RD Sharma Class 12th Exercise 18.11 explains the chapter ‘Indefinite Integrals.’ The exercise contains 12 sums that are of Level 1 difficulty and concept-oriented. However, they are pretty easy to understand how to integrate a function w.r.t to x and also cover trigonometric integrals of values like Tan, Sec, Cosec, Cot. Students should refer to the theorems of those trigonometric values to solve these questions.
Indefinite Integrals Excercise:18.11
Indefinite Integrals Exercise 18.11 Question 2
Answer: $\frac{1}{2} \tan ^{2} x+\frac{1}{4} \tan ^{4} x+C$Hint :- Use substitution method to solve this integral.
Given :- $\int \tan x \cdot \sec ^{4} x d x$Sol : - Let
$I=\int \tan x \sec ^{4} x d x$ Re-Write
$\mathrm{I}=\int \tan x \sec ^{2} x \cdot \sec ^{2} x d x$$\mathrm{I}=\int \tan x\left(1+\tan ^{2} x\right) \sec ^{2} x d x$ $\text { (if, } \left.\sec ^{2} x=1+\tan ^{2} x\right)$$\mathrm{I}=\int\left(\tan x+\tan ^{3} x\right) \sec ^{2} x d x$Substitute $\tan x=t \rightarrow \sec ^{2} x d x=d t$ then$\mathrm{I}=\int\left(\mathrm{t}+t^{3}\right) \sec ^{2} x \frac{d t}{\sec ^{2} x} \quad \text { (if, } \tan \mathrm{x}=\mathrm{t} \text { ) }$$=\int\left(\mathrm{t}+t^{3}\right) d t=\int \mathrm{t} d t+\int t^{3} d t$$=\frac{t^{1+1}}{1+1}+\frac{t^{3+1}}{3+1}+C$ $\text { (if, } \left.\int x^{n} d x=\frac{x^{n+1}}{n+1}+\mathrm{C}\right)$ (i)$I=\frac{t^{2}}{2}+\frac{t^{4}}{4}+C$$I=\frac{\tan ^{2} x}{2}+\frac{\tan ^{4} x}{4}+\mathrm{C}$ $\text { (if, } t=\tan x)$Indefinite Integrals Exercise 18.11 Question 3
Answer: $\frac{1}{6} \tan ^{6} x+\frac{1}{8} \tan ^{8} x+C$Hint: Use substitution method to solve this integral.Given: $\int \tan ^{5} x \cdot \sec ^{4} x d x$Solution: Let,$\mathrm{I}=\int \tan ^{5} x \sec ^{4} x d x$Re-Write $I=\int \tan ^{5} x \sec ^{2} \cdot \sec ^{2} x d x$$\left.I=\int \tan ^{5} x\left(1+\tan ^{2} x\right) \cdot \sec ^{2} x d x \quad \text { (if, } \sec ^{2} x=1+\tan ^{2} x\right)$$\mathrm{I}=\int\left(\tan ^{5} x+\tan ^{7} x\right) \sec ^{2} x d x$$\text { Substitute } \tan \mathrm{x}=\mathrm{t} \rightarrow \sec ^{2} \mathrm{x} \mathrm{d} \mathrm{x}=\mathrm{dt} \text { , then }$$\left.I=\int\left(\mathrm{t}^{5}+t^{7}\right) \sec ^{2} x \frac{d t}{\sec ^{2} x} \quad \text { (if, } \tan \mathrm{x}=\mathrm{t}\right)$$=\int\left(\mathrm{t}^{5}+t^{7}\right) d t=\int \mathrm{t}^{5} d t+\int t^{7} d t$$=\frac{t^{5+1}}{5+1}+\frac{t^{7+1}}{7+1}+C$ $\text { (if, } \left.\int x^{n} d x=\frac{x^{n+1}}{n+1}+C\right)$......(i)$\mathrm{I}=\frac{t^{6}}{6}+\frac{t^{8}}{8}+\mathrm{C}$$\left.\mathrm{I}=\frac{\tan ^{6} x}{6}+\frac{\tan ^{8} x}{8}+\mathrm{C}\: \: \: \: \: \: \: \: \: \quad \text { (if, } \mathrm{t}=\tan \mathrm{x}\right)$Indefinite Integrals Exercise 18.11 Question 4
Answer:$\frac{1}{6} \sec ^{6} x+C$Hint:- Use substitution method to solve this integral.
Given:$\int \sec ^{6} x \cdot \tan x d x$Solution:Let,
$\mathrm{I}=\int \sec ^{6} x \cdot \tan x d x$Re-write,
$I=\int \sec ^{5} x \sec x \cdot \tan x d x$$\mathrm{I}=\int \sec ^{5} x(\sec x \cdot \tan x) d x$Substitute, $\sec x=t \Rightarrow \sec x \cdot \tan x d x=d t$, then,
$I=\int t^{5} \cdot \mathrm{dt} \quad(\text { if }, \sec x=t)$
$=\frac{t^{5+1}}{5+1}+C$ $\text { (if, } \left.\int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right)$
$\left.=\frac{t^{6}}{6}+c=\frac{\sec ^{6} x}{6}+C \quad \text { (if, } \sec x=t\right)$
Indefinite Integrals Exercise 18.11 Question 5
Answer:$\frac{\tan ^{4} x}{4}-\frac{\tan ^{2} x}{2}+\log |\sec \times| C$Hint:- Use substitution method to solve this integral.
Given:$\int \tan ^{5} x d x$Solution: Let,$\mathrm{I}=\int \tan ^{5} x d x$Re-Write,$\mathrm{I}=\int \tan ^{3} x \cdot \tan ^{2} x \cdot d x$$I=\int \tan ^{3} x\left(\sec ^{2} x-1\right) d x$ $\text { (if, } \left.\tan ^{2} x=\sec ^{2} x-1\right)$$\mathrm{I}=\int\left(\tan ^{3} x \cdot \sec ^{2} x-\tan ^{3}\right) d x$$I=\int \tan ^{3} x \cdot \sec ^{2} x \cdot d x-\int \tan ^{3} x d x$$=\int \tan ^{3} x \cdot \sec ^{2} x \cdot d x-\int \tan ^{2} x \cdot \tan x d x$$\left.=\int \tan ^{3} x \cdot \sec ^{2} x \cdot d x-\int\left(\sec ^{2} x-1\right) \cdot \tan x d x \quad \text { (if, } \sec ^{2} x-\tan ^{2} x=1\right)$$=\int \tan ^{3} x \cdot \sec ^{2} x \cdot d x-\int\left(\sec ^{2} x \tan x-\tan x\right) d x$$=\int \tan ^{3} x \cdot \sec ^{2} x \cdot d x-\int \sec ^{2} x \tan x d x+\int \tan x d x$Put
$tan x = t \Rightarrow \sec^{2}x d x = d t , then$$\mathrm{I}=\int \mathrm{t}^{3} d t-\int t d t+\int \tan x d x$$=\frac{t^{8+1}}{3+1}+\frac{t^{1+1}}{1+1}+\log |\sec \times| C$ $\text { (if, } \left.\int x^{n} d x=\frac{x^{n+1}}{n+1}+C \& \int \tan x d x=\log |\sec x|+c\right)$$=\frac{t^{4}}{4}-\frac{t^{2}}{2}+\log |\sec x| C$$\left.=\frac{\tan ^{4} x}{4}-\frac{\tan ^{2} x}{2}+\log |\sec x| C\: \: \: \: \: \: \quad \text { (if, } t=\tan x\right)$Indefinite Integrals Exercise 18.11 Question 6
Answer: $\frac{2}{3} \tan ^{\frac{3}{2}} x+\frac{2}{7} \tan ^{\frac{7}{2}} x+C$Hint: Use substitution method to solve this integral.
Given:$\int \sqrt{\tan x} \cdot \sec ^{4} x d x$Solution:Let,
$I=\int \sqrt{\tan x} \cdot \sec ^{4} x d x$Re-Write
$\mathrm{I}=\int \sqrt{\tan x} \cdot \sec ^{2} x \cdot \sec ^{2} x d x$$I=\int \sqrt{\tan x}\left(1+\tan ^{2} x\right) \cdot \sec ^{2} x d x \quad\left(\because \sec ^{2} x-\tan ^{2}=1\right)$$I=\int\left(\sqrt{\tan x}+\sqrt{\tan x} \cdot \tan ^{2} x\right) \sec ^{2} x d x$$I=\int\left(\tan ^{\frac{1}{2}} x+\tan ^{\frac{1}{2}+2} x\right) \cdot \sec ^{2} x d x$$I=\int\left(\tan ^{\frac{1}{2}} x+\tan ^{\frac{5}{2}} x\right) \cdot \sec ^{2} x d x$$\text { Substitute } \tan \mathrm{x}=\mathrm{t} \rightarrow \sec ^{2} \mathrm{x} \mathrm{d} \mathrm{x}=\mathrm{d} \mathrm{t} \text { , then }$$\begin{array}{ll} \mathrm{I}=\int\left(t^{\frac{1}{2}}+t^{5 / 2}\right) d t \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: & (\because \tan \mathrm{x}=\mathrm{t}) \end{array}$$=\frac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}+\frac{t^{\frac{5}{2}}+1}{\frac{5}{2}+1}+C \: \: \: \: \: \: \: \: \: \: \: \: \: \: \quad\left(\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right)$$=\frac{\tan ^{3 / 2} x}{3 / 2}+\frac{\tan ^{7 / 2} x}{7 / 2}+\mathrm{C} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \quad(\because \mathrm{t}=\tan \mathrm{x})$$=\frac{2}{3} \tan ^{3 / 2} x+\frac{2}{7} \tan ^{7 / 2} x+C$Indefinite Integrals Exercise 18.11 Question 7
$\begin{aligned} &\text { Answer }:-\frac{1}{2} \tan 2 x+\frac{1}{6} \tan ^{3} 2 x+C\\ &\text { Hint :- Use substitution method to solve this integral. }\\ &\text { Given :- } \int \sec ^{4} 2 x d x\\ &\text { Sol: - Let } I=\int \sec ^{4} 2 x d x\\ &\text { Re-writing, } I=\int \sec ^{2} 2 x \cdot \sec ^{2} 2 x d x \end{aligned}$$\begin{aligned} &\left.I=\int\left(1+\tan ^{2} 2 x\right) \sec ^{2} 2 x d x\: \: \: \: \: \: \: \: \: \: \: \quad \text { (if, } \sec ^{2} x=1+\tan ^{2} x\right) \\ &I=\int\left(\sec ^{2} 2 x+\tan ^{2} 2 x \cdot \sec ^{2} 2 x\right) d x \end{aligned}$$\begin{aligned} &\text { Substitute } \tan 2 \mathrm{x}=\mathrm{t}\\ &\sec ^{2} 2 x .2 d x=d t, \text { then } \end{aligned}$$\begin{aligned} &\mathrm{I}=\int \sec ^{2} 2 x \mathrm{~d} x+\int \tan ^{2} 2 x \cdot \sec ^{2} 2 x \mathrm{dx} \\ &=\int \sec ^{2} 2 x \mathrm{~d} x+\int t^{2} \cdot \frac{d t}{2} \: \: \: \: \: \: \: \: \: \: \quad(\text { since }, \tan 2 x=t) \end{aligned}$$=\frac{\tan 2 x}{2}+\frac{1}{2} \frac{t^{2+1}}{2+1}+C$ $\text { (if, } \int x^{n} d x=\frac{x^{n+1}}{n+1}+c \quad \& \int \sec ^{2} d x=\tan x+\mathrm{c}$$\begin{aligned} &=\frac{\tan 2 x}{2}+\frac{1}{2} \cdot \frac{t^{3}}{3}+C \\ &\left.=\frac{\tan 2 x}{2}+\frac{1}{6} \cdot \tan ^{3} 2 x+C \: \: \: \: \: \: \: \: \: \: \quad \text { (if, } t=\tan 2 x\right) \end{aligned}$Indefinite Integrals Exercise 18.11 Question 8
Answer: $-\frac{1}{9} \cot ^{3} 3 x-\frac{1}{3} \cot 3 x+C$Hint :- Use substitution method to solve this integral.
Given: $\int \operatorname{cosec}^{4} 3 x d x$Solution:Let
$\mathrm{I}=\int \operatorname{cosec}^{4} 3 x d x$Re-Write
$\mathrm{I}=\int \operatorname{cosec}^{2} 3 x \cdot \operatorname{cosec}^{2} 3 x d x$$\left.I=\int\left(1+\cot ^{2} 3 x\right) \cdot \operatorname{cosec}^{2} 3 x d x \: \: \: \: \: \: \: \: \quad \text { (if, } \operatorname{cosec}^{2} x-\cot ^{2} x=1\right)$$\begin{aligned} &I=\int\left(\operatorname{cosec}^{2} 3 x+\cot ^{2} 3 x \cdot \operatorname{cosec}^{2} 3 x\right) d x \\ &I=\int \operatorname{cosec}^{2} 3 x \cdot \cot ^{2} 3 x d x+\int \operatorname{cosec}^{2} 3 x d x \end{aligned}$Substitute, cot3x = t
$\begin{aligned} &\operatorname{cosec}^{2} 3 x \cdot 3 d x=d t, \text { then } \\ &I=\int t^{2} \frac{d t}{3}+\int \operatorname{cosec}^{2} 3 x d x \\ &=-\frac{1}{3} \int t^{2} d t+\int \operatorname{cosec}^{2} 3 x d x \end{aligned}$$=-\frac{1}{3} \frac{t^{2+1}}{2+1}+\frac{-\cot 3 x}{3}+C$ $\text { (if, } \int x^{n} d x=\frac{x^{n+1}}{n+1}+c \quad \& \int \operatorname{cosec}^{2} x d x=-\cot x+c$$=-\frac{1}{3} \cdot \frac{t^{3}}{3}-\frac{\cot 3 x}{3}+C$$=-\frac{1}{9} \cot ^{3} 3 x-\frac{1}{3} \cdot \cot 3 x+\mathrm{C} \: \: \: \: \: \: \: \: \quad(\text { if, } \cot 3 \mathrm{x}=\mathrm{t})$Indefinite Integrals Exercise 18.11 Question 9
Answer:
$-\frac{\cot ^{n+1} x}{n+1}+\mathrm{C}$Hint:Use substitution method to solve this integral.
Given:
$\int \cot ^{n} x \cdot \operatorname{cocec}^{2} x d x, \mathrm{n} \neq-1$Solution:let,
$\mathrm{I}=\int \cot ^{n} x \cdot \operatorname{cocec}^{2} x d x$Substitute, cot x = t
$\operatorname{cosec}^{2} x d x=\text { dt then }$$\begin{array}{ll} \mathrm{I}=\int t^{n} \cdot \operatorname{cosec}^{2} \mathrm{x} \cdot \frac{d t}{-\operatorname{cosec}^{2} x} &\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \text { (if, } \cot \mathrm{x}=\mathrm{t}) \end{array}$$=-\int t^{n}$$=-\left[\frac{t^{n+1}}{n+1}\right]+C$ $\text { (if, } \left.\int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right)$$\left.=-\frac{\cot ^{n+1} x}{n+1}+C \: \: \: \: \: \: \: \quad \text { (if, } \mathrm{t}=\cot \mathrm{x}\right)$Indefinite Integrals Exercise 18.11 Question 10
Answer: $-\frac{1}{6} \cot ^{6} x-\frac{1}{8} \cot ^{8} x+C$
Hint :- Use substitution method to solve this integral.
Given:$\int \cot ^{5} x \cdot \operatorname{cosec}^{4} x d x$
Solution:Let, $\mathrm{I}=\int \cot ^{5} x \cdot \operatorname{cosec}^{4} x d x$
Re-Write,$\mathrm{I}=\int \cot ^{5} x \cdot \operatorname{cosec}^{2} x \cdot \operatorname{cosec}^{2} x d x$
$\mathrm{I}=\int \cot ^{5} x\left(1+\cot ^{2} x\right) \cdot \operatorname{cosec}^{2} x d x$ $\text { (if, } \left.\operatorname{cosec}^{2} x-\cot ^{2} x=1\right)$
$\mathrm{I}=\int\left(\cot ^{5} x+\cot ^{5} x \cdot \cot ^{2}\right) \operatorname{cosec}^{2} x d x$
$\mathrm{I}=\int\left(\cot ^{5} x+\cot ^{7} x\right) \operatorname{cosec}^{2} x d x$
Substitute, cotx = t
$-\operatorname{cosec}^{2} x d x=d t, \text { then }$
$I=\int\left(t^{5}+t^{7}\right) \operatorname{cosec}^{2} x \cdot \frac{d t}{-\operatorname{cosec}^{2} x} \mathrm{dx} \: \: \: \: \: \: \: \: \quad(\text { as } \cot x=t)$
$\begin{aligned} &=-\int\left(t^{5}+t^{7}\right) \mathrm{dt} \\ &=-\int t^{5} d t-\int t^{7} \mathrm{dt} \end{aligned}$
$=-\frac{t^{5+1}}{5+1}-\frac{t^{7+1}}{7+1}+C$ $\text { (if, } \left.\int x^{n} d x=\frac{x^{n+1}}{n+1}+\mathrm{c}\right)$
$=-\frac{t^{6}}{6}-\frac{t^{8}}{8}+C$
$=-\frac{\cot ^{6} x}{6}-\frac{\cot ^{8} x}{8}+\mathrm{C}$ $(\text { if, } t=\cot x)$
Indefinite Integrals Exercise 18.11 Question 11
Answer: $-\frac{1}{4} \cot ^{4} x+\frac{1}{2} \cot ^{2} x+\log |\sin x|+C$
Hint :- Use substitution method to solve this integral.
Given: $\int \cot ^{5} x d x$
Solution: Let $I=\int \cot ^{5} x d x$
Re-Write,$\mathrm{I}=\int \cot ^{5} x d x$
$=\int \cot ^{3} x \cdot \cot ^{2} x d x$
$\mathrm{I}=\int \cot ^{3} x\left(\operatorname{cosec}^{2} x-1\right) d x$ $\text { (if, } \operatorname{cosec}^{2} x-\cot ^{2} x=1 \text { ) }$
$\begin{aligned} &I=\int\left(\cot ^{3} x \cdot \operatorname{cosec}^{2} x-\cot ^{3} x\right) d x \\ &I=\int \cot ^{3} x \cdot \operatorname{cosec}^{2} x d x-\int \cot ^{3} x d x \\ &I=\int \cot ^{3} x \cdot \operatorname{cosec}^{2} x d x-\int \cot ^{2} x \cot x d x \end{aligned}$
$\begin{aligned} &\mathrm{I}=\int \cot ^{3} x \cdot \operatorname{cosec}^{2} x d x-\int\left(\operatorname{cosec}^{2} x-1\right) \cot x d x \\ &\mathrm{I}=\int \cot ^{3} x \cdot \operatorname{cosec}^{2} x d x-\int\left(\operatorname{cosec}^{2} x \cdot \cot x-\cot x\right) d x \\ &\mathrm{I}=\int \cot ^{3} x \cdot \operatorname{cosec}^{2} x d x-\int \operatorname{cosec}^{2} x \cdot \cot x d x+\int \cot x d x \end{aligned}$
Substitute, cotx = t
$\begin{aligned} &-\operatorname{cosec}^{2} x d x=d t, \text { then } \\ &I=\int t^{3}(-d t)-\int t(-d t)+\int \cot x d x \\ &=-\int t^{3} d t+\int t d t+\int \cot x d x \end{aligned}$
$=-\frac{t^{8+1}}{3+1}+\frac{t^{1+1}}{1+1}+\log |\sin x|+C$ $\text { (if, } \left.\int x^{n} d x=\frac{x^{n+1}}{n+1}+\mathrm{c} \& \int \cot x d x=\log |\sin x|+c\right)$
$\begin{aligned} &=-\frac{1}{4} t^{4}+\frac{1}{2} t^{2}+\log |\sin x|+C \\ &=-\frac{1}{4} \cot ^{4} x+\frac{1}{2} \cot ^{2} x+\log |\sin x|+C \end{aligned}$ $\left ( as,t=\cot x \right )$
Indefinite Integrals Exercise 18.11 Question 12
Answer: $-\frac{1}{5} \cot ^{5} x+\frac{1}{3} \cot ^{3} x-\cot x-x+C$Hint :- Use substitution method to solve this integral.Given: $\int \cot ^{6} x d x$Solution: Let,$I=\int \cot ^{6} x d x$Re-Write,$\mathrm{I}=\int \cot ^{6} x d x$$\mathrm{I}=\int \cot ^{2} x \cdot \cot ^{4} x d x$$\mathrm{I}=\int\left(\operatorname{cosec}^{2} x-1\right) \cot ^{4} x d x$ $\text { (if, } \operatorname{cosec}^{2} x-\cot ^{2} x=1 \text { ) }$$\begin{aligned} &I=\int \operatorname{cosec}^{2} x \cdot \cot ^{4} x d x-\int \cot ^{4} x d x \\ &I=\int \operatorname{cosec}^{2} x \cdot \cot ^{4} x d x-\int \cot ^{2} x \cdot \cot ^{2} x d x \end{aligned}$$\left.I=\int \operatorname{cosec}^{2} x \cdot \cot ^{4} x d x-\int \cot ^{2} x\left(\operatorname{cosec}^{2} x-1\right) d x \quad \text { (if, } \operatorname{cosec}^{2} x-\cot ^{2} x=1\right)$$\begin{aligned} &1=\int \operatorname{cosec}^{2} x \cdot \cot ^{4} x d x-\int\left(\cot ^{2} x \cdot \operatorname{cosec}^{2} x-\cot ^{2} x\right) d x \\ &\mathrm{I}=\int \operatorname{cosec}^{2} x \cdot \cot ^{4} x d x-\int \cot ^{2} x \cdot \operatorname{cosec}^{2} x d x+\int \cot ^{2} x d x \end{aligned}$$\left.I=\int \operatorname{cosec}^{2} x \cdot \cot ^{4} x d x-\int \cot ^{2} x \cdot \operatorname{cosec}^{2} x d x+\int\left(\operatorname{cosec}^{2} x-1\right) d x \text { (if, } \cot ^{2} x=\operatorname{cosec}^{2} x-1\right)$$\mathrm{I}=\int \operatorname{cosec}^{2} x \cdot \cot ^{4} x d x-\int \cot ^{2} x \cdot \operatorname{cosec}^{2} x d x+\int \operatorname{cosec}^{2} x d x-\int 1 d x$Substitute, cotx = t $-\operatorname{cosec}^{2} x d x=d t, \text { then }$$\begin{aligned} &\mathrm{I}=\int t^{4}(-d t)-\int t^{2}(-d t)+\int \operatorname{cosec}^{2} x d \mathrm{x}-\int 1 \mathrm{dx} \\ &=-\int t^{4} d t+\int t^{2} d t+\int \operatorname{cosec}^{2} x d \mathrm{x}-\int x^{0} \mathrm{dx} \end{aligned}$$=-\frac{t^{4+1}}{4+1}+\frac{t^{2+1}}{2+1}-\cot x-\frac{x^{0+1}}{0+1}+C$ $\text { (if, } \left.\int x^{n} d x=\frac{x^{n+1}}{n+1}+c \& \int \operatorname{cosec}^{2} x d x=-\cot x+c\right)$$\begin{aligned} &=-\frac{t^{5}}{5}+\frac{t^{3}}{3}-\cot x-x+C \\ &=-\frac{\cot ^{5} x}{5}+\frac{\cot ^{8} x}{3}-\cot x-x+C \end{aligned}$ $\left ( if,\cot x=t \right )$RD Sharma Class 12th Exercise 18.11 solutions provided by Career360 is the best choice for students for exam preparation as it covers the entire syllabus. Students who find it confusing to study from the RD Sharma book can refer to this material to simplify their preparation. Furthermore, this material complies with the CBSE syllabus, which means that students can directly refer to it to understand their class lectures better.
As there are hundreds of sums in this chapter, teachers can't cover all of them in their lectures and usually give a huge chunk of questions as homework. Therefore, RD Sharma Class 12th Exercise 18.11 material is specifically designed for students to get a good understanding of the subject which will help them finish their homework and get good marks in exams.
All the solutions from this material go through quality tests to ensure that every answer is accurate. Additionally, as the answers are expert-created they are specifically prepared to help students find the best method of solving questions. RD Sharma Solution As there are different methods to solve a problem students can gain knowledge on all of them and use whatever suits them best.
Therefore, students can rest assured that RD Sharma Class 12th Exercise 18.11 solutions provides the best quality answers and is perfect for reference. Once the students are through with this material, there is no other source they would need to follow as it covers all the topics.
RD Sharma Class 12th Exercise 18.11 material contains step-by-step answers that are simple and direct. Students can take advantage of this material as it is convenient and free to study from Career360’s website. They can access this material through any device using a browser and internet connection and learn all the concepts in a paperless manner. Thus, they can prepare from the comfort of their homes and score well in exams.