NCERT Solutions for Exercise 4.2 Class 12 Maths Chapter 4 - Determinants

NCERT Solutions for Exercise 4.2 Class 12 Maths Chapter 4 - Determinants

Updated on 03 Dec 2023, 04:00 PM IST

NCERT Solutions For Class 12 Maths Chapter 4 Exercise 4.2

NCERT Solutions for Exercise 4.2 Class 12 Maths Chapter 4 Determinants are discussed here. These NCERT solutions are created by subject matter expert at Careers360 considering the latest syllabus and pattern of CBSE 2023-24. In this article, you will get NCERT solutions for Class 12 Maths chapter 4 exercise 4.2. These Exercise 4.2 Class 12 Maths solutions are consist of questions related to properties of determinants. Properties of determinants make it easy for us to finding determinants without complicated calculations. There are 6 properties of determinants related to operation on the determinants given in the NCERT textbook before the Class 12 Maths ch 4 ex 4.2. You are advised to go through the proof of these properties given in the textbook to get a better understanding. There are some examples given after each property which will also help you to get conceptual clarity.

12th class Maths exercise 4.2 answers are designed as per the students demand covering comprehensive, step by step solutions of every problem. Practice these questions and answers to command the concepts, boost confidence and in depth understanding of concepts. Students can find all exercise together using the link provided below.

Also, see

Aakash Repeater Courses

Take Aakash iACST and get instant scholarship on coaching programs.

Assess NCERT Solutions for Class 12 Maths Chapter 4 Exercise 4.2

Download PDF

Determinants Exercise:4.2

Question:1 Using the property of determinants and without expanding, prove that

$\begin{vmatrix}x &a &x+a \\y &b &y+b \\z &c &z+c \end{vmatrix}=0$

Answer:

We can split it in manner like;

$\begin{vmatrix}x &a &x+a \\y &b &y+b \\z &c &z+c \end{vmatrix}= \begin{vmatrix} x &a &x \\ y & b &y \\ z &c &z \end{vmatrix} + \begin{vmatrix} x &a & a\\ y &b &b \\ z&c & c \end{vmatrix}$

So, we know the identity that If any two rows (or columns) of a determinant are identical (all corresponding elements are same), then the value of the determinant is zero.

Clearly, expanded determinants have identical columns.

$\therefore 0 + 0 = 0$

Hence the sum is zero.

Question:2 Using the property of determinants and without expanding, prove that

$\begin{vmatrix}a-b &b-c &c-a \\b-c &c-a &a-b \\c-a &a-b &b-c \end{vmatrix}=0$

Answer:


Given determinant $\triangle =\begin{vmatrix}a-b &b-c &c-a \\b-c &c-a &a-b \\c-a &a-b &b-c \end{vmatrix}=0$

Applying the rows addition $R_{1} \rightarrow R_{1}+R_{2}$ then we have;

$\triangle =\begin{vmatrix}a-c &b-a &c-b \\b-c &c-a &a-b \\-(a-c) &-(b-a) &-(c-b) \end{vmatrix}=0$

$=-\begin{vmatrix}a-c &b-a &c-b \\b-c &c-a &a-b \\(a-c) &(b-a) &(c-b) \end{vmatrix}=0$

So, we have two rows $R_{1}$ and $R_{2}$ identical hence we can say that the value of determinant = 0

Therefore $\triangle = 0$.

Question:3 Using the property of determinants and without expanding, prove that

$\begin{vmatrix}2 & 7 &65 \\3 &8 &75 \\5 &9 &86 \end{vmatrix}=0$

Answer:

Given determinant $\dpi{100} \begin{vmatrix}2 & 7 &65 \\3 &8 &75 \\5 &9 &86 \end{vmatrix}$

So, we can split it in two addition determinants:

$\begin{vmatrix}2 & 7 &65 \\3 &8 &75 \\5 &9 &86 \end{vmatrix} = \begin{vmatrix} 2 &7 &63+2 \\ 3& 8 &72+3 \\ 5& 9 & 81+5 \end{vmatrix}$

$\begin{vmatrix} 2 &7 &63+2 \\ 3& 8 &72+3 \\ 5& 9 & 81+5 \end{vmatrix} = \begin{vmatrix} 2 & 7 &2 \\ 3& 8& 3\\ 5 & 9 & 5 \end{vmatrix} + \begin{vmatrix} 2 & 7 &63 \\ 3& 8 &72 \\ 5 & 9 & 81 \end{vmatrix}$

$\begin{vmatrix} 2 & 7 &2 \\ 3& 8& 3\\ 5 & 9 & 5 \end{vmatrix} = 0$ [$\because$ Here two columns are identical ]

and $\begin{vmatrix} 2 & 7 &63 \\ 3& 8 &72 \\ 5 & 9 & 81 \end{vmatrix} = \begin{vmatrix} 2 & 7 &9(7) \\ 3& 8 &9(8) \\ 5 &9 & 9(9) \end{vmatrix} = 9 \begin{vmatrix} 2 & 7 &7 \\ 3& 8& 8\\ 5& 9&9 \end{vmatrix}$ [$\because$ Here two columns are identical ]

$= 0$

Therefore we have the value of determinant = 0.

Question:4 Using the property of determinants and without expanding, prove that

$\begin{vmatrix}1 &bc &a(b+c) \\1 &ca &b(c+a) \\1 &ab & c(a+b) \end{vmatrix}=0$

Answer:

We have determinant:

$\triangle = \begin{vmatrix} 1 &bc &a(b+c) \\ 1& ca &b(c+a) \\ 1& ab &c(a+b) \end{vmatrix}$

Applying $C_{3} \rightarrow C_{2} + C_{3}$ we have then;

$\triangle = \begin{vmatrix} 1 &bc & ab+bc+ca \\ 1& ca &ab+bc+ca \\ 1& ab &ab+bc+ca \end{vmatrix}$

So, here column 3 and column 1 are proportional.

Therefore, $\triangle = 0$.

Question:5 Using the property of determinants and without expanding, prove that

$\begin{vmatrix}b+c &q+r &y+z \\ c+a & r+p &z+x \\ a+b &p+q & x+y \end{vmatrix}=2\begin{vmatrix} a &p &x \\ b &q &y \\ c &r & z \end{vmatrix}$

Answer:

Given determinant :

$\triangle= \begin{vmatrix}b+c &q+r &y+z \\ c+a & r+p &z+x \\ a+b &p+q & x+y \end{vmatrix}$

Splitting the third row; we get,

$= \begin{vmatrix}b+c &q+r &y+z \\ c+a & r+p &z+x \\ a &p & x \end{vmatrix} + \begin{vmatrix}b+c &q+r &y+z \\ c+a & r+p &z+x \\ b &q & y \end{vmatrix} = \triangle_{1} + \triangle_{2}\ (assume\ that)$.

Then we have,

$\triangle_{1} = \begin{vmatrix} b+c & q+r & y+z \\ c+a & r+p & z+x \\ a &p & x \end{vmatrix}$

On Applying row transformation $R_{2} \rightarrow R_{2} - R_{3}$ and then $R_{1} \rightarrow R_{1} - R_{2}$;

we get, $\triangle_{1} = \begin{vmatrix} b & q & y \\ c & r & z \\ a &p & x \end{vmatrix}$

Applying Rows exchange transformation $R_{1} \leftrightarrow R_{2}$ and $R_{2} \leftrightarrow R_{3}$, we have:

$\triangle_{1} =(-1)^2 \begin{vmatrix} b & q & y \\ c & r & z \\ a &p & x \end{vmatrix}= \begin{vmatrix} a & p & x\\ b & q&y \\ c& r & z \end{vmatrix}$

also $\triangle_{2} = \begin{vmatrix} b+c & q+r & y+z \\ c+a&r+p &z+x \\ b & q & y \end{vmatrix}$

On applying rows transformation, $R_{1} \rightarrow R_{1} - R_{3}$ and then $R_{2} \rightarrow R_{2} - R_{1}$

$\triangle_{2} = \begin{vmatrix} c & r & z \\ c+a&r+p &z+x \\ b & q & y \end{vmatrix}$ and then $\triangle_{2} = \begin{vmatrix} c & r & z \\ a&p &x \\ b & q & y \end{vmatrix}$

Then applying rows exchange transformation;

$R_{1} \leftrightarrow R_{2}$ and then $R_{2} \leftrightarrow R_{3}$. we have then;

$\triangle_{2} =(-1)^2 \begin{vmatrix} a & p & x \\ b&q &y \\ c & r & z \end{vmatrix}$

So, we now calculate the sum = $\triangle_{1} + \triangle _{2}$

$\triangle_{1} + \triangle _{2} = 2 \begin{vmatrix} a &p &x \\ b& q& y\\ c & r& z \end{vmatrix}$

Hence proved.

Question:6 Using the property of determinants and without expanding, prove that

$\begin{vmatrix} 0 &a &-b \\-a &0 & -c\\b &c &0 \end{vmatrix}=0$

Answer:

We have given determinant

$\triangle = \begin{vmatrix} 0 &a &-b \\-a &0 & -c\\b &c &0 \end{vmatrix}$

Applying transformation, $\dpi{100} R_{1} \rightarrow cR_{1}$ we have then,

$\triangle = \frac{1}{c}\begin{vmatrix} 0 &ac &-bc \\-a &0 & -c\\b &c &0 \end{vmatrix}$

We can make the first row identical to the third row so,

Taking another row transformation: $R_{1} \rightarrow R_{1}-bR_{2}$ we have,

$\triangle = \frac{1}{c}\begin{vmatrix} ab &ac &0 \\-a &0 & -c\\b &c &0 \end{vmatrix} = \frac{a}{c} \begin{vmatrix} b &c &0 \\-a &0 & -c\\b &c &0 \end{vmatrix}$

So, determinant has two rows $R_{1}\ and\ R_{3}$ identical.

Hence $\triangle = 0$.

Question:7 Using the property of determinants and without expanding, prove that

$\begin{vmatrix} -a^2 &ab &ac \\ ba &-b^2 &bc \\ ca & cb & -c^2 \end{vmatrix}=4a^2b^2c^2$

Answer:

Given determinant : $\dpi{100} \begin{vmatrix} -a^2 &ab &ac \\ ba &-b^2 &bc \\ ca & cb & -c^2 \end{vmatrix}$

$\triangle = \begin{vmatrix} -a^2 &ab &ac \\ ba &-b^2 &bc \\ ca & cb & -c^2 \end{vmatrix}$

As we can easily take out the common factors a,b,c from rows $R_{1},R_{2},R_{3}$ respectively.

So, get then:

$=abc \begin{vmatrix} -a &b &c \\ a &-b &c \\ a & b & -c \end{vmatrix}$

Now, taking common factors a,b,c from the columns $C_{1},C_{2},C_{3}$ respectively.

$=a^2b^2c^2 \begin{vmatrix} -1 &1 &1 \\ 1 &-1 &1 \\ 1 & 1 & -1 \end{vmatrix}$

Now, applying rows transformations $R_{1} \rightarrow R_{1} + R_{2}$ and then $R_{3} \rightarrow R_{2} + R_{3}$ we have;

$\triangle = a^2b^2c^2\begin{vmatrix} 0 &0 &2 \\ 1&-1 &1 \\ 2& 0 &0 \end{vmatrix}$

Expanding to get R.H.S.

$\triangle = a^2b^2c^2 \left ( 2\begin{vmatrix} 1 &-1 \\ 2& 0 \end{vmatrix} \right ) = 2a^2b^2c^2(0+2) =4a^2b^2c^2$

Question:8(i) By using properties of determinants, show that:

$\begin{vmatrix} 1 &a &a^2 \\ 1 &b &b^2 \\ 1 &c &c^2 \end{vmatrix}=(a-b)(b-c)(c-a)$
Answer:

We have the determinant $\dpi{100} \begin{vmatrix} 1 &a &a^2 \\ 1 &b &b^2 \\ 1 &c &c^2 \end{vmatrix}$

Applying the row transformations $R_{1} \rightarrow R_{1} -R_{2}$ and then $R_{2} \rightarrow R_{2} -R_{3}$ we have:

$\triangle = \begin{vmatrix} 0 &a-b &a^2-b^2 \\ 0 &b-c &b^2-c^2 \\ 1 &c &c^2 \end{vmatrix}$

$= \begin{vmatrix} 0 &a-b &(a-b)(a+b) \\ 0 &b-c &(b-c)(b+c) \\ 1 &c &c^2 \end{vmatrix} = (a-b)(b-c)\begin{vmatrix} 0 &1 &(a+b) \\ 0 &1 &(b+c) \\ 1 &c &c^2 \end{vmatrix}$

Now, applying $R_{1} \rightarrow R_{1} -R_{2}$ we have:

$= (a-b)(b-c)\begin{vmatrix} 0 &0 &(a-c) \\ 0 &1 &(b+c) \\ 1 &c &c^2 \end{vmatrix}$ or $= (a-b)(b-c)(a-c)\begin{vmatrix} 0 &0 &1 \\ 0 &1 &(b+c) \\ 1 &c &c^2 \end{vmatrix} =(a-b)(b-c)(a-c)\begin{vmatrix} 0 &1 \\ 1 & c \end{vmatrix}$

$= (a-b)(b-c)(c-a)$

Hence proved.

Question:8(ii) By using properties of determinants, show that:

$\dpi{100} \begin{vmatrix} 1 & 1 & 1\\ a & b & c\\ a^3 &b^3 &c^3 \end{vmatrix}=(a-b)(b-c)(c-a)(a+b+c)$

Answer:

Given determinant :

$\begin{vmatrix} 1 & 1 & 1\\ a & b & c\\ a^3 &b^3 &c^3 \end{vmatrix}$,

Applying column transformation $C_{1} \rightarrow C_{1}-C_{3}$ and then $C_{2} \rightarrow C_{2}-C_{3}$

We get,

$\triangle =\begin{vmatrix} 0 & 0 & 1\\ a-c& b-c & c \\ a^3-c^3 &b^3-c^3 & c^3 \end{vmatrix}$

$=\begin{vmatrix} 0 & 0 & 1\\ a-c& b-c & c \\ (a-c)(a^2+ac+c^2) &(b-c)(b^2+bc+c^2) & c^3 \end{vmatrix}$

$=(a-c)(b-c)\begin{vmatrix} 0 & 0 & 1\\ 1& 1 & c \\ (a^2+ac+c^2) &(b^2+bc+c^2) & c^3 \end{vmatrix}$

Now, applying column transformation $C_{1} \rightarrow C_{1} - C_{2}$, we have:

$=(a-c)(b-c)\begin{vmatrix} 0 & 0 & 1\\ 0& 1 & c \\ (a^2-b^2+ac-bc) &(b^2+bc+c^2) & c^3 \end{vmatrix}$

$=(a-c)(b-c)\begin{vmatrix} 0 & 0 & 1\\ 0& 1 & c \\ (a-b)(a+b+c) &(b^2+bc+c^2) & c^3 \end{vmatrix}$

$=(a-c)(b-c)(a-b)(a+b+c)\begin{vmatrix} 0&1 \\ 1& c \end{vmatrix}$

$=-(a-c)(b-c)(a-b)(a+b+c) = (a-b)(b-c)(c-a)(a+b+c)$

Hence proved.

Question:9 By using properties of determinants, show that:

$\begin{vmatrix} x & x^2 & yz\\ y & y^2 &zx \\ z & z^2 & xy \end{vmatrix}=(x-y)(y-z)(z-x)(xy+yz+zx)$

Answer:

We have the determinant:

$\triangle = \begin{vmatrix} x & x^2 & yz\\ y & y^2 &zx \\ z & z^2 & xy \end{vmatrix}$

Applying the row transformations $R_{1} \rightarrow R_{1}- R_{3}$ and then $R_{2} \rightarrow R_{2}- R_{3}$, we have;

$\triangle = \begin{vmatrix} x-z & x^2-z^2 & yz-xy\\ y-z & y^2-z^2 &zx-xy \\ z & z^2 & xy \end{vmatrix}$

$= \begin{vmatrix} x-z & (x-z)(x+z) & y(z-x)\\ y-z & (y-z)(y+z) &x(z-y) \\ z & z^2 & xy \end{vmatrix}$

$= (x-z)(y-z)\begin{vmatrix} 1 & (x+z) & -y\\ 1 & (y+z) &-x \\ z & z^2 & xy \end{vmatrix}$

Now, applying $R_{1} \rightarrow R_{1} - R_{2}$; we have

$= (x-z)(y-z)\begin{vmatrix} 0 & (x-y) & (x-y)\\ 1 & (y+z) &-x \\ z & z^2 & xy \end{vmatrix}$

$= (x-z)(y-z)(x-y)\begin{vmatrix} 0 & 1 & 1\\ 1 & (y+z) &-x \\ z & z^2 & xy \end{vmatrix}$

Now, expanding the remaining determinant;

$= (x-z)(y-z)(x-y) \left [ (xy+zx) + (z^2 - zy-z^2) \right]$

$= -(x-z)(y-z)(x-y) \left [ xy+zx + zy \right]$

$= (x-y)(y-z)(z-x) \left [ xy+zx + zy \right]$

Hence proved.

Question:10(i) By using properties of determinants, show that:

$\begin{vmatrix} x+4 &2x &2x \\ 2x & x+4 & 2x\\ 2x & 2x & x+4 \end{vmatrix}=(5x+4)(4-x)$

Answer:

Given determinant:

$\begin{vmatrix} x+4 &2x &2x \\ 2x & x+4 & 2x\\ 2x & 2x & x+4 \end{vmatrix}$

Applying row transformation: $R_{1} \rightarrow R_{1} + R_{2} + R_{3}$ then we have;

$\triangle = \begin{vmatrix} 5x+4 &5x+4 &5x+4 \\ 2x & x+4 & 2x\\ 2x & 2x & x+4 \end{vmatrix}$

Taking a common factor: 5x+4

$= (5x+4)\begin{vmatrix} 1 &1 &1 \\ 2x & x+4 & 2x\\ 2x & 2x & x+4 \end{vmatrix}$

Now, applying column transformations $C_{1} \rightarrow C_{1}- C_{2}$ and $C_{2} \rightarrow C_{2}- C_{3}$

$= (5x+4)\begin{vmatrix} 0 &0 &1 \\ x-4 & 4-x & 2x\\ 0 & x-4 & x+4 \end{vmatrix}$

$= (5x+4)(4-x)(4-x)\begin{vmatrix} 0 &0 &1 \\ 1 & 1 & 2x\\ 0 & 1 & x+4 \end{vmatrix}$

$= (5x+4)(4-x)^2$

Question:10(ii) By using properties of determinants, show that:

$\begin{vmatrix} y+k & y & y\\ y & y+k &y \\ y & y & y+k \end{vmatrix}=k^2(3y+k)$

Answer:

Given determinant:

$\triangle = \begin{vmatrix} y+k & y & y\\ y & y+k &y \\ y & y & y+k \end{vmatrix}$

Applying row transformation $R_{1} \rightarrow R_{1} +R_{2}+R_{3}$ we get;

$= \begin{vmatrix} 3y+k & 3y+k & 3y+k\\ y & y+k &y \\ y & y & y+k \end{vmatrix}$

$=(3y+k) \begin{vmatrix}1 & 1 & 1\\ y & y+k &y \\ y & y & y+k \end{vmatrix}$ [taking common (3y + k) factor]

Now, applying column transformation $C_{1} \rightarrow C_{1} - C_{2}$ and $C_{2} \rightarrow C_{2} - C_{3}$

$=(3y+k) \begin{vmatrix}0 & 0 & 1\\ -k & k &y \\ 0 & -k & y+k \end{vmatrix}$

$=(3y+k)(k^2) \begin{vmatrix}0 & 0 & 1\\ -1 & 1 &y \\ 0 & -1 & y+k \end{vmatrix}$

$=k^2 (3y+k)$

Hence proved.

Question:11(i) By using properties of determinants, show that:

$\begin{vmatrix} a-b-c &2a &2a \\ 2b &b-c-a &2b \\ 2c &2c &c-a-b \end{vmatrix}=(a+b+c)^3$

Answer:

Given determinant:

$\triangle = \begin{vmatrix} a-b-c &2a &2a \\ 2b &b-c-a &2b \\ 2c &2c &c-a-b \end{vmatrix}$

We apply row transformation: $R_{1} \rightarrow R_{1}+R_{2}+R_{3}$ we have;

$= \begin{vmatrix} a+b+c &a+b+c &a+b+c \\ 2b &b-c-a &2b \\ 2c &2c &c-a-b \end{vmatrix}$

Taking common factor (a+b+c) out.

$=(a+b+c) \begin{vmatrix} 1 &1 &1 \\ 2b &b-c-a &2b \\ 2c &2c &c-a-b \end{vmatrix}$

Now, applying column tranformation $C_{1} \rightarrow C_{1}- C_{2}$ and then $C_{2} \rightarrow C_{2}- C_{3}$

We have;

$=(a+b+c) \begin{vmatrix} 0 &0 &1 \\ b+c+a &-b-c-a &2b \\ 0 &c+a+b &c-a-b \end{vmatrix}$

$=(a+b+c)(a+b+c)(a+b+c) \begin{vmatrix} 0 &0 &1 \\ 1 &-1 &2b \\ 0 &1 &c-a-b \end{vmatrix}$

$=(a+b+c)(a+b+c)(a+b+c) = (a+b+c)^3$

Hence Proved.

Question:11(ii) By using properties of determinants, show that:

$\begin{vmatrix} x+y+2z &x &y \\ z & y+z+2x & y\\ z & x &z+x+2y \end{vmatrix}=2(x+y+z)^3$

Answer:

Given determinant

$\triangle =\begin{vmatrix} x+y+2z &x &y \\ z & y+z+2x & y\\ z & x &z+x+2y \end{vmatrix}$

Applying $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$ we get;

$=\begin{vmatrix} 2(x+y+z) &x &y \\ 2(z+y+x) & y+z+2x & y\\ 2(z+y+x) & x &z+x+2y \end{vmatrix}$

Taking 2(x+y+z) factor out, we get;

$=2(x+y+z)\begin{vmatrix} 1 &x &y \\ 1 & y+z+2x & y\\ 1 & x &z+x+2y \end{vmatrix}$

Now, applying row transformations, $R_{1} \rightarrow R_{1} -R_{2}$ and then $R_{2} \rightarrow R_{2} -R_{3}$.

we get;

$=2(x+y+z)\begin{vmatrix} 0 &-x-y-z &0 \\ 0 & y+z+x & -y-z-x\\ 1 & x &z+x+2y \end{vmatrix}$

$=2(x+y+z)^3\begin{vmatrix} 0 &-1 &0 \\ 0 & 1 & -1\\ 1 & x &z+x+2y \end{vmatrix}$

$=2(x+y+z)^3\begin{vmatrix} -1 &0 \\ 1& -1 \end{vmatrix} = 2(x+y+z)^3$

Hence proved.

Question:12 By using properties of determinants, show that:

$\begin{vmatrix} 1 &x &x^2 \\ x^2 &1 &x \\ x &x^2 &1 \end{vmatrix}=(1-x^3)^2$

Answer:

Give determinant $\begin{vmatrix} 1 &x &x^2 \\ x^2 &1 &x \\ x &x^2 &1 \end{vmatrix}$

Applying column transformation $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$ we get;

$\triangle = \begin{vmatrix} 1+x+x^2 &x &x^2 \\ x^2+1+x &1 &x \\ x+x^2+1 &x^2 &1 \end{vmatrix}$

$= (1+x+x^2)\begin{vmatrix} 1 &x &x^2 \\ 1 &1 &x \\ 1 &x^2 &1 \end{vmatrix}$ [after taking the (1+x+x2 ) factor common out.]

Now, applying row transformations, $R_{1} \rightarrow R_{1}-R_{2}$ and then $R_{2} \rightarrow R_{2}-R_{3}$.

we have now,

$= (1+x+x^2)\begin{vmatrix} 0 &x-1 &x^2-x \\ 0 &1-x^2 &x-1 \\ 1 &x^2 &1 \end{vmatrix}$

$= (1+x+x^2)\begin{vmatrix} x-1 &x^2-x \\ 1-x^2 &x-1 \end{vmatrix}$

$= (1+x+x^2)((x-1)^2-x(x-1)(1-x^2))$

$= (1+x+x^2)(x-1)(x^3-1) = (x^3-1)^2$

As we know $\left [\because (1+x+x^2)(x-1) = (x^3-1) \right ]$

Hence proved.

Question:13 By using properties of determinants, show that:

$\begin{vmatrix} 1+a^2-b^2 &2ab &-2b \\ 2ab &1-a^2+b^2 &2a \\ 2b &-2a & 1-a^2-b^2 \end{vmatrix}=(1+a^2+b^2)^3$

Answer:

We have determinant:

$\triangle = \begin{vmatrix} 1+a^2-b^2 &2ab &-2b \\ 2ab &1-a^2+b^2 &2a \\ 2b &-2a & 1-a^2-b^2 \end{vmatrix}$

Applying row transformations, $R_{1} \rightarrow R_{1} +bR_{3}$ and $R_{2} \rightarrow R_{2} -aR_{3}$ then we have;

$= \begin{vmatrix} 1+a^2+b^2 &0 &-b(1+a^2+b^2) \\ 0 &1+a^2+b^2 &a(1+a^2+b^2) \\ 2b &-2a & 1-a^2-b^2 \end{vmatrix}$

taking common factor out of the determinant;

$= (1+a^2+b^2)^2\begin{vmatrix} 1 &0 &-b \\ 0 &1 &a \\ 2b &-2a & 1-a^2-b^2 \end{vmatrix}$

Now expanding the remaining determinant we get;

$= (1+a^2+b^2)^2\left [ (1)\begin{vmatrix} 1& a\\ -2a&1-a^2-b^2 \end{vmatrix} - b\begin{vmatrix} 0&1 \\ 2b&-2a \end{vmatrix}\right ]$

$= (1+a^2+b^2)^2\left [ 1-a^2-b^2+2a^2-b(-2b)\right ]$

$= (1+a^2+b^2)^2\left [ 1+a^2+b^2\right ] = (1+a^2+b^2)^3$

Hence proved.

Question:14 By using properties of determinants, show that:

$\begin{vmatrix} a^2+1 &ab &ac \\ ab &b^2+1 &bc \\ ca & cb &c^2+1 \end{vmatrix}=1+a^2+b^2+c^2$

Answer:

Given determinant:

$\dpi{100} \begin{vmatrix} a^2+1 &ab &ac \\ ab &b^2+1 &bc \\ ca & cb &c^2+1 \end{vmatrix}$

Let $\triangle = \begin{vmatrix} a^2+1 &ab &ac \\ ab &b^2+1 &bc \\ ca & cb &c^2+1 \end{vmatrix}$

Then we can clearly see that each column can be reduced by taking common factors like a,b, and c respectively from C1,C2,and C3.

We then get;

$=abc \begin{vmatrix} \left ( a+\frac{1}{a} \right ) &a &a \\ b &(b+\frac{1}{b}) &b \\ c & c &(c+\frac{1}{c}) \end{vmatrix}$

Now, applying column transformations: $C_{1} \rightarrow C_{1} -C_{2}$ and $C_{2} \rightarrow C_{2} -C_{3}$

then we have;

$=abc \begin{vmatrix} \left ( \frac{1}{a} \right ) &0 &a \\ -\frac{1}{b} &(\frac{1}{b}) &b \\ 0 & -\frac{1}{c} &(c+\frac{1}{c}) \end{vmatrix}$

$=abc\times \frac{1}{abc} \begin{vmatrix} 1 &0 &a^2 \\ -1 &1 &b^2 \\ 0 & -1 &(c^2+1) \end{vmatrix}$

$= \begin{vmatrix} 1 &0 &a^2 \\ -1 &1 &b^2 \\ 0 & -1 &(c^2+1) \end{vmatrix}$

Now, expanding the remaining determinant:

$\triangle = 1\begin{vmatrix} 1&b^2 \\ -1&(c^2+1) \end{vmatrix} + a^2\begin{vmatrix} -1&1 \\ 0& -1 \end{vmatrix}$

$= 1[(c^2+1)+b^2] + a^2(1)=a^2+b^2+c^2+1$.

Hence proved.

Question:15 Choose the correct answer. Let A be a square matrix of order $3\times 3$ , then $|kA|$ is equal to

(A) $k|A|$ (B) $k^2|A|$ (C) $k^3|A|$ (D) $3k|A|$

Answer:

Assume a square matrix A of order of $3\times3$.

$A = \begin{bmatrix} a_1 & b_1&c_1 \\ a_2& b_2& c_2\\ a_3& b_3 & c_3 \end{bmatrix}$

Then we have;

$kA = \begin{bmatrix} ka_1 & kb_1&kc_1 \\ ka_2& kb_2& kc_2\\ ka_3& kb_3 & kc_3 \end{bmatrix}$

(Taking the common factors k from each row.)

$|kA| = \begin{vmatrix} ka_1 & kb_1&kc_1 \\ ka_2& kb_2& kc_2\\ ka_3& kb_3 & kc_3 \end{vmatrix} = k^3 \begin{vmatrix} a_1 & b_1&c_1 \\a_2& b_2& c_2\\ a_3& b_3 & c_3 \end{vmatrix}$

$= k^3 |A|$

Therefore correct option is (C).

Question:16 Choose the correct answer.

Which of the following is correct
(A) Determinant is a square matrix.
(B) Determinant is a number associated to a matrix.
(C) Determinant is a number associated to a square matrix.
(D) None of these

Answer:

The answer is (C) Determinant is a number associated to a square matrix.

As we know that To every square matrix $A = [a_{ij}]$of order n, we can associate a number (real or complex) called determinant of the square matrix A, where $a_{ij} = (i, j)^{th}$ element of A.

More About NCERT Solutions for Class 12 Maths Chapter 4 Exercise 4.2

This article NCERT Solutions for Class 12 Maths Chapter 4 Exercise 4.2 is consists of questions related to properties of determinants. In Class 12th Maths chapter 4 exercise 4.2 there are 16 questions including 2 multiple choice type questions. There are 11 examples given in NCERT book before the exercise 4.2 Class 12 Maths. First, try to solve these examples given in the textbook. It will help you to get conceptual clarity and solving NCERT problems. NCERT syllabus Class 12th Maths chapter 4 exercise 4.2 questions are very important for the board exam as well as for the engineering competitive exams.

Also Read| Determinants Class 12 Chapter 4 Notes

Benefits of NCERT Solutions for Class 12 Maths Chapter 4 Exercise 4.2

  • Class 12 Maths chapter 4 exercise 4.2 solutions are prepared by the subject matter experts who know how best to answer in order to perform well in the board exams.
  • Class 12th Maths chapter 4 exercise 4.2 questions are prepared in a very descriptive manner which you will get easily.
  • NCERT Solutions for Class 12 Maths Chapter 4 Exercise 4.2 are important in competitive exams like JEE, SRMJEE, etc.
  • As most of the time, one question from this exercise is asked in the board exam, so you are advised to be thorough with them.
  • You can use these NCERT Solutions for Class 12 Maths Chapter 4 Exercise 4.2 for reference.
JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook

Key Features Of NCERT Solutions for Exercise 4.2 Class 12 Maths Chapter 4

  • Comprehensive Coverage: The solutions encompass all the topics covered in ex 4.2 class 12, ensuring a thorough understanding of the concepts.
  • Step-by-Step Solutions: In this class 12 maths ex 4.2, each problem is solved systematically, providing a stepwise approach to aid in better comprehension for students.
  • Accuracy and Clarity: Solutions for class 12 ex 4.2 are presented accurately and concisely, using simple language to help students grasp the concepts easily.
  • Conceptual Clarity: In this 12th class maths exercise 4.2 answers, emphasis is placed on conceptual clarity, providing explanations that assist students in understanding the underlying principles behind each problem.
  • Inclusive Approach: Solutions for ex 4.2 class 12 cater to different learning styles and abilities, ensuring that students of various levels can grasp the concepts effectively.
  • Relevance to Curriculum: The solutions for class 12 maths ex 4.2 align closely with the NCERT curriculum, ensuring that students are prepared in line with the prescribed syllabus.

Also see-

Frequently Asked Questions (FAQs)

Q: How the value of determinants affect if the rows and columns of determinant are interchanged ?
A:

The value of the determinant remains unchanged when the rows and columns of determinants are interchanged.  

Q: How the value of determinants change if any two rows of a determinant are interchanged
A:

If any two rows of a determinant are interchanged then the sign of the determinant change.

Q: How the value of determinants change if any two columns of a determinant are interchanged
A:

The sign of the determinant change when any two columns of a determinant are interchanged.

Q: What is the value of determinant when the two rows of determinant are identical ?
A:

The value of the determinant is zero if any two rows of a determinant are identical.

Q: What is the value of determinant when the two columns of determinant are identical ?
A:

The value of the determinant is zero if any two columns of a determinant are identical.

Q: If A be a square matrix of order 2 then | kA| ?
A:

If the order of the square matrix is 2 then |kA| = k^2|A|.

Q: How many questions are there is the exercise 4.2 Class 12 Maths ?
A:

There are 16 questions including two multiple choice questions are given in this exercise. All questions are useful to get a conceptual clarity. Following NCERT syllabus is beneficial for the CBSE board exam

Q: where can I get NCERT solutions ?
A:

By clicking on the link you will get  NCERT solutions. NCERT Solutions for Mathematics and Science are given chapter wise.

Articles
|
Upcoming School Exams
Ongoing Dates
Assam HSLC Application Date

1 Sep'25 - 4 Oct'25 (Online)

Ongoing Dates
TOSS Intermediate Late Fee Application Date

8 Sep'25 - 20 Sep'25 (Online)

Certifications By Top Providers
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Hello,

If you want to improve the Class 12 PCM results, you can appear in the improvement exam. This exam will help you to retake one or more subjects to achieve a better score. You should check the official website for details and the deadline of this exam.

I hope it will clear your query!!

Hello Aspirant,

SASTRA University commonly provides concessions and scholarships based on merit in class 12 board exams and JEE Main purposes with regard to board merit you need above 95% in PCM (or on aggregate) to get bigger concessions, usually if you scored 90% and above you may get partial concessions. I suppose the exact cut offs may change yearly on application rates too.

Hello,

After 12th, if you are interested in computer science, the best courses are:

  • B.Tech in Computer Science Engineering (CSE) – most popular choice.

  • BCA (Bachelor of Computer Applications) – good for software and IT jobs.

  • B.Sc. Computer Science / IT – good for higher studies and research.

  • B.Tech in Information Technology (IT) – focuses on IT and networking.

All these courses have good career scope. Choose based on your interest in coding, software, hardware, or IT field.

Hope it helps !

Hello Vanshika,

CBSE generally forwards the marksheet for the supplementary exam to the correspondence address as identified in the supplementary exam application form. It is not sent to the address indicated in the main exam form. Addresses that differ will use the supplementary exam address.

To find Class 12 Arts board papers, go to the official website of your education board, then click on the Sample Papers, Previous Years Question Papers(PYQ) or Model Papers section, and select the Arts stream. You will find papers for the various academic year. You can then select the year of which you want to solve and do your practice. There are many other educational websites that post pyqs on their website you can also visit that.