NEET/JEE Coaching Scholarship
Get up to 90% Scholarship on Offline NEET/JEE coaching from top Institutes
Ever wondered how electric generators produce electricity or how a changing magnetic field induced current? That is the magic of Electromagnetic Induction. The Class 12 Physics Chapter 6 Solutions helps you to master this topic with clear explanations for every concept and question. These Electromagnetic Induction Class 12 NCERT solutions make tough theory and numericals simple and very easy.
The NCERT solution for Class 12 Physics Electromagnetic Induction Chapter is essential for competitive tests like JEE and NEET in addition to Class 12 exams and helps in understanding its fundamentals which makes it easier to understand how many of the gadgets we use on a daily basis—from big power systems to home appliances—operate. Essential information on how changing magnetic fields can produce electric currents, which power the technology that runs our world, is provided in the Class 12 Physics chapter on electromagnetic induction.
It covers the key topics and concepts you will need to understand and solve the problems in the NCERT solution for Class 12 Chapter on Electromagnetic Induction, helping you build a strong foundation in the principles of induced EMF, magnetic flux, and related phenomena.
Q 6.1(a) Predict the direction of induced current in the situations described by the following
Answer:
To oppose the magnetic field current should flow in anti-clockwise, so the direction of the induced current is qrpq
Q 6.1 (b) Predict the direction of induced current in the situations described by the following Figs.
Answer:
Current in the wire in a way such that it opposes the change in flux through the loop. Here hence current will induce in the direction of p--->r--->q in the first coil and y--->z--->x in the second coil.
Q 6.1 (c) Predict the direction of induced current in the situations described by the following Figs.(c)
Answer:
When we close the key, the current will flow through the first loop and suddenly magnetic flux will flow through it such that magnetic rays will go from right to left of the first loop. Now, to oppose this change currently in the second loop will flow such that magnetic rays go from left to right which is the direction yzxy
Q 6.1 (d) Predict the direction of induced current in the situations described
by the following Fig. (d)
Answer:
When we increase the resistance of the rheostat, the current will decrease which means flux will decrease so current will be induced to increase the flux through it. Flux will increase if current flows in xyzx.
On the other hand, if we decrease the resistance that will increase the current which means flux will be an increase, so current will induce to reduce the flux. Flux will be reduced if current goes in direction zyxz
Q 6.1 (e) Predict the direction of induced current in the situations described by the following Fig(e)
Answer:
As we release the tapping key current will induce to increase the flux. Flux will increase when current flows in direction xryx.
Q 6.1 (f) Predict the direction of induced current in the situations described by the following Fig (f)
Answer:
The current will not induce as the magnetic field line are parallel to the plane. In other words, since flux through the loop is constant (zero in fact), there won't be any induction of the current.
Q6.2 (a) Use Lenz’s law to determine the direction of induced current in the situations described by Fig. : a
A wire of irregular shape turning into a circular shape;
Answer:
By turning the wire from irregular shape to circle, we are increasing the area of the loop so flux will increase so current will induce in such a way that reduces the flux through it. By right-hand thumb rule direction of current is adcba.
Q6.2 (b) Use Lenz’s law to determine the direction of induced current in the situations described by Fig. b :
A circular loop being deformed into a narrow straight wire.
Answer:
Here, by changing shape, we are decreasing the area or decreasing the flux, so the current will induce in a manner such that it increases the flux. Since the magnetic field is coming out of the plane, the direction of the current will be adcba.
Q6.3 A long solenoid with
Answer:
Given in a solenoid,
The number of turn per unit length :
loop area :
Current in the solenoid :
Initial current =
Finalcurrent =
Change in current :
Change in time:
Now, the induced emf :
Hence induced emf in the loop is
Answer:
Given:
Length of rectangular loop :
Width of the rectangular loop:
Area of the rectangular loop:
Strength of the magnetic field
The velocity of the loop :
Now,
a) Induced emf in long side wire of rectangle:
this emf will be induced till the loop gets out of the magnetic field, so
time for which emf will induce :
Hence a
b) Induced emf when we move along the width of the rectangle:
time for which emf will induce :
Hence a
Answer:
Given
length of metallic rod :
Angular frequency of rotation :
Magnetic field (which is uniform)
Velocity: here velocity at each point of the rod is different. one end of the rod is having zero velocity and another end is having velocity
Hence we take the average velocity of the rod so,
Average velocity
Now,
Induce emf
Hence emf developed is 100V.
What is the instantaneous value of the emf induced in the wire?
Answer:
Given
Length of the wire
Speed of the wire
The magnetic field of the earth
Now,
The instantaneous value of induced emf :
Hence instantaneous emf induce is
What is the direction of the emf?
Answer:
If we apply the Flemings right-hand rule, we see that the direction of induced emf is from west to east.
Which end of the wire is at the higher electrical potential?
Answer:
The eastern wire will be at the higher potential end.
Answer:
Given
Initial current
Final current
Change in time
Average emf
Now,
As we know, in an inductor
Hence self-inductance of the circuit is 4H.
Answer:
Given
Mutual inductance between two coils:
Currents in a coil:
Change in current:
The time taken for the change
The relation between emf and mutual inductance:
Hence, the change in flux in the coil is
Answer:
Given
Speed of the plane:
Earth's magnetic field at that location:
The angle of dip that is angle made with horizontal by earth magnetic field:
Length of the wings
Now, Since the only the vertical component of the magnetic field will cut the wings of plane perpendicularly, only those will help in inducing emf.
The vertical component of the earth's magnetic field :
So now, Induce emf :
Hence voltage difference developed between the ends of the wing is 3.125V.
Answer:
Given,
Area of the rectangular loop which is held still:
The resistance of the loop:
The initial value of the magnetic field :
Rate of decreasing of this magnetic field:
Induced emf in the loop :
Induced Current :
The power dissipated in the loop:
The external force which is responsible for changing the magnetic field is the actual source of this power.
Answer:
Given,
Side of the square loop
Area of the loop:
The resistance of the loop:
The velocity of the loop in the positive x-direction
The gradient of the magnetic field in the negative x-direction
Rate of decrease of magnetic field intensity
Now, Here emf is being induced by means of both changing magnetic field with time and changing with space. So let us find out emf induced by both changing of space and time, individually.
Induced emf due to field changing with time:
Induced emf due to field changing with space:
Now, Total induced emf :
Total induced current :
Since the flux is decreasing, the induced current will try to increase the flux through the loop along the positive z-direction.
Answer:
Given,
Area of search coil :
The resistance of coil and galvanometer
The number of turns in the coil:
Charge flowing in the coil
Now.
Induced emf in the search coil
Hence magnetic field strength for the magnet is 0.75T.
Answer:
Given
Length of the rod
Speed of the rod
Strength of the magnetic field
induced emf in the rod
Hence 9mV emf is induced and it is induced in a way such that P is positive and Q is negative.
(b)Is there an excess charge built up at the ends of the rods when
Answer:
Yes, there will be excess charge built up at the end of the rod when the key is open. This is because when we move the conductor in a magnetic field, the positive and negative charge particles will experience the force and move into the corners.
When we close the key these charged particles start moving in the closed loop and continuous current starts flowing.
(c) With K open and the rod moving uniformly, there is no net force on the electrons in the rod
Answer:
When the key K is open there is excess charge at both ends of the rod. this charged particle creates an electric field between both ends. This electric field exerts electrostatic force in the charged particles which cancel out the force due to magnetic force. That's why net force on a charged particle, in this case, is zero.
Q5 (d) Figure shows a metal rod
(d) What is the retarding force on the rod when K is closed?
Answer:
Induced emf = 9mV (calculated in a part of this question)
The resistance of loop with rod = 9
Induced Current
Now,'
Force on the rod
Hence retarding force when k is closed is
(e) How much power is required (by an external agent) to keep the rod moving at the same speed
Answer:
Force on the rod
Speed of the rod
Power required to keep moving the rod at the same speed
Hence required power is 9mW.
When the key is open, no power is required to keep moving rod at the same speed.
Q5(f) Figure shows a metal rod
(f) How much power is dissipated as heat in the closed circuit? What is the source of this power?
Answer:
Current in the circuit
The resistance of the circuit
The power which is dissipated as the heat
Hence 9mW of heat is dissipated.
We are moving the rod which induces the current. The external agent through which we are moving our rod is the source of the power.
Q54 (g) Figure shows a metal rod
(g) What is the induced emf in the moving rod if the magnetic field is parallel to the rails instead of being perpendicular?
Answer:
If the magnetic field is parallel to the rail then, the motion of the rod will not cut across the magnetic field lines and hence no emf will induce. Hence emf induced is zero in this case.
Answer:
Given
Length od the solenoid
Area of the cross-section of the solenoid
Number of turns in the solenoid
Current flowing in the solenoid
The time interval for which current flows
Now.
Initial flux:
Final flux: since no current is flowing,
Now
Induced emf:
Hence 6.55V of average back emf is induced.
Answer:
Here let's take a small element dy in the loop at y distance from the wire
Area of this element dy :
The magnetic field at dy (which is y distance away from the wire)
The magnetic field associated with this element dy
Now As we know
so
Hence mutual inductance between the wire and the loop is:
Answer:
Given,
Current in the straight wire
Speed of the Loop which is moving in the right direction
Length of the square loop
Distance from the wire to the left side of the square
Now,
Induced emf in the loop :
Hence emf induced is
Answer:
Given,
The radius of the wheel =R
The mass of the wheel = M
Line charge per unit length when the total charge is Q
Magnetic field :
Magnetic force is balanced by centrifugal force when
Angular velocity of the wheel
when
It is the angular velocity of the wheel when the field is suddenly shut off.
Q.1 A conducting circular loop is placed in a uniform magnetic field
a)
b)
c)
d)
Answer:
Hence, the correct option is (2).
Q. 2 At time t=0 magnetic field of 1500 gauss is passing perpendicularly through the area defined by the closed loop shown in the figure. If the magnets field reduces linearly to 1000 gauss in the next 10 sec. Then induced FMF in the loop is ____
Answer:
Magnetise flux passing through an area is given by
Hence, the answer is
Q.3 The configuration of a long straight wire and a wire loop with a = 15 cm and b = 20 cm is depicted in Fig. The wire's current fluctuates in accordance with the relationship i = 6t2 – 12 t, where t is measured in seconds and I is in amperes. What is the emf (in 10-7 volts) in the square loop at t = 6 s?
Answer:
The field (due to the current in the long straight wire) through the part of the rectangle above the wire is out of the page (by the right-hand rule) and below the wire, it is into the page. Thus, a strip below the wire (where the strip borders the long wire and reaches a distance of b - an away from it) has exactly the equal but opposite flux that cancels the contribution from the section above the wire, since the height of the part above the wire is b - a.
As per Faraday law:
So,
Hence, the answer is (26.36)
Q. 4 The self-inductance of a coil having 400 turns is 10 mH. The magnetic flux through the cross-section of the coil corresponding to current 2 mA is:
Answer:
Here,
Total magnetic flux linked with the coil,
Magnetic flux through the cross-section of the coil = Magnetic flux linked with each turn
Q.5 Two solenoids of an equal number of turns have their lengths and radii in the same ratio 1: 2. The ratio of their self-inductances will be:
Answer:
Self-inductance of solenoids,
Where
NCERT And JEE Concept Comparison | |
NCERT - Electromagnetic Induction | JEE - Electromagnetic Induction |
Concept | Concept |
MAGNETIC FLUX | |
FARADAY’S LAW OF INDUCTION | |
LENZ’S LAW AND CONSERVATION OF ENERGY | |
MOTIONAL ELECTROMOTIVE FORCE | |
Self-inductance | |
Mutual inductance | |
AC GENERATOR |
In Class 12 Physics, Chapter 6 on Electromagnetic Induction, there are several important formulas that are essential for solving problems and understanding the concepts. Here's a list of important formulas and diagrams you should know:
1. Faraday's Law of Induction:
Where:
2. Lenz's Law:
States that the direction of the induced current (or EMF) is such that it opposes the change in magnetic flux that produces it.
3. Magnetic Flux:
Where:
4. Self-Induction:
Where:
5. Mutual Induction:
Where:
The idea of electromagnetic induction is presented in a simple manner in the Class 10 NCERT book. However, a more thorough and in-depth description of electromagnetic induction may be found in Class 12 Physics, Chapter 6. Furthermore, a series of problems and their answers based on the subjects covered in this chapter are provided in the Chapter 6 Physics Class 12 NCERT Solutions. The Class 12 Physics Electromagnetic Induction NCERT Solutions cover questions from the following topics:
For both the CBSE Class 12 board exams and competitive tests like KVPY, NEET, and JEE Main, the NCERT answers for Class 12 Physics, Chapter 6 on Electromagnetic Induction, are essential.
Determining the direction of induced electromagnetic fields is a typical issue on tests like NEET and JEE Main. The Electromagnetic Induction part of the NCERT answers covers a lot of these difficulties.
The chapters on electromagnetic induction usually account for 10% of the questions on the CBSE board exam.
As per latest 2024 syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters
Here are the exercise-wise solutions of the NCERT Class 12 physics book:
Yes, the chapter is helpful for higher studies in the field of electronics and electrical engineering-related subjects and for scientific research.
On an average 5 mark questions are asked for CBSE board exams. Follow the NCERT syllabus and NCERT book for a good score in the board exam. Along with the NCERT solutions exercises can also practice NCERT exemplar problems and CBSE board previous year papers.
The process by which a fluctuating magnetic field creates an electromotive force (EMF) in a conductor is known as electromagnetic induction.
According to Lenz's Law, the induced EMF is in opposition to the magnetic flux change.
For instance, bringing a magnet close to a coil causes current to be induced, which repels the magnet.
Eddy currents are circulating currents induced in conductors by changing magnetic fields.
Applications: Induction heating, magnetic braking, and electric meters.
Changing from the CBSE board to the Odisha CHSE in Class 12 is generally difficult and often not ideal due to differences in syllabi and examination structures. Most boards, including Odisha CHSE , do not recommend switching in the final year of schooling. It is crucial to consult both CBSE and Odisha CHSE authorities for specific policies, but making such a change earlier is advisable to prevent academic complications.
Hello there! Thanks for reaching out to us at Careers360.
Ah, you're looking for CBSE quarterly question papers for mathematics, right? Those can be super helpful for exam prep.
Unfortunately, CBSE doesn't officially release quarterly papers - they mainly put out sample papers and previous years' board exam papers. But don't worry, there are still some good options to help you practice!
Have you checked out the CBSE sample papers on their official website? Those are usually pretty close to the actual exam format. You could also look into previous years' board exam papers - they're great for getting a feel for the types of questions that might come up.
If you're after more practice material, some textbook publishers release their own mock papers which can be useful too.
Let me know if you need any other tips for your math prep. Good luck with your studies!
It's understandable to feel disheartened after facing a compartment exam, especially when you've invested significant effort. However, it's important to remember that setbacks are a part of life, and they can be opportunities for growth.
Possible steps:
Re-evaluate Your Study Strategies:
Consider Professional Help:
Explore Alternative Options:
Focus on NEET 2025 Preparation:
Seek Support:
Remember: This is a temporary setback. With the right approach and perseverance, you can overcome this challenge and achieve your goals.
I hope this information helps you.
Hi,
Qualifications:
Age: As of the last registration date, you must be between the ages of 16 and 40.
Qualification: You must have graduated from an accredited board or at least passed the tenth grade. Higher qualifications are also accepted, such as a diploma, postgraduate degree, graduation, or 11th or 12th grade.
How to Apply:
Get the Medhavi app by visiting the Google Play Store.
Register: In the app, create an account.
Examine Notification: Examine the comprehensive notification on the scholarship examination.
Sign up to Take the Test: Finish the app's registration process.
Examine: The Medhavi app allows you to take the exam from the comfort of your home.
Get Results: In just two days, the results are made public.
Verification of Documents: Provide the required paperwork and bank account information for validation.
Get Scholarship: Following a successful verification process, the scholarship will be given. You need to have at least passed the 10th grade/matriculation scholarship amount will be transferred directly to your bank account.
Scholarship Details:
Type A: For candidates scoring 60% or above in the exam.
Type B: For candidates scoring between 50% and 60%.
Type C: For candidates scoring between 40% and 50%.
Cash Scholarship:
Scholarships can range from Rs. 2,000 to Rs. 18,000 per month, depending on the marks obtained and the type of scholarship exam (SAKSHAM, SWABHIMAN, SAMADHAN, etc.).
Since you already have a 12th grade qualification with 84%, you meet the qualification criteria and are eligible to apply for the Medhavi Scholarship exam. Make sure to prepare well for the exam to maximize your chances of receiving a higher scholarship.
Hope you find this useful!
hello mahima,
If you have uploaded screenshot of your 12th board result taken from CBSE official website,there won,t be a problem with that.If the screenshot that you have uploaded is clear and legible. It should display your name, roll number, marks obtained, and any other relevant details in a readable forma.ALSO, the screenshot clearly show it is from the official CBSE results portal.
hope this helps.
Register for ALLEN Scholarship Test & get up to 90% Scholarship
Get up to 90% Scholarship on Offline NEET/JEE coaching from top Institutes
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest 2024 syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters