Careers360 Logo
NCERT Solutions for Class 12 Chemistry Chapter 6 Haloalkanes and Haloarenes

NCERT Solutions for Class 12 Chemistry Chapter 6 Haloalkanes and Haloarenes

Edited By Shivani Poonia | Updated on Mar 27, 2025 01:38 PM IST | #CBSE Class 12th
Upcoming Event
CBSE Class 12th  Exam Date : 29 Mar' 2025 - 29 Mar' 2025

Haloalkanes and Haloarenes these words are made up of two words the first is ‘Halo’, which means Halogens, and the second word is ‘alkanes’ or ‘arenes’, which means aliphatic or aromatic hydrocarbons. So, Haloalkanes and Haloarenes are organic compounds containing Halogens. Basically in these compounds, one or more Hydrogen atoms of Hydrocarbons are replaced by Halogens (Fluorine, Chlorine, Bromine, Iodine). Due to the unique properties of Haloalkanes and Haloarenes, they are used in industrial applications and biological processes. Many organic compounds containing Halogen occur naturally and have clinical significance. Class 12 Chemistry Chapter 6 solutions are prepared by subject experts in the easiest way. This will help to resolve all NCERT problems in this chapter.

This Story also Contains
  1. NCERT Solutions for Class 12 Chemistry Haloalkanes and Haloarenes (Intext Question from 6.1 to 6.9)
  2. NCERT Solutions for Class 12 Chemistry Haloalkanes and Haloarenes- (Exercise Questions)
  3. Topics of Class 12 Chemistry Chapter 6
  4. NCERT Solutions Class 12 Chemistry
  5. NCERT Solutions for Class 12 Subject-wise
  6. Also Check NCERT Books and NCERT Syllabus here:
NCERT Solutions for Class 12 Chemistry Chapter 6 Haloalkanes and Haloarenes
NCERT Solutions for Class 12 Chemistry Chapter 6 Haloalkanes and Haloarenes

Alkyl Halide are used as refrigerants, solvents, anesthetics, cleaning agents, and pharmaceutical synthesis. Some of the widely used Haloalkanes are Chloroform (CHCl3) and Carbon tetrachloride (CCl4). Haloarenes are used in the manufacturing of dyes, pesticides, and pharmaceuticals. Some of the widely used Haloarenes are DDT, Bromobenzene, etc. Apart from their Biological and physical significance, they have some environmental effects as well. For example, compounds like Chlorofluorocarbons are widely used as refrigerants and solvents and are considered the main cause of ozone layer depletion.

Background wave

Haloalkanes And Haloarenes play a vital role in the Class 12 Chemistry curriculum. Chapter 6 starts with the basics and gradually moves to complex topics. NCERT Solutions has been created according to the latest CBSE curriculum. Solutions are prepared by our subject experts, which ensures the credibility and comprehensiveness of the concepts. Solutions of Class 12 Chemistry are prepared in simple language. NCERT Class 12 Chemistry Chapter 6 Solutions are available below scroll down to access solutions and pdf.

NEET/JEE Coaching Scholarship

Get up to 90% Scholarship on Offline NEET/JEE coaching from top Institutes

JEE Main Important Mathematics Formulas

As per latest 2024 syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters

NCERT Solutions for Class 12 Chemistry Haloalkanes and Haloarenes (Intext Question from 6.1 to 6.9)

Question 6.1 Write structures of the following compounds:

(i) 2-Chloro-3-methylpentane

Answer :

The structure of 2-Chloro-3-methylpentane is given below :-

1650393268093

Question 6.1 Write structures of the following compounds:

(ii) 1-Chloro-4-ethylcyclohexane

Answer :

The structure of 1-Chloro-4-ethylcyclohexane is given below :-

1650393304836


Question 6.1 Write structures of the following compounds:

(iii) 4-tert. Butyl-3-iodoheptane

Answer :

The structure of 4-tert. Butyl-3-iodoheptane is given below :-

1650393334343


Question 6.1 Write structures of the following compounds:

(iv) 1,4-Dibromobut-2-ene

Answer :

The structure of 1,4-Dibromobut-2-ene is given below :-

1650393521544

Question 6.1 Write structures of the following compounds:

(v) 1-Bromo-4-sec. butyl-2-methylbenzene

Answer :

The structure of 1-Bromo-4-sec. butyl-2-methylbenzene is shown below :-

1650393588711

Question 6.2 Why is sulphuric acid not used during the reaction of alcohols with KI?

Answer :

We don't use sulphuric acid because it acts as an oxidising agent and the required alkyl iodide is not produced. The reactions are given below :-

2KI + H 2 SO 4 → 2KHSO 4 + 2HI

2HI + H 2 SO 4 → I 2 + SO 2 + H 2 O

Question 6.3 Write structures of different dihalogen derivatives of propane.

Answer :

We obtain four dihalogen derivatives of propane :-

(i) 1,1 Dibromopropane

1650393649596

(ii) 2, 2 Dibromopropane

1650393673880

(iii) 1, 2 Dibromopropane

1650393696576

(iv) 1, 3 Dibromopropane

1650393717664

Question 6.4 Among the isomeric alkanes of molecular formula C 5 H 12 , identify the one that on photochemical chlorination yields

(i) A single monochloride

Answer :

In this we have to find an isomer in which replacement of any hydrogen atom gives the singel compound for all replacements.

So the isomer is Neopentane.

1650393974824

Question 6.4 Among the isomeric alkanes of molecular formula C 5 H 12 , identify the one that on photochemical chlorination yields

(ii) Three isomeric monochlorides.

Answer :

For the given condition we must have three different hydrogens so that we can get three different monochlorides on the replacement.

Thus the isomer is n-pentane.

1650394033275

Question 6.4 Among the isomeric alkanes of molecular formula C 5 H 12 , identify the one that on photochemical chlorination yields

(iii) Four isomeric monochlorides .

Answer :

For four monochlorides we need four different hydrogens which can be replaced by chlorine.

Hence the required isomer is :-

Question 6.6 Arrange each set of compounds in order of increasing boiling points.

(i) Bromomethane, Bromoform, Chloromethane, Dibromomethane.

Answer :

It is known that boiling point increases with increase in molecular mass when the alkyl group is the same.

So the order of increasing boiling point is Chloromethane < Bromomethane < Dibromomethane < Bromoform


Question 6.6 Arrange each set of compounds in order of increasing boiling points.

(ii) 1-Chloropropane, Isopropyl chloride, 1-Chlorobutane.

Answer :

In the given compounds the halide groups are same. In these cases, the boiling point depends on the bulkiness of the alkyl group. The boiling point increases with an increase in the chain length. Also, the boiling point decreases with an increase in branching.

So the order is :- 1- Chlorobutane > 1- Chloropropane > Isopropyl Chloride


Question 6.7 Which alkyl halide from the following pairs would you expect to react more rapidly by an SN2 mechanism? Explain your answer.

CH_{3}CH_{2}CH_{2}CH_{2}Br

Answer :

In this case, the rate of SN2 reaction will depend on the hindrance of the substrate.

Since 1- Bromobutane is a 1 alkyl halide and 2- Bromobutane is a 2 alkyl halide hence 2- Bromobutane gives more hindrance to the nucleophile.

Hence 1- Bromobutane reacts faster.


Question 6.7 Which alkyl halide from the following pairs would you expect to react more rapidly by an SN2 mechanism? Explain your answer.

1650394520742

Answer :

The rate of SN2 reaction decreases with increase in hindrance to the attack of the nucleophile.

So 2-bromobutane will react faster than 2-bromo-2-methylpropane in the nucleophilic attack.


Question 6.7 Which alkyl halide from the following pairs would you expect to react more rapidly by an SN2 mechanism? Explain your answer.

1650394551180

Answer :

In these kinds of cases, we see where is the substituent is attached i.e., how far from the halide group. It can be clearly seen that the methyl group attached in 1-bromo-2-methylbutane is near than that attached in 1-bromo-3-methyl butane.

Hence the rate of SN2 reaction will be faster in case of 1-bromo-3-methylbutane.


Question 6.8 In the following pairs of halogen compounds, which compound undergoes faster SN1 reaction?

(i) 1650394593342

Answer :

In SN1 reactions, we see the formation of carbocation and this is the rate determining step for this kind of reactions. So the compound having more stable carbocation will react faster. In the given case 2- Chloro, 2- Methylpropane we have 3 carbon whereas in 3- Chloropentane we have 2 carbon.


Question 6.8 In the following pairs of halogen compounds, which compound undergoes faster SN1 reaction?

1650394629230

Answer :

In SN1 reactions, we see the formation of carbocation and this is the rate determining step for these kinds of reactions.So the compound having more stable carbocation will react faster. Hence 2-Chloroheptane will react faster than 1- Chlorohexane.


Question 6.9 Identify A, B, C, D, E, R and R1 in the following:

1650394661923

Answer :

1st reaction :-

1650394679729

2nd reaction :-

1650394698219

3rd reaction :-

1650394715385

NCERT Solutions for Class 12 Chemistry Haloalkanes and Haloarenes- (Exercise Questions)

Question 6.1 Name the following halides according to IUPAC system and classify them as alkyl, allyl, benzyl (primary, secondary, tertiary), vinyl or aryl halides:

(i) (CH3)2CHCH(Cl)CH3

Answer :

(i) 2-Chloro-3-methylbutane. And it is a secondary alkyl halide.



Question 6.1 Name the following halides according to IUPAC system and classify them as alkyl, allyl, benzyl (primary, secondary, tertiary), vinyl or aryl halides:

(ii) CH3CH2CH(CH3)CH(C2H5)Cl

Answer :

3-Chloro-4-methylhexane. And it is primary alkyl halide.


Question 6.1 Name the following halides according to IUPAC system and classify them as alkyl, allyl, benzyl (primary, secondary, tertiary), vinyl or aryl halides:

(iii) CH3CH2C(CH3)2CH2I

Answer :

(iii) 1-Iodo-2, 2-dimethylbutane. And it is primary alkyl halide.

Question 6.1 Name the following halides according to IUPAC system and classify them as alkyl, allyl, benzyl (primary, secondary, tertiary), vinyl or aryl halides:

(iv) (CH3)3CCH2CH(Br)C6H5

Answer :

(iv) 1-Bromo-3, 3-dimethyl-1-phenylbutane. And it is secondary benzyl halide.


Question 6.1 Name the following halides according to IUPAC system and classify them as alkyl, allyl, benzyl (primary, secondary, tertiary), vinyl or aryl halides:

(v) CH3CH(CH3)CH(Br)CH3

Answer :

(v) 2-Bromo-3-methylbutane. And it is secondary alkyl halide.


Question 6.1 Name the following halides according to IUPAC system and classify them as alkyl, allyl, benzyl (primary, secondary, tertiary), vinyl or aryl halides:

(vi) CH3C(C2H5)2CH2Br

Answer :

(vi) 1-Bromo-2-ethyl-2-methylbutane. And it is a primary alkyl halide.


Question 6.1 Name the following halides according to IUPAC system and classify them as alkyl, allyl, benzyl (primary, secondary, tertiary), vinyl or aryl halides:

(vii) CH3C(Cl)(C2H5)CH2CH3

Answer :

(vii) 3-Chloro-3-methylpentane. And it is tertiary alkyl halide.


Question 6.1 Name the following halides according to IUPAC system and classify them as alkyl, allyl, benzyl (primary, secondary, tertiary), vinyl or aryl halides:

(viii) CH3CH=C(Cl)CH2CH(CH3)2

Answer :

(viii) 3-Chloro-5-methylhex-2-ene. And it is vinyl halide


Question 6.1 Name the following halides according to IUPAC system and classify them as alkyl, allyl, benzyl (primary, secondary, tertiary), vinyl or aryl halides:

(ix) CH3CH=CHC(Br)(CH3)2

Answer :

(ix) 4-Bromo-4-methylpent-2-ene. And it is allyl halide.


Question 6.1 Name the following halides according to IUPAC system and classify them as alkyl, allyl, benzyl (primary, secondary, tertiary), vinyl or aryl halides:

(x) pClC6H4CH2CH(CH3)2

Answer :

(x) 1-Chloro-4-(2-methylpropyl) benzene. And it is aryl halide.


Question 6.1 Name the following halides according to IUPAC system and classify them as alkyl, allyl, benzyl (primary, secondary, tertiary), vinyl or aryl halides:

(xi) mClC6H4CH2CH(CH3)2

Answer :

(xi) 1-Chloromethyl-3-(2, 2-dimethylpropyl) benzene. And it is primary benzyl halide.

Question 6.1 Name the following halides according to IUPAC system and classify them as alkyl, allyl, benzyl (primary, secondary, tertiary), vinyl or aryl halides:

(xii) oBrC6H4CH(CH3)CH2CH3

Answer :

(xii) 1-Bromo-2-(1-methylpropyl) benzene. And it is aryl halide.


Question 6.2 Give the IUPAC names of the following compounds:

(i) CH3CH(Cl)CH(Br)CH3

Answer :

(i) 2-Bromo-3-chlorobutane

Question 6.2 Give the IUPAC names of the following compounds:

(ii) CHF2CBrCIF

Answer :

1-Bromo-1-chloro-1, 2, 2-trifluroethane

Question 6.2 Give the IUPAC names of the following compounds:

(iii) ClCH2CCCH2Br

Answer :

1-Bromo-4-chlorobut-2-yne

Question 6.2 Give the IUPAC names of the following compounds:

(iv) (CCl3)3CCl

Answer :

2-(Trichloromethyl)-1, 1, 1, 2, 3, 3, 3-heptachloropropane

Question 6.2 Give the IUPAC names of the following compounds:

(v) CH3(pClC6H4)2CH(Br)CH3

Answer :

2-Bromo-3, 3-bis(4-Chlorophenyl) butane

Question 6.2 Give the IUPAC names of the following compounds:

(vi) (CH3)3CCH=CClC6H4Ip

Answer :

1-Chloro-1-(4-iodophenyl)-3, 3-dimethylbut-1-ene

Question 6.3 Write the structures of the following organic halogen compounds.

(i) 2-Chloro-3-methylpentane

Answer :

(i)

1650394770185

Question 6.3 Write the structures of the following organic halogen compounds.

(ii) p-Bromochlorobenzene

Answer :

(ii)

1650394830725

Question 6.3 Write the structures of the following organic halogen compounds.

(iii) 1-Chloro-4-ethylcyclohexane

Answer :

(iii)

1650394865688

Question 6.3 Write the structures of the following organic halogen compounds.

(iv) 2-(2-Chlorophenyl)-1-iodooctane

Answer :

(iv)

1650394905647

Question 6.3 Write the structures of the following organic halogen compounds.

(v) 2-Bromobutane

Answer :

(v)

1650394945214

Question 6.3 Write the structures of the following organic halogen compounds.

(vi) 4-tert-Butyl-3-iodoheptane

Answer :

(vi)

1650394997618

Question 6.3 Write the structures of the following organic halogen compounds.

(vii) 1-Bromo-4-sec-butyl-2-methylbenzene

Answer :

(vii)

1650395035475

Question 6.3 Write the structures of the following organic halogen compounds.

(viii) 1,4-Dibromobut-2-ene

Answer :

(viii)

1650395068985

Question 6.4 Which one of the following has the highest dipole moment?

(i) CH 2 Cl 2 (ii) CHCl 3 (iii) CCl 4

Answer :

The order of dipole moment will be :- CH 2 Cl 2 > CHCl 3 > CCl 4.

The reason for the above order is given as- CCl 4 is a symmetrical compound so its dipole moment will be zero. In case of CHCl 3 , one of the Cl cancels dipole moment of the opposite Cl atom, so net dipole moment is just due to one Cl. In the case of CH 2 Cl 2 , both Cl groups contribute to the dipole moment so it has the highest dipole moment among all.

Question 6.5 A hydrocarbon C 5 H 10 does not react with chlorine in dark but gives a single monochloro compound C 5 H 9 Cl in bright sunlight. Identify the hydrocarbon.

Answer :

We are given the formula C 5 H 10 which can be either of an alkene or of cycloalkane. Since the hydrocarbon doesn't react with chlorine in dark thus it cannot be alkene. So the only option left out is cyclopentane.

1650395110987

Question 6.6 Write the isomers of the compound having formula C4H9Br .

Answer :

The isomers of the compound C4H9Br are :-

(i) 1-Bromobutane

1650395155565

(ii) 2-Bromobutane

1650395182967

(iii) 1-Bromo-2-methylpropane

1650395202259

(iv) 2-Bromo-2-methylpropane

1650395222249

Question 6.7 Write the equations for the preparation of 1-iodobutane from:

(i) 1-butanol

Answer :

(i) The procedure given below can be used :-

1650395262688

Question 6.7 Write the equations for the preparation of 1-iodobutane from

(ii) 1-chlorobutane

Answer :

(ii) The required product can be obtained as shown below :-

1650395301827

Question 6.7 Write the equations for the preparation of 1-iodobutane from

(iii) but-1-ene

Answer :

(iii) The required product is obtained by following procedure :-

1650395383932

Question 6.8 What are ambident nucleophiles? Explain with an example.

Answer :

The ambident nucleophiles are those nucleophiles which have two nucleophilic sites through which they can attack. For e.g Nitrile ion can attack through both nitrogen atom (forms nitroalkanes) and an oxygen atom (forms alkyl nitrites), thus it is an ambident nucleophile.


Question 6.9 Which compound in each of the following pairs will react faster in S N 2 reaction with –OH?

(i) CH 3 Br or CH 3 I

Answer :

In this case, we have the same alkyl group but different halide ions. For this rate of S N 2 reaction increases with increase in atomic mass. So, CH 3 I will react faster than CH 3 Br.


Question 6.9 Which compound in each of the following pairs will react faster in S N 2 reaction with –OH?

(ii) (CH3)3CCl or CH3Cl

Answer :

In this case, the hindrance will be deciding factor for the rate of S N 2 reaction because hindrance will directly affect the attack of the nucleophile. So CH3Cl will react faster as compared to (CH3)3CCl .

Question 6.10 Predict all the alkenes that would be formed by dehydrohalogenation of the following halides with sodium ethoxide in ethanol and identify the major alkene:

(i) 1-Bromo-1-methylcyclohexane

Answer :

1650395452626

In this compound, it is clear that we have identical β hydrogen, therefore, dehalogenation of the given compound gives the same alkene.

1650395489418

Question 6.10 Predict all the alkenes that would be formed by dehydrohalogenation of the following halides with sodium ethoxide in ethanol and identify the major alkene:

(ii) 2-Chloro-2-methylbutane

Answer :

(ii)

1650395539877

In this compound we have two kind of β hydrogen. So dehalogenation will give two kind of alkenes, namely 2-Methylbut-2-ene and 2-Methylbut-1-ene.

1594913117082

The major product of this reaction will be 2-Methylbut-2-ene as the number of α - hydrogens attached to double bonded carbon are more in case of this compound.

Question 6.10 Predict all the alkenes that would be formed by dehydrohalogenation of the following halides with sodium ethoxide in ethanol and identify the major alkene:

(iii) 2,2,3-Trimethyl-3-bromopentane

Answer :

(iii)

1650395582853

In this compound we have two type of β - hydrogen thus dehalogenation we get two types of products namely 3, 4, 4-Trimethylpent-2-ene and 2-Ethyl-3,3-dimethylbut-2-ene.

1650395602563 and 1650395617100

Here 3, 4, 4-Trimethylpent-2-ene will be major product, since the α - hydrogen attached to the double bond are greater.

Question 6.11 How will you bring about the following conversions?

(i) Ethanol to but-1-yne

Answer :

(i) The conversion will take place by following procedure :-

1650395649100

Now,

1650395667267

1650395692814

Question 6.11 How will you bring about the following conversions?

(ii) Ethane to bromoethene

Answer :

(ii)

1650395734449

Question 6.11 How will you bring about the following conversions?

(iii) Propene to 1-nitropropane

Answer :

(iii)

1650395766265

Question 6.11 How will you bring about the following conversions?

(iv) Toluene to benzyl alcohol

Answer :

(iv)

1650395803620

Question 6.11 How will you bring about the following conversions?

(v) Propene to propyne

Answer :

(v)

1650395841286

Question 6.11 How will you bring about the following conversions?

(vi) Ethanol to ethyl fluoride

Answer :

(vi)

1650395904233

Question 6.11 How will you bring about the following conversions?

(vii) Bromomethane to propanone

Answer :

(vii)

1650395947461

Question 6.11 How will you bring about the following conversions?

(viii) But-1-ene to but-2-ene

Answer :

(viii)

1650396011008

Question 6.11 How will you bring about the following conversions?

(ix) 1-Chlorobutane to n-octane

Answer :

(ix)

1650396049768

Question 6.11 How will you bring about the following conversions?

(x) Benzene to biphenyl.

Answer :

(x)

1650396088832

Question 6.12 Explain why

(i) the dipole moment of chlorobenzene is lower than that of cyclohexyl chloride?

Answer :

We know that the Cl-atom in chlorobenzene is attached to a sp 2 hybridized carbon atom whereas, in cyclohexyl chloride, the Cl-atom is attached to a sp 3 hybridized carbon atom. It is known that sp 2 hybridized carbon has more s-character than sp 3 hybridized carbon atom. Thus, chlorobenzene is more electronegative than cyclohexyl chloride.

Apart from this, the - R effect of the benzene ring of chlorobenzene results in decreasing the electron density of the C - Cl bond near the Cl-atom. And the C - Cl bond in chlorobenzene becomes less polar. Due to these reasons, the dipole moment of chlorobenzene is lower than that of cyclohexyl chloride.


Question 6.12 Explain why

(ii) alkyl halides, though polar, are immiscible with water?

Answer :

For being soluble in the water we have a condition that the solute-water force of attraction must be stronger than the solute-solute and water-water forces of attraction. Alkyl halides are held together by dipole-dipole interactions and there are polar molecules. Similarly, the intermolecular force of attraction present between the water molecules is hydrogen bonding. The new force of attraction after we dissolve solute in water i.e., between the alkyl halides and water molecules is weaker than the alkyl halide-alkyl halide and water-water forces of attraction. That is why alkyl halides (though polar) are immiscible with water.

Question 6.12 Explain why

(iii) Grignard reagents should be prepared under anhydrous conditions?

Answer :

This is done because in presence of moisture, they react to give alkane.

1650396174518

Question 6.13 Give the uses of freon 12, DDT, carbon tetrachloride and iodoform.

Answer :

(i) Freon-12 or dichlorodifluoromethane is generally known as CFC. It is used in refrigerators and air conditioners as a refrigerant. It is also used in body sprays, hair sprays, etc. But it has environmental impacts as it damages the ozone layer.

(ii) DDT or p, p-dichlorodiphenyltrichloroethane is one of the best-known insecticides which was used very widely all over the world. It is very effective against mosquitoes, insects and lice. But it has harmful effects.

(iii) CCl 4 :- It is mostly used for manufacturing refrigerants for refrigerators and air conditioners. It is also used as a solvent in the manufacture of pharmaceutical products. In the early years, carbon tetrachloride was widely used as a cleaning fluid and a fire extinguisher.

(iv) Iodoform was used earlier as an antiseptic. And this antiseptic property of iodoform is due to the liberation of free iodine when it comes in contact with the skin.

Question 6.14 Write the structure of the major organic product in each of the following reactions:

(i) CH3CH2CH2Cl+NaIheatacetone

Answer :

(i) The obtained product is :-

CH3CH2CH2Cl+NaIheatacetoneCH2CH2CH2I 1-Iodopropane +NaCl


Question 6.14 Write the structure of the major organic product in each of the following reactions:

(ii) (CH3)3CBr+KOHheatethanol

Answer :

(ii) The obtained product is 2-Methylpropene

1594913141655


Question 6.14 Write the structure of the major organic product in each of the following reactions:

(iii) CH3CH(Br)CH2CH3+NaOHwater

Answer :

(iii) The obtained product is Butan-2-ol.

1594913157886

Question 6.14 Write the structure of the major organic product in each of the following reactions:

(iv) CH3CH2Br+KCNaq.ethanol

Answer :

(iv) The obtained product is Cyanoethane.

Bromobutane to cyanoethane

Question 6.14 Write the structure of the major organic product in each of the following reactions:

(v) C6H5ONa+C2H5Cl

Answer :

(v) The obtained product is Phenetole.

Sodium phenoxide to phenetole

Question 6.14 Write the structure of the major organic product in each of the following reactions:

(vi) CH3CH2CH2OH+SOCl2

Answer :

(vi) The obtained product is 1-Chloropropane.

1- propanol to 1-Chloropropane

Question 6.14 Write the structure of the major organic product in each of the following reactions:

(vii) CH3CH2CH=CH2+HBrperoxide

Answer :

(vii) The obtained product is 1-Bromobutane.

But-1-ene to 1-bromobutane

Question 6.14 Write the structure of the major organic product in each of the following reactions:

(viii) CH3CH=C(CH3)2+HBr

Answer :

The obtained product is 2-Bromo-2-methylbutane.

1650396358369

Question 6.15 Write the mechanism of the following reaction:

nBuBr+KCNEtOHH2OnB4CN

Answer :

The reaction will proceed through S N 2 mechanism. The mechanism for the given reaction is shown below :-

1650396425250

Question 6.16 Arrange the compounds of each set in order of reactivity towards S N 2 displacement:

(i) 2-Bromo-2-methylbutane, 1-Bromopentane, 2-Bromopentane

Answer :

(i) Here the deciding factor the rate of reaction will be a steric hindrance.

1650396424113

It is clear from the above that the order of hindrance is:-

1-Bromopentane < 2-bromopentane < 2-Bromo-2-methylbutane

So the order of rate of reaction will be:-

2-Bromo-2-methylbutane < 2-Bromopentane < 1-Bromopentane

Question 6.16 Arrange the compounds of each set in order of reactivity towards S N 2 displacement:

(ii) 1-Bromo-3-methylbutane, 2-Bromo-2-methylbutane, 2-Bromo-3-methylbutane

Answer :

(ii) In this case, also, the order of the rate of reaction will be decided from the steric hindrance factor.

1650396475386

It is clear from the above that the steric hindrance in 2-Bromo-2-methylbutane highest (note that hindrance of the carbon attached to halide ion is seen). So the order of the rate of reaction is:-

2-Bromo-2-methylbutane < 2-Bromo-3-methylbutane < 1-Bromo-3-methylbutane


Question 6.16 Arrange the compounds of each set in order of reactivity towards S N 2 displacement:

(iii) 1-Bromobutane, 1-Bromo-2,2-dimethylpropane, 1-Bromo-2-methylbutane, 1-Bromo-3-methylbutane.

Answer :

(iii) The steric hindrance is the deciding factor here.

The order of steric hindrance is :-

1-Bromobutane < 1-Bromo-3-methylbutane < 1-Bromo-2-methylbutane< 1-Bromo-2, 2-dimethylpropane

Thus the order of the rate of reaction will be : -

1-Bromo-2, 2-dimethylpropane < 1-Bromo-2-methylbutane < 1-Bromo-3- methylbutane < 1-Bromobutane

Question 6.17 Out of C6H5CH2Cl and C6H5CHClC6H5 , which is more easily hydrolysed by aqueous KOH.

Answer :

Hydrolysis by KOH will take place by the formation of a carbocation in its rate-determining step. So the compound having stable carbocation will hydrolyse faster.

The carbocations of both the compounds are given below:-

1650396510971

It is clear that carbocation of C6H5CHClC6H5 is more stable.

Hence C6H5CHClC6H5 will hydrolyse faster than C6H5CH2Cl .

Question 6.18 p-Dichlorobenzene has higher m.p. than those of o- and m-isomers. Discuss.

Answer :

The structures of o-Dichlorobenzene, m-Dichlorobenzene and p-Dichlorobenzene are given below.

1650396563342 16503965788941650396597407

We can see that p-Dichlorobenzene is a very symmetric structure thus packing of it will be maximum. As a result more and more energy will be required to break bonds (during boiling). Thus boiling point is high for p-Dichlorobenzene.

Question 6.19 How the following conversions can be carried out?

(i) Propene to propan-1-ol


Answer :

The mechanism is given below :-

1650396628364

Question 6.19 How the following conversions can be carried out?

(ii) Ethanol to but-1-yne

Answer :

The reaction mechanism is given below :-

1650396659481

Question 9.19 How the following conversions can be carried out?

(iii) 1-Bromopropane to 2-bromopropane

Answer :

(iii) The mechanism is given below :-

1650396693799

Question 6.19 How the following conversions can be carried out?

(iv) Toluene to benzyl alcohol

Answer :

(iv) The mechanism is given below :-

1650396725677

Question 6.19 How the following conversions can be carried out?

(v) Benzene to 4-bromonitrobenzene

Answer :

The mechanism for the given reaction is as follows :-

1650396774093

Question 6.19 How the following conversions can be carried out?

(vi) Benzyl alcohol to 2-phenylethanoic acid

Answer :

(vi) The mechanism for the reaction is given below :-

1650396805595

Question 6.19 How the following conversions can be carried out?

(vii) Ethanol to propanenitrile

Answer :

(vii) The mechanism of the given reaction reaction is :-

1650396845862

Question 6.19 How the following conversions can be carried out?

(viii) Aniline to chlorobenzene

Answer :

The mechanism of the reaction is given below :-

1650396881053

Question 6.19 How the following conversions can be carried out ?

(ix) 2-Chlorobutane to 3, 4-dimethylhexane

Answer :

(ix) The required mechanism is as follows :-

1650396915499

Question 6.19 How the following conversions can be carried out?

(x) 2-Methyl-1-propene to 2-chloro-2-methylpropane

Answer :

(x) The required mechanism is given below :-

1650396949386

Question 6.19 How the following conversions can be carried out ?

(xi) Ethyl chloride to propanoic acid

Answer :

The mechanism of the given reaction is :-

1650396978762

Question 6.19 How the following conversions can be carried out?

(xii) But-1-ene to n-butyliodide

Answer :

The mechanism is given below :-

1650397010184

Question 6.19 How the following conversions can be carried out?

(xiii) 2-Chloropropane to 1-propanol

Answer :

The mechanism is :-

1650397041445

Question 6.19 How the following conversions can be carried out?

(xiv) Isopropyl alcohol to iodoform

Answer :

(xiv) The proposed mechanism is :-

1650397073455

Question 6.19 How the following conversions can be carried out?

(xv) Chlorobenzene to p-nitrophenol

Answer :

(xv) The required mechanism is given below :-

1650397106405 `

Question 6.19 How the following conversions can be carried out?

(xvi) 2-Bromopropane to 1-bromopropane

Answer :

The mechanism of the reaction is given below :-

1650397139391

Question 6.19 How the following conversions can be carried out?

(xvii) Chloroethane to butane

Answer :

(xvii) The mechanism of the reaction is :-

1650397178117

Question 6.19 How the following conversions can be carried out?

(xviii) Benzene to diphenyl

Answer :

The mechanism for the given reaction is :-

1650397215170

Question 6.19 How the following conversions can be carried out?

(xix) tert-Butyl bromide to isobutyl bromide

Answer :

The mechanism of the given reaction is :-

1650397251052

Question 6.19 How the following conversions can be carried out?

(xx) Aniline to phenylisocyanide

Answer :

The mechanism for the given reaction is as follows :-

1650397282194

Question 6.20 The treatment of alkyl chlorides with aqueous KOH leads to the formation of alcohols but in the presence of alcoholic KOH, alkenes are major products. Explain.

Answer :

In an aqueous solution, KOH almost completely dissociates into OH - ions. We know that OH - ions are strong nucleophile, which leads the alkyl chloride to undergo a reaction to form alcohol. But an alcoholic solution of KOH contains alkoxide (RO - ) ion, which is a strong base. Thus, it can remove hydrogen from the β-carbon of the alkyl chloride and form an alkene. The OH - ion is a weaker base than RO - ion. The basic character of OH - ion decreases in aqueous solution. Therefore, it cannot remove hydrogen from the β-carbon.

1650397317223

1650397335438

Question 6.22 What happens when

(i) n-butyl chloride is treated with alcoholic KOH,

Answer :

When n-butyl chloride is treated with alcoholic KOH the following reaction occurs:-

1650397448020

Question 6.22 What happens when

(ii) bromobenzene is treated with Mg in the presence of dry ether

Answer :

When bromobenzene is treated with Mg in the presence of dry ether the following reaction occurs :-

1650397481230

Question 6.22 What happens when

(iii) chlorobenzene is subjected to hydrolysis

Answer :

The reaction is given below :-

1650397519695

Question 6.22 What happens when

(iv) ethyl chloride is treated with aqueous KOH

Answer :

When ethyl chloride is treated with aqueous KOH the following reaction occurs :-

1650397551997

Question 6.22 What happens when

(v) methyl bromide is treated with sodium in the presence of dry ether

Answer :

When methyl bromide is treated with sodium in the presence of dry ether then following reaction occurs:-

1650397586595

Question 6.22 What happens when

(vi) methyl chloride is treated with KCN?

Answer :

When methyl chloride is treated with KCN the following reaction occurs:-

1650397621876

More About NCERT Solutions for Class 12 Chemistry Chapter 6 Haloalkanes And Haloarenes

Our body produces thyroxine hormone which contains iodine and deficiency of iodine can cause a disease called goiter. In this chapter, you will study methods of preparation, physical and chemical properties, and uses of haloalkanes and haloarenes. You will find all the NCERT solutions for class 12 chemistry chapter 6 Haloalkanes and Haloarenes here for free.

Topics of Class 12 Chemistry Chapter 6

6.1 Classification
6.2 Nomenclature
6.3 Nature of C–X Bond
6.4 Methods of Preparation of Haloalkanes
6.5 Preparation of Haloarenes
6.6 Physical Properties
6.7 Chemical Properties
6.8 Poly halogen compounds
JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook


Also Read


Haloalkanes and Haloarenes carry 4 marks in the CBSE board exams hence it becomes necessary for you to find all the Class 12 Chemistry chapter 6 NCERT solutions to score good marks. In this NCERT book chapter, there are 9 intext questions and 22 questions in the exercise and you will get complete NCERT Solutions for Class 12 for reference.

These NCERT Solutions will help you in your preparation for CBSE Board exams as well as in competitive exams like JEE, NEET, BITSAT, and KVPY, etc. The seven sub-topics of NCERT solutions for Class 12 Chemistry chapter 6 cover important concepts like IUPAC nomenclature and preparation of haloalkanes and haloarenes and discuss how to use stereochemistry as a tool in understanding the reaction mechanism and applications of organo-metallic compounds.

At the end of the chapter, the environmental effects of polyhalogen compounds are also highlighted. Halogenated compounds remain in the environment due to their resistance to breakdown by the bacteria in the soil. By referring to the NCERT Class 12 Chemistry Solutions Chapter 6, students can understand all the important concepts and practice questions well enough before their examination.

NCERT Solutions Class 12 Chemistry


NCERT Solutions for Class 12 Subject-wise

Also Check NCERT Books and NCERT Syllabus here:

Frequently Asked Questions (FAQs)

1. What are the important topics of this chapter?

Below is the list of important topics:

  • Preparation of haloalkanes

  • Physical properties of halo derivatives

  • Reactions of Haloalkanes Stereoisomerism Definition: Enantiomers, Racemic mixture, Racemisation Reactions of haloarenes

2. What is the weightage of NCERT Class 12 Chemistry chapter 6 in CBSE board exam?

Weightage of NCERT class 12 Chemistry chapter 10 in CBSE board exam is 4 marks. Follow NCERT syllabus and NCERT textbook for a good score in the exam. To practice more questions NCERT exemplar can also be used.

3. What is the weightage of NCERT Class 12 Chemistry chapter 6 in JEE Main and NEET?

This chapter consists of 4 marks in JEE mains. Weightage of NCERT class 12 Chemistry chapter 10 in NEET is 3%.

Articles

Explore Top Universities Across Globe

University of Essex, Colchester
 Wivenhoe Park Colchester CO4 3SQ
University College London, London
 Gower Street, London, WC1E 6BT
The University of Edinburgh, Edinburgh
 Old College, South Bridge, Edinburgh, Post Code EH8 9YL
University of Bristol, Bristol
 Beacon House, Queens Road, Bristol, BS8 1QU
University of Nottingham, Nottingham
 University Park, Nottingham NG7 2RD

Questions related to CBSE Class 12th

Have a question related to CBSE Class 12th ?

Changing from the CBSE board to the Odisha CHSE in Class 12 is generally difficult and often not ideal due to differences in syllabi and examination structures. Most boards, including Odisha CHSE , do not recommend switching in the final year of schooling. It is crucial to consult both CBSE and Odisha CHSE authorities for specific policies, but making such a change earlier is advisable to prevent academic complications.

Hello there! Thanks for reaching out to us at Careers360.

Ah, you're looking for CBSE quarterly question papers for mathematics, right? Those can be super helpful for exam prep.

Unfortunately, CBSE doesn't officially release quarterly papers - they mainly put out sample papers and previous years' board exam papers. But don't worry, there are still some good options to help you practice!

Have you checked out the CBSE sample papers on their official website? Those are usually pretty close to the actual exam format. You could also look into previous years' board exam papers - they're great for getting a feel for the types of questions that might come up.

If you're after more practice material, some textbook publishers release their own mock papers which can be useful too.

Let me know if you need any other tips for your math prep. Good luck with your studies!

It's understandable to feel disheartened after facing a compartment exam, especially when you've invested significant effort. However, it's important to remember that setbacks are a part of life, and they can be opportunities for growth.

Possible steps:

  1. Re-evaluate Your Study Strategies:

    • Identify Weak Areas: Pinpoint the specific topics or concepts that caused difficulties.
    • Seek Clarification: Reach out to teachers, tutors, or online resources for additional explanations.
    • Practice Regularly: Consistent practice is key to mastering chemistry.
  2. Consider Professional Help:

    • Tutoring: A tutor can provide personalized guidance and support.
    • Counseling: If you're feeling overwhelmed or unsure about your path, counseling can help.
  3. Explore Alternative Options:

    • Retake the Exam: If you're confident in your ability to improve, consider retaking the chemistry compartment exam.
    • Change Course: If you're not interested in pursuing chemistry further, explore other academic options that align with your interests.
  4. Focus on NEET 2025 Preparation:

    • Stay Dedicated: Continue your NEET preparation with renewed determination.
    • Utilize Resources: Make use of study materials, online courses, and mock tests.
  5. Seek Support:

    • Talk to Friends and Family: Sharing your feelings can provide comfort and encouragement.
    • Join Study Groups: Collaborating with peers can create a supportive learning environment.

Remember: This is a temporary setback. With the right approach and perseverance, you can overcome this challenge and achieve your goals.

I hope this information helps you.







Hi,

Qualifications:
Age: As of the last registration date, you must be between the ages of 16 and 40.
Qualification: You must have graduated from an accredited board or at least passed the tenth grade. Higher qualifications are also accepted, such as a diploma, postgraduate degree, graduation, or 11th or 12th grade.
How to Apply:
Get the Medhavi app by visiting the Google Play Store.
Register: In the app, create an account.
Examine Notification: Examine the comprehensive notification on the scholarship examination.
Sign up to Take the Test: Finish the app's registration process.
Examine: The Medhavi app allows you to take the exam from the comfort of your home.
Get Results: In just two days, the results are made public.
Verification of Documents: Provide the required paperwork and bank account information for validation.
Get Scholarship: Following a successful verification process, the scholarship will be given. You need to have at least passed the 10th grade/matriculation scholarship amount will be transferred directly to your bank account.

Scholarship Details:

Type A: For candidates scoring 60% or above in the exam.

Type B: For candidates scoring between 50% and 60%.

Type C: For candidates scoring between 40% and 50%.

Cash Scholarship:

Scholarships can range from Rs. 2,000 to Rs. 18,000 per month, depending on the marks obtained and the type of scholarship exam (SAKSHAM, SWABHIMAN, SAMADHAN, etc.).

Since you already have a 12th grade qualification with 84%, you meet the qualification criteria and are eligible to apply for the Medhavi Scholarship exam. Make sure to prepare well for the exam to maximize your chances of receiving a higher scholarship.

Hope you find this useful!

hello mahima,

If you have uploaded screenshot of your 12th board result taken from CBSE official website,there won,t be a problem with that.If the screenshot that you have uploaded is clear and legible. It should display your name, roll number, marks obtained, and any other relevant details in a readable forma.ALSO, the screenshot clearly show it is from the official CBSE results portal.

hope this helps.

View All

A block of mass 0.50 kg is moving with a speed of 2.00 ms-1 on a smooth surface. It strikes another mass of 1.00 kg and then they move together as a single body. The energy loss during the collision is

Option 1)

0.34\; J

Option 2)

0.16\; J

Option 3)

1.00\; J

Option 4)

0.67\; J

A person trying to lose weight by burning fat lifts a mass of 10 kg upto a height of 1 m 1000 times.  Assume that the potential energy lost each time he lowers the mass is dissipated.  How much fat will he use up considering the work done only when the weight is lifted up ?  Fat supplies 3.8×107 J of energy per kg which is converted to mechanical energy with a 20% efficiency rate.  Take g = 9.8 ms−2 :

Option 1)

2.45×10−3 kg

Option 2)

 6.45×10−3 kg

Option 3)

 9.89×10−3 kg

Option 4)

12.89×10−3 kg

 

An athlete in the olympic games covers a distance of 100 m in 10 s. His kinetic energy can be estimated to be in the range

Option 1)

2,000 \; J - 5,000\; J

Option 2)

200 \, \, J - 500 \, \, J

Option 3)

2\times 10^{5}J-3\times 10^{5}J

Option 4)

20,000 \, \, J - 50,000 \, \, J

A particle is projected at 600   to the horizontal with a kinetic energy K. The kinetic energy at the highest point

Option 1)

K/2\,

Option 2)

\; K\;

Option 3)

zero\;

Option 4)

K/4

In the reaction,

2Al_{(s)}+6HCL_{(aq)}\rightarrow 2Al^{3+}\, _{(aq)}+6Cl^{-}\, _{(aq)}+3H_{2(g)}

Option 1)

11.2\, L\, H_{2(g)}  at STP  is produced for every mole HCL_{(aq)}  consumed

Option 2)

6L\, HCl_{(aq)}  is consumed for ever 3L\, H_{2(g)}      produced

Option 3)

33.6 L\, H_{2(g)} is produced regardless of temperature and pressure for every mole Al that reacts

Option 4)

67.2\, L\, H_{2(g)} at STP is produced for every mole Al that reacts .

How many moles of magnesium phosphate, Mg_{3}(PO_{4})_{2} will contain 0.25 mole of oxygen atoms?

Option 1)

0.02

Option 2)

3.125 × 10-2

Option 3)

1.25 × 10-2

Option 4)

2.5 × 10-2

If we consider that 1/6, in place of 1/12, mass of carbon atom is taken to be the relative atomic mass unit, the mass of one mole of a substance will

Option 1)

decrease twice

Option 2)

increase two fold

Option 3)

remain unchanged

Option 4)

be a function of the molecular mass of the substance.

With increase of temperature, which of these changes?

Option 1)

Molality

Option 2)

Weight fraction of solute

Option 3)

Fraction of solute present in water

Option 4)

Mole fraction.

Number of atoms in 558.5 gram Fe (at. wt.of Fe = 55.85 g mol-1) is

Option 1)

twice that in 60 g carbon

Option 2)

6.023 × 1022

Option 3)

half that in 8 g He

Option 4)

558.5 × 6.023 × 1023

A pulley of radius 2 m is rotated about its axis by a force F = (20t - 5t2) newton (where t is measured in seconds) applied tangentially. If the moment of inertia of the pulley about its axis of rotation is 10 kg m2 , the number of rotations made by the pulley before its direction of motion if reversed, is

Option 1)

less than 3

Option 2)

more than 3 but less than 6

Option 3)

more than 6 but less than 9

Option 4)

more than 9

Back to top