NCERT Solutions for Miscellaneous Exercise Chapter 12 Class 12 - Linear Programming

NCERT Solutions for Miscellaneous Exercise Chapter 12 Class 12 - Linear Programming

Edited By Ramraj Saini | Updated on Dec 04, 2023 01:54 PM IST | #CBSE Class 12th

NCERT Solutions For Class 12 Chapter 12 Miscellaneous Exercise

NCERT Solutions for miscellaneous exercise chapter 12 class 12 Linear Programming are discussed here. These NCERT solutions are created by subject matter expert at Careers360 considering the latest syllabus and pattern of CBSE 2023-24. NCERT solutions for Class 12 Maths chapter 12 miscellaneous exercise gives more knowledge of solving a few types of linear programming problems using graphical methods. Miscellaneous exercise chapter 12 Class 12 are solved in a detailed manner with necessary steps and graphs. Going through NCERT solutions for Class 12 Maths chapter 12 miscellaneous exercise gives a better understanding of the linear programming problems. The questions discussed in the NCERT book Class 12 Maths chapter 12 miscellaneous solutions are a bit higher level as compared to the other two exercises. Class 12 Maths chapter 12 miscellaneous solutions are important for Class 12 CBSE Board Exams.

Miscellaneous exercise class 12 chapter 12 are designed as per the students demand covering comprehensive, step by step solutions of every problem. Practice these questions and answers to command the concepts, boost confidence and in depth understanding of concepts. Students can find all exercise enumerated in NCERT Book together using the link provided below.

VMC VIQ Scholarship Test

Register for Vidyamandir Intellect Quest. Get Scholarship and Cash Rewards.

Pearson | PTE

Register now for PTE & Unlock 20% OFF : Use promo code: 'C360SPL20'. Valid till 30th NOV'24! Trusted by 3,500+ universities globally

Linear Programming Class 12 Chapter 12-Miscellaneous Exercise

Question:1 Reference of Example 9 (Diet problem): A dietician has to develop a special diet using two foods P and Q. Each packet (containing 30 g) of food P contains 12 units of calcium, 4 units of iron, 6 units of cholesterol and 6 units of vitamin A. Each packet of the same quantity of food Q contains 3 units of calcium, 20 units of iron, 4 units of cholesterol and 3 units of vitamin A. The diet requires atleast 240 units of calcium, atleast 460 units of iron and at most 300 units of cholesterol.

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook

How many packets of each food should be used to maximise the amount of vitamin A in the diet? What is the maximum amount of vitamin A in the diet?

Answer:

Let diet contain x packets of food P and y packets of food Q. Thus, x\geq 0,y\geq 0 .

The mathematical formulation of the given problem is as follows:

Total cost is Z . Z=6x+3y

Subject to constraint,

4x+y\geq 80

x+5y\geq 115

x\geq 0,y\geq 0

The feasible region determined by constraints is as follows:

1627377546036

The corner points of feasible region are A(15,20),B(40,15),C(2,72)

The value of Z at corner points is as shown :

corner points Z=6x+3y
A(15,20) 150 MINIMUM
B(40,15) 285 maximum
C(2,72) 228

Hence, Z has a maximum value of 285 at the point B(40,15) .

to maximise the amount of vitamin A in the diet, 40 packets of food P and 15 packets of food Q should be used. The maximum amount of vitamin A is 285 units.

Question:2 A farmer mixes two brands P and Q of cattle feed. Brand P, costing Rs 250 per bag, contains 3 units of nutritional element A, 2.5 units of element B and 2 units of element C. Brand Q costing Rs 200 per bag contains 1.5 units of nutritional element A, 11.25 units of element B, and 3 units of element C. The minimum requirements of nutrients A, B and C are 18 units, 45 units and 24 units respectively. Determine the number of bags of each brand which should be mixed in order to produce a mixture having a minimum cost per bag? What is the minimum cost of the mixture per bag?

Answer:

Let farmer mix x bags of brand P and y bags of brand Q. Thus, x\geq 0,y\geq 0 .

The given information can be represented in the table as :


Vitamin A Vitamin B Cost
Food P 3 5 60
Food Q 4 2 80
requirement 8 11

The given problem can be formulated as follows:

Therefore, we have

3x+1.5y\geq 18

2.5x+11.25y\geq 45

2x+3y\geq 24

Z=250x+200y

Subject to constraint,

3x+1.5y\geq 18

2.5x+11.25y\geq 45

2x+3y\geq 24

x\geq 0,y\geq 0

The feasible region determined by constraints is as follows:

1627377686090

The corner points of the feasible region are A(18,0),B(9,2),C(3,6),D(0,12)

The value of Z at corner points is as shown :

corner points Z=250x+200y
A(18,0) 4500
B(9,2) 2650
C(3,6) 1950 minimum
D(0,12) 2400

Feasible region is unbounded, therefore 1950 may or may not be a minimum value of Z. For this, we draw 250x+200y< 1950 and check whether resulting half plane has a point in common with the feasible region or not.

We can see a feasible region has no common point with 250x+200y< 1950 .

Hence, Z has a minimum value 1950 at point C(3,6) .

Question:3 A dietician wishes to mix together two kinds of food X and Y in such a way that the mixture contains at least 10 units of vitamin A, 12 units of vitamin B and 8 units of vitamin C. The vitamin contents of one kg food is given below:

Food Vitamin A Vitamin B Vitamin C
X 1 2 3
Y 2 2 1

One kg of food X costs Rs 16 and one kg of food Y costs Rs 20. Find the least cost of the mixture which will produce the required diet?

Answer:

Let mixture contain x kg of food X and y kg of food Y.

Mathematical formulation of given problem is as follows:

Minimize : z=16x+20y

Subject to constraint ,

x+2y\geq 10

x+y\geq 6

3x+y\geq 8

x,y\geq 0

The feasible region determined by constraints is as follows:

1627377734165

The corner points of feasible region are A(10,0),B(2,4),C(1,5),D(0,8)

The value of Z at corner points is as shown :

corner points z=16x+20y
A(10,0) 160
B(2,4) 112 minimum
C(1,5) 116
D(0,8) 160

The feasible region is unbounded , therefore 112 may or may not be minimum value of Z .

For this we draw 16x+20y< 112 and check whether resulting half plane has point in common with feasible region or not.

We can see feasible region has no common point with 16x+20y< 112 .

Hence , Z has minimum value 112 at point B(2,4)

Question:4 A manufacturer makes two types of toys A and B. Three machines are needed for this purpose and the time (in minutes) required for each toy on the machines is given below:

Types of toys Machines
I II III
A 12 18 6
B 6 0 9

Each machine is available for a maximum of 6 hours per day. If the profit on each toy of type A is Rs 7.50 and that on each toy of type B is Rs 5, show that 15 toys of type A and 30 of type B should be manufactured in a day to get maximum profit.

Answer:

Let x and y toys of type A and type B.

Mathematical formulation of given problem is as follows:

Minimize : z=7.5x+5y

Subject to constraint ,

2x+y\leq 60

x\leq 20

2x+3y \leq 120

x,y\geq 0

The feasible region determined by constraints is as follows:

1627377785282

The corner points of feasible region are A(20,0),B(20,20),C(15,30),D(0,40)

The value of Z at corner points is as shown :

corner points z=7.5x+5y
A(20,0) 150
B(20,20) 250
C (15,30) 262.5 maximum
D(0,40) 200

Therefore 262.5 may or may not be maximum value of Z .

Hence , Z has maximum value 262.5 at point C (15,30)

Question:5 An aeroplane can carry a maximum of 200 passengers. A profit of Rs 1000 is made on each executive class ticket and a profit of Rs 600 is made on each economy class ticket. The airline reserves at least 20 seats for executive class. However, at least 4 times as many passengers prefer to travel by economy class than by the executive class. Determine how many tickets of each type must be sold in order to maximise the profit for the airline. What is the maximum profit?

Answer:

Let airline sell x tickets of executive class and y tickets of economy class.

Mathematical formulation of given problem is as follows:

Minimize : z=1000x+600y

Subject to constraint ,

x+y\leq 200

x\geq 20

y-4x\geq 0

x,y\geq 0

The feasible region determined by constraints is as follows:

1627377831247

The corner points of feasible region are A(20,80),B(40,160),C(20,180)

The value of Z at corner points is as shown :

corner points z=1000x+600y
A(20,80) 68000
B(40,160) 136000 maximum
C (20,180) 128000

therefore 136000 is maximum value of Z .

Hence , Z has maximum value 136000 at point B(40,160)

Question:6 Two godowns A and B have grain capacity of 100 quintals and 50 quintals respectively. They supply to 3 ration shops, D, E and F whose requirements are 60, 50 and 40 quintals respectively. The cost of transportation per quintal from the godowns to the shops are given in the following table:

Transportation cost per quintal (in Rs)
From/To A B
D 6 4
E 3 2
F 2.50 3

How should the supplies be transported in order that the transportation cost is minimum? What is the minimum cost?

Answer:

Let godown A supply x and y quintals of grain to shops D and E respectively. Then , (100-x-y) will be supplied to shop F. Requirements at shop D is 60 since godown A supply x .Therefore remaining (60-x) quintals of grain will be transported from godown B.

Similarly, (50-y) quintals and 40-(100-x-y)=(x+y-60) will be transported from godown B to shop E and F respectively. The problem can be represented diagrammatically as follows:

1627377923876

x,y\geq 0 and 100-x-y\geq 0

x,y\geq 0 and x+y\leq 100

60-x\geq 0,50-y\geq 0\, \, \, and\, \, x+y-60\geq 0

\Rightarrow \, \, \, \, x\leq 60,y\leq 50,x+y\geq 60

Total transportation cost z is given by ,

z=6x+3y+2.5(100-x-y)+4(60-x)+2(50-y)+3(x+y-60)

z=2.5x+1.5y+410

Mathematical formulation of given problem is as follows:

Minimize : z=2.5x+1.5y+410

Subject to constraint ,

x+y\leq 100

x\leq 60

y\leq 50

x+y\geq 60

x,y\geq 0

The feasible region determined by constraints is as follows:

1627377885300

The corner points of feasible region are A(60,0),B(60,40),C(50,50),D(10,50)

The value of Z at corner points is as shown :

corner points z=2.5x+1.5y+410
A(60,0) 560
B(60,40) 620
C(50,50) 610
D(10,50) 510 minimum

therefore 510 may or may not be minimum value of Z .

Hence , Z has miniimum value 510 at point D(10,50)

Question:7 An oil company has two depots A and B with capacities of 7000 L and 4000 L respectively. The company is to supply oil to three petrol pumps, D, E and F whose requirements are 4500L, 3000L and 3500L respectively. The distances (in km) between the depots and the petrol pumps is given in the following table:

Distance in (km.)
From/To A B
D 7 3
E 6 4
F 3 2

Assuming that the transportation cost of 10 litres of oil is Re 1 per km, how should the delivery be scheduled in order that the transportation cost is minimum? What is the minimum cost?

Answer:

Let x and y litres of oil be supplied from A to petrol pump,D and E. Then , (7000-x-y) will be supplied from A to petrol pump F.

Requirements at petrol pump D is 4500 L. since x L A are transported from depot A,remaining 4500-x L will be transported from petrol pump B

Similarly, (3000-y)L and 3500-(7000-x-y)=(x+y-3500) L will be transported from depot B to petrol E and F respectively.

The problem can be represented diagrammatically as follows:

1627377981082

x,y\geq 0 and 7000-x-y\geq 0

x,y\geq 0 and x+y\leq 7000


4500-x\geq 0,3000-y\geq 0\, \, \, and\, \, x+y-3500\geq 0

\Rightarrow \, \, \, \, x\leq 4500,y\leq 3000,x+y\geq 3500

Cost of transporting 10 L petrol =Re 1

Cost of transporting 1 L petrol =\frac{1}{10}

Total transportation cost z is given by ,

z=\frac{7}{10}x+\frac{6}{10}y+\frac{3}{10}(7000-x-y)+\frac{3}{10}(4500-x)+\frac{4}{10}(3000-y)+\frac{2}{10}(x+y-3500)

z=0.3x+0.1y+3950

Mathematical formulation of given problem is as follows:

Minimize : z=0.3x+0.1y+3950

Subject to constraint ,

x+y\leq 7000

x\leq 4500

y\leq 3000

x+y\geq 3500

x,y\geq 0

The feasible region determined by constraints is as follows:

1627378013511

The corner points of feasible region are A(3500,0),B(4500,0),C(4500,2500),D(4000,3000),E(500,3000)

The value of Z at corner points is as shown :

corner points z=0.3x+0.1y+3950
A(3500,0) 5000
B(4500,0) 5300
C(4500,2500) 5550
E(500,3000) 4400 minimum
D(4000,3000) 5450

Hence , Z has miniimum value 4400 at point E(500,3000)

Question:8 A fruit grower can use two types of fertilizer in his garden, brand P and brand Q. The amounts (in kg) of nitrogen, phosphoric acid, potash, and chlorine in a bag of each brand are given in the table. Tests indicate that the garden needs at least 240 kg of phosphoric acid, at least 270 kg of potash and at most 310 kg of chlorine.

If the grower wants to minimise the amount of nitrogen added to the garden, how many bags of each brand should be used? What is the minimum amount of nitrogen added in the garden?

Kg per bag

Brand P Brand Q
Nitrogen 3 3.5
Phosphoric Acid 1 2
Potash 3 1.5
Chlorine 1.5 2


Answer:

Let fruit grower use x bags of brand P and y bags of brand Q.

Mathematical formulation of given problem is as follows:

Minimize : z=3x+3.5y

Subject to constraint ,

x+2y\geq 240

x+0.5y\geq 90

1.5x+2y\geq 310

x,y\geq 0

The feasible region determined by constraints is as follows:

1627378058480

The corner points of feasible region are A(140,50),C(40,100),B(20,140)

The value of Z at corner points is as shown :

corner points z=3x+3.5y
A(140,50) 595
B(20,140) 550
C(40,100) 470 minimum

Therefore 470 is minimum value of Z .

Hence , Z has minimum value 470 at point C(40,100)

Question:9 Reference of Que 8 : A fruit grower can use two types of fertilizer in his garden, brand P and brand Q. The amounts (in kg) of nitrogen, phosphoric acid, potash, and chlorine in a bag of each brand are given in the table. Tests indicate that the garden needs at least 240 kg of phosphoric acid, at least 270 kg of potash and at most 310 kg of chlorine.

If the grower wants to maximise the amount of nitrogen added to the garden, how many bags of each brand should be added? What is the maximum amount of nitrogen added?

Kg per bag

Brand A Brand P
Nitrogen 3 3.5
Phosphoric Acid 1 2
Potash 3 1.5
Chlorine 1.5 2


Answer:

Let fruit grower use x bags of brand P and y bags of brand Q.

Mathematical formulation of given problem is as follows:

Maximize : z=3x+3.5y

Subject to constraint ,

x+2y\geq 240

x+0.5y\geq 90

1.5x+2y\geq 310

x,y\geq 0

The feasible region determined by constraints is as follows:

1627378216485

The corner points of feasible region are B(20,140),A(140,50),C(40,100)

The value of Z at corner points is as shown :

corner points z=3x+3.5y
A(140,50) 595 maximum
B(20,140) 550
C(40,100) 470 minimum

therefore 595 is maximum value of Z .

Hence , Z has minimum value 595 at point A(140,50)

Question:10 A toy company manufactures two types of dolls, A and B. Market research and available resources have indicated that the combined production level should not exceed 1200 dolls per week and the demand for dolls of type B is at most half of that for dolls of type A. Further, the production level of dolls of type A can exceed three times the production of dolls of other type by at most 600 units. If the company makes profit of Rs 12 and Rs 16 per doll respectively on dolls A and B, how many of each should be produced weekly in order to maximise the profit?

Answer:

Let x and y be number of dolls of type A abd B respectively that are produced per week.

Mathematical formulation of given problem is as follows:

Maximize : z=12x+16y

Subject to constraint ,

x+y\leq 1200

y\leq \frac{x}{2}\Rightarrow x\geq 2y

x-3y\leq 600

x,y\geq 0

The feasible region determined by constraints is as follows:

1627378272830

The corner points of feasible region are A(600,0),B(1050,150),C(800,400)

The value of Z at corner points is as shown :

corner points z=12x+16y
A(600,0) 7200
B(1050,150) 15000
C(800,400) 16000 Maximum

Therefore 16000 is maximum value of Z .

Hence , Z has minimum value 16000 at point C(800,400)

More About NCERT Solutions for Class 12 Maths Chapter 12 Miscellaneous Exercise:

There are 10 questions in the miscellaneous exercise chapter 12 Class 12. Solving all these questions gives a good knowledge about the NCERT Class 12th chapter linear programming. Students have to solve the NCERT syllabus exercises and solved examples in order to get a good idea of topics discussed in the chapter and to get a good score in the final exam.

Also Read| Linear Programming Class 12th Notes

Benefits of NCERT Solutions for Class 12 Maths Chapter 12 Miscellaneous Exercise.

  • Important questions to understand the concepts explained in the chapter are given in Class 12 Maths chapter 12 miscellaneous exercise solutions.
  • All questions of miscellaneous exercise chapter 12 Class 12 are important and will be helpful in the board exam.

Key Features Of NCERT Solutions For Class 12 Chapter 12 Miscellaneous Exercise

  • Comprehensive Coverage: The solutions encompass all the topics covered in miscellaneous exercise class 12 chapter 12, ensuring a thorough understanding of the concepts.
  • Step-by-Step Solutions: In this class 12 chapter 12 maths miscellaneous solutions, each problem is solved systematically, providing a stepwise approach to aid in better comprehension for students.
  • Accuracy and Clarity: Solutions for class 12 maths miscellaneous exercise chapter 12 are presented accurately and concisely, using simple language to help students grasp the concepts easily.
  • Conceptual Clarity: In this class 12 maths ch 12 miscellaneous exercise solutions, emphasis is placed on conceptual clarity, providing explanations that assist students in understanding the underlying principles behind each problem.
  • Inclusive Approach: Solutions for class 12 chapter 12 miscellaneous exercise cater to different learning styles and abilities, ensuring that students of various levels can grasp the concepts effectively.
  • Relevance to Curriculum: The solutions for miscellaneous exercise class 12 chapter 12 align closely with the NCERT curriculum, ensuring that students are prepared in line with the prescribed syllabus.

Also see-

NCERT Solutions Subject Wise

Subject Wise NCERT Exemplar Solutions

Frequently Asked Questions (FAQs)

1. How many exercises in NCERT Class 12 chapter 12 linear programming?

There are three exercises including miscellaneous exercises.

2. What is the number of questions discussed in the NCERT solutions for Class 12 Maths chapter 12 miscellaneous exercise?

Ten questions are covered in Class 12 Maths chapter 12 miscellaneous solutions

3. What is the expected number of questions from the chapter linear programming for the CBSE Class 12 Maths board exam?

One question of 5 marks can be expected

4. The number of miscellaneous solved questions given in NCERT Class 12 Maths chapter linear programming is ………….

Three

5. What are the types of linear programming problems discussed in the Class 12 chapter linear programming.?

Diet, manufacturing and transportation problems are discussed before the ncert solutions for Class 12 Maths chapter 12 miscellaneous exercise.

6. What are constraints?

Constraints are rules or conditions that are used in optimization problems

Articles

Upcoming School Exams

Application Date:07 October,2024 - 22 November,2024

Application Date:07 October,2024 - 22 November,2024

Application Correction Date:08 October,2024 - 27 November,2024

View All School Exams

Explore Top Universities Across Globe

Questions related to CBSE Class 12th

Have a question related to CBSE Class 12th ?

Hello there! Thanks for reaching out to us at Careers360.

Ah, you're looking for CBSE quarterly question papers for mathematics, right? Those can be super helpful for exam prep.

Unfortunately, CBSE doesn't officially release quarterly papers - they mainly put out sample papers and previous years' board exam papers. But don't worry, there are still some good options to help you practice!

Have you checked out the CBSE sample papers on their official website? Those are usually pretty close to the actual exam format. You could also look into previous years' board exam papers - they're great for getting a feel for the types of questions that might come up.

If you're after more practice material, some textbook publishers release their own mock papers which can be useful too.

Let me know if you need any other tips for your math prep. Good luck with your studies!

It's understandable to feel disheartened after facing a compartment exam, especially when you've invested significant effort. However, it's important to remember that setbacks are a part of life, and they can be opportunities for growth.

Possible steps:

  1. Re-evaluate Your Study Strategies:

    • Identify Weak Areas: Pinpoint the specific topics or concepts that caused difficulties.
    • Seek Clarification: Reach out to teachers, tutors, or online resources for additional explanations.
    • Practice Regularly: Consistent practice is key to mastering chemistry.
  2. Consider Professional Help:

    • Tutoring: A tutor can provide personalized guidance and support.
    • Counseling: If you're feeling overwhelmed or unsure about your path, counseling can help.
  3. Explore Alternative Options:

    • Retake the Exam: If you're confident in your ability to improve, consider retaking the chemistry compartment exam.
    • Change Course: If you're not interested in pursuing chemistry further, explore other academic options that align with your interests.
  4. Focus on NEET 2025 Preparation:

    • Stay Dedicated: Continue your NEET preparation with renewed determination.
    • Utilize Resources: Make use of study materials, online courses, and mock tests.
  5. Seek Support:

    • Talk to Friends and Family: Sharing your feelings can provide comfort and encouragement.
    • Join Study Groups: Collaborating with peers can create a supportive learning environment.

Remember: This is a temporary setback. With the right approach and perseverance, you can overcome this challenge and achieve your goals.

I hope this information helps you.







Hi,

Qualifications:
Age: As of the last registration date, you must be between the ages of 16 and 40.
Qualification: You must have graduated from an accredited board or at least passed the tenth grade. Higher qualifications are also accepted, such as a diploma, postgraduate degree, graduation, or 11th or 12th grade.
How to Apply:
Get the Medhavi app by visiting the Google Play Store.
Register: In the app, create an account.
Examine Notification: Examine the comprehensive notification on the scholarship examination.
Sign up to Take the Test: Finish the app's registration process.
Examine: The Medhavi app allows you to take the exam from the comfort of your home.
Get Results: In just two days, the results are made public.
Verification of Documents: Provide the required paperwork and bank account information for validation.
Get Scholarship: Following a successful verification process, the scholarship will be given. You need to have at least passed the 10th grade/matriculation scholarship amount will be transferred directly to your bank account.

Scholarship Details:

Type A: For candidates scoring 60% or above in the exam.

Type B: For candidates scoring between 50% and 60%.

Type C: For candidates scoring between 40% and 50%.

Cash Scholarship:

Scholarships can range from Rs. 2,000 to Rs. 18,000 per month, depending on the marks obtained and the type of scholarship exam (SAKSHAM, SWABHIMAN, SAMADHAN, etc.).

Since you already have a 12th grade qualification with 84%, you meet the qualification criteria and are eligible to apply for the Medhavi Scholarship exam. Make sure to prepare well for the exam to maximize your chances of receiving a higher scholarship.

Hope you find this useful!

hello mahima,

If you have uploaded screenshot of your 12th board result taken from CBSE official website,there won,t be a problem with that.If the screenshot that you have uploaded is clear and legible. It should display your name, roll number, marks obtained, and any other relevant details in a readable forma.ALSO, the screenshot clearly show it is from the official CBSE results portal.

hope this helps.

Hello Akash,

If you are looking for important questions of class 12th then I would like to suggest you to go with previous year questions of that particular board. You can go with last 5-10 years of PYQs so and after going through all the questions you will have a clear idea about the type and level of questions that are being asked and it will help you to boost your class 12th board preparation.

You can get the Previous Year Questions (PYQs) on the official website of the respective board.

I hope this answer helps you. If you have more queries then feel free to share your questions with us we will be happy to assist you.

Thank you and wishing you all the best for your bright future.

View All

A block of mass 0.50 kg is moving with a speed of 2.00 ms-1 on a smooth surface. It strikes another mass of 1.00 kg and then they move together as a single body. The energy loss during the collision is

Option 1)

0.34\; J

Option 2)

0.16\; J

Option 3)

1.00\; J

Option 4)

0.67\; J

A person trying to lose weight by burning fat lifts a mass of 10 kg upto a height of 1 m 1000 times.  Assume that the potential energy lost each time he lowers the mass is dissipated.  How much fat will he use up considering the work done only when the weight is lifted up ?  Fat supplies 3.8×107 J of energy per kg which is converted to mechanical energy with a 20% efficiency rate.  Take g = 9.8 ms−2 :

Option 1)

2.45×10−3 kg

Option 2)

 6.45×10−3 kg

Option 3)

 9.89×10−3 kg

Option 4)

12.89×10−3 kg

 

An athlete in the olympic games covers a distance of 100 m in 10 s. His kinetic energy can be estimated to be in the range

Option 1)

2,000 \; J - 5,000\; J

Option 2)

200 \, \, J - 500 \, \, J

Option 3)

2\times 10^{5}J-3\times 10^{5}J

Option 4)

20,000 \, \, J - 50,000 \, \, J

A particle is projected at 600   to the horizontal with a kinetic energy K. The kinetic energy at the highest point

Option 1)

K/2\,

Option 2)

\; K\;

Option 3)

zero\;

Option 4)

K/4

In the reaction,

2Al_{(s)}+6HCL_{(aq)}\rightarrow 2Al^{3+}\, _{(aq)}+6Cl^{-}\, _{(aq)}+3H_{2(g)}

Option 1)

11.2\, L\, H_{2(g)}  at STP  is produced for every mole HCL_{(aq)}  consumed

Option 2)

6L\, HCl_{(aq)}  is consumed for ever 3L\, H_{2(g)}      produced

Option 3)

33.6 L\, H_{2(g)} is produced regardless of temperature and pressure for every mole Al that reacts

Option 4)

67.2\, L\, H_{2(g)} at STP is produced for every mole Al that reacts .

How many moles of magnesium phosphate, Mg_{3}(PO_{4})_{2} will contain 0.25 mole of oxygen atoms?

Option 1)

0.02

Option 2)

3.125 × 10-2

Option 3)

1.25 × 10-2

Option 4)

2.5 × 10-2

If we consider that 1/6, in place of 1/12, mass of carbon atom is taken to be the relative atomic mass unit, the mass of one mole of a substance will

Option 1)

decrease twice

Option 2)

increase two fold

Option 3)

remain unchanged

Option 4)

be a function of the molecular mass of the substance.

With increase of temperature, which of these changes?

Option 1)

Molality

Option 2)

Weight fraction of solute

Option 3)

Fraction of solute present in water

Option 4)

Mole fraction.

Number of atoms in 558.5 gram Fe (at. wt.of Fe = 55.85 g mol-1) is

Option 1)

twice that in 60 g carbon

Option 2)

6.023 × 1022

Option 3)

half that in 8 g He

Option 4)

558.5 × 6.023 × 1023

A pulley of radius 2 m is rotated about its axis by a force F = (20t - 5t2) newton (where t is measured in seconds) applied tangentially. If the moment of inertia of the pulley about its axis of rotation is 10 kg m2 , the number of rotations made by the pulley before its direction of motion if reversed, is

Option 1)

less than 3

Option 2)

more than 3 but less than 6

Option 3)

more than 6 but less than 9

Option 4)

more than 9

Back to top