NCERT Solutions for Exercise 7.8 Class 12 Maths Chapter 7 - Integrals

NCERT Solutions for Exercise 7.8 Class 12 Maths Chapter 7 - Integrals

Ramraj SainiUpdated on 03 Dec 2023, 10:08 PM IST

NCERT Solutions For Class 12 Maths Chapter 7 Exercise 7.8

NCERT Solutions for Exercise 7.8 Class 12 Maths Chapter 7 Integrals are discussed here. These NCERT solutions are created by subject matter expert at Careers360 considering the latest syllabus and pattern of CBSE 2023-24. NCERT solutions for Class 12 Maths chapter 7 exercise 7.8 is another exercise in the series of 12 exercises. Solutions to exercise 7.8 Class 12 Maths basically deals with the concept of limit of sums. There are 6 questions based on the same concept. Even practicing 2-3 questions can suffice for understanding this concept in detail. NCERT solutions for Class 12 Maths chapter 7 exercise 7.8 provided here are in a manner that one can understand the concept without even reading the theory.

12th class Maths exercise 7.8 answers are designed as per the students demand covering comprehensive, step by step solutions of every problem. Practice these questions and answers to command the concepts, boost confidence and in depth understanding of concepts. Students can find all exercise together using the link provided below.

Access NCERT Solutions for Class 12 Maths Chapter 7 Exercise 7.8

Download PDF

Integrals Class 12 Chapter 7 Exercise 7.8

Question:1 Evaluate the following definite integrals as a limit of sums.

$\int_a^b x dx$

Answer:

We know that,
$\int_{a}^{b}f(x)dx = (b-a)\lim_{x\rightarrow \infty }\frac{1}{n}[f(a)+f(a+h)+...+f(a+(n-1)h)]$
$\therefore \int_{a}^{b}xdx = (b-a)\lim_{x\rightarrow \infty }\frac{1}{n}[a+(a+h)...(a+2h)..a+(n-1)h]$
$\\ = (b-a)\lim_{x\rightarrow \infty }\frac{1}{n}[(a+a...a+a)_{n}+(h+2h+3h....(n-1)h)]\\ = (b-a)\lim_{x\rightarrow \infty }\frac{1}{n}[na+h(1+2+3..+n-1)]\\ = (b-a)\lim_{x\rightarrow \infty }\frac{1}{n}[na+h(\frac{n(n-1)}{2})]\\ = (b-a)\lim_{x\rightarrow \infty }[a+\frac{n-1}{2}h]\\ = (b-a)\lim_{x\rightarrow \infty }[a+\frac{(n-1)(b-a)}{2n}]\\ = (b-a)\lim_{x\rightarrow \infty }[a+\frac{(1-\frac{1}{n})(b-a)}{2}]\\ = (b-a)[a+\frac{(b-a)}{2}]\\ =(b-a)(b+a)/2\\ =\frac{(b^2-a^2)}{2}$

This is how the integral is evaluated using limit of a sum


Question:2 Evaluate the following definite integrals as limit of sums.

$\int_0^5 (x + 1)dx$

Answer:

We know that
let $I =\int_{0}^{5}(x+1)dx$
$\\\int_{a}^{b}f(x)dx=(b-a)\lim_{n\rightarrow \infty }\frac{1}{n}[f(a)+f(a+h)+f(a+2h)+...+f(a+(n-1)h)]\\ h = \frac{b-a}{n}$
Here a = 0, b = 5 and $f(x)=(x+1)$
therefore $h=\frac{5}{n}$


$\int_{0}^{5}(x+1)dx=5\lim_{x\rightarrow \infty }\frac{1}{n}[f(0)+f(5/n)+.....+f((n-1)5/n)]$

$=5\lim_{x\rightarrow \infty }\frac{1}{n}[1+(5/n+1)+....+(1+\frac{5(n-1)}{n})]\\ =5\lim_{x\rightarrow \infty }\frac{1}{n}[(1+1..+1)_{n}+\frac{5}{n}(1+2+3+...+n-1)]\\ =5\lim_{x\rightarrow \infty }\frac{1}{n}[n+\frac{5}{n}\frac{n(n-1)}{2}]\\ =5\lim_{x\rightarrow \infty }\frac{1}{n}[n+\frac{5(n-1)}{2}]\\ =5\lim_{x\rightarrow \infty }[1+\frac{5(1-\frac{1}{n})}{2}]\\ =5[1+\frac{5}{2}]\\ =\frac{35}{2}$


CBSE Class 12th Syllabus: Subjects & Chapters
Select your preferred subject to view the chapters


Question:3 Evaluate the following definite integrals as limit of sums.

$\int_2^3 x^2dx$

Answer:

We know that

$\\\int_{a}^{b}f(x)dx=(b-a)\lim_{n\rightarrow \infty }\frac{1}{n}[f(a)+f(a+h)+f(a+2h)+...+f(a+(n-1)h)]\\ h = \frac{b-a}{n}$
here a = 2 and b = 3 , so h = 1/n


$\int_{2}^{3}x^2dx=(3-2)\lim_{x\rightarrow \infty }\frac{1}{n}[f(2)+f(2+\frac{1}{n})+f(2+\frac{2}{n})+....+f(2+\frac{(n-1)}{n})]$

$\\=(1)\lim_{x\rightarrow \infty }\frac{1}{n}[2^2+(2+\frac{1}{n})^2+......+(2+\frac{(n-1)}{n})^2]\\ =\lim_{x\rightarrow \infty }\frac{1}{n}[(2^2+2^2+...2^2)_{n}+(\frac{1}{n})^2+(\frac{2}{n})^2+....(\frac{n-1}{n})^2+4(\frac{1}{n}+\frac{2}{n}+.....+\frac{n-1}{n})\\ =\lim_{x\rightarrow \infty }\frac{1}{n}[4n+\frac{n(n-1)(2n-1)}{6n^2}+\frac{4}{n}.\frac{n(n-1)}{2}]\\ =\lim_{x\rightarrow \infty }\frac{1}{n}[4n+(1-\frac{(1-\frac{1}{n})(2n-1)}{6})+\frac{4(n-1)}{2}]$
$\\=\lim_{x\rightarrow \infty }\frac{1}{n}[4n+(1-\frac{n(1-\frac{1}{n})(2-\frac{1}{n})}{6})+\frac{4(n-1)}{2}]\\ =\lim_{x\rightarrow \infty }\frac{1}{n}.n[4+(1-\frac{(1-\frac{1}{n})(2-\frac{1}{n})}{6})+2-\frac{2}{n}]\\ =4+\frac{2}{6}+2 =\frac{19}{3}$



Question:4 Evaluate the following definite integrals as limit of sums.

$\int_{1}^4(x^2-x)dx$

Answer:

Let
$\\I = \int_{1}^{4}(x^2-x)dx =\int_{1}^{4}x^2dx-\int_{1}^{4}xdx\\ I = I_1-I_2$

$\int_{1}^{4}x^2dx=(4-1)\lim_{x\rightarrow \infty }\frac{1}{n}[f(1)+f(1+h)+f(1+2h)+.....+f(1+(n-1)h)]$

$=(4-1)\lim_{x\rightarrow \infty }\frac{1}{n}[f(1)+f(1+h)+f(1+2h)+.....+f(1+(n-1)h)]\\ =3\lim_{x\rightarrow \infty }\frac{1}{n}[1^2+(1+\frac{3}{n})^2+(1+2.\frac{3}{n})^2+......+(1+(n-1).\frac{3}{n})^2]\\ =3\lim_{x\rightarrow \infty }\frac{1}{n}[(1^2+..1^2)_{n}+(\frac{3}{n})^2(1^2+2^2+3^2+....+(n-1)^2)+2.\frac{3}{n}(1+2+3..+n-1)]\\ =3\lim_{x\rightarrow \infty }\frac{1}{n}[n+\frac{9}{n^2}(\frac{n(n-1)(2n-1)}{6})+\frac{6}{n}(\frac{n(n-1)}{2})]$

$=3\lim_{x\rightarrow \infty }\frac{1}{n}[n+\frac{9}{n^2}(\frac{n(n-1)(2n-1)}{6})+\frac{6}{n}(\frac{n(n-1)}{2})]\\ =3\lim_{x\rightarrow \infty }[1+\frac{9}{6}(1-\frac{1}{n})(2-\frac{1}{n})+3(1-\frac{1}{n})]\\ =3[1+\frac{9}{6}.2+3]\\ = 21$

for the second part, we already know the general solution of $\int_{a}^{b}xdx = \frac{(b^2-a^2)}{2}$
So, here a = 1 and b = 4
therefore $\int_{1}^{4}xdx = \frac{(4^2-1^2)}{2}=\frac{15}{2}$

So, $I = 21-\frac{15}{2} = \frac{27}{2}$



Question:5 Evaluate the following definite integrals as limit of sums.

. $\int_{-1}^1 e^xdx$

Answer:

let $I = \int_{-1}^{1}e^xdx$
We know that
$\\\int_{a}^{b}f(x)dx=(b-a)\lim_{n\rightarrow \infty }\frac{1}{n}[f(a)+f(a+h)+f(a+2h)+...+f(a+(n-1)h)]\\ h = \frac{b-a}{n}$
Here a =-1, b = 1 and $f(x) = e^x$
therefore h = 2/n
$I = 2.\lim_{x\rightarrow \infty }\frac{1}{n}[f(-1)+f(-1+\frac{2}{n})+.....+f(-1+(n-1).\frac{2}{n})]$
$\\ =2.\lim_{x\rightarrow \infty }\frac{1}{n}[e^{-1}+e^{-1+\frac{2}{n}}+e^{-1+2.\frac{2}{n}}+...+e^{-1+(n-1).\frac{2}{n}}]\\ = 2.\lim_{x\rightarrow \infty }\frac{1}{n}[e^{-1}(1+e^{2/n}+e^{4/n}+...+e^{(n-1).\frac{2}{n}})]\\ =$
By using sum of n terms of GP $S =\frac{a(r^n-1)}{r-1}$ ....where a = 1st term and r = ratio

$\\=2\lim_{n\rightarrow \infty }\frac{e^{-1}}{n}[\frac{1.(e^{\frac{2}{n}.n}-1)}{e^\frac{2}{n}-1}]\\ =2\lim_{n\rightarrow \infty }\frac{e^{-1}}{n}(\frac{e^2-1}{e^{2/n}-1})\\ =\frac{e^{-1}(e^2-1)}{\lim_{\frac{2}{n}\rightarrow \infty }\frac{e^{2/n}-1}{2/n}}\\ =\frac{e^2-1}{e}$ .........using $[\lim_{x\rightarrow \infty }(\frac{e^x-1}{x})=1]$


Question:6 Evaluate the following definite integrals as limit of sums.

$\int_0^4(x + e^{2x})dx$

Answer:

It is known that,


$\int_{0}^{4}(x+e^{2x})dx = 4\lim_{x\rightarrow \infty }\frac{1}{n}[f(0)+f(h)+f(2h)+....+f(n-1)h]$
$\\=4\lim_{x\rightarrow \infty }\frac{1}{n}[(0+e^0)+(h+e^2h)+(2h+e^4h)+......+((n-1)h+e^{2(n-1)h})]\\ = 4\lim_{x\rightarrow \infty }\frac{1}{n}[h(1+2+3+.....+n-1)+(\frac{e^{2nh}-1}{e^{2h}-1})]\\ = 4\lim_{x\rightarrow \infty }\frac{1}{n}[\frac{4}{n}(\frac{n(n-1)}{2})+(\frac{e^8-1}{e^{8/n}-1})]$
$\\=4\lim_{x\rightarrow \infty }[4.\frac{1-\frac{1}{n}}{2}+\frac{\frac{e^8-1}{8}}{\frac{e^{8/n}-1}{\frac{8}{n}}}]\\ =4(2)+4[(\frac{e^8-1}{8})]\\ ==8+e^8/2-1/2\\ =\frac{15+e^8}{2}$ ..........................( $\lim_{x\rightarrow 0}\frac{e^x-1}{x}=1$ )

More About NCERT Solutions for Class 12 Maths Chapter 7 Exercise 7.8

The NCERT Class 12 Maths chapter Integrals which covers almost 6 questions in detail is prepared by experienced subject matter experts. Exercise 7.8 Class 12 Maths can be of great help to understand the concept of limit of sums in detail. NCERT Solutions for Class 12 Maths chapter 7 exercise 7.8 can be referred to without the help of any book.

Also Read| Integrals Class 12 Notes

Benefits of NCERT Solutions for Class 12 Maths Chapter 7 Exercise 7.8

  • The Class 12th Maths chapter 7 exercise provided here is prepared by subject Faculties in step by step manner.
  • Practicing exercise 7.8 Class 12 Maths can help even an average student to score well in the examination.
  • These Class 12 Maths chapter 7 exercise 7.8 solutions covers mainly one concept i.e limit of sums.
JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook

Key Features Of NCERT Solutions for Exercise 7.8 Class 12 Maths Chapter 7

  • Comprehensive Coverage: The solutions encompass all the topics covered in ex 7.8 class 12, ensuring a thorough understanding of the concepts.
  • Step-by-Step Solutions: In this class 12 maths ex 7.8, each problem is solved systematically, providing a stepwise approach to aid in better comprehension for students.
  • Accuracy and Clarity: Solutions for class 12 ex 7.8 are presented accurately and concisely, using simple language to help students grasp the concepts easily.
  • Conceptual Clarity: In this 12th class maths exercise 7.8 answers, emphasis is placed on conceptual clarity, providing explanations that assist students in understanding the underlying principles behind each problem.
  • Inclusive Approach: Solutions for ex 7.8 class 12 cater to different learning styles and abilities, ensuring that students of various levels can grasp the concepts effectively.
  • Relevance to Curriculum: The solutions for class 12 maths ex 7.8 align closely with the NCERT curriculum, ensuring that students are prepared in line with the prescribed syllabus.

Frequently Asked Questions (FAQs)

Q: Are there different types of Integrals ?
A:

Yes, There are mainly 2 types of integration, i.e Definite and indefinite Integrals. 

Q: Define Indefinite Integrals ?
A:

Indefinite integrals are those which are without upper and lower limits i.e its range is not defined. 

Q: Mention some of the applications of Integrals ?
A:

Application of Integrals includes finding the quantities of area, volume, displacement etc. 

Q: Is the concept of limit of sums difficult?
A:

No, It has a pattern which students need to understand. Same pattern can be used to solve almost every problem based on the same concept. 

Q: What are the topics mentioned in Exercise 7.8 Class 12 Maths?
A:

It mainly deals with the concept of evaluating the definite integrals as limit of sums. 

Q: With how many questions Exercise 7.8 Class 12 Maths deals with?
A:

Exercise 7.8 Class 12 Maths deals with a total of 6 questions.

Articles
|
Upcoming School Exams
Ongoing Dates
CGSOS 12th Application Date

1 Dec'25 - 15 Jan'26 (Online)

Ongoing Dates
CGSOS 10th Application Date

1 Dec'25 - 15 Jan'26 (Online)

Ongoing Dates
Manipur Board HSLC Application Date

10 Dec'25 - 15 Jan'26 (Online)

Certifications By Top Providers
Economic Evaluation for Health Technology Assessment
Via Postgraduate Institute of Medical Education and Research Chandigarh
Aspen Plus Simulation Software a Basic Course for Beginners
Via Indian Institute of Technology Guwahati
Yoga Practices 1
Via Swami Vivekananda Yoga Anusandhana Samsthana, Bangalore
Introduction to Biomedical Imaging
Via The University of Queensland, Brisbane
Brand Management
Via Indian Institute of Management Bangalore
Edx
 1071 courses
Coursera
 816 courses
Udemy
 394 courses
Futurelearn
 264 courses
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Hello,

Yes, it's completely fine to skip this year's 12th board exams and give them next year as a reporter or private candidate, allowing you to prepare better; the process involves contacting your current school or board to register as a private candidate or for improvement exams during the specified

HELLO,

Yes i am giving you the link below through which you will be able to download the Class 12th Maths Book PDF

Here is the link :- https://school.careers360.com/ncert/ncert-book-for-class-12-maths

Hope this will help you!

Failing in pre-board or selection tests does NOT automatically stop you from sitting in the CBSE Class 12 board exams. Pre-boards are conducted by schools only to check preparation and push students to improve; CBSE itself does not consider pre-board marks. What actually matters is whether your school issues your

The CBSE Sahodaya Class 12 Pre-Board Chemistry Question Paper for the 2025-2026 session is available for download on the provided page, along with its corresponding answer key.

The Sahodaya Pre-Board exams, conducted in two rounds (Round 1 typically in December 2025 and Round 2 in January 2026), are modeled precisely

Hello,

You can get the Class 11 English Syllabus 2025-26 from the Careers360 website. This resource also provides details about exam dates, previous year papers, exam paper analysis, exam patterns, preparation tips and many more. you search in this site or you can ask question we will provide you the