Careers360 Logo
RD Sharma Class 12 Exercise 18.2 Indefinite Integrals Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise 18.2 Indefinite Integrals Solutions Maths - Download PDF Free Online

Edited By Kuldeep Maurya | Updated on Jan 24, 2022 12:48 PM IST

NCERT Solutions can be extremely helpful for students who are in class 12. Since board exams are near, students need to put in a lot of practice to score high and top their exams. This is why they should use RD Sharma class 12th exercise 18.2 Solutions for their exam preparations. RD Sharma solutions is a respectable and trusted name among all the NCERT solutions. They contain Solutions to all chapters including the RD Sharma class 12 chapter 18 exercise 18.2. It is not surprising that both students and teachers recommend the book among all others.

This Story also Contains
  1. RD Sharma Class 12 Solutions Chapter 18 Indefinite Integrals - Other Exercise
  2. Indefinite Integrals Excercise:18.2
  3. RD Sharma Chapter wise Solutions

RD Sharma Class 12 Solutions Chapter 18 Indefinite Integrals - Other Exercise

Indefinite Integrals Excercise:18.2

Indefinite Integrals exercise 18.2 question 1

Answer:

65x52+12x32+5x+c
Hint: To solve this, we break square root then imply xadx formula
 Given: (3xx+4x+5)dx Solution: 3xx12+4x12+5=3x32+4x12+5I=(3xx+4x+5)dx=(3x.x12+4x12+5)dx{xadx=1a+1xa+1+c,a1}
=3x32dx+4x12dx+5dx=311+32x1+32+411+12x1+12+5x+c=3152x52+4132x32+5x+c=65x52+83x32+5x+c

Indefinite Integrals exercise 18.2 question 2
Answer:

2xlog2+5logx32x23+c
Hint: To solve this equation we differentiate it differently.
 Given: (2x+5x1x13)dx Solution: 2xdx+51xdx1x13dx{axdx=axloga+c1xdx=logx+c}=2xlog2+5logxx32+132+1+c=2xlog2+5logx32x23+c

Indefinite Integrals exercise 18.2 question 3

Answer:

27ax72+25bx52+23cx32+c
To solve this we multiply x by ax2+bx+c
 Given: {x(ax2+bx+c)}dx Solution: {x(ax2+bx+c)}dx
=(ax2+12+bx1+12+cx12)dx=ax52dx+bx32dx+cx12dx
=ax52+152+1+bx32+132+1+cx12+112+1{xndx=xn+1n+1+c}=27ax72+25bx52+23cx32+c

Indefinite Integrals exercise 18.2 question 4
Answer:

3x4+43x3172x2+6x+c

Hint: To solve this we multiply (23x)(3+2x)(12x) then differentiate

 Given: (23x)(3+2x)(12x)dx Solution: (23x)(3+2x)(12x)=(6+4x9x6x2)(12x)=(65x6x2)(12x)=65x6x2+10x212x+12x3=12x3+4x217x+6

(23x)(3+2x)(12x)dx=(12x3+4x217x+6)dx Using identity xndx=xn+1n+1+c12x43+1+4x3317x21+1+6x+c=12x44+4x3317x22+6x+c=3x4+43x3172x2+6x+c

Indefinite Integrals exercise 18.2 question 5

Answer:

Solution: We have ,
I=(mx+xm+mx+xm+mx)I=mlog|x|+x22m+mxlogm+xm+1m+1+mx22+c


Indefinite Integrals exercise 18.2 question 6

Answer:

x32+logx2x+c
Hint: To solve this equation we use (ab)2 formula then xadx
 Given: [x1x]2dx Solution: [(x)22x1x(1x)2]dx{(ab)2=a2b2+2ab}
I=(x2+1x)dxI=x222x+log|x|+c.

Indefinite Integrals exercise 18.2 question 7

Answer:

2x+27x72+2x32+65x52+c

Hint: To solve this equation we use (a+b)3 formula then find the integral

 Given: (1+x)3xdx Solution: I=(1+x)3xdx

 Using identity {(a+b)3=a3+b3+3ab(a+b)}=1+x3+3x(1+x)xdx=1+x3+3x+3x2xdx=x12+x52+3x12+3x32dx

 Using identity {xadx=1a+1xa+1+c,a1}=x1212+1+x52+152+1+3x12+112+1+3x32+132+1=x12+x7272+3x3232+3x5252=2x+27x72+63x32+65x52+c=2x+27x72+2x32+65x52+c

Indefinite Integrals exercise 18.2 question 8

Answer:


Hint: To solve this equation we integral the term separately
 Given: {x2+elogx+(e2)x}dx Solution: (1) elogx=x
I=[x2+x+(e2)x]dxI=x33+x22+1loge2(e2)x+c

Indefinite Integrals exercise 18.2 question 9

Answer:

Solution:We have ,
I=(xe+ex+ee)dxI=xe+1e+1+ex+xee+c

Indefinite Integrals exercise 18.2 question 10

Answer:

29x924x12+c
Hint: To solve this we multiplyxto next term
Solution: We have ,
I=x(x32x)dx
 Using identity {xadx=1a+1xa+1+c,a1}=172+1x72+121112x112+c=192x92212x12+c=29x924x12+c

Indefinite Integrals exercise 18.2 question 11

Answer:

2x1212x12+c
Hint: To solve this equation we use xndx formula
 Given: 1x(11x)dx
 Solution: 1x(11x)dx=x12dx+x32dx[xndx=xn+1n+1+c]=2x12x1212+c=2x1212x12+c

Indefinite Integrals exercise 18.2 question 12

Answer:

x55x33+x+c
Hint: To solve this equation we usea3+b3 formula , then integral it.
 Given: x6+1x2+1 Solution: x6+1=(x2)3+(12)3[a3+b3=(a+b)(a2abb2)]=(x2+1)(x4x2+1)(x2+1)(x4x2+1)x2+1dx=(x4x2+1)dx[xa=1axa+1+c,a1]x4+14+1x2+12+1+x0+10+1+cx55x33+x+c

Indefinite Integrals exercise 18.2 question 13

Solution: We have ,
I=x13+x+2x3dxI=(x23+x16+2x13)dxI=3x13+67x76+3x23+c

Indefinite Integrals exercise 18.2 question 14

Answer:

2x+2x+23x32+c
Hint:To solve this equation (1+x) will be differentiate first
Given: (1+x)2x
Solution: We have
(1+x)2x1x12dx=1+x+2xx12+[(a+b)2=a2+2ab+b2]=(1x12+xx12+2xx)dx=x12dx+x12dx+2dx=x12+112+1+x12+112+1+2x+c=2x+23x32+2x+c


Indefinite Integrals exercise 18.2 question 15

Answer:

2x322x52+c
Hint: To solve this equation use multiply x=x12 by 35x
 Given: x(35x)dx Solution: x(35x)dx(x)12(35x)dx3x125x32dx=3x12dx5x32dx[xndx=xn+1n+1+c,n1]
=3x32325x5252+c=2x322x52+c


Indefinite Integrals exercise 18.2 question 16

Answer:

25x5223x324x+c
Hint: To solve this equation we multiply the upper term
 Given: (x+1)(x2)xdx Solution: x(x2)+1(x+2)xdx=x22x+x+2xdx=x2x+2xdx=x2xxx2xdx
=x32dxxdx2dx[xndx=xn+1n+1+c,n1]=2x5252x3234x+c=25x5223x324x+c

Indefinite Integrals exercise 18.2 question 17

Answer:

Solution: We have ,
I=x5+x2+2x2dxI=(x3+x4+2x2)dxI=x4413x32x+c

Indefinite Integrals exercise 18.2 question 18

Answer:

3x3+12x2+16x+c
Hint: To solve this equation we do middle term equation
 Given: (3x+4)2dx Solution: (3x+4)2=(3x)2+(4)2+2(3x)(4)=9x2+16+24x=9x2+24x+16=(3x+4)2dx=9x2+24x+16dx=911+2x1+2+2411+1x1+1+16x+c[xadx=1axa+1+c,a1]=93x3+242x2+16x+c
3x3+12x2+16x+c


Indefinite Integrals exercise 18.2 question 19

Answer:

3x22+2x33+c
Hint: To solve this equation we do middle term equation
 Given: 2x4+7x3+6x2x2+2xdx Solution: 2x4+4x3+3x3+6x2x(x+2)dx=2x3(x+2)+3x2(x+2)x(x+2)dx=2x3+3x2xdx=2x3+3x2xdx=x(2x2+3x)xdx=3x+2x2dx[xadx=1axa+1+c,a1]=3x1+11+1+2x2+12+1+c=3x22+2x33+c


Indefinite Integrals exercise 18.2 question 20

Answer:

5x33+7x22+c Hint: To solve this equation we do middle term spilt  Given: 5x4+12x3+7x2x2+xdx Solution: 5x4+12x3+7x2x2+xdx=x2(5x2+12x+7)x(x+1)dx=x(5x2+12x+7)(x+1)dx=x(5x2+5x+7x+7)(x+1)dx=x(5x(x+1)+7(x+1))(x+1)dx=x(5x+7)(x+1)(x+1)dx=x(5x+7)dx=5x2+7xdx[xadx=1axa+1+c,a1]=5x2+12+1+7x1+11+1+c=5x33+7x22+c

Indefinite Integrals exercise 18.2 question 21

Answer:

xsinx+c
Hint:To solve this equation we replace sin2x by 1cos2x
 Given: sin2x1+cos2xdx Solution: sin2x1+cosx
=1cos2x1+cosx[Sin2x+cos2x=1Sin2x=1cos2x]=(1cosx)(1+cosx)1+cosx[a2b2=(a+b)(ab)]=1cosxsin2x1+cosxdx=1cosxdx=xsinx+c




Indefinite Integrals exercise 18.2 question 23

Answer:

secxcosecx+c
Hint:To solve this equation we separate the term then differentiate
 Given: sin3xcos3xsin2xcos2xdx Solution: sin3xcos3xsin2xcos2xdxsin3xsin2xcos2xdxcos3xsin2xcos2xdx=tanxsecxdxcotxcosccxdx
secxcosecx+c

Indefinite Integrals exercise 18.2 question 24

Answer:

52cosecx+3secx+c
Hint: To solve this equation we separate the terms
 Given: 5cos3x+6sin3x2sin2xcos2xdx Solution: 5cos3x+6sin3x2sin2xcos2xdx5cos3x2sin2xcos2xdx6sin3x2sin2xcos2xdx=52cosxsin2xdx3sinxcos2xdx=52(cotxcosecx)dx+3tanxsecxdx=52cosecx+3secx+c


Indefinite Integrals exercise 18.2 question 25
Answer:

tanxcotx+c
Hint:To solve this equation we use tanx; tan2x formula
 Given: (tanx+cotx)2dx Solution: (tanx+cotx)2dx(a+b)2=a2+b2+2ab=tan2x+cot2x+2tanxcotxdx=tan2x+cot2x+21cotxcotxdx[tanx=1cotx]=(sec2x1+cosec2x1+2)dx+c[tan2x=sec2x1cosec2x=cot2x1]=sec2xdx+cosec2xdx[sec2xdx=tanx+ccosec2xdx=cotx+c]=tanxcotx+c

Indefinite Integrals exercise 18.2 question 26

Answer:

tanxx+c
Hint: To solve this equation we use cos2x,sec2xdx formula
 Given: 1cos2x1+cos2xdx Solution: 1cos2x1+cos2xdx2sin2x2cos2xdx[cos2x=12sin2xcos2x=2cos2x1]tan2xdxsec2xdx1dx[sec2xtan2x=1sec2x1=tan2xsec2xdx=tanx+c]tanxx+c

Indefinite Integrals exercise 18.2 question 27
Answer:

(cosecx+cotx+x)+c
Hint: To solve this equation we add cosecx+cotx
 Given: cotxcosecxcotxdx Solution: cotxcosecxcotxdx
cotxcosecxcotx×cosecx+cotxcosecx+cotx=cotxcosecx+cot2xI=(cotxcosecx)dx+(cosec2x1)dxI=cosecxcotx+c

Indefinite Integrals exercise 18.2 question 28
Answer:

12x+c
Hint: To solve this equation we use 2cos2x and cos2x formula
 Given: cos2xsin2x1+cos4xdx Solution: cos2x2cos22xdx[cos2xsin2x=cos2x1+cos4x=2cos22x]=12(cos2xcos2x)=12cos2xsin2x1+cos4xdx=12dx=12x+c

Indefinite Integrals exercise 18.2 question 29
Answer:

cotxcosecx+c
Hint: To solve this equation we will add 1+cosx
 Given: 11cosxdx Solution: 11cosxdx Multiplying 1+cosx to numerator and denominator =1+cosx(1cosx)(1+cosx)dx=1+cosx(1cos2x)dx[(ab)(a+b)=a2b21cos2x=sin2x]=1+cosxsin2xdx=1sin2xdx+cosxsin2xdx=cosec2xdx+cotxcosecxdx=cotx+(cosecx)+cI=cotxcosecx+c

Indefinite Integrals exercise 18.2 question 30
Answer:

tanx+secx+c
Hint: To solve this equation we will add 1+sinx
 Given: 11sinxdx Solution: 11sinxdx Multiplying 1+sinx to numerator and denominator =1+sinx(1sinx)(1+sinx)dx
=1+sinx(1sin2x)dx[(ab)(a+b)=a2b21sin2x=cos2x]=1+sinxcos2xdx[1sinx=secxsinxcosx=tanx]=1cos2xdx+sinxcos2xdx=sec2xdx+secxtanxdxI=tanx+secx+c

Indefinite Integrals exercise 18.2 question 31
Answer:

secxtanx+x+c
Hint:Using secxtanxdx and sec2xdx
 Given: tanxsecx+tanxdx Solution: I=tanxsecx+tanxdx Multiply and divide by secxtanxI=tanx(secxtanx)(secx+tanx)(secxtanx)dx=tanxsecxtan2xsec2xtan2xdx[(ab)(a+b)=a2b2sec2xtan2x=1]=tanxsecxtan2x1dx=tanxsecxdxtan2xdx=tanxsecxdx(sec2x1)dx=tanxsecxdxsec2xdx+1dx=secxtanx+x+c

Indefinite Integrals exercise 18.2 question 32
Answer:

cotxcosecx+c
 Hint: Usingcosec2xdx and cosecxcotxdx Given: cosecxcosecxcotxdx Solution: I=cosecxcosecxcotxdx Multiply and divide by cosecx+cotxI=cosecx(cosecx+cotx)(cosecxcotx)(cosecx+cotx)dx=cosec2x+cosecxcotx(cosec2xcot2x)dx[(ab)(a+b)=a2b2cosec2xcot2x=1]=cosec2x+cosecxcotx1dx=cosec2xdxcosecxcotxdx=cotxcosecx+c

Indefinite Integrals exercise 18.2 question 33

Answer:

12tanx+c Hint: Using sec2xdx Given: 11+cos2xdx Solution: I=11+cos2xdx=12cos2xdx[1+cos2θ=2cos2θ]=12sec2xdx[1cosx=secx]
12tanx+c

Indefinite Integrals exercise 18.2 question 34
Answer:

cotx2+c Hint: Using cosec2xdx Given: 11cos2xdx Solution: I=11cos2xdx=12sin2xdx[1cos2θ=2sin2θ]=12cosec2xdx[1sinx=cosecx]=12(cotx)+c=cotx2+c

Indefinite Integrals exercise 18.2 question 35
Answer:

x22+c Hint: Using xdx Given: tan1(sin2x1+cos2x)dx Solution: I=tan1(sin2x1+cos2x)dx
=tan1(2sinxcosx2cos2x)dx[sin2θ=2sinθcosθ1+cos2θ=2cos2θ=tan1(tanx)dx[sinxcosx=tanx]=xdx=x22+c


Indefinite Integrals exercise 18.2 question 36
Answer:

π2xx22+c Hint: Using xdx Given: cos1(sinx)dx Solution: I=cos1(sinx)dx=cos1(cos(π2x))dx[sinx=cos(π2x)]=(π2x)dx=π21dxxdx=π2xx22+c

Indefinite Integrals exercise 18.2 question 37
Answer:

x22+c Hint: Using xdx Given: cot1(sin2x1cos2x)dx
 Solution: I=cot1(sin2x1cos2x)dx=cot1(2sinxcosx2sin2x)dx[sin2θ=2sinθcosθ1cos2θ=2sin2θ]=cot1(cosxsinx)dx=cot1(cotx)dx[cotx=cosxsinx]=xdx=x22+c

Indefinite Integrals exercise 18.2 question 38
Answer:


x2+c
 Hint: Using xdx Given: sin1(2tanx1+tan2x)dx Solution: I=sin1(2tanx1+tan2x)dx=sin1(sin2x)dx[sin2θ=2tanθ1+tan2θ]=2xdx=2x22+c=x2+c

Indefinite Integrals exercise 18.2 question 39
Answer:

x33+x222x+c Hint: Using xndx Given: (x3+8)(x1)x22x+4dx Solution: I=(x3+8)(x1)x22x+4dx=(x3+23)(x1)x22x+4dx=(x+2)(x22x+4)(x1)x22x+4dx[a3+b3=(a+b)(a2+b2ab)]=(x+2)(x1)dx=(x2+x2)dx[(x+2)(x1)=x(x1)+2(x1)=x2x+2x2=x2+x2]=x2dx+xdx+21dx=x33+x222x+c

Indefinite Integrals exercise 18.2 question 40
Answer:

a2tanxb2cotx(ab)x Hint: Using sec2xdx and cosec2xdx Given: (atanx+bcotx)2dx Solution: I=(atanx+bcotx)2dx=(a2tan2x+b2cot2x+2abtanxcotx)dx[(a+b)2=a2+b2+2ab]=(a2tan2x+b2cot2x+2ab(1))dx[tanx=1cotxtanxcotx=1]=a2tan2xdx+b2cot2xdx+2ab1dx[tan2θ=sec2θ1cot2θ=cosec2x1]=a2(sec2x1)dx+b2(cosec2x1)dx+2ab1dx=a2tanxa2x+b2(cotx)b2x+2abxI=a2tanxb2cotxx(a2+b22ab)=a2tanxb2cotx(ab)2x[(ab)2=a2+b22ab]

Indefinite Integrals exercise 18.2 question 41
Answer:

12[x223x+5log|x|+7x+axloga]+c Hint: Using xndx and axdx Given: x33x2+5x7+x2ax2x2dx Solution: I=x33x2+5x7+x2ax2x2dx=x32x2dx3x22x2dx+5x2x2dx712x2dx+x2ax2x2dx=12xdx321dx+521xdx721x2dx+12axdx=12[x22]32x+52log|x|+72x+12axloga+c=12[x223x+5log|x|+7x+axloga]+c

Indefinite Integrals exercise 18.2 question 42
Answer:

xtanx2+c Hint: Usingsec2xdx Given: cosx1+cosxdx Solution: I=cosx1+cosxdx
=(cosx+11)1+cosxdx=cosx+11+cosxdx11+cosxdx=1dx12cos2x2dx=1dx12sec2x2dx=x12[tanx212]+c=xtanx2+c

Indefinite Integrals exercise 18.2 question 43

 Answer: 2tanx2x+c Hint: Using sec2xdx Given: 1cosx1+cosxdx Solution: I=1cosx1+cosxdx=2sin2x22cos2x2dx[1cos2θ=2sin2θ1+cos2θ=2cos2θ]=tan2x2dx=(sec2x21)dx[1+tan2θ=sec2θ]
=sec2x2dx1dx=tanx212x+c=2tanx2x+c

Indefinite Integrals exercise 18.2 question 44

Answer:


=3cosx4sinx+6tanx+7cotx+c
Hint: You must know about integration of all trigonometry function
 Given: {3sinx4cosx+5cos2x6sin2x+tan2xcot2x}dx Solution: 3sinxdx4cosxdx+51cos2xdx61sin2xdx+tan2xdxcot2xdx=3sinxdx4cosxdx+5sec2xdx6cosec2xdx+(sec2x1)dx(cosec2x1)dx[secθ=1cosθ;cosecθ=1sinθ;tan2θ=sec2θ1;cot2θ=cosec2θ1]=3(cosx)4sinx+5tanx6(cotx)+tanxx(cotx)+x+c=3cosx4sinx+6tanx+7cotx+c


Indefinite Integrals exercise 18.2 question 45
Answer:

x22+1x+cHint:UsingxndxGiven:Iff(x)=x1x2andf(1)=12,findf(x)Solution:f(x)=x1x2
Integrating both side
f(x)=(x1x2)dx
=xdx1x2dx=xdxx2dx=x22x2+12+1+cf(x)=x22+x1+c=x22+1x+c
 We have f(1)=12(1)22+11+c=1212+11+c=12c=1 Put in (1) f(x)=x22+1x1

Indefinite Integrals exercise 18.2 question 46

Answer:

x22+132x2 Hint: Usingxndx Given: If f(x)=x+b and f(1)=5, find f(x)
 Solution: f(x)=x+b Integrating both sides. f(x)=(x+b)dxf(x)=x22+bx+c ..... 
 We have f(1)=5,f(2)=13f(x)=(1)22+b(1)+c=512+b+c=5b+c=512b+c=92.(2) Also f(2)=13222+b(2)+c=13=2+2b+c=132b+c=11 Solving (2) and (3) b+c=922b+c=11b=9211b=132b=132 Put in (3) 2(132)+c=1113+c=11c=2
 Put the values in (1); We get f(x)=x22+132x2

Indefinite Integrals exercise 18.2 question 47

Answer:

2x4x420hint:;Using;xndxGiven:Iff(x)=8x32xandf(2)=8,findf(x)Solution:f(x)=8x32x
Integration both side
f(x)=(8x32x)dxf(x)=8x442x22+cf(x)=2x4x2+c(1) We have f(2)=8f(2)=2(2)4+(2)2+c=8324+c=8c=828c=20
Put in(1) we get
f(x)=2x4x420

Indefinite Integrals exercise 18.2 question 48

Answer:

2cosx+4sinx+1 Hint: Using sinxdx and cosxdx Given: f(x)=asinx+bcosx;f(0)=4;f(0)=3,f(π2)=5 Solution: f(x)=asinx+bcosx Integrating both sides. f(x)=asinxdx+bcosxdxf(x)=a[cosx]+b[sinx]+cf(x)=acosx+bsinx+c.()
f(0)=acos0+bsin0+c=3a(1)+b(0)+c=3a+c=3(1)f(π2)=acosπ2+bsinπ2+c=5=a(0)+b(1)+c=5b+c=5
 Also f(0)=4 i.e asin0+bcos0=4a(0)+b(1)=4b=4Putin(2) i.e b+c=5=4+c=5c=1Putin(1) i.e a+c=3a+1=3a=2a=2Byputtingallthevaluesin(),wegetf(x)=(2)cosx+4sinx+cf(x)=2cosx+4sinx+1

Indefinite Integrals exercise 18.2 question 49

Answer:

23x32+2x12+c Hint: Usingxndx
Given: Write the primitive or antiderivative of f(x)=x+1x
 Solution: f(x)=x+1x=x12+1x12f(x)=x12+x12
Integrating both sides
f(x)=(x12+x12)dx=x12dx+x12dx=x12+112+1+x12+112+1+c=x3232+x1212+c=23x32+2x12+c

The 18th Chapter of the Class 12 maths book is Indefinite Integrals which is a lengthy and complex topic. In order to ace this chapter, students need to seek the help of the class 12 RD Sharma chapter 18 exercise 18.2 solution. The chapter covers concepts like Reverse power rule, Graphs of indefinite integrals, Indefinite integrals of common functions, formulas of integrals and so on. The exercise 18.2 has 49 questions including subparts, based on the evaluation of integrals.

RD Sharma Solutions is a coveted coursebook and popular as a NCERT solution for various reasons. If you want to know why students are recommending this book, read the following points:-

  • Experienced professionals have drafted the answers of the RD Sharma class 12th exercise 18.2. These answers are detailed but easy to understand and contain many modern calculations.

  • Teachers make use of NCERT Books and RD Sharma class 12th exercise 18.2 pdfs to assign home questions to school students. Students can check their homework before submitting their copies to their school teachers.

  • RD Sharma class 12 solutions Indefinite Integrals ex 18.2 is a complicated and challenging chapter but practicing these solutions will help them find common questions in board exams.

  • All the solved questions of RD Sharma class 12 solutions chapter 4 ex 18.2 will help students test their own knowledge and mark their progress. They will also find their mistakes easily and rectify them accordingly.

  • The RD Sharma class 12th exercise 18.2 pdf can be downloaded for free on the Career360 website. Students can download the file on any device anytime.

  • The RD Sharma class 12th exercise 18.2 receives regular updates to include the latest syllabus and changes in the NCERT textbooks. Hence, the latest information is always included.

RD Sharma Chapter wise Solutions

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download E-book

Frequently Asked Questions (FAQs)

1. Which is the best NCERT solution for CBSE board?

The RD Shama solutions is undoubtedly the highest rated and reliable NCERT solutions that are available for students in class 12. It is recommended by many students.

2. What are the concepts covered in chapter 18 of the NCERT class 12 maths book?

The NCERT maths book contains various concepts and the ones covered in the 18th chapter are Reverse power rule, Graphs of indefinite integrals, Indefinite integrals of common functions, etc.

3. How can I use RD Sharma class 12th exercise 18.2 to solve homework?

Teachers often make use of the RD Sharma class 12th exercise 18.2 to give and check homework of their students. Students can take help from this book when they are stuck with answering complex questions.

4. Is class 12 RD Sharma chapter 18 exercise 18.2 solution a good book?

The class 12 RD Sharma chapter 18 exercise 18.2 solution book is a top rated NCERT solution. Reviews from hundreds of students and teachers in India have proved this fact. The most lucrative feature of the book is that it contains expert-created answers with modern and fast calculations.

5. Can I use RD Sharma class 12 solutions for JEE preparations?

Students who will appear for the JEE mains exams after their boards can definitely use RD Sharma class 12 solutions for home practice. The RD Sharma solutions books follow a syllabus that is compatible with the syllabus of JEE mains. 

Articles

Back to top