Question:5 Using the property of determinants and without expanding, prove that
$\begin{vmatrix}b+c &q+r &y+z \\ c+a & r+p &z+x \\ a+b &p+q & x+y \end{vmatrix}=2\begin{vmatrix} a &p &x \\ b &q &y \\ c &r & z \end{vmatrix}$
Answer:
Given determinant :
$\triangle= \begin{vmatrix}b+c &q+r &y+z \\ c+a & r+p &z+x \\ a+b &p+q & x+y \end{vmatrix}$
Splitting the third row; we get,
$= \begin{vmatrix}b+c &q+r &y+z \\ c+a & r+p &z+x \\ a &p & x \end{vmatrix} + \begin{vmatrix}b+c &q+r &y+z \\ c+a & r+p &z+x \\ b &q & y \end{vmatrix} = \triangle_{1} + \triangle_{2}\ (assume\ that)$.
Then we have,
$\triangle_{1} = \begin{vmatrix} b+c & q+r & y+z \\ c+a & r+p & z+x \\ a &p & x \end{vmatrix}$
On Applying row transformation $R_{2} \rightarrow R_{2} - R_{3}$ and then $R_{1} \rightarrow R_{1} - R_{2}$;
we get, $\triangle_{1} = \begin{vmatrix} b & q & y \\ c & r & z \\ a &p & x \end{vmatrix}$
Applying Rows exchange transformation $R_{1} \leftrightarrow R_{2}$ and $R_{2} \leftrightarrow R_{3}$, we have:
$\triangle_{1} =(-1)^2 \begin{vmatrix} b & q & y \\ c & r & z \\ a &p & x \end{vmatrix}= \begin{vmatrix} a & p & x\\ b & q&y \\ c& r & z \end{vmatrix}$
also $\triangle_{2} = \begin{vmatrix} b+c & q+r & y+z \\ c+a&r+p &z+x \\ b & q & y \end{vmatrix}$
On applying rows transformation, $R_{1} \rightarrow R_{1} - R_{3}$ and then $R_{2} \rightarrow R_{2} - R_{1}$
$\triangle_{2} = \begin{vmatrix} c & r & z \\ c+a&r+p &z+x \\ b & q & y \end{vmatrix}$ and then $\triangle_{2} = \begin{vmatrix} c & r & z \\ a&p &x \\ b & q & y \end{vmatrix}$
Then applying rows exchange transformation;
$R_{1} \leftrightarrow R_{2}$ and then $R_{2} \leftrightarrow R_{3}$. we have then;
$\triangle_{2} =(-1)^2 \begin{vmatrix} a & p & x \\ b&q &y \\ c & r & z \end{vmatrix}$
So, we now calculate the sum = $\triangle_{1} + \triangle _{2}$
$\triangle_{1} + \triangle _{2} = 2 \begin{vmatrix} a &p &x \\ b& q& y\\ c & r& z \end{vmatrix}$
Hence proved.