Careers360 Logo
RD Sharma Solutions Class 12 Mathematics Chapter 18 VSA

RD Sharma Solutions Class 12 Mathematics Chapter 18 VSA

Edited By Kuldeep Maurya | Updated on Jan 24, 2022 12:44 PM IST

The High-quality of answers and its accuracy in the RD Sharma solutions books has made them popular among educational institutions and their students. However, many students find the class 12 mathematics chapter 18 to be a bit hard. This is due to the lack of practice and clarity in the concepts among the students. Here is where the RD Sharma Class 12th VSA books play a significant role in making the students understand the concepts clearly.

This Story also Contains
  1. RD Sharma Class 12 Solutions Chapter 18 VSA Indefinite Integrals - Other Exercise
  2. Indefinite Integrals Excercise: VSA
  3. RD Sharma Chapter-wise Solutions

RD Sharma Class 12 Solutions Chapter 18 VSA Indefinite Integrals - Other Exercise

Indefinite Integrals Excercise: VSA

Indefinite Integrals Excercise Very Short Answers Question 1

Answer: log|x+log(sinx)|+c
Hint: You must know about the integration rule of sin, cot and logarithm function
Given:
1+cotxx+logsinxdx
Solution:
Consider x+log(sinx)=t and differentiate both sides,
We get (1+cotx)dx=dt
By integrating w.r.t t
dtt=logt+c [1xdx=logx+c]
By substituting the value of t
1+cotxx+logsinxdx
=log|x+log(sinx)|+c

Indefinite Integrals Excercise Very Short Answers Question 2

Answer: x88+c
Hints: you must know about the integration values of exponential and logarithm function
Given:e3logxx4dx
Solution:
e3logxx4dx
=elogx3x4dx [alogx=logxa]
=x3x4dx [elogm=m]
=x7dx [xndx=xn+1n+1+c]
=x88+c
e3logxx4dx=x88+c

Indefinite Integrals Excercise Very Short Answers Question 3

Answer:13cosx3+c
Hint: You must know about the integration value sin function
Given:x2sinx3dx
Explanation: x2sinx3dx
Let x3=t and differentiate both sides,
3x2dx=dt
=13sintdt
=13cost+c
=13cosx3+c [sinxdx=cosx+c]

Indefinite Integrals Excercise Very Short Answers Question 4

Answer:ex(sinx)+c
Hint: You must know about the integration rule of sin, cos and exponential function
Given:ex(sinx+cosx)dx
Solution:
ex(sinx+cosx)dx
exsinxdx+excosxdx
=ex(sinx)cosx.exdx+excosxdx
=ex(sinx)+c

Indefinite Integrals Excercise Very Short Answers Question 5

Answer:ex(sinx)+c
Hint: You must know about the integration rule of sin, cos and exponential function
Given:ex(sinx+cosx)dx
Solution:
ex(sinx+cosx)dxexsinxdx+excosxdx=ex(sinx)cosxexdx+excosxdx
=ex(sinx)+c [uvdx=uvdx{ddxu.vdx}dx]

Indefinite Integrals Excercise Very Short Answers Question 6

Answer:
tan7x7+c
Hint: You must know about the integration rule of tan and sec function
Given: tan6xsec2xdx
Solution: Suppose tanx=t differentiate both sides, [ddxtanx=sec2x]
sec2xdx=dt=t6dt=t77+c[xndx=xn+1n+1]=tan7x7+c

Indefinite Integrals Excercise Very Short Answers Question 7

Answer:12log|3+2sinx|+c
Hint: You must know about the integration rule of sin and cos function.
Given:cosx3+2sinxdx
Solution:
Let sinx=t differentiate both sides, [ddxsinx=cosx]
cosxdx=dt
I=dt3+2t
(12)log(3+2t)+c [12xdx=12log2x+c]
=12log|3+2sinx|+c

Indefinite Integrals Excercise Very Short Answers Question 8

Answer:exsecx+c
Hint: You must know about the integral values of exponential function and trignometric function.
Given:exsecx(1+tanx)dx
Solution:
exsecx(1+tanx)dx
=ex(secx+secxtanx)dx
Letexsecx=t and differentiate both sides, by using [ddxuv=uddxv+vddxu]
(exsecx(1+tanx))dx=dtI=dt=t+c[xndx=xn+1n+1]=exsecx+c[t=exsecx]

Indefinite Integrals Excercise Very Short Answers Question 9

Answer:n2(logx)2+c
Hint: You must know about the integration rule of logarithm function
Given: logxnxdx
Solution:
logxnxdx
=nlogxxdx [logxa=alogx]
Put logx=t and differentiate both sides, ddxlogx=1x
1xdx=dtI=n(t)dt=n(t22+c)[xndx=xn+1n+1]=n(logx)22+nc
=n2(logx)2+c

Indefinite Integrals Excercise Very Short Answers Question 10

Answer: (logx)n+1n+1+c
Hint: You must know about the integration rule of logarithm function
Given: (logx)nxdx
Solution:
(logx)nxdx
Put logx=t and differentiate both sides, ddxlogx=1x
1xdx=dt
I=tndt
=tn+1n+1+c [t=logx]
=(logx)n+1n+1+c

Indefinite Integrals Excercise Very Short Answers Question 11

Answer:sin2x2+c
Hint: You must know about the integration rule of logarithm, sin and cos function.
Given : elogsinx.cosxdx
Solution :
I=elogsinx.cosxdx
I=sinx.cosxdx [eloga=a]
Let sinx=t differentiate both sides, [ddxsinx=cosx]
cosxdx=dt
I=tdt
=t22+c [xndx=xn+1n+1]
=sin2x2+c


Indefinite Integrals Excercise Very Short Answers Question 12

Answer:sin4x4+c
Hint: You must know about the integration rule of trigonometric function.
Given: sin3xcosxdx
Solution: putsinx=t differentiate both sides, [ddxsinx=cosx]
cosxdx=dt
I=t3dt
=t44+c [xndx=xn+1n+1]
=sin4x4+c

Indefinite Integrals Excercise Very Short Answers Question 13

Answer:cos5x5+c
Hint: You must know about the integration rule of trigonometric function.
Given:cos4xsinxdx
Solution: put cosx=t differentiate both sides, [ddxcosx=sinx]
sinxdx=dt
sinxdx=dt
I=t4dt [xndx=xn+1n+1]
=t55+c
=cos5x5+c

Indefinite Integrals Excercise Very Short Answers Question 14

Answer:13sec3x+c
Hint: You must know about the integration rule of trigonometric function.
Given:tanx.sec3xdx
Solution: let secx=u differentiate both sides, [ddxsecx=secx.tanx]
secx.tanxdx=du
I=sec2x(secx.tanx)dx
=u2du [xndx=n+1n+1]
=13u3+c
=13sec3x+c

Indefinite Integrals Excercise Very Short Answers Question 15

Answer:log|1+ex|+c
Hint: You must know about the integration rule of exponential function.
Given= 11+exdx
Solution:
11+exdx=exex(1+ex)dx[multiplyanddividebyex]=ex1+exdx
Let ex+1=t [ddxex=ex]
ex dx=dtI=dtt=log|t|+c=log|ex+1|+c[1xdx=logx+c]

Indefinite Integrals Excercise Very Short Answers Question 16

Answer:log|ex+2|+c
Hint: You must know about the integration rule of exponential function.
Given:11+2exdx
Solution:11+2exdx
=exex(1+2ex)dx
=exex+2dx [ multiply and divide by ex]
Lett=ex+2 and differentiate both sides, [ddxex=ex]
dt=exdx
I=dtt
=log|t|+c
=log|ex+2|+c [1xdx=logx+c]

Indefinite Integrals Excercise Very Short Answers Question 17

Answer:(tan1x)44+c
Hint: You must know about the integral rule of tangent function.
Given:(tan1x)31+x2dx
Solution:
I=(tan1x)31+x2dx
Let tan1x=t and differentiate both sides,
11+x2dx=dt [ddttan1x=11+x2]
I=(t3)dt=t44+c[xndx=xn+1n+1+c]=(tan1x)44+c

Indefinite Integrals Excercise Very Short Answers Question 18

Answer:13(5+tanx)3+c
Hint: You must know about the integral rule of trigonometric functions.
Given:sec2x(5+tanx)4dx
Solution:sec2x(5+tanx)4
t=5+tanx differentiate both sides, [ddxtanx=sec2x]
dt=sec2xdx
I=sec2x(5+tanx)4dx
=dtt4
=t4dt
=t33+c
=13t3+c [xndx=xn+1n+1]
I=13(5+tanx)3+c

Indefinite Integrals Excercise Very Short Answers Question 19

Answer:x+c
Hint: You must know about the integral rule of trigonometric functions.
Given:sinx+cosx1+sin2xdx
Solution:
I=sinx+cosx1+sin2xdxI=sinx+cosxsin2x+cos2x+2sinxcosxdxI=sinx+cosx(sinx+cosx)2dxI=sinx+cosxsinx+cosxdx
I=1dx
=x+c [xndx=xn+1n+1]

Indefinite Integrals Excercise Very Short Answers Question 20

Answer:x(logex1)+c
Hint: You must know about the integral rule of logarithm functions.
Given:logexdx
Solution:
logex.1dx
Using by parts
=logex1dx[ddxlogεx1dx]dx=xlogex1xxdx=xlogεx1dx[xndx=xn+1n+1]=xlogexx+c=x(logex1)+c




Indefinite Integrals Excercise Very Short Answers Question 23

Answer:axloga+xa+1a+1+c
Hints: You must know about the integral rule of logarithm and exponential functions.
Given: (exlogea+ealogex)dx
Solution:
(exlogea+ealogex)dx=exlogeadx+ealogexdx=elogeax+elogexadx=axdx+xadx[elogx=x]=axloga+xa+1a+1+c

Indefinite Integrals Excercise Very Short Answers Question 24

Answer:log|log(sinx)|+c
Hints: You must know about the integral rule of logarithm and trigonometric functions
Given:cosxsinxlogsinxdx
Solution:logsinx=t and differentiate both sides, [ddxlogsinx=1sinx.ddxsinx]
1sinxcosx=dtcosxdxsinxlogsinx=dttlog|t|+clog|log(sinx)|+c[1xdx=logx+c]

Indefinite Integrals Excercise Very Short Answers Question 25

Answer:1a2b2loge|a2sin2x+b2cos2x|+c
Hints: You must know about the integral rule of trigonometric functions
Given:sin2xa2sin2x+b2cos2xdx
Solution:sin2xa2sin2x+b2cos2xdx
Let
a2sin2x+b2cos2x=ta22sinxcosxdx+b22cosx(sinx)=dt [ddxsinx=cosxddxcosx=sinx]&[ddxxn=nxn1]
sin2xdx(a2b2)=dtsin2xdx=dt(a2b2)[2sinxcosx=sin2x]dt(a2b2)t1a2b2dtt1xdx=log|x|+c=1a2b2loge|t|+c=1a2b2loge|a2sin2x+b2cos2x|+c

Indefinite Integrals Excercise Very Short Answers Question 26

Answer: log|3+ax|ln(a)+c
Hints: You must know about the integral rules of x
Given:ax3+axdx
Solution:
I=ax3+axdx
Lett=3+ax. and differentiate both sides
dt=0+axln(a)dx[ddxax=axln|a|]
I=dtln(a)t[1xdx=logx+c]
=1lnadtt=1lnalog|t|+c=log|3+ax|ln(a)+c

Indefinite Integrals Excercise Very Short Answers Question 27

Answer: log|3+xlogx|+c
Hints: You must know about the integral rule of logarithm functions
Given:1+logx3+xlogxdx
Solution:
1+logx3+xlogxdx
Lett=3+xlogx and differentiate both sides
dt=0+xddx(logx)+logxddx(x)
dt=0+x.1x+(logx)
Multiplication rule of differentiation [ddxuv=ud(v)dx+vddx(u)]
dt=(1+logx)dx
I=1+logx3+xlogxdx
I=dtt
=log|t|+c
I=log|3+xlogx|+c [1xdx=logx+c]

Indefinite Integrals Excercise Very Short Answers Question 28

Answer:12sec2x+c
Hints: You must know about the integral rule of trigonometric functions
Given:sinxcos3xdx
Solution:
I=sinxcos3xdx
Let cosx=t differentiate both sides, [ddxcosxsinx]


sinxdx=dt
I=dtt3I=t3dtI=t23+1+c=t22+c=12t2+c=12cos2x+c[xndx=xn+1n+1]=12sec2x+c



Indefinite Integrals Excercise Very Short Answers Question 29

Answer:log|sinx+cosx|+c
Hints: You must know about the integral rule of trigonometric functions
Given:sinxcosx1+sin2xdx
Solution:I=sinxcosx1+sin2xdx
sinxcosxsin2x+cos2x+2sinxcosxdxsinxcosx(sinx+cosx)2dxsinxcosx(sinx+cosx)dx
Let sinx+cosx=t and differentiate both sides, [ddxsinxdx=cosxandddxcosx=sinx]
(cosxsinx)dx=dt
(sinxcosx)dx=dt
=dtt
=log|t|+c [1xdx=logx+c]
=log|sinx+cosx|+c

Indefinite Integrals Excercise Very Short Answers Question 30

Answer:(logx)1n1n+c
Hints: You must know about the integral rule of trigonometric functions
Given1x(logx)ndx
Solution:I=1x(logx)ndx
Let logx=t differentiate both sides, [ddxlogx=1x]
1xdx=dt
dx=x.dt
1x(logx)ndx
Putlogx=t
dx=xdt=1xtnxdt=1tndt=tndt=tn+1n+1+c=t1n1n+c
=(logx)1n1n+c [xndx=xn+1n+1]

Indefinite Integrals Excercise Very Short Answers Question 31

Answer: eaxa2+b2(asinbxbcosbx)+c
Hints: You must know about the integral rule of trigonometric and exponential functions
Given:eaxsinbxdx
Solution:
I=eaxsinbxdx and using integration by parts,
sinbxeaxdxbcosbxeaxadx=1asinbxeaxbacosbxeaxdx=1asinbxeaxbacosbx[eaxdx+ba[ddx(cosbx)]eaxdx]dxI=1asinbxeaxbacosbxeaxa+ba(sinbx)beaxadxI=1asinbxeaxba2cosbxeaxb2a2I
I(1+b2a2)=1asinbxeaxba2cosbxeaxeaxsinbxdx=eaxa2+b2(asinbxbcosbx)+c

Indefinite Integrals Excercise Very Short Answers Question 32

Answer:eaxa2+b2[bcosbx+acosbx]+c
Hints: You must know about the integral rule of trigonometric functions
Giveneaxcosbxdx
Solution:
eaxcosbxdx
Integrating by parts
I=eaxsinbxbaeaxsinbxbdx=1beaxsinbxabeaxsinbxdx
Again using integration by parts
1beaxsinbxab[eaxcosbxbaeaxcosbxbdx]1beaxsinbxab2eaxcosbxa2b2eaxcosbxdx
On computing,
I=eaxb2[bsinbx+acosbx]a2b2I+c=eaxa2+b2[bsinbx+acosbx]+c

Indefinite Integrals Excercise Very Short Answers Question 33

Answer:exx+c
Hints: You must know about the integral rule of exponential functions
Given:ex(1x1x2)dx
Solution:
ex(1x1x2)dx
It is of form
exf(x)+f(x)dx=ex.f(x)+c
Put f(x)=1x and differentiate both sides,
f(x)=1x2
Thus,
ex(1x1x2)dx=exx+c

Indefinite Integrals Excercise Very Short Answers Question 34

Answer:eaxf(x)+c
Hints: You must know about the integral rule of exponential functions
Given:eax[af(x)+f(x)]dx
Solution:
aeaxf(x)dx+eaxf(x)dx
Now use integration by parts
[uvdx=uvdx[ddxuvdx]dx+c]=a[f(x)eaxdxddxf(x)eaxdx]dx+eaxf1(x)dx=af(x)eaxaaf1(x)eaxadx+aeaxf1(x)dx=f(x)eaxf1(x)eaxdx+f1(x)eaxdx=f(x)eax+c

Indefinite Integrals Excercise Very Short Answers Question 35

Answer: 12x4x2+2sin1(x2)+c
Hints: You must know about the integral rule of x functions
Given : 4x2dx
Solution: 4x2dx
x=2sinθdx=2cosθdθ4x2=44sin2θ=2cosθ4x2dx=2cosθ2cosθdθ=4cos2θdθ
We know that cos2θ+12=cos2θ
So,
4cos2θdθ=2(cos2θ+1)dθ
=2cos2θdθ+21dθ [cosaxdx=sinaxaxndx=xn+1n+1]
=2sinθcosθ+2θ+c [sin2x=2sinxcosx]
Now put the values of θ,sinθ,cosθ
We know x=2sinθ
θ=sin1x
x=2sinθ
Squaring on both sides
x2=4sin2θx2=4(1cos2θ)4x2=4cos2θcosθ=4x22=2x24x22+2sin1(x2)=x4x22+2sin1(x2)+c

Indefinite Integrals Excercise Very Short Answers Question 36

Answer:12x9+x2+92log|x+9+x2|+c
Hint: You must know about the integral rule of trigonometric functions
Given:9+x2dx
Solution:
9+x2dx
We know that x2+a2dx=x2a2+x2+a22log|x+x2+a2|+c
Replace x ->x and a->3
32+x2dx=x232+x2+322log|x+x2+32|+c=12x9+x2+92log|x+x2+9|+c

Indefinite Integrals Excercise Very Short Answers Question 37

Answer:x2x2992log|x+x29|+c
Given:x29dx
Solution:
x29dxI=x2a2dx=x232dx[x2a2dx=x2x2a2a22log|x+x2a2|+c]
Given by
I=x2x2992log|x+x29|+c

Indefinite Integrals Excercise Very Short Answers Question 38

Answer: 13log|1+x3|+c
Given: x21+x3dx
Solution: x21+x3dx
Put 1+x3=t and differentiate both sides, [ddxxn=nxn1]
3x2dx=dt
x2dx=dt3
dt3t=13dtt=13log|t|+c=13log|1+x3|+c[1xdx=logx+c]

Indefinite Integrals Excercise Very Short Answers Question 39

Answer:13log|x3+6x2+5|+c
Hint: You must know about the integral rule of logarithmic functions
Given:x2+4xx3+6x2+5dx
Solution:
x2+4xx3+6x2+5dx
Put x3+6x2+5=t and differentiate both sides, [ddxxn=nxn1]
3x2+12xdx=dt3(x2+4x)dx=dt(x2+4x)dx=dt3dt3t=13dtt=13log|t|+c=13log|x3+6x2+5|+c[1xdx=logx+c]

Indefinite Integrals Excercise Very Short Answers Question 40

Answer: 2tanx+c
Hint: You must know about the integral rule of trigonometric functions
Given:sec2xxdx
Solution:
sec2xxdx
Let,
t=tanxdxdt=sec2x2xdx2dt=sec2xxdx=2dt=2t+c=2tanx+c

Indefinite Integrals Excercise Very Short Answers Question 41

Answer:2cosx+c
Hint: You must know about the integral rule of trigonometric functions
Given: sinxxdx
Solution:
sinxxdx
Let
t=cosxdt=sinx2xdx2dt=sinxxdx[ddxcosx=sinx]
sinxxdx=2dt=2t+c[xndx=xn+1n+1]=2cosx+c

Indefinite Integrals Excercise Very Short Answers Question 42

Answer:2sinx+c
Hint: You must know about the integral rule of trigonometric functions
Given:cosxxdx
Solution:
cosxxdx
Let
t=sinxdt=cosx2xdx2dt=cosxx[ddxsinx=cosx]
cosxxdx=2dt=2t+c[xndx=xn+1n+1]=2sinx+c

Indefinite Integrals Excercise Very Short Answers Question 43

Answer: 13(1+logx)3+c
Hint: You must know about the integral rule of logarithmic functions.
Given:(1+logx)2xdx
Solution:
(1+logx)2xdx
Let1+logx=t and differentiate both sides, ddxlogx=1x
0+1xdx=dt1x=dtdxdx=xdt
(1+logx)2xdx
Put 1+logx=t
dx=xdt
t2xxdtt2dt=t2+12+1+c=t33+c[xndx=xn+1n+1]=13(1+logx)3+c

Indefinite Integrals Excercise Very Short Answers Question 44

Answer:14tan(74x)+c
Hint: You must know about the integral rule of trigonometric functions.
Given: sec2(74x)dx
Solution:
sec2(74x)dx
Put (74x)=t and differentiate both sides, [ddxax=a]
dx=dt4
=sec2(t)dt4=14sec2(t)dt=14tan(t)+c=14tan(74x)+c[sec2xdx=tanx+c]

Indefinite Integrals Excercise Very Short Answers Question 45

Answer:12(logx)2+c
Hint: You must know about the integral rule of logarithmic functions.
Given: logxxdx
Solution:
logxxdx
Put logx=t and differentiate both sides,ddxlogx=1x
logxxdx=tdt=t22+c1xdx=dt=(logx)22+c[1xdx=logx+c]

Indefinite Integrals Excercise Very Short Answers Question 47

Answer:tanxsecx+c
Hint: You must know about the integral rule of trigonometric functions
Given:1sinxcos2xdx
Solution:
1sinxcos2xdx
1cos2xsinxcos2xdx=sec2xdxsecxtanx=tanxsecx+c[sec2xdx=tanx and secxtanxdx=secx+c]

Indefinite Integrals Excercise Very Short Answers Question 48

Answer:x22+1x+c
Hints: You must know about the integral rule of functions
Given:x31x2dx
Solutions:x31x2dx
x3x2+1x2dx
(x1x2)dxxdx1x2dxxdxx2dx[x1+11+1][x2+12+1]+cx22x11+cx22+1x+c[xndx=xn+1n+1]

Indefinite Integrals Excercise Very Short Answers Question 49

Answer:x33+x+c
Hints: You must know about the integral rule of functions.
Given:x3x2+x1x1dx
Solution:
x3x2+x1x1dxx2(x1)+1(x1)x1dx(x2+1)(x1)x1dx(x2+1)dx
x2dx+1dx=x33+x+c[xndx=xn+1n+1]

Indefinite Integrals Excercise Very Short Answers Question 50

Answer:etan1x+c
Hints: You must know about the integral rule of exponential and trigonometric functions.
Given:etan1x1+x2dx
Lettan1x=t and differentitate on both sides,
11+x2=dtdxdx=(1+x2)dtet1+x2(1+x2)dtetdt=et+c=etan1x+c[exdx=ex]

Indefinite Integrals Excercise Very Short Answers Question 51

Answer:sin1x+c
Hints: You must know about the integral rule of trigonometric functions.
Given:11x2dx
Solution:
11x2dx
Let x=sin(u)
dx=cosudu11x2dx=11sin2ucosudusin2u+cos2u=1cos2u=1sin2u
=cos(u)cos2(u)du=cosucosudu=1du=u+c[xndx=xn+1n+1]
Where x=sinu andu=sin1x+c

=sin1x+c

Indefinite Integrals Excercise Very Short Answers Question 52

Answer:tanx+secx+c
Hints: You must know about the integral rule of trigonometric functions.
Given: secx(secx+tanx)dxsecx(secx+tanx)dx
Solution:
sec2x+secxtanxdxsec2xdx+secxtanxdxtanx+secx+c[sec2xdx=tanx and secxtanxdx=secx+c]

Indefinite Integrals Excercise Very Short Answers Question 53

Answer:14tan1(x4)+c
Hints: You must know about rules of integration
Given:
1x2+16dx
Solution:
1x2+16dx=1x2+(4)2dx1x2+42dx=14tan1(x4)+c1x2+a2dx=1atan1(xa)+c

Indefinite Integrals Excercise Very Short Answers Question 54

Answer: 2x3232x525+c

Hints: You must know about rules of integration
Given:(1x)xdx
Solution:
(1x)xdxxxxdxx12x32dxx12dxx32dx
x12+112+1x32+132+1+c2x3232x525+c[xndx=xn+1n+1]

Indefinite Integrals Excercise Very Short Answers Question 55

Answer:16log|3x2+sin6x|+c
Hints: You must know about the integral rule of trigonometric functions.
Given:x+cos6x3x2+sin6xdx
Solution:
x+cos6x3x2+sin6xdx
Let 3x2+sin6x=t and differentiate both sides,[ddxsinx=cosx]
(6x+6cos6x)dx=dt
(x+cos6x)dx=dt6
I=dt6t=>16log(t)+c=16log|3x2+sin6x|+c[1xdx=logx+c]

Indefinite Integrals Excercise Very Short Answers Question 56

Answer:exx+c
Hints: You must know about the rules of exponential function of integration.
Given:(x1)x2exdx=f(x)ex+c
Solution:
(x1)x2exdxexf(x)+f1(x)dxexf(x)+c{ex(f(x)+f1(x))dx=exf(x)+c}
x1x2=xx21x2=1x1x2f(x)=1x,f1(x)=1x2
f(x)+f1(x)=1x1x2I=ex(f(x)+f1(x))dx if f(x)=1xI=exf(x)+cf(x)=1xI=ex/x+c

Indefinite Integrals Excercise Very Short Answers Question 57

Answer:f(x)=secx
Hints: You must know about the integral rule of trigonometric functions.
Given:
ex(tanx+1)secxdx=exf(x)+c, find f(x)
Solution:
I=ex(tanx+1)secxdx
Consider,
I=ex(tanx+1)secxdx=ex(secxtanx+secx)dx=exsecxdx+exsecxtanxdx
In second integral, apply integration by parts
=exsecxdx+exsecxtanxdxddxex[(secxtanx)dx]dx=exsecxexsecxdx+exsecxdx=exsecx+cexsecx+c=exf(x)+cf(x)=secx

Indefinite Integrals Excercise Very Short Answers Question 58

Answer:cotx+c
Hints: You must know about the integral rule of trigonometric functions.
Given:21cos2xdx
Solution:
21cos2xdx=22sin2xdx=1sin2xdx=cosec2xdx=cotx+c[cosec2xdx=cotx+c]

Indefinite Integrals Excercise Very Short Answers Question 59

Answer:2x32+2x12+c
Hints: You must know about the integration rules
Given: Write Anti derivative of
(3x+1x)(3x+1x)dx3(x)12dx+(x)12dx
3x12+112+1+x12+112+1+c3.23x32+2x12+c
2x32+2x12+c

Indefinite Integrals Excercise Very Short Answers Question 60

Answer:πx2x22+c
Hints: You must know about the rules of integration of trigonometric and inverse trigonometric functions.
Given:cos1(sinx)dx
Solution:
cos1(sinx)dx
Let cos1(sinx)=θ
sinx=cosθsinx=sin(π2θ)x=(π2θ)θ=π2xcos1(sinx)dx=(π2x)dx=π2dxxdx
=πx2x22+c

Indefinite Integrals Excercise Very Short Answers Question 62

Answer:log|(1+logx)|+c
Hints: You must know about the rules of integration of trigonometric and inverse trigonometric functions.
Given:1x(1+logx)dx
Solution:
1x(1+logx)dxPut(1+logx)=t1xdx=dt1x(1+logx)dx=dtt=log|t|+c∴=log|(1+logx)|+c

Indefinite Integrals Excercise Very Short answers Question 61

Answer: tanxcotx+c
Hints: You must know about the rules of integration of trigonometric and inverse trigonometric functions.
Given:1sin2xcos2xdx
Solution:
1sin2xcos2xdxsin2x+cos2xsin2xcos2xdx
sin2xsin2xcos2xdx+cos2xsin2xcos2xdx=1cos2xdx+1sin2xdx=sec2xdx+cosec2xdx=tanxcotx+c

Indefinite Integrals Excercise Very Short answers Question 22

Answer:
14e2x2+c
Hint: You must know about the integral rule of logarithm and exponential functions.
Given:e2x2+lnxdx
Solution:I=e2x2+lnxdx
=x.e2x2dx [elogx=x]
Let x2=t and differentiate both sides, ddxxn=nxn1
2xdx=dt
I=12e2tdt
=e2t4+c [eaxdx=eaxa]
=14e2x2+c

Indefinite Integrals Excercise Very Short answers Question 46

Answer:2xln2+c
Hint: You must know about the integral rule of logarithmic functions.
Given:2xdx
Solution:
2xdxeln2=22xdx=(eln2)x=eln2dx Let u=xln2,dudx=ln2,dx=duln2exln2dx=euduln2
=1ln2eudu=1ln2eu+c=1ln2exln2+c=1ln2(eln2)x+celn2=2=1ln22x+c=2xln2+c

Students who study Class 12 chapter 18, Indefinite Integrals, tend to lose marks in the Very Short Answers (VSA) part. This is mostly due to the absence of confidence that they might not arrive at the right solution even if tried. And also due to insufficient time to work out and check the sums. There are 62 VSA questions in this chapter. It takes loads of time and effort to be put in by the students. The main concepts in this portion are evaluating the integrals, writing derivatives, and finding the f(x) value at the given condition.

The essential part of solving the VSAs is knowing the tricks and shortcuts to arrive at the solution. When the students have no idea of applying shortcut methods, they can refer to the RD Sharma Class 12 Chapter 18 VSA book. RD Sharma solutions This book follows the NCERT pattern; hence it becomes easier for the CBSE board school students to adapt. The RD Sharma Class 12th VSA book consists of various practice questions that the students can work out before their exams.

If you are weak in understanding the concepts in chapter 18, jump to the Class 12 RD Sharma Chapter 18 VSA Solution material to know how very short answers must be solved. Integrations would be no more difficult for you if the preparation and practice take place in the right way. You can refer to this book while doing your homework, making assignments, and preparing for tests and exams.

Another special advantage of using the RD Sharma Class 12 Solutions Indefinite Integrals VSA is that you need not spend money to use it. These helpful solution books are available on the Career360 website costless. No kind of deposit or monetary charge is required to own the RD Sharma Class 12th VSA book.

Teachers use these authorized books to prepare questions for the tests and exams too. Hence, the students who prepare for their exams using the RD Sharma Class 12 Solutions Chapter 18 VSA tend to score higher than the other students.

RD Sharma Chapter-wise Solutions

Frequently Asked Questions (FAQs)

1. Which is the prescribed book for the class 12 students to refer to the VSA solutions of chapter 18, mathematics?

The RD Sharma Class 12th VSA solutions book is the most recommended reference material for the CBSE students to clarify their doubts on Indefinite Integrals VSA.

2. How can I utilize the RD Sharma solution book for class 12, chapter 18 mathematics for free?

It is a stroke of luck for the students to access the RD Sharma Class 12th VSA solution book for free of cost. This can be found on the Career 360 website.

3. Are the solved sums present in the RD Sharma books verified?

A group of accomplished faculty has provided the solutions in the RD Sharma books. These solutions are then verified to check the accuracy of the answers. Hence, the students need not hang back to use them.  

4. Is there any particular method for solving the VSAs?

Students need not solve the Very Short Answers (VSA) in an elaborated manner. Instead, shortcuts and tricks have to be used to save time and answer accordingly.

5. Can I download the RD Sharma solution books?

Anyone who can access the RD Sharma books at the Career 360 website will download them to their device without paying any monetary charge.

Articles

Back to top