NCERT Solutions for Exercise 7.8 Class 12 Maths Chapter 7 - Integrals

NCERT Solutions for Exercise 7.8 Class 12 Maths Chapter 7 - Integrals

Updated on 03 Dec 2023, 10:08 PM IST

NCERT Solutions For Class 12 Maths Chapter 7 Exercise 7.8

NCERT Solutions for Exercise 7.8 Class 12 Maths Chapter 7 Integrals are discussed here. These NCERT solutions are created by subject matter expert at Careers360 considering the latest syllabus and pattern of CBSE 2023-24. NCERT solutions for Class 12 Maths chapter 7 exercise 7.8 is another exercise in the series of 12 exercises. Solutions to exercise 7.8 Class 12 Maths basically deals with the concept of limit of sums. There are 6 questions based on the same concept. Even practicing 2-3 questions can suffice for understanding this concept in detail. NCERT solutions for Class 12 Maths chapter 7 exercise 7.8 provided here are in a manner that one can understand the concept without even reading the theory.

12th class Maths exercise 7.8 answers are designed as per the students demand covering comprehensive, step by step solutions of every problem. Practice these questions and answers to command the concepts, boost confidence and in depth understanding of concepts. Students can find all exercise together using the link provided below.

Aakash Repeater Courses

Take Aakash iACST and get instant scholarship on coaching programs.

Access NCERT Solutions for Class 12 Maths Chapter 7 Exercise 7.8

Download PDF

Integrals Class 12 Chapter 7 Exercise 7.8

Question:1 Evaluate the following definite integrals as a limit of sums.

$\int_a^b x dx$

Answer:

We know that,
$\int_{a}^{b}f(x)dx = (b-a)\lim_{x\rightarrow \infty }\frac{1}{n}[f(a)+f(a+h)+...+f(a+(n-1)h)]$
$\therefore \int_{a}^{b}xdx = (b-a)\lim_{x\rightarrow \infty }\frac{1}{n}[a+(a+h)...(a+2h)..a+(n-1)h]$
$\\ = (b-a)\lim_{x\rightarrow \infty }\frac{1}{n}[(a+a...a+a)_{n}+(h+2h+3h....(n-1)h)]\\ = (b-a)\lim_{x\rightarrow \infty }\frac{1}{n}[na+h(1+2+3..+n-1)]\\ = (b-a)\lim_{x\rightarrow \infty }\frac{1}{n}[na+h(\frac{n(n-1)}{2})]\\ = (b-a)\lim_{x\rightarrow \infty }[a+\frac{n-1}{2}h]\\ = (b-a)\lim_{x\rightarrow \infty }[a+\frac{(n-1)(b-a)}{2n}]\\ = (b-a)\lim_{x\rightarrow \infty }[a+\frac{(1-\frac{1}{n})(b-a)}{2}]\\ = (b-a)[a+\frac{(b-a)}{2}]\\ =(b-a)(b+a)/2\\ =\frac{(b^2-a^2)}{2}$

This is how the integral is evaluated using limit of a sum


Question:2 Evaluate the following definite integrals as limit of sums.

$\int_0^5 (x + 1)dx$

Answer:

We know that
let $I =\int_{0}^{5}(x+1)dx$
$\\\int_{a}^{b}f(x)dx=(b-a)\lim_{n\rightarrow \infty }\frac{1}{n}[f(a)+f(a+h)+f(a+2h)+...+f(a+(n-1)h)]\\ h = \frac{b-a}{n}$
Here a = 0, b = 5 and $f(x)=(x+1)$
therefore $h=\frac{5}{n}$


$\int_{0}^{5}(x+1)dx=5\lim_{x\rightarrow \infty }\frac{1}{n}[f(0)+f(5/n)+.....+f((n-1)5/n)]$

$=5\lim_{x\rightarrow \infty }\frac{1}{n}[1+(5/n+1)+....+(1+\frac{5(n-1)}{n})]\\ =5\lim_{x\rightarrow \infty }\frac{1}{n}[(1+1..+1)_{n}+\frac{5}{n}(1+2+3+...+n-1)]\\ =5\lim_{x\rightarrow \infty }\frac{1}{n}[n+\frac{5}{n}\frac{n(n-1)}{2}]\\ =5\lim_{x\rightarrow \infty }\frac{1}{n}[n+\frac{5(n-1)}{2}]\\ =5\lim_{x\rightarrow \infty }[1+\frac{5(1-\frac{1}{n})}{2}]\\ =5[1+\frac{5}{2}]\\ =\frac{35}{2}$



Question:3 Evaluate the following definite integrals as limit of sums.

$\int_2^3 x^2dx$

Answer:

We know that

$\\\int_{a}^{b}f(x)dx=(b-a)\lim_{n\rightarrow \infty }\frac{1}{n}[f(a)+f(a+h)+f(a+2h)+...+f(a+(n-1)h)]\\ h = \frac{b-a}{n}$
here a = 2 and b = 3 , so h = 1/n


$\int_{2}^{3}x^2dx=(3-2)\lim_{x\rightarrow \infty }\frac{1}{n}[f(2)+f(2+\frac{1}{n})+f(2+\frac{2}{n})+....+f(2+\frac{(n-1)}{n})]$

$\\=(1)\lim_{x\rightarrow \infty }\frac{1}{n}[2^2+(2+\frac{1}{n})^2+......+(2+\frac{(n-1)}{n})^2]\\ =\lim_{x\rightarrow \infty }\frac{1}{n}[(2^2+2^2+...2^2)_{n}+(\frac{1}{n})^2+(\frac{2}{n})^2+....(\frac{n-1}{n})^2+4(\frac{1}{n}+\frac{2}{n}+.....+\frac{n-1}{n})\\ =\lim_{x\rightarrow \infty }\frac{1}{n}[4n+\frac{n(n-1)(2n-1)}{6n^2}+\frac{4}{n}.\frac{n(n-1)}{2}]\\ =\lim_{x\rightarrow \infty }\frac{1}{n}[4n+(1-\frac{(1-\frac{1}{n})(2n-1)}{6})+\frac{4(n-1)}{2}]$
$\\=\lim_{x\rightarrow \infty }\frac{1}{n}[4n+(1-\frac{n(1-\frac{1}{n})(2-\frac{1}{n})}{6})+\frac{4(n-1)}{2}]\\ =\lim_{x\rightarrow \infty }\frac{1}{n}.n[4+(1-\frac{(1-\frac{1}{n})(2-\frac{1}{n})}{6})+2-\frac{2}{n}]\\ =4+\frac{2}{6}+2 =\frac{19}{3}$



Question:4 Evaluate the following definite integrals as limit of sums.

$\int_{1}^4(x^2-x)dx$

Answer:

Let
$\\I = \int_{1}^{4}(x^2-x)dx =\int_{1}^{4}x^2dx-\int_{1}^{4}xdx\\ I = I_1-I_2$

$\int_{1}^{4}x^2dx=(4-1)\lim_{x\rightarrow \infty }\frac{1}{n}[f(1)+f(1+h)+f(1+2h)+.....+f(1+(n-1)h)]$

$=(4-1)\lim_{x\rightarrow \infty }\frac{1}{n}[f(1)+f(1+h)+f(1+2h)+.....+f(1+(n-1)h)]\\ =3\lim_{x\rightarrow \infty }\frac{1}{n}[1^2+(1+\frac{3}{n})^2+(1+2.\frac{3}{n})^2+......+(1+(n-1).\frac{3}{n})^2]\\ =3\lim_{x\rightarrow \infty }\frac{1}{n}[(1^2+..1^2)_{n}+(\frac{3}{n})^2(1^2+2^2+3^2+....+(n-1)^2)+2.\frac{3}{n}(1+2+3..+n-1)]\\ =3\lim_{x\rightarrow \infty }\frac{1}{n}[n+\frac{9}{n^2}(\frac{n(n-1)(2n-1)}{6})+\frac{6}{n}(\frac{n(n-1)}{2})]$

$=3\lim_{x\rightarrow \infty }\frac{1}{n}[n+\frac{9}{n^2}(\frac{n(n-1)(2n-1)}{6})+\frac{6}{n}(\frac{n(n-1)}{2})]\\ =3\lim_{x\rightarrow \infty }[1+\frac{9}{6}(1-\frac{1}{n})(2-\frac{1}{n})+3(1-\frac{1}{n})]\\ =3[1+\frac{9}{6}.2+3]\\ = 21$

for the second part, we already know the general solution of $\int_{a}^{b}xdx = \frac{(b^2-a^2)}{2}$
So, here a = 1 and b = 4
therefore $\int_{1}^{4}xdx = \frac{(4^2-1^2)}{2}=\frac{15}{2}$

So, $I = 21-\frac{15}{2} = \frac{27}{2}$



Question:5 Evaluate the following definite integrals as limit of sums.

. $\int_{-1}^1 e^xdx$

Answer:

let $I = \int_{-1}^{1}e^xdx$
We know that
$\\\int_{a}^{b}f(x)dx=(b-a)\lim_{n\rightarrow \infty }\frac{1}{n}[f(a)+f(a+h)+f(a+2h)+...+f(a+(n-1)h)]\\ h = \frac{b-a}{n}$
Here a =-1, b = 1 and $f(x) = e^x$
therefore h = 2/n
$I = 2.\lim_{x\rightarrow \infty }\frac{1}{n}[f(-1)+f(-1+\frac{2}{n})+.....+f(-1+(n-1).\frac{2}{n})]$
$\\ =2.\lim_{x\rightarrow \infty }\frac{1}{n}[e^{-1}+e^{-1+\frac{2}{n}}+e^{-1+2.\frac{2}{n}}+...+e^{-1+(n-1).\frac{2}{n}}]\\ = 2.\lim_{x\rightarrow \infty }\frac{1}{n}[e^{-1}(1+e^{2/n}+e^{4/n}+...+e^{(n-1).\frac{2}{n}})]\\ =$
By using sum of n terms of GP $S =\frac{a(r^n-1)}{r-1}$ ....where a = 1st term and r = ratio

$\\=2\lim_{n\rightarrow \infty }\frac{e^{-1}}{n}[\frac{1.(e^{\frac{2}{n}.n}-1)}{e^\frac{2}{n}-1}]\\ =2\lim_{n\rightarrow \infty }\frac{e^{-1}}{n}(\frac{e^2-1}{e^{2/n}-1})\\ =\frac{e^{-1}(e^2-1)}{\lim_{\frac{2}{n}\rightarrow \infty }\frac{e^{2/n}-1}{2/n}}\\ =\frac{e^2-1}{e}$ .........using $[\lim_{x\rightarrow \infty }(\frac{e^x-1}{x})=1]$


Question:6 Evaluate the following definite integrals as limit of sums.

$\int_0^4(x + e^{2x})dx$

Answer:

It is known that,


$\int_{0}^{4}(x+e^{2x})dx = 4\lim_{x\rightarrow \infty }\frac{1}{n}[f(0)+f(h)+f(2h)+....+f(n-1)h]$
$\\=4\lim_{x\rightarrow \infty }\frac{1}{n}[(0+e^0)+(h+e^2h)+(2h+e^4h)+......+((n-1)h+e^{2(n-1)h})]\\ = 4\lim_{x\rightarrow \infty }\frac{1}{n}[h(1+2+3+.....+n-1)+(\frac{e^{2nh}-1}{e^{2h}-1})]\\ = 4\lim_{x\rightarrow \infty }\frac{1}{n}[\frac{4}{n}(\frac{n(n-1)}{2})+(\frac{e^8-1}{e^{8/n}-1})]$
$\\=4\lim_{x\rightarrow \infty }[4.\frac{1-\frac{1}{n}}{2}+\frac{\frac{e^8-1}{8}}{\frac{e^{8/n}-1}{\frac{8}{n}}}]\\ =4(2)+4[(\frac{e^8-1}{8})]\\ ==8+e^8/2-1/2\\ =\frac{15+e^8}{2}$ ..........................( $\lim_{x\rightarrow 0}\frac{e^x-1}{x}=1$ )

More About NCERT Solutions for Class 12 Maths Chapter 7 Exercise 7.8

The NCERT Class 12 Maths chapter Integrals which covers almost 6 questions in detail is prepared by experienced subject matter experts. Exercise 7.8 Class 12 Maths can be of great help to understand the concept of limit of sums in detail. NCERT Solutions for Class 12 Maths chapter 7 exercise 7.8 can be referred to without the help of any book.

Also Read| Integrals Class 12 Notes

Benefits of NCERT Solutions for Class 12 Maths Chapter 7 Exercise 7.8

  • The Class 12th Maths chapter 7 exercise provided here is prepared by subject Faculties in step by step manner.
  • Practicing exercise 7.8 Class 12 Maths can help even an average student to score well in the examination.
  • These Class 12 Maths chapter 7 exercise 7.8 solutions covers mainly one concept i.e limit of sums.
JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook

Key Features Of NCERT Solutions for Exercise 7.8 Class 12 Maths Chapter 7

  • Comprehensive Coverage: The solutions encompass all the topics covered in ex 7.8 class 12, ensuring a thorough understanding of the concepts.
  • Step-by-Step Solutions: In this class 12 maths ex 7.8, each problem is solved systematically, providing a stepwise approach to aid in better comprehension for students.
  • Accuracy and Clarity: Solutions for class 12 ex 7.8 are presented accurately and concisely, using simple language to help students grasp the concepts easily.
  • Conceptual Clarity: In this 12th class maths exercise 7.8 answers, emphasis is placed on conceptual clarity, providing explanations that assist students in understanding the underlying principles behind each problem.
  • Inclusive Approach: Solutions for ex 7.8 class 12 cater to different learning styles and abilities, ensuring that students of various levels can grasp the concepts effectively.
  • Relevance to Curriculum: The solutions for class 12 maths ex 7.8 align closely with the NCERT curriculum, ensuring that students are prepared in line with the prescribed syllabus.

Frequently Asked Questions (FAQs)

Q: Are there different types of Integrals ?
A:

Yes, There are mainly 2 types of integration, i.e Definite and indefinite Integrals. 

Q: Define Indefinite Integrals ?
A:

Indefinite integrals are those which are without upper and lower limits i.e its range is not defined. 

Q: Mention some of the applications of Integrals ?
A:

Application of Integrals includes finding the quantities of area, volume, displacement etc. 

Q: Is the concept of limit of sums difficult?
A:

No, It has a pattern which students need to understand. Same pattern can be used to solve almost every problem based on the same concept. 

Q: What are the topics mentioned in Exercise 7.8 Class 12 Maths?
A:

It mainly deals with the concept of evaluating the definite integrals as limit of sums. 

Q: With how many questions Exercise 7.8 Class 12 Maths deals with?
A:

Exercise 7.8 Class 12 Maths deals with a total of 6 questions.

Articles
|
Upcoming School Exams
Ongoing Dates
Assam HSLC Application Date

1 Sep'25 - 4 Oct'25 (Online)

Ongoing Dates
TOSS Intermediate Late Fee Application Date

8 Sep'25 - 20 Sep'25 (Online)

Certifications By Top Providers
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Hello,

If you want to improve the Class 12 PCM results, you can appear in the improvement exam. This exam will help you to retake one or more subjects to achieve a better score. You should check the official website for details and the deadline of this exam.

I hope it will clear your query!!

Hello Aspirant,

SASTRA University commonly provides concessions and scholarships based on merit in class 12 board exams and JEE Main purposes with regard to board merit you need above 95% in PCM (or on aggregate) to get bigger concessions, usually if you scored 90% and above you may get partial concessions. I suppose the exact cut offs may change yearly on application rates too.

Hello,

After 12th, if you are interested in computer science, the best courses are:

  • B.Tech in Computer Science Engineering (CSE) – most popular choice.

  • BCA (Bachelor of Computer Applications) – good for software and IT jobs.

  • B.Sc. Computer Science / IT – good for higher studies and research.

  • B.Tech in Information Technology (IT) – focuses on IT and networking.

All these courses have good career scope. Choose based on your interest in coding, software, hardware, or IT field.

Hope it helps !

Hello Vanshika,

CBSE generally forwards the marksheet for the supplementary exam to the correspondence address as identified in the supplementary exam application form. It is not sent to the address indicated in the main exam form. Addresses that differ will use the supplementary exam address.

To find Class 12 Arts board papers, go to the official website of your education board, then click on the Sample Papers, Previous Years Question Papers(PYQ) or Model Papers section, and select the Arts stream. You will find papers for the various academic year. You can then select the year of which you want to solve and do your practice. There are many other educational websites that post pyqs on their website you can also visit that.