx+c

Indefinite Integrals Exercise 18.25 Question 2

Answer: xlog(x+1)x+log(x+1)+c
Hint: We use integration by parts,
uvdx=uvdxddxuvdx
Given: LetI=log(x+1)dx
Solution: I=1×log(x+1)dx
I=log(x+1)1dxddxlog(x+1)1dx
We know that, 1dx=x&ddxlogx=1x
=log(x+1)×x1x+1×x
=xx+1=11x+1=xlog(x+1)(11x+1)dx=xlog(x+1)x+log(x+1)+c

Indefinite Integrals Exercise 18.25 Question 3

Answer: x44logxx416+c
Hint: Use Integration by parts uvdx=uvdxddxuvdx
Given: I=x3logxdx
Solution: On using Integration by parts
I=logxx3dxddxlogxx3dx
We have,xndx=xn+1n+1&ddxlogx=1x
=logx×x441x×x44dx=logx×x4414x3dx=x44logx14×x44=x44logxx416+c

Indefinite Integrals Exercise 18.25 Question 4

Answer: xexex+c
Hint: Using integration by parts
uvdx=uvdxddxuvdx
Given: I=xexdx
Solution: I=xexdxddxxexdx
We have, exdx=ex&ddxx=1
=xexexdx=xexex+c

Indefinite Integrals Exercise 18.25 Question 5

Answer: (x214)e2x+c
Hint:Use integration by parts,
uvdx=uvdxddxuvdx
Given: Let,I=xe2xdx
Solution: On using integration by parts
I=xe2xdxddxxe2xdx
We Know that,erxdx=erxn&ddxx=1
=xe2x2e2x2dx=xe2x2e2x4+cI=(x214)e2x+c

Indefinite Integrals Exercise 18.25 Question 6

Answer: ex(x2+2x+2)+c
Hint: Integration by parts says that:
uvdx=uvdxddxuvdxu=x2,dudx=2xdvdx=ex,v=exx2exdx=x2ex2xe2xdx
Given: I=x2exdx
Solution: 2xe2xdx
u=2x,dudx=2dvdx=ex,v=ex=2xe2xdx=2xex2exdx=2xex+2ex=x2exdx=x2ex(2xex+2ex)=x2ex2xex2ex+c=ex(x2+2x+2)+c

Indefinite Integrals Exercise 18.25 Question 7

Answer: x2sinx+2xcosx2sinx+c
Hint: Use integration by parts
uvdx=uvdxddxuvdx
Given: I=x2cosxdx
Solution: I=x2cosxdx
=x2cosxdxddxx2(cosxdx)dx
By integrating w.r.t x
=x2sinx2xsinxdx
So we get,
=x2sinx2[xsinxdx]
Now apply by parts method
=x2sinx2[xsinxdx]=x2sinx2[xsinxdx(ddxxsinxdx)dx]=x2sinx2[x(cosx)1(cosx)dx]=x2sinx2(xcosx+sinx)+c
On further simplification,
=x2sinx+2xcosx2sinx+c

Indefinite Integrals Exercise 18.25 Question 8

Answer: x2sin2x2+xcos2x2sin2x4+c
Hint:Use integration by parts
uvdx=uvdxddxuvdx Let u=x2&v=cos2x
Given: I=x2cos2xdx
Solution: I=x2cos2xdx
=x2cos2xdxddxx2(cos2xdx)dx=x2(sin2x2)2x(sin2x2)dx=x2sin2x2[xsin2xdx]=x2sin2x2[xsin2xdx(dxdxsin2xdx)dx]
Integrate on by parts applying once again
=x2sin2x2[x(cos2x2)(cos2x2)dx]=x2sin2x2[xcos2x2+cos2x2dx]=x2sin2x2[xcos2x2+sin2x4]+c=x2sin2x2+xcos2x2sin2x4+c

Indefinite Integrals Exercise 18.25 Question 9

Answer: 12xcos2x+14sin2x+c
Hint: Use integrate on by parts
uvdx=uvdxddxuvdx
Given: I=xsin2xdx
Solution: I=xsin2xdx
d(cos2x)=2sin2xdx
We can integrate by parts in this way
=xsin2xdx=12xd(cos2x)=12xcos2x+12cos2xdx=12xcos2x+14sin2x+c

Indefinite Integrals Exercise 18.25 Question 10

Answer: logx{log(logx)1}+c
Hint:Takelogx=t So, 1xdx=dt
Then,log(logx)xdx=logtdt=1logtdt
Consider the 1st function as log t and 2nd function
Given: I=log(logx)xdx
Solution:
Letlogx=t So, 1xdx=dt
I=1logtdt=logt1dt(dlogtdt1dt)dt
By integrating w.r.t ‘t’
=tlogt1ttdt
Again by integrating the second term we get
=tlogtt+c
Replacing t with logx
=logxlog(logx)logx+c
By taking log x as common
=logx{log(logx)1}+c

Indefinite Integrals Exercise 18.25 Question 11

Answer: x2sinx+2xcosx2sinx+c
Hint: Use integration by parts
uvdx=uvdxddxuvdx
Given: Let I=x2cosxdx
Solution: I=x2cosxdx
=x2cosxdx(ddxx2cosxdx)dx=x2sinx2[xsinxdx]
Now apply by part method again
=x2sinx2xsinxdx=x2sinx2[xsinxdx(ddxxsinxdx)dx]=x2sinx2[x(cosx)1.(cosx)dx]=x2sinx2(xcosx+sinx)+c
On further simplification,
=x2sinx+2xcosx2sinx+c

Indefinite Integrals Exercise 18.25 Question 12

Answer: xcotx+ln|sinx|+c
Hint: Here, using Integration by parts
abdx=abdx[ddxabdx]dx
Given: I=xcosec2xdx
Solution: I=xcosec2xdx
I=xcosec2x[dxdxcosec2xdx]dx
=x(cotx)1(cotx)dx=xcotx+cotxdx=xcotx+ln|sinx|+c

Indefinite Integrals Exercise 18.25 Question 13

Answer: x24+xsin(2x)4+cos(2x)8+c
Hint:Using integration by parts
abdx=abdx[ddxabdx]dx
Given: I=xcos2xdx
Solution: xcos2xdx=x1+cos2x2dx
Break this integral apart now
=x(1+cos2x2)dx=x2dx+xcos(2x)2dx
Evaluate the integral part by part
x2dx=x24+cxcos(2x)2dx
Integration by parts
Let u=cos(2x)2
udx=sin2x4
xcos(2x)2dx=xsin(2x)4sin2x4dx
Now
sin(2x)4dx=cos(2x)8+c
Combining all,
xcos2(x)dx=x24+xsin(2x)4+cos(2x)8+c

Indefinite Integrals Exercise 18.25 Question 14

Answer: xn+1n+1[logx1n+1]+c
Hint: uvdx=uvdxddxuvdx
Where, u=logx,dv=xndx
Given: LetI=xnlogxdx
Solution:
du=1x(v=xn+1n+1)=xn+1n+1logxxn+1n+1(1x)=xn+1n+1logx1n+1xndx=xn+1n+1logxxn+1(n+1)(x+1)+c=xn+1n+1[logx1n+1]+c

Indefinite Integrals Exercise 18.25 Question 15

Answer: xn+11nlogxxn+1(1n)2+c
Hint: Use integration by parts
uvdx=uvdxddxuvdx
Given:  Let I=logxxndx
Solution: I=logxxndx
=xnlogxdx=logxxndx(ddxlogxxndx)dx=logx(xn+1n+1)1xxn+1n+1dx=xn+1logx1n11nxnxxdx
Again by integrating the second part
=xn+1logx1n11n×xn+1n+1+c

So we get

=xn+11nlogxxn+1(1n)2+c


Indefinite Integrals Exercise 18.25 Question 16

Answer: x36x2sin2x4xcos2x4+sin2x8+c
Hint: Use the formula
1)sin2x=1cos2x2
 2) uvdx=uvdxddxuvdx
Given: I=x2sin2xdx
Solution: I=x2sin2xdx
x2(1cos2x2)dx=x22x2cos2x2dx=x22dxx2cos2x2dx=x33×212x2cos2xdx=x3612(x2cos2xdx(ddxx2cos2xdx)dx)=x3612(x2sin2x22xsin2x2dx)=x3612(x2sin2x2xsin2xdx)
Now by integrating the second part we have,
=x3612(x2sin2x2[xcos2x21cos2x2dx])=x3612(x2sin2x2+xcos2x2sin2x4)+c=x36x2sin2x4xcos2x4+sin2x8+c

Indefinite Integrals Exercise 18.25 Question 17

Answer: ex2(x21)+c
Hint:Take,x2=t
So we get2xdx=dt
Given: LetI=2x3ex2dx
=2xx2ex2dx=t.etdt
By integrating w.r.t ‘t’ taking the first function as t and second function as et
=t.etdt=tetdt(ddttetdt)dt=tetet+c
Now by replacing t with x2
x2ex2ex2+c
By taking ex2 as common
=ex2(x21)+c

Indefinite Integrals Exercise 18.25 Question 18

Answer: 12x2sinx2+12cosx2+c
Hint: Takex2=t
So we get 2xdx=dt
xdx=dt2
Given: LetI=x3cosx2dx
Solution: I=x3cosx2dx
We can write it as
xx2cosx2dx=12tcostdt=12(tcostdt[dtdtcostdt]dt)=12(tsintsintdt)
Now by integrating the second part
=12(tsint+cost)+c
Substituting the value of t as x2
=12x2sinx2+12cosx2+c

Indefinite Integrals Exercise 18.25 Question 19

Answer: xcos2x4+sin2x8+c
Hint: We know that,
Sin 2x = 2 sinxcosx, it can be written as xsinxcosxdx=12xsin2xdxand consider first
function as x and second function as sin2x
Given: LetI=xsinxcosxdx
Solution: 12xsin2xdx
=12(xsin2xdx[ddxxsin2xdx]dx)=12(xcos2x2+cos2x2dx)
Again by integrating second term
=12(xcos2x2+sin2x4)+c
By further simplification,

=xcos2x4+sin2x8+c


Indefinite Integrals Exercise 18.25 Question 20

Answer: cosxlog(cosx)+cosx+c
Hint: Consider the first function as log(cos x) and second function as sin x
Given: LetI=sinxlog(cosx)dx
Solution: I=sinxlog(cosx)dx
=log(cosx)sinxdx(ddxlog(cosx)sinxdx)dx=cosxlog(cosx)+sinxcosxcosxdx
So we get,
=cosxlog(cosx)sinxdx
Again by integrating the second term
=cosxlog(cosx)+cosx+c


Indefinite Integrals Exercise 18.25 Question 21

Answer:
=x22(logx)2x22logx+x24+c
Hint: Taking (logx)2as first function and 1-> Second function and integration
uvdx=uvdxddxuvdx
Given:
x(logx)2dx
Solution:
I=x(logx)2dx
Taking (logx)2as first function and x as Second function and integrate
I=(logx)2xdx{[ddx(logx)2xdx]}dx=x22(logx)2[2logx1xx22dx]x22(logx)2xlogxdx
Again integrating by parts, we obtain
I=x22(logx)2[logxxdx[ddxlogx]xdx]dx=x22(logx)2[x22logx+1xx22dx]=x22(logx)2x22logx+12xdx=x22(logx)2x22logx+x24+c

Indefinite Integrals Exercise 18.25 Question 22

Answer: 2ex(x1)+c
Hint: Putex=t
Given: exdx
Solution:
Put
ex=tx=(lnt)2dx=2lnttdtexdx2tlnttdt=2lntdt
[Now integrate by parts]
2[tlnttd(lnt)]2[ttdtt]
=2[tlntdt]=2[tlntt+c]=2[t(lnt1)+c]=2ex(x1)+c

Indefinite Integrals Exercise 18.25 Question 23

Answer:
=[log(x+2)+1]x+2+c
Hint: Let
x+2=t
Given: log(x+2)(x+2)2dx
Solution:
Let x+2=tdx=dt
log(x+2)(x+2)2dxlogtt2dtlogt1t2dt=logt1t2dtddtlogt(1t2dt)dt+c=logt(1t)1t(1t)dt+c=logtt+1t2dt+c=logtt+(1t)+c=(logt+1)t+c=[log(x+2)+1]x+2+c

Indefinite Integrals Exercise 18.25 Question 24

Answer: xtanx2+c
Hint: Use trigonometric formulae
Given: x+sinx1+cosxdx
Solution:
(x1+cosx+sinx1+cosx)dxx2cos2x2+2sinx2cosx22cos2x2]dx12xsec2x2+tanx2dx12[xtanx2121tanx2×2]+tanx2dx
xtanx2tanx2dx+tanx2dxxtanx2+c

Indefinite Integrals Exercise 18.25 Question 25

Answer: (xlog10)[logx1]+c
Hint: Take
logx=logxlog10
Given: log10xdx
Solution:
log10xdx=(logxlog10)dx=(1log10)logx1dx=(1log10)[(logx)x1xxdx]=(1log10)(xlogxx)+c=x[(logxlog10)(1log10)]+c=(xlog10)[logx1]+c

Indefinite Integrals Exercise 18.25 Question 26

Answer: 2[xsinx+cosx]
Hint: x=t
Given: cosxdx
Solution: Putx=t12xdx=dt
cosxdx=2tcostdt
[Using integration by parts]
I=2[tsint1sintdt]=2[tsint+cost]=2[xsinx+cosx]+c

Indefinite Integrals Exercise 18.25 Question 27

Answer: [1x2cos1x+x]+c
Given: xcos1x1x2dx
Hint: Use integration by parts
Solution:
I=xcos1x1x2dx122x1x2cos1xdx
[Using integration by parts]
=12[cos1x×2x1x2dx{(ddxcos1x)2x1x2dx}dx]=12[cos1x21x211x221x2dx]=12[21x2cos1x+2x]+c=[1x2cos1x+x]+c

Indefinite Integrals Exercise 18.25 Question 28

Answer: logx(x+1)+logxlog(x+1)
Hint:
Given: logx(x+1)2dx
Solution:
I=logx(x+1)2dx
=logx1(x+1)2dx(1x1(x+1)2dx)dx
=logx(1x+1)+1x1x+1dx
=logx(x+1)+I1
=I1=1x(x+1)dx
Using partial fractions
Let 1x(x+1)=Ax+Bx+1
1=A(x+1)+B(x)
1=Ax+A+Bx
1=(A+B)x+A
A+B=0
A=1
B=1
I1=[1x1x+1]dx
=logxlog(x+1)
I=logxx+1+logxlog(x+1)

Indefinite Integrals Exercise 18.25 Question 29

Answer:12cosecxcotx+12log|tanx2|+c
Hint: cosec3x=cosec2xcosecx
Given:cosec3xdx
Solution:
Let
I=cosec3dx=cosec2xcosecxdx=cosec2x1+cot2x
letcotx=t
I=1+t2dt=t21+t2122log|t+1+t2|+C
Substituting the value of t in equation (1)
=cotx2cosecx12log|cotx+cosecx|+C=12cosecotx12log|cosxsinx+1sinx|+C=12cosecxcotx12log|2cos2x22sinx2cosx2|+C=12cosecxcotx12log|cotx2|+C=12cosecxcotx+12log|tanx2|+C[log|cotx2|=log|1tanx2|log|tanx2|]

Indefinite Integrals Exercise 18.25 Question 30

Answer: cos4(cos1x)2+c
Hint: Let
x=cos2t
Given:
sec1xdx ................(1)
Solution:
Assume that x=t ...............(ii)
x=t2
Differentiating w.r.t to ‘t’
dx=2tdt .................(iii)
Now substituting values from equation (ii) & equation (iii)

I=sec1t(2tdt)I=2sec1t.tdt=2{sec1ttdt(d(sec1t)dt(tdt))dx}
Here, use integration Identity
[xndx=xn+1n+1+c]

I=2{sec1tt22(1tt21(t22))dt}+cI=t2sec1ttt21dt+c ...........(iv)
Assume

t21=y ...........(v)
Differentiate w.r.t ‘y’

2tdt=dy

tdt=dy2 ............(vi)
Substituting values from equation (v) and equation (vi) in integral of equation (iv)

I=t2sec1ttydy2+cI=t2sec1t12y12dy+c
Use integration identity

[xndx=xn+1n+1+c]

I=t2sec1t12y1212+cI=t2sec1ty+c
Substitute the value of y from equation (v)

I=t2sec1tt21+c
Substitute the value of ‘t’ from equation (ii)

I=xsec1xx1+c

So,

sec1xdx=xsec1xx1+c


Indefinite Integrals Exercise 18.25 Question 31

Answer: xsin1(x)+12[1xx+sin11x]+c
Given:sin1xdx
Hint: uvdx(ddxuvdx)dx
Solution:
u=sin1xdx=sin1x1dx=sin1x1dx(ddx(sin1x)1dx)dx
[ddx(sin1x)=11x2]=xsin1(x)11(x)2×12xxdx=xsin1(x)x21(x)2dx
Now,
1(x)2=t
1x=t
1x=t2
1t2=x
x=1t2
Again
1x=t2
dx=2tdt
dx=2tdt
[a2x2dx=12[xa2x2a2sin1xa]]
=xsin1(x)121t2t(2tdt)=xsin1(x)+12×21t2dt=xsin1(x)+12[t1t2+1sin1t]+c=xsin1(x)+12[1xx+sin11x]+c

Indefinite Integrals Exercise 18.25 Question 32

Answer: xtanx+log(cosx)x22+c
Given: xtan2xdx
Hint: uvdx=uvdx(ddxuvdx)dx
Solution:
I=xtan2xdx[tan2x=sec2x1]I=xsec2xdxxdxI=xsec2xdx[ddxxsec2xdx]dxx22+cI=xtanxtanxdxx22+cI=xtanx+log(cosx)x22+c

Indefinite Integrals Exercise 18.25 Question 33

Answer: =tanx+log(cosx)x22+c
Given: x(sec2x1sec2x+1)dx
Hint: uvdx=uvdx(ddxuvdx)dx
Solution:
I=x(1cos2x1+cos2x)dxI=x(2sin2x2cos2x)dxI=x(sec2x1)dxI=xsec2xxdxI=xsec2x[ddxxsec2xdx]dxx22+cI=xtanxtanxdxx22+c=xtanx+log(cosx)x22+c

Indefinite Integrals Exercise 18.25 Question 34

Answer: xex[log(xex)1]+c
Hint: t=x.ex
Given: (x+1)exlog(x.ex)dx
Solution:
Now,Let
t=x.ex
dt=(x.ex+ex1)dx
dt=(x+1)exdx
I=logtdtI=log(t)1dtI=logt1dt1ttdtI=tlogtdt
I=tlogtt+c
=t(logt1)+c
=xex[log(xex)1]+c

Indefinite Integrals Exercise 18.25 Question 35

Answer: 3sin1x,x+31x2+c
Given: sin1(3x4x3)dx
Hint:
3x4x3sinθ
x=sint
Solution:
I=sin1(3x4x3)dx
Let x = sint =>dx = costdt & 3sint4sin3t=sin3t
=sin1sin3tcostdt=3tcostdt=3tcostdtI=3[(tcostdt(1sint)dt)]=3[tsintsintdt]=3[tsint(cost+c)]=3tsint+3cost+c=3sin1xx+31x2+c

Indefinite Integrals Exercise 18.25 Question 36

Answer: 2xtan1(x)log(1+x2)+c
Given: sin1(2x1+x2)dx
Hint: 2tan1x=sin1x2x1+x2
Solution:
I=2tan1xdxI=2xtan1(x)11+x22xdx1+x2=t2xdx=dtI=2xtan1(x)1tdtI=2xtan1(x)log(t)+cI=2xtan1(x)log(1+x2)+c

Indefinite Integrals Exercise 18.25 Question 38

Answer: x33sin1x+131x219(1x2)32+c
Given: x2sin1xdx
Hint: uvdx=uvdx(ddxuvdx)dx
Solution:
I=x2sin1xdx
I=(sin1x)x33131x2×x3dx applying byparts I=x33sin1x13x2x1x2dx
Let 1-x2=t => -2xdx = dt
=x33sin1x+12×13(1t)dtt=x33sin1x+16[1tdtttdt]=x33sin1x+16[2t2t323]=x33sin1x+131x219(1x2)32+c

Indefinite Integrals Exercise 18.25 Question 39

Answer: sin1xx+12[log1x211+x2+1]+c
Given: sin1xx2dx
Hint: uvdx=uvdx(ddxuvdx)dx
Solution:
I=sin1xx2dxuvdx=uvdx(ddxuvdx)dxI=sin11x2dx[dsin1xdx(1x2dx)dx]I=sin1xx+dxx1x2
Let
1x2=u
1x2=u2
2x21x2dx=du
xdx1x2=du
du=xdx1x2
Now,
y=dxx1x2xdxx21x2du1u2duu21du(u+1)(u1)122du(u+1)(u1)
12(u+1)(u1)(u+1)(u1)du12[(u+1)(u+1)(u1)du(u1)(u+1)(u1)du]12[log(u1)log(u+1)]12[log1x211x2+1]+cI=sin1xx+dxx1x2=sin1xx+12[log1x211x2+1]+c

Indefinite Integrals Exercise 18.25 Question 40

Answer: xtan1x12ln(1+x2)+(tan1x)22+c
Given: x2tan1x1+x2dx
Hint: Let 1+x2=u and tan1x=t
Solution:
x2tan1x1+x2dx=(x2+11)tan1x1+x2dx=(1+x21+x2)tan1xtan1x1+x2dx=tan1xdxtan1x1+x2dx1tan1x=xtan1xx1+x2dx
Let 1+x2=u2xdx=dx
1tan1x=xtan1xdu2uxtan1x12lnuxtan1x12ln(1+x2)
tan1x1+x2dx
Let,tan1x=⇒dt=11+x2dx
tdt=t22=(tan1x)22xdxx1+x2dx=xtan1x12ln(1+x2)(tan1x)22+c

Indefinite Integrals Exercise 18.25 Question 41

Answer: 3xcos1x31x2+c
Hint: cos3x=4cos3x3cosx
Given: cos1(4x33x)dx
Solution: I=cos1(4x33x)dx
Let x=cosθθ=cos1x
I=cos1(4cos3θ3cosθ)dx=cos1(cos3θ)dx=3θdx=3cos1xdx
=3[cos1x(x)12u12du]=3[xcos1x12u1212]+c=3xcos1x31x2+c


Indefinite Integrals Exercise 18.25 Question 42

Answer: 2xtan1x2log(1+x2)+c
Given: cos1(1x21+x2)dx
Hint: Putx=tanΘ
Solution:
I=cos1(1x21+x2)dx
Put x=tanθdx=sec2θdθ
I=cos1(1tan2θ1+tan2θ)sec2θdθ[cos2θ=(1tan2θ1+tan2θ)]I=cos1(cos2θ)sec2θdθ
=2θsec2θdθ=2θsec2θdθ=2[θsec2θdθddxθ(sec2θdθ)dθ]=2θ×tanθ2tanθdθ=2θtanθ2θ+cθ=tan1x=2xtan1x2log(1+x2)+c=2xtan1x2log(1+x2)+c

Indefinite Integrals Exercise 18.25 Question 43

Answer: 2xtan1xlog(1+x2)+c
Hint: uvdx=uvdx(ddxuvdx)dx
Given: tan1(2x1x2)dx
Solution:
I=2tan1xdx=2[tan1xdx[d(tan1x)dxdx]dx]=2[xtan1xx1+x2dx]
x1+x2dx
Put 1+x2=t2xdx=dtxdx=dt2
x1+x2dx=12dtt=12logt+c=12log(1+x2)+c
2[xtan1xx1+x2dx]=2xtan1xlog(1+x2)+c

Indefinite Integrals Exercise 18.25 Question 44

Answer: logx(x22+x)x24x+c

Given:(x+1)logxdx
Hint: uvdx=uvdx(ddxuvdx)dx
Solution:
I=(x+1)logxdxI=[logx(x+1)dx1x(x22+x)dx]I=logx(x22+x)(x2+1)dx=logx(x22+x)x2dxdx=logx(x22+x)x24x+c

Indefinite Integrals Exercise 18.25 Question 45

Answer: x33tan1xx26+16log|1+x2|+c
Hint: uvdx=uvdx(ddxuvdx)dx
Given:x2tan1xdx
Solution:
x2tan1xdx=tan1xx2dxddxtan1x(x2dx)=x33tan1x13x(1+x2)1+x2dx+162x1+x2dx=x33tan1xx26+16log|1+x2|+c

Indefinite Integrals Exercise 18.25 Question 46

Answer: xsinx+cosx14cos2x+c
Given: (elogx+sinx)cosxdx
Hint: Put elogx=x
Solution:(elogx+sinx)cosxdx
As elogx=x
I=(x+sinx)cosxdx=xcosxdx+sinxcosxdx=xsinx1sinxdx+12sin(2x)dx=xsinx(cosx)+1212(cos2x)+c=xsinx+cosx14cos2x+c

Indefinite Integrals Exercise 18.25 Question 47

Answer: 11+x2(xtan1x)+c
Hint: x=tanθ&uvdx=uvdx(ddxuvdx)dx
Given: xtan1x(1+x2)32dx
Solution:
I=xtan1x(1+x2)32dx
Put x=tanΘdx=sec2ΘdΘ
I=tanθtan1(tanθ)sec2θdθ(1+tan2θ)32=tansec2θsec2θsec3θ=(θtanθsecθ)dθ
I=θsinθcosθ×cosθdθI=θsinθdθ[ddθθsinθdθ]dθ=θcosθ+(cosθ)dθ=θcosθ+sinθ+c=tan1x(11+x2)+x1+x2+c=11+x2(xtan1x)+c

Indefinite Integrals Exercise 18.25 Question 48

Answer: tan1x(1+x)x+c
Given: (tan1x)dx
Hint:Putx=t
Solution:
I=(tan1x)dx
Put x=tdx=2tdt
I=tan1t2tdtI=tan1t2t22t2+111+t2dt=t2tan1tdt+11+t2dt=t2tan1tt+tan1t+c=tan1t(1+t2)t+c=tan1x(1+x)x+c


Indefinite Integrals Exercise 18.25 Question 49

Answer: x33tan1xx26+16log(1+x2)+c
Hint: uvdx=uvdx(ddxuvdx)dx
Given: x2tan1xdx
Solution:
x2tan1xdx
=tan1xx2dxddxtan1x(x2dx)dx=x33tan1x13xx21+x2dx=x33tan1x13x(1+x2)1+x2dx+162x1+x2dx=x33tan1xx26+16log(1+x2)+c

Indefinite Integrals Exercise 18.25 Question 50

Answer: sin3x18xcos3x6+xcosx2sinx2+c
Hint: sinxdx=cosx&cosxdx=sinx
Given: xsinxcos2xdx
Solution:
I=xsinxcos2xdx
I=122xsinxcos2xdx
=12x2sinxcos2xdx
=12x[sin(x+2x)+sin(x2x)]dx=12xsin3xdx12xsinxdx=12[xcos3x3+13cos3xdx]12[xcosx+cosxdx]I=12[xcos3x3+sin3x9]12[xcosx+sinx]=12[sin3x9xcos3x3+xcosxsinx]+c=sin3x18xcos3x6+xcosx2sinx2+c

Indefinite Integrals Exercise 18.25 Question 51

Answer: 12x2tan1x214log(1+x4)+c
Hint: Put x2=t
Given:x(tan1x2)dx
Solution:By letting x2=t2xdx=dtxdx=dt2
xtan1(x2)dx=12tan1t.1dt
Integrate by parts, taking tan1t as the first function
=12[tan1t.t11+t2tdt]=12[ttan1t122t1+t2dt]=12[ttan1t12log|1+t2|]+c=12x2tan1x214log(1+x4)+c

Indefinite Integrals Exercise 18.25 Question 52

Answer: 1x2sin1x+x+c
Hint: Putsin1x=t
Given: xsin1x1x2dx
Solution:By letting sin1x=tx=sintdx=costdt
xsin1x1x2dx=sint.t1sin2tcostdt=tsintcostcostdt=tsintdtt(cost)1(cost)dt
Applying by parts
=tcost+sint+c
=t1t+sint+c
=1x2sin1x+x+c

Indefinite Integrals Exercise 18.25 Question 54

Answer: 32xcosx+32sinx+16[xcos3xsin3x3]+c
Hint: Put x=t
Given: sin3xdx
Solution: Put
x=t12x=dtdx
dx=2tdt
sin3xdx=2tsin3tdt[sin3t=3sint4sin3tsin3t=3sintsin3t4]2t[3sintsin3t]4dt32tsintdt12tsin3tdt

Applying by parts,

=32[t(cost)(cost)dt]12[t(cos3t3)(cos3t3)dt]=32[tcost+sint]12[tcos3t3+13sin3t3]+c=32xcosx+32sinx+16[xcos3xsin3x3]+c



Indefinite Integrals Exercise 18.25 Question 55

Answer: 3xcosx4+3sinx4+xcos3x12sin3x36+c
Hint:
Given:xsin3xdx
Solution: sin3x=3sinx4sin3x
sin3x=3sinxsin3x4dx
=143xsinxxsin3xdx
=34xsinx14xsin3xdx
Take the first function as x and second function as sinx and sin 3x
=34[xsinx[dxdxsinxdx]dx]14[x(sin3xdx)[dxdxsin3xdx]dx]=34(xcosx+cosxdx)14[xcos3x3+cos3x3dx]=34(xcosx+sinx)14[xcos3x3+sin3x9]+c=3xcosx4+3sinx4+xcos3x12sin3x36+c

Indefinite Integrals Exercise 18.25 Question 56

Answer: =2xsinx+43cosx2xsin3x3+29[cos3x]+c
Hint: Let x=t
Given: cos3xdx
Solution: x=tx=t2dx=2tdt
cos3xdx=cos3t.2tdt2tcos3tdt=2tcostcos2tdt2tcost(1sin2t)dt=2(tcosttcostsin2t)dt=2[tcostdttcostsin2tdt]=2[tcostdt[1sintdt]]2[tcossin2tdt1(sin3t3)dt]
Applying by parts
=2(tsintsintdt)2(tsin3t313sin3tdt)=2tsint+2cost2tsin3t3+23sintsin2tdt=2tsint+2cost2tsin3t3+23sint(1cos2t)dt=2tsint+2cost2tsin3t3+23[sintdtsintcos2tdt]=2tsint+2cost2tsin3t3+23[cost+cos3t3+c]=2tsint+2cost2tsin3t3+23[cost]+23[cos3t3]+c=2xsinx+43cosx2xsin3x3+29[cos3x]+c

Indefinite Integrals Exercise 18.25 Question 57

Answer: xsin3x12+cos3x36+3xsinx4+3cosx4+c
Hint: cos3x=cos3x+3cosx4
Given:xcos3xdx
Solution:
cos3x=cos3x+3cosx4
xcos3xdx=x[cos3x+3cosx4]dx=14xcos3xdx+34xcosxdx
14[xcos3xdx[dxdx(cos3xdx)]dx]+34[xcosxdx[dxdxcosxdx]dx]14[xsin3x3sin3x3dx]+34(xsinxsinxdx)14[xsin3x3+cos3x9]+34(xsinx+cosx)+c=xsin3x12+cos3x36+3xsinx4+3cosx4+c

Indefinite Integrals Exercise 18.25 Question 58

Answer: 12(xcos1x1x2)+c
Hint: Letx=cosΘ
Given: tan11x1+xdx
Solution: Let x=cosΘ
dx=sinΘdΘ
tan11x1+xdx=tan11cosΘ1+cosΘ(sinΘdΘ)
=tan12sin2θ22cos2θ2sinθdθ=tan1tanθ2sinθdθ=12θsinθdθ=12[θ(cosθ)1(cosθ)dθ]
Applying by parts
=12[ΘcosΘ+sinΘ]
=12θcosθ12sinθ=12cos1xx121x2+c=x2cos1x121x2+c=12(xcos1x1x2)+c

Indefinite Integrals Exercise 18.25 Question 59

Answer: a[(xa+1)tan1xaxa]+c
Hint: Put x=atan2Θ
Given:sin1(xa+x)dx
Solution:sin1(xa+x)dx
Putx=atan2θdx=2atanθsec2θdθ
sin1(xa+x)dx=sin1(atan2θa+atan2θ)2atanθsec2θdθ
=2asin1(sinθ)tanθsec2θdθ=2aθtanθsec2θdθ
Let tanΘ=tsec2ΘdΘ=dt
2attan1tdt2a[tan1ttdt(11+t2)t22dt]2a[t22tan1t12(111+t2)dt]a[t2tan1tt+sin1t]+ca[tan2θtanθtanθ+tanθ]+ca[xaxaxa+xa]+c

Indefinite Integrals Exercise 18.25 Question 60

Answer: 12[sin1(x)2(1x4)+x2]+c
Hint: Letsin1(x2)=t
Given: x3sin1x21x4dx
Solution: Let sin1(x2)=t2x1x4dx=dt
x3sin1x21x4dx
=122xsin1(x2)×x21x4dx=12tsintdt=[tsintdt+costdt]+c=12[tcost+sint]+c=12[sin1(x)2(1x4)+x2]+c

Indefinite Integrals Exercise 18.25 Question 61

Answer: xsin1x1x2+log(1x2)(sin1x)22+c
Hint:Put sin1x=u
Given:x2sin1x(1x2)32dx
Solution: Put
sin1x=u11x2dx=du
and
x=sinu
x2sin1x(1x2)32dx=x2sin1x(1x2)1x2dx(usin2u1sin2u)du=usin2ucos2udu=utan2udu=u(sec2u1)du
=usec2uduudu=u×sec2ududduusec2ududuu22+c=utanu1×tanuduu22+c=utanusinucosuduu22+c
Put cosu=vsinudu=dvsinudu=dv
=utanu+dvvu22+c=utanu+lnvu22+c=usinucosu+ln(1sin2u)u22+c=usinu1sin2u+ln(1sin2u)u22+c=xsin1x1x2+log(1x2)(sin1x)22+c

RD Sharma class 12th exercise 18.25 contains 61 questions from the RD Sharma class 12 solution of Indefinite integrals exercise 18.25 that are presented in the most basic format and hence the concepts covered are -

  • Applications of integration

  • Applications of indefinite integration

  • Area under a curve by integration

  • Centroid of area by integration

  • Some integrals theorems

The advantages for using the RD Sharma Class 12th exercise 18.25 solution are listed below:-

  • The RD Sharma class 12 solution chapter 18 exercise 18.25 consists of a lot of questions that give a brief understanding of the chapter.

  • The solutions of the RD Sharma class 12th exercise 18.25 are designed by experts of maths and give you extraordinary questions to tighten your maths skills.

  • The solutions also provide helpful tips and solved questions for better reference and understanding maths in an easy way.

  • Teachers use the solution of RD Sharma class 12 chapter 18 exercise 18.25 for preparing lectures and giving homeworks.

  • The RD Sharma class 12th exercise 18.25 can be downloaded from Careers360 website for online PDFs and study materials for free of cost.

  • The solutions are trusted by every student, teacher, and schools as well for nurturing the students with the authentic knowledge of mathematics.

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download E-book

RD Sharma Chapter-wise Solutions

Frequently Asked Questions (FAQs)

1. What is the use of this study material?

Students appearing for the 12th board exams can refer to these solutions for practicing maths

2. Can I score high marks after practicing from the RD Sharma solutions?

Yes, a thorough practice of the RD Sharma solution can help you ace the subject of maths and score real high marks in board exams.

3. Is the material of the newest version?

Yes, the material is updated regularly for better practice and also so that no student misses out on any topic.

4. Is Careers360 a trustworthy site?

Absolutely it is trustworthy as thousands of students download study material from the Careers360 website for self-study..

5. Does the Careers360 website provide all the study material of RD Sharma?

Yes, all study material of RD Sharma can be found at one place that is the Careers360 website.

Articles

Back to top