Suppose you are buying 5 notebooks, each costing $x$ rupees, and 7 pencils, each costing $y$ rupees. Now, the total cost becomes $5x+7y$, which is an example of a polynomial. It helps us represent real-life scenarios in mathematical form. In the NCERT Exemplar Class 9 Chapter 2, you will find Polynomials, which are algebraic expressions of variables and coefficients - sound complex? Don't worry, we will break it down in a simple and logical manner that will help you build your foundation in algebra.
This Story also Contains
This article on NCERT Exemplar Class 9 Maths Solution Chapter 2, Polynomials, offers clear and step-by-step solutions for the exercise problems. These Polynomials class 9 ncert exemplar solutions are made by the Subject Matter Experts according to the latest CBSE syllabus, ensuring that students can grasp the basic concepts effectively. For the NCERT syllabus, books, notes, and class-wise solutions, refer to the NCERT.
Also, read,
| NCERT Exemplar Class 9 Maths Solutions Chapter 2 Exercise: 2.1 Page: 14-16 Total Questions: 21 |
Question 1
Which one of the following is a polynomial?
$(A) \frac{x^{2}}{2}-\frac{2}{x^{2}}\\ \\(B) \sqrt{2x}-1\\ \\(C)x^{2}+\frac{3x^{\frac{3}{2}}}{\sqrt{x}}\\ \\ (D)\frac{x-1}{x+2}$
Answer:
$x^{2}+\frac{3x^{\frac{3}{2}}}{\sqrt{x}}$
Solution
Polynomial: A polynomial is an expression consisting of variables and coefficients and also non negative powers. It contains different powers of the same variable,
Here $\frac{x^{2}}{2}-\frac{2}{x^{2}}$ is not a polynomial because power of x must be a non-negative integer.
$\sqrt{2x}-1$ is also not a polynomial because degree of variable should always be a whole number.
$x^{2}+\frac{3x^{\frac{3}{2}}}{\sqrt{x}}\Rightarrow x^{2}+3x^{\frac{3}{2}-\frac{1}{2}}\Rightarrow x^{2}+3x^{1}$
It is a polynomial because power of x is in whole numbers.
$\frac{x-1}{x+2}\Rightarrow \left ( x-1 \right )\left ( x+2 \right )^{-1}$
It is also not a polynomial because power of x is negative.
Question 2
$\sqrt{2}$ is a polynomial of degree
(A) 2
(B) 0
(C) 1
(D) $\frac{1}{2}$
Answer:
[B]
Solution. Polynomial: It is an expression of more than two algebraic terms, especially the sum of several terms that contain different powers of the same variable (s)
Degree of polynomial: - Degree of polynomial is the highest degree of polynomial’s monomials with non-zero co-efficient.
Here we can write $\sqrt{2}$ as $\sqrt{2}.x^{0}$ because any variable having power zero is always one
Hence the degree of polynomial is zero.
Question 3
Degree of the polynomial 4x4 + 0x3 + 0x5 + 5x + 7 is :
(A) 4
(B) 5
(C) 3
(D) 7
Answer:
[A]
Solution: Polynomial:- It is an expression of more than two algebraic terms, especially the sum of several terms that contain different powers of the same variable(s)
Degree of a polynomial:- Degree of a polynomial is the highest power of the polynomial’s monomials with a non-zero coefficient.
Here given polynomial is 4x4 + 0x3 + 0x5 + 5x + 7 which can be write as 4x4 + 5x + 7
Here, the highest power of the x-coefficient is 4 therefore the degree is 4.
Question 4
Degree of the zero polynomial is
(A) 0
(B) 1
(C) Any natural number
(D) Not defined
Answer:
(D) Not defined
Solution
Degree of polynomial:- Degree of a polynomial is the highest of the degree of polynomial’s monomials with the non-zero coefficient.
In zero polynomial, all the coefficients are zero. So, we cannot determine its degree therefore we say it is undefined
Question 5
If $p(x)=x^{2}-2\sqrt{2}x+1$ , then $p\left (2\sqrt{2} \right )$ is equal to
(A) 0
(B) 1
(C) $\left (4\sqrt{2} \right )$
(D) $\left (8\sqrt{2} \right )$
Answer:
(B) 1
Solution:
$p(x)=x^{2}-2\sqrt{2}x+1$
$p \left (2\sqrt{2} \right )$ means that the value of x is $2\sqrt{2}$
Put $x=2\sqrt{2}$ in the given equation
$p \left (2\sqrt{2} \right )= \left (2\sqrt{2} \right )^{2}- \left (2\sqrt{2} \right ) \left (2\sqrt{2} \right )+1$
$ p \left (2\sqrt{2} \right )= \left (2\sqrt{2} \right )^{2}- \left (2\sqrt{2} \right )^{2}+1\\ p \left (2\sqrt{2} \right )=1$
Hence the value of $p \left (2\sqrt{2} \right )$ is 1.
Question 6
The value of the polynomial 5x – 4x2 + 3 when x = – 1 is
(A) –6
(B) 6
(C) 2
(D) –2
Answer:
[A]
Solution: Here the given polynomial is p(x) = 5x – 4x2 + 3
Then putting x = – 1 in the above equation we get
p(-1) = 5(–1) – 4(–1)2 + 3
= – 5 – 4(–1)2 + 3
= – 5 – 4 + 3
= – 9 + 3
= – 6
Hence the answer is -6
Question 7
If $p(x)=x+3$ , then $p(x)+p(-x)$ is equal to
(A) 3 (B) 2x (C) 0 (D) 6
Answer:
(D) 6
Solution:
The given equation is p(x)=x+3 ….. (1)
Put x=-x we get
p(-x)=-x+3 …..(2)
Now add equation 1 and 2 we get
p(x)+p(-x)=x+3-x+3
p(x)+p(-x)=6
Hence the value of p(x)+p(-x) is 6.
Question 8
Zero of the zero polynomial is
(A) 0
(B) 1
(C) Any real number
(D) Not define
Answer:
(C) Any real number
Solution
Zero Polynomial: - In zero polynomial all the co-efficient are zero and the degree of a polynomial is the highest of the degrees of its monomials with non- zero co-efficient but in zero polynomial all the co-efficient are zero.
For example:- p(x) = 0.x3 + 0.x2 + 0.x1 + 0
=> p(x) = 0
Hence we can put any real value of x therefore are of the zero polynomial is any real number.
Therefore option (C) is correct
Question 9
Zero of the polynomial $p(x)=2x+5$ is
(A) $-\frac{2}{5}$ (B) $-\frac{5}{2}$ (C) $\frac{2}{5}$ (D) $\frac{5}{2}$
Answer:
(B) $-\frac{5}{2}$
Solution
We know that for finding the zero of a polynomial, we need to find a value of x for which the polynomial will be zero
i.e., p(x)=0
Here it is given that p(x)=2x+5
Put p(x)=0 in above equation we get
0=2x+5
-5=2x
x=$-\frac{5}{2}$
Hence option (B) is correct.
Question 10
One of the zeroes of the polynomial $2x^{2}+7x-4$ is
(A) 2
(B) $\frac{1}{2}$
(C) $-\frac{1}{2}$
(D) -2
Answer:
(B) $\frac{1}{2}$
Solution
We know that for finding the zero of a polynomial, we need to find a value of x for which the polynomial will be zero
i.e., p(x)=0
Here the polynomial is $2x^{2}+7x-4$
Now let us find zeroes of this polynomial
$2x^{2}+7x-4=0\\ 2x^{2}+8x-x-4=0\\ 2x\left ( x+4 \right )-1\left ( x+4 \right )=0$
$\left ( x+4 \right )\left ( 2x-1 \right )=0\\ x=-4,x=\frac{1}{2}$
The zeros of the given polynomial are $-4,\frac{1}{2}$
Among the given options, (B) is correct.
Question 11
If $x^{51}+51$ is divided by x+1 , the remainder is
(A) 0
(B) 1
(C) 49
(D) 50
Answer:
(D) 50
Solution:
In this question, we can use remainder theorem.
According to the remainder theorem when p(x) is divided by (x+a) then the remainder is p(-a) .
$\therefore$ If $x^{51}+51$ is divided by (x+1) then the remainder is p(-1)
$p(-1)=(-1)^{51}+51\\ p(-1)=-1+51\\ p(-1)=50$
Hence the remainder is 50
Hence option (D) is correct.
Question 12
If x+1 is a factor of the polynomial 2x2+kx , then the value of k is
(A) –3 (B) 4 (C) 2 (D) –2
Answer:
(C) 2
Solution:
The given polynomial is $2x^{2}+kx$
Let $p(x)=2x^{2}+kx$
It is given that $\left ( x+1 \right )$ is a factor of given polynomial.
Then according to factor theorem, $p\left ( -1 \right )=0$
$\Rightarrow 2(-1)^{2}+k(-1)=0\\ \Rightarrow 2-k=0\\ \Rightarrow k=2$
So the value of k is 2.
Hence option (C) is correct.
Question 13
x+1 is a factor of the polynomial
$\\(A) x^{3}+x^{2}-x+1\\ (B) x^{3}+x^{2}+x+1\\ (C)x^{4}+x^{3}+x^{2}+1\\ (D)x^{4}+3x^{3}+3x^{2}+x+1$
Answer:
(B) $x^{3}+x^{2}+x+1$
Solution:
We know that if $(x+a)$ is factor of the polynomial f(x), then it always satisfies $f(-a)=0$
Hence (x+1) is factor of that polynomial which satisfies f(-1)=0 .
$\\(A)f(x)=x^{3}+x^{2}-x+1\\ f(-1)=(-1)^{3}+(-1)^{2}-(-1)+1$
$ =-1+1+1+1\\ f(-1)=2$ Not satisfied
$\\(B)f(x)=x^{3}+x^{2}+x+1\\ f(-1)=(-1)^{3}+(-1)^{2}+(-1)+1$
$ =-1+1-1+1\\ f(-1)=0$ Satisfied
$\\(C)f(x)=x^{4}+x^{3}+x^{2}+1\\ f(-1)=(-1)^{4}+(-1)^{3}+(-1)^{2}+1$
$ =1-1+1+1\\ f(-1)=2$ Not satisfied
$\\(D)f(x)=x^{4}+3x^{3}+3x^{2}+x+1\\ f(-1)=(-1)^{4}+3(-1)^{3}+3(-1)^{2}+(-1)+1$
$ =1-3+3-1+1\\ f(-1)=1$ Not satisfied
Hence $(x+1)$ is a factor of $x^{3}+x^{2}+x+1$
Therefore option (B) is correct
Question 14
One of the factors of $\left ( 25x^{2}-1 \right )+\left ( 1+5x \right )^{2}$ is
(A) 5+x (B) 5-x (C) 5x-1 (D) 10x
Answer:
(D) 10x
Solution
Given,
$\left ( 25x^{2}-1 \right )+\left ( 1+5x \right )^{2}$
We know that,
$(5x+1)^{2}=(5x)^{2}+2\times(5x)\times 1+1$ $\left \{using\; (a+b)^{2}=a^{2}+b^{2}+2ab \right \}$
Now, using the above
$\left ( 25x^{2}-1 \right )+\left ( 1+5x \right )^{2}=25x^{2}-1+1^{2}+(5x)^{2}+2\times 1 \times 5x=0$
$ 25x^{2}-1+1+25x^{2}+10x=0\\ 50x^{2}+10x=0\\ 10x(5x+1)=0\\$
The factors of $\left ( 25x^{2}-1 \right )+\left ( 1+5x \right )^{2}$ are 10x and (5x+1)
Hence in the above option, (D) is correct.
Question 15
The value of $249^{2}-248^{2}$ is
(A) $1^{2}$ (B) 477 (C) 487 (D) 497
Answer:
(D) 497
Solution
Here we find the value of $249^{2}-248^{2}$ by using the identity $a^{2}-b^{2}=(a-b)(a+b)$
$\\249^{2}-248^{2}=(249-248)(249+248)\\ 249^{2}-248^{2}=(1)(497)\\ 249^{2}-248^{2}=497\\$
Hence the answer is an option (D) 497.
Question 16
The factorization of $4x^{2}+8x+3$ is
(A) $(x+1)(x+3)$
(B) $(2x+1)(2x+3)$
(C) $(2x+2)(2x+5)$
(D) $(2x-1)(2x-3)$
Answer:
Let us factorize the given polynomial $4x^{2}+8x+3$
To factorize ax2 + bx + c, we have to distribute “bx” into “px” and “qx” such that
p + q = b and p.q = a.c
So, $4x^{2}+8x+3=0$
can be written as
$4x^{2}+6x+2x+3=0$ {6+2 = 8; (6)(2) = (4)(3)}
$\\2x(2x+3)+1(2x+3)=0\\ (2x+3)(2x+1)=0\\$
Hence option B is correct
Question 17
Which of the following is a factor of $\left ( x+y \right )^{3}-\left ( x^{3}+y^{3} \right )$
$\\A. \ x^{2}+y^{2}+2xy\\ B. \ x^{2}+y^{2}-2xy\\ C. \ xy^{2}\\ D. \ 3xy$
Answer:
(D) 3xy
Solution
Given,
$\left ( x+y \right )^{3}-\left ( x^{3}+y^{3} \right )$
We know that,
$\left \{(a+b)^{3}=a^{3}+b^{3}+3a^{2}b+3ab^{3} \right \}$
So, $(x+y)^{3}=x^{3}+y^{3}+3x^{2}y+3xy^{3}$
$\left ( x+y \right )^{3}-\left ( x^{3}+y^{3} \right )=x^{3}+y^{3}+3x^{2}y+3xy^{3}-x^{3}-y^{3}\\ =3x^{2}+3xy^{2}\\ =3xy(x+y)$
The factors of the above polynomial are
3xy and (x+y)
Hence option D is correct
Question 18
The coefficient of x in the expansion of (x+3)3 is
(A) 1 (B) 9 (C) 18 (D) 27
Answer:
(D) 27
Solution
The given expansion is (x+3)3
Using $(a+b)^{3}=a^{3}+b^{3}+3a^{2}b+3ab^{3}$ in above expansion we get
$\\(x+3)^{3}=x^{3}+3^{3}+3x^{2}.3+3x.3^{3}\\ =x^{3}+27+9x^{2}+27x$
Here the coefficient of x is 27
Therefore option (D) is correct
Question 19
If $\frac{x}{y}+\frac{y}{x}=-1$ $\left ( x,y\neq 0 \right )$ the vlaue of $x^{3}-y^{3}$ is
(A) 1 (B) -1 (C)0 (D) $\frac{1}{2}$
Answer:
(C) 0
Solution
Given $\frac{x}{y}+\frac{y}{x}=-1$ $\left ( x,y\neq 0 \right )$
Simplifying the above equation we have
$\\\frac{x^{2}+y^{2}}{xy}=-1\\ x^{2}+y^{2}=-xy$
$ x^{2}+y^{2}+xy=0 \cdots \cdots \cdots (1)$
$ x^{3}-y^{3}=(x-y)(x^{2}+y^{2}+xy)\cdots \cdots \cdots (2)\\ \left \{ \because a^{3}-b^{3}=(a-b)(a^{2}+b^{2}+ab) \right \}$
Put the value of equation 1 in 2 we get
$\\x^{3}-y^{3}=(x-y)(0)\\ x^{3}-y^{3}=0$
Hence option C is correct.
Question 20
If $49x^{2}-b=\left ( 7x + \frac{1}{2} \right )\left ( 7x - \frac{1}{2} \right )$ then the valueof b is,
$(A)0$ $(B)\frac{1}{\sqrt{2}}$ $(C)\frac{1}{4}$ $(D)\frac{1}{2}$
Answer:
Given: $49x^{2}-b=\left ( 7x + \frac{1}{2} \right )\left ( 7x - \frac{1}{2} \right )$
$\left ( 7x + \frac{1}{2} \right )\left ( 7x - \frac{1}{2} \right )=\left ( 7x \right )-\left ( \frac{1}{2} \right )^{2}$ $\left \{ using (a+b)(a-b)=a^{2}-b^{2} \right \}$
Simplifying the given equation we have
$\\49x^{2}-b=(7x)^{2}-\left (\frac{1}{2} \right )^{2}\\ 49x^{2}-b=49x^{2}-\frac{1}{4}\\ -b=-\frac{1}{4}\\ b=\frac{1}{4}$
Therefore option (C) is correct.
Question 21
If $a+b+c=0$ , then $a^{3}+b^{3}+c^{3}$ is equal to
(A) 0 (B) abc (C) 3abc (D) 2abc
Answer:
(C) 3abc
Solution
We know that
$a^{3}+b^{3}+c^{3}-3abc=(a+b+c)(a^{2}+b^{2}+c^{2}-ab-bc-ca)$
Given, $a+b+c=0$ …..(1)
$a^{3}+b^{3}+c^{3}=(a+b+c)(a^{2}+b^{2}+c^{2}-ab-bc-ca)+3abc$ …..(2)
Using equation 1 in equation 2 we have
$\\a^{3}+b^{3}+c^{3}=(0)(a^{2}+b^{2}+c^{2}-ab-bc-ca)+3abc\\ a^{3}+b^{3}+c^{3}=3abc$
Therefore option (C) is correct.
| NCERT Exemplar Class 9 Maths Solutions Chapter 2 Exercise: 2.2 Page: 16-17 Total Questions: 2 |
Question 1
Which of the following expressions are polynomials? Justify your answer
(i) 8
(ii) $\sqrt{3}x^{2}-2x$
(iii) $1-\sqrt{5x}$
(iv) $\frac{1}{5x^{-2}}+5x+7$
(v) $\frac{(x-2)(x-4)}{x}$
(vi) $\frac{x}{x+1}$
(vii) $\frac{1}{7}a^{3}-\frac{2}{\sqrt{3}}a^{2}+4a-7$
(viii) $\frac{1}{2x}$
Answer:
(i, ii, iv, vii)Question 2
Write whether the following statements are True or False. Justify your answer.
i. A binomial can have at most two terms
ii. Every polynomial is a binomial.
iii. A binomial may have degree 5.
iv. Zero of a polynomial is always 0
v.. A polynomial cannot have more than one zero.
vi. The degree of the sum of two polynomials each of degree 5 is always 5
Answer:
i. False| NCERT Exemplar Class 9 Maths Solutions Chapter 2 Exercise: 2.3 Page: 18-22 Total Questions: 40 |
Question 1
Classify the following polynomials as polynomials in one variable, two variables etc.
(i) $x^{2}+x+1$
(ii) $y^{2}-5y$
(iii) $xy+yz+zx$
(iv) $x^{2}-2xy+y^{2}+1$
Answer:
(i) One Variable
(ii) One Variable
(iii) Three Variables
(iv) Two Variables
Solution
In mathematics, a variable is a symbol whose role is to act as a substitute for a changing quantity or expression. It is often used to represent an arbitrary element.
For example: - x, y, z etc.
(i) Here, $x^{2}+x+1$ is a one variable polynomial, because it contains only one variable,
i.e., x
(ii) $y^{2}-5y$
Here, $y^{2}-5y$ is a one variable polynomial, because it contains only one variable,
i.e., y
(iii) $xy+yz+zx$
Here, $xy+yz+zx$ is three variable polynomial, because it contains three variables
i.e., x, y and z
(iv) $x^{2}-2xy+y^{2}+1$
Here, $x^{2}-2xy+y^{2}+1$ is two variable polynomials, because it contains two variables,
i.e., x and y
Question 2
Determine the degree of each of the following polynomials:
(i) $2x-1$
(ii) $-10$
(iii) $x^{3}-9x+3x^{5}$
(iv) $y^{3}(1-y^{4})$
Answer:
(i) One
(ii) Zero
(iii) Five
(iv) Seven
Solution
Degree of polynomial: Degree of polynomial is the highest power of the polynomial’s monomial with non-zero coefficient
(i) $2x-1$ Here highest power of x is one therefore degree is one.
(ii) $-10$ Here –10 can be written as $-10.x^{0}$ hence the degree of polynomial is zero or we can say that it is a constant polynomial.
(iii) $x^{3}-9x+3x^{5}$ Here highest power of x is Five therefore degree is Five.
(iv) $y^{3}(1-y^{4})$ Here $y^{3}(1-y^{4})=y^{3}-y^{7}$ Highest power of y is seven therefore degree is seven.
Question 3
For the polynomial $\frac{x^{3}+2x+1}{5}-\frac{7}{2}x^{2}-x^{6}$, write
(i) The degree of the polynomial
(ii) The coefficient of $x^{3}$
(iii) The coefficient of $x^{6}$
(iv) The constant term
Answer:
(i) 6
(ii) $\frac{1}{5}$
(iii) -1
(iv) $\frac{1}{5}$
Solution
$\frac{x^{3}+2x+1}{5}-\frac{7}{2}x^{2}-x^{6}\\ =\frac{x^{3}}{5}+\frac{2x}{5}+\frac{1}{5}-\frac{7x^{2}}{2}-x^{6}\\$
$ =-x^{6}+\frac{x^{3}}{5}-\frac{7x^{2}}{2}+\frac{2x}{5}+\frac{1}{5}\\ $
$=(-1)x^{6}+\left (\frac{1}{5} \right )x^{3}-\left (\frac{7}{2} \right )x^{2} +\left (\frac{2}{5} \right )x+\frac{1}{5}\\$
(i) Degree of polynomial: Degree of polynomial is the highest power of the polynomial’s monomial with non-zero coefficient
Here the highest degree of x is 6 therefore the degree of the polynomial is six.
(ii) The coefficient of $x^{3}$
Here $\frac{1}{5}$ is multiplied by $x^{3}$ therefore coefficient of $x^{3}$ is $\frac{1}{5}$
(iii) The coefficient of $x^{6}$
Here –1 is multiplied by $x^{6}$ therefore coefficient of $x^{6}$ is –1.
(iv) The constant term
The constant term is the one without the variable x.
So, $\frac{1}{5}$ is the constant term
Question 4
Write the coefficient of $x^{2}$ in each of the following
(i) $\frac{\pi}{6}x+x^{2}-1$
(ii) $3x-5+0.x^{2}$
(iii) $(x-1)(3x-4)$
(iv) $(2x-5)(2x^{2}-3x+1)$
Answer:
(i) 1
(ii) 0
(iii) 3
(iv) -16
Solution
The value which is multiplied by $x^{2}$ is its coefficient.
(i) $\frac{\pi}{6}x+x^{2}-1=\left (\frac{\pi}{6} \right )x+(1)x^{2}-1$
Here $x^{2}$ is multiplied with 1.
Hence the coefficient of $x^{2}$is one.
(ii) $3x-5+0.x^{2}$
Here $x^{2}$ is multiplied with 0.
Hence the coefficient of $x^{2}$is 0.
(iii) $(x-1)(3x-4)$
$3x^{2}-4x-3x+4\\ 3x^{2}-7x+4$
Here $x^{2}$ is multiplied with 3.
Hence the coefficient of $x^{2}$ is 3.
(iv) $(2x-5)(2x^{2}-3x+1)$
$4x^{3}-6x^{2}+2x-10x^{2}+15x-5\\ 4x^{3}-16x^{2}+17x-5$
Here $x^{2}$ is multiplied with -16.
Hence the coefficient of $x^{2}$ is -16.
Question 5
Classify the following as a constant, linear, quadratic and cubic polynomials:
(i) $2-x^{2}+x^{3}$
(ii) $x^{3}$
(iii) $5t-\sqrt{7}$
(iv) $4-5y^{2}$
(v)$3.x^{0}$
(vi)$2+x$
(vii) $y^{3}-y$
(viii) $1+x+x^{2}$
(ix) $t^{2}$
(x) $\sqrt{2}x-1$
Answer:
(i) Cubic Polynomial
(ii) Cubic Polynomial
(iii) Linear Polynomial
(iv) Quadratic Polynomial
(v) Constant Polynomial
(vi) Linear Polynomial
(vii) Cubic Polynomial
(viii) Quadratic Polynomial
(ix) Quadratic Polynomial
(x) Linear Polynomial
Solution
Degree of a polynomial: Degree of a polynomial is the highest power of the polynomial’s monomials with non-zero coefficient
Depending on the degree we can classify functions as:
(i) $2-x^{2}+x^{3}$
Here highest power of x is three therefore degree is three.
Cubic polynomial.
(ii) $x^{3}$
Here highest power of x is three therefore degree is three.
Cubic polynomial.
(iii) $5t-\sqrt{7}$
Here highest power of t is one therefore degree is one.
Linear polynomial.
(iv) $4-5y^{2}$
Here highest power of y is two therefore degree is two.
Quadratic polynomial.
(v) $3.x^{0}$
Here highest power of x is zero therefore degree is zero.
Constant polynomial.
(vi) $2+x$
Here highest power of x is one therefore degree is one.
Linear polynomial.
(vii) $y^{3}-y$
Here highest power of y is three therefore degree is three.
Cubic polynomial.
(viii) $1+x+x^{2}$
Here highest power of x is two therefore degree is two.
Quadratic polynomial.
(ix) $t^{2}$
Here highest power of t is two therefore degree is two.
Quadratic polynomial.
(x) $\sqrt{2}x-1$
Here highest power of x is one therefore degree is one.
Linear polynomial.
Question 6
Give an example of a polynomial, which is:
(i) monomial of degree 1
(ii) binomial of degree 20
(iii) Trinomial of degree 2
Answer:
(i) x
(ii) $3x^{20}+4$
(iii) $x^{2}+2x+5$
Solution
Monomial: It is an algebraic expression consisting of only one term.
Example: 2x
Binomial means consisting of exactly two terms. These terms should not be like terms.
For example: $x^{2}+1$ is a binomial
x + 2x is not a binomial as these are like terms.
Trinomial means consisting of exactly three terms. These terms should not be like terms.
For example: $x^{2}+2x+1$ is a trinomial
x + 2x is not a binomial as these are like terms.
Degree: Degree of an expression is the highest power of the monomial present in the expression with non-zero coefficient
(i) monomial of degree 1:
2x, x, y, 7y etc.
(ii) binomial of degree 20:
$3x^{20}+4$
(iii) Trinomial of degree 2:
$x^{2}+2x+5$
Question 7
Find the value of the polynomial $3x^{3} - 4x^{2} + 7x - 5$, when x = 3 and also when x = – 3.
Answer:
[61, –143]
Solution.
Here the given polynomial is p(x) = 3x3 – 4x2 + 7x – 5
Put x = 3 in given polynomial we get
p(3) = 3(3)3 – 4(3)2 + 7(3) – 5
= 81 – 36 + 21 – 5
= 45 + 16
= 61
Put x = – 3 in given polynomial we get
p(-3) = 3(–3)3 – 4(–3)2 + 7(–3) – 5
= –81 – 36 – 21 – 5
= – 117 – 26
= – 143
Question 8
If $p(x)=x^{2}-4x+3$ evaluate : $p(2)-p(-1)+p\left ( \frac{1}{2} \right )$
Answer:
$-\frac{31}{4}$
Solution
Given polynomial is $p(x)=x^{2}-4x+3$
Put $x=2$ we get
$\\p(2)=(2)^{2}-4(2)+3\\ =4-8+3\\ =-1$
Put x=-1 we get
$\\p(-1)=(-1)^{2}-4(-1)+3\\ =1+4+3\\ =8$
Put $x=\frac{1}{2}$ we get
$\\p(\frac{1}{2})=(\frac{1}{2})^{2}-4(\frac{1}{2})+3\\ =\frac{1}{4}-2+3\\ =\frac{1}{4}+1\\=\frac{1+4}{4}\\=\frac{5}{4}$
Now $p(2)-p(-1)+p\left (\frac{1}{2} \right )$ is
$\\=(-1)-8+\frac{5}{4}\\ =-9+\frac{5}{4}\\ =\frac{-36+5}{4}\\=-\frac{31}{4}$
Hence the answer is $-\frac{31}{4}$.
Question 9
Find P(0), P(1), P(–2) for the following polynomials:
i. $P(x)=10x-4x^{2}-3$
ii. $P(y)=\left ( y+2 \right )\left ( y-2 \right )$
Answer:
(i) P(0) = –3; P(1) = 3; P(–2) = –39
Solution: Given polynomial is P(x) = 10x – 4x2 – 3
Put x = 0,
P(0) = 10(0) – 4(0) – 3
= 0 – 0 – 3
= – 3
Put x = 1,
P(1) = 10(1) – 4(1)2 – 3
= 10 – 4 – 3
= 10 – 7
= 3
Put x = –2,
P(–2) = 10(–2) –4(–2)2 – 3
= – 20 – 16 – 3
= – 39
Hence, P(0) = –3; P(1) = 3; P(–2) = –39
(ii)
P(0) = – 4; P(1) = – 3; P(–2) = 0
Solution.
Given polynomial is P(y) = (y + 2) (y – 2)
Put y = 0,
P(0)= (0 + 2) (0 – 2)
= (2) (–2)
= – 4
Put y = 1,
P(1) = (1 + 2) (1 – 2)
= (3) (–1)
= – 3
Put y = – 2,
P(–2) = (–2 + 2) (–2 – 2)
= (0) (–4)
= 0
Hence, P(0) = – 4; P(1) = – 3; P(–2) = 0.
Question 10
Verify whether the following are True or False :
i)-3 is a zero of x-3
ii) $-\frac{1}{3}$ is a zero of $3x+1$
iii) $-\frac{4}{5}$ is a zero of $4-5y$
iv) 0 and 2 are the zeroes of $t^{2}-2t$
v) –3 is a zero of $y^{2}+y-6$
Answer:
i) False
Solution:- Zeroes of a polynomial can be defined as points where the value of the polynomial becomes zero as a whole.
Let,
p(x) = x-3
Putting x = -3
p(x) = $-3-3=-6\neq 0$
Hence -3 is not a zero of x - 3
Therefore given statement is False.
ii) True
Solution :- Zeroes of a polynomial can be defined as points where the value of the polynomial becomes zero as a whole.
Let,
p(x) = 3x+1
Putting x = $-\frac{1}{3}$
p(x) = $3\left (\frac{-1}{3} \right )+1=-1+1=0$
Hence $-\frac{1}{3}$ is a zero of 3x+1.
Therefore given statement is True.
iii) False
Solution :- Zeroes of a polynomial can be defined as points where the value of the polynomial becomes zero as a whole.
Let,
p(y) = $4-5y$
Putting y = $-\frac{4}{5}$
$p(y) =4-5\left ( \frac{-4}{5} \right )=4+4=16\neq 0$
Hence $- \frac{4}{5}$ is not a zero of 4-5y
Therefore given statement is False.
iv) True
Solution
Method 1: Zeroes of a polynomial can be defined as points where the value of the polynomial becomes zero as a whole.
Let,
$p(t) =t^{2}-2t$
Putting t = 0
$p(t) =0^{2}-2(0)=0$
Putting t = 2
$p(t) =2^{2}-2(2)=0$
Hence 0 and 2 are the zeroes of $t^{2}-2t$
Therefore given statement is True.
Method 2:
$t^{2}-2t=0$
The given expression can be factorized as:
$t(t-2)=0$
Hence, t = 0, t – 2 = 0
So we get the zeroes as t=0,t=2
Therefore given statement is True.
v) True
Solution
Method 1: Zeroes of a polynomial can be defined as points where the value of the polynomial becomes zero as a whole.
Let,
$P(y)=y^{2}+y-6$
Putting y = -3
$P(y)=(-3)^{2}+(-3)-6=9-3-6=0$
Hence -3 is the zero of $y^{2}+y-6$
Therefore given statement is True.
Method 2:
$y^{2}+y-6=0$
The given expression can be factorized as follows:
$\\y^{2}+3y-2y-6=0\\ y(y+3)-2(y+3)=0\\ (y+3)(y-2)=0\\ y=-3,y=2$
Hence zeroes are -3 and 2
Therefore the given statement is True.
Question 11
Find the zeroes of the polynomial in each of the following :
i) p(x) = x - 4
ii) g(x) = 3 - 6x
iii)q(x) = 2x - 7
iv) h(y) = 2y
Answer:
i) 4
Solution
p(x)=x-4
We know that for finding the zero of a polynomial, we need to find a value of x for which the polynomial will be zero
i.e., p(x)=0
x-4=0
x=4
Hence 4 is a zero of the given polynomial.
ii) $\frac{1}{2}$
Solution
$g(x)=3-6x$
We know that for finding the zero of a polynomial, we need to find a value of x for which the polynomial will be zero
i.e., g(x)=0
3-6x=0
3=6x
$\frac{3}{6}=x$
$x=\frac{1}{2}$
Hence $\frac{1}{2}$ is a zero of the given polynomial.
iii)$\frac{7}{2}$
Solution
q(x)=2x-7
We know that for finding the zero of a polynomial, we need to find a value of x for which the polynomial will be zero
i.e., q(x)=0
2x-7=0
2x=7
$x=\frac{7}{2}$
Hence $\frac{7}{2}$ is a zero of the given polynomial.
iv) 0
Solution
We know that for finding the zero of a polynomial, we need to find a value of x for which the polynomial will be zero
i.e., h(x)=0
2y=0
$y=\frac{0}{2}$
y=0
Hence 0 is a zero of the given polynomial.
Question 12
Find the zeroes of the polynomial : $p(x)=(x-2)^{2}-(x+2)^{2}$
Answer:
[0]
Solution: $p(x) = (x - 2)^{2} - (x + 2)^{2}$
We know that for finding the zero of a polynomial, we need to find a value of x for which the polynomial will be zero
i.e., p(x) = 0
That is,
$\\(x - 2)^{2}- (x + 2)^{2} = 0\\ (x^{2} + 2^{2} - 2 \times x \times 2) - (x^{2} + 2^{2} + 2 \times x \times 2) = 0$
$\\ {\because (a - b)^{2} = a^{2} + b^{2} - 2ab}\\ {\because (a + b)^{2} = a^{2} + b^{2} + 2ab}\\ $
So, $\\ x^{2} + 4 - 4x - x^{2} - 4 - 4x = 0\\ - 4x - 4x = 0\\ -8x = 0\\ x = 0$
Hence 0 is the zero of the given polynomial
Question 13
Answer:
Quotient $=x^{3}+x^{2}+x+1$
Remainder =2
Solution
Let $p(x)=x^{4}+1$
$g(x)=x-1$
Divide p(x) and g(x)

Quotient $=x^{3}+x^{2}+x+1$
Remainder =2
Question 14
By Remainder Theorem find the remainder, when p(x) is divided by g(x) , where
$(i)p(x)=x^{3}-2x^{2}-4x-1; g(x)=x+1$
$(ii)p(x)=x^{3}-3x^{2}+4x+50; g(x)=x-3$
$(iii)p(x)=4x^{3}-12x^{2}+14x-3; g(x)=2x-1$
$(iv)p(x)=x^{3}-6x^{2}+2x-4; g(x)=1-\frac{3}{2}x$
Answer:
(i) 0
Solution:- According to remainder theorem when p(x) is divided by (x+a) then the remainder is p(-a) .
$p(x)=x^{3}-2x^{2}-4x-1; g(x)=x+1$
So, when p(x) is divided by g(x) then remainder will be p(-1) .
$\\p(-1)=(-1)^{3}-2(-1)^{2}-4(-1)-1\\ =-1-2+4-1\\ =-4+4\\ =0$
Hence the remainder is zero
(ii)62
Solution:- According to remainder theorem when p(x) is divided by (x+a) then the remainder is p(-a) .
$p(x)=x^{3}-3x^{2}+4x+50; g(x)=x-3$
So, when p(x) is divided by g(x) then remainder will be p(3) .
$\\p(3)=3^{3}-3(3)^{2}+4(3)+50\\ p(3)=27-27+12+50\\ p(3)=62$
Hence the remainder is 62.
(iii) $\frac{3}{2}$
Solution:- According to remainder theorem when p(x) is divided by (x+a) then the remainder is p(-a) .
$p(x)=4x^{3}-12x^{2}+14x-3; g(x)=2x-1$
So, when p(x) is divided by g(x) then remainder will be$p\left (\frac{1}{2} \right )$
$\\p\left(\frac{1}{2} \right )=4\left (\frac{1}{2} \right )^{3}-12 \left (\frac{1}{2} \right )^{2}+14 \left (\frac{1}{2} \right )-3$
$ =4 \times \frac{1}{8}-12\times \frac{1}{4}+7-3\\ =\frac{1}{2}-3+7-3$
$ =\frac{1}{2}+1\\ =\frac{1+2}{2}=\frac{3}{2}$
Hence the remainder is $\frac{3}{2}$
(iv) $-\frac{136}{27}$
Solution:- According to remainder theorem when p(x) is divided by (x+a) then the remainder is p(-a) .
$p(x)=x^{3}-6x^{2}+2x-4; g(x)=1-\frac{3}{2}x$
So, when p(x) is divided by g(x) then remainder will be$p\left (\frac{2}{3} \right )$
$\\p\left (\frac{2}{3} \right )=\left (\frac{2}{3} \right )^{3}-6\left (\frac{2}{3} \right )^{2}+2\left (\frac{2}{3} \right )-4\\ =\frac{8}{27}-6\left ( \frac{4}{9} \right )+\frac{4}{3}-4\\ =\frac{8-72+36-108}{27}\\ =-\frac{136}{27}$
Hence the remainder is $-\frac{136}{27}$.
Question 15
Check whether p(x) is multiple of g(x) or not
$\\(i)p(x)=x^{3}-5x^{2}+4x-3, g(x)=x-2$
$(ii) p(x)=2x^{3}-11x^{2}-4x+5, g(x)=2x+1$
Answer:
(i) No
Solution
Given $p(x)=x^{3}-5x^{2}+4x-3, g(x)=x-2$
According to remainder theorem if p(x) is a multiple of (x+a) then p(-a)=0
Here p(x) is $x^{3}-5x^{2}+4x-3$ and g(x) is $x-2$
If p(x) is a multiple of g(x) then p(2)=0
$\\p(2)=(2)^{3}-5(2)^{2}+4(2)-3\\ =8-20+8-3\\ =16-23=-7\neq 0$
$p(2)\neq 0$
Hence p(x) is not a multiple of g(x) .
(ii) No
Solution
Given $p(x)=2x^{3}-11x^{2}-4x+5, g(x)=2x+1$
According to remainder theorem if p(x) is a multiple of (x+a) then p(-a)=0
If p(x) is a multiple of g(x) then $p\left (-\frac{1}{2} \right )=0$
$\\p\left (-\frac{1}{2} \right )=2\left (-\frac{1}{2} \right )^{3}-11\left (-\frac{1}{2} \right )^{2}-4\left (-\frac{1}{2} \right )+5$
$ =2 \times \frac{-1}{8}-11 \times \frac{1}{4}+2+5\\ =-\frac{1}{4}-\frac{11}{4}+7$
$ =\frac{-1-11+28}{4}=\frac{16}{4}=4\\ p\left (-\frac{1}{2} \right )\neq 0$
Hence p(x) is not a multiple of g(x) .
Question 16
Show that
(i) $x+3$ is a factor of $69+11x-x^{2}+x^{3}$
(ii) $2x-3$ is a factor of $x+2x^{3}-9x^{2}+12$
Answer:
(i) Here $g(x)=x+3$ and $p(x)=69+11x-x^{2}+x^{3}$
According to remainder theorem if x+a is a factor of p(x) then p(-a)=0
So, if g(x) is a factor of p(x) then p(-3)=0
$\\p(-3)=69+11(-3)-(-3)^{2}+(-3)^{3}\\ =69-33-9-27\\ =69-69=0\\ p(-3)= 0$
Therefore x+3 is a factor of $69+11x-x^{2}+x^{3}$
Hence proved
(ii) Here $g(x)=2x-3$ and $p(x)=x+2x^{3}-9x^{2}+12$
According to remainder theorem if x+a is a factor of p(x) then p(-a)=0
So, if g(x) is a factor of p(x) then $p\left ( \frac{3}{2} \right )=0$
$\\p\left ( \frac{3}{2} \right )=\left ( \frac{3}{2} \right )+2\left ( \frac{3}{2} \right )^{3}-9\left ( \frac{3}{2} \right )^{2}+12$
$ =\frac{3}{2}+2 \times \frac{27}{8}-9 \times \frac{9}{4}+12\\ =\frac{3}{2}+\frac{27}{4}-\frac{81}{4}+12$
$ =\frac{6+27-81+48}{4}\\ =\frac{0}{4}=0\\ p\left ( \frac{3}{2} \right )=0$
Hence 2x-3 is a factor of $x+2x^{3}-9x^{2}+12$
Hence proved
Question 17
Determine which of the following polynomials has $x-2a$ factor
(i) $3x^{2}+6x-24$
(ii) $4x^{2}+x-2$
Answer:
(i) $3x^{2}+6x-24$ only
Solution
We know that if $(x+a)$ is factor of the polynomial f(x), then it always satisfies f(-a)=0
(i) Here polynomial is $3x^{2}+6x-24$
$p(x)=3x^{2}+6x-24$
According to remainder theorem if x-2 is a factor of p(x) then p(2)=0
$\\p(2)=3(2)^{2}+6(2)-24\\ =3(4)+12-24\\ =12-12=0\\ p(2)=0$
Hence x-2 is a factor of $3x^{2}+6x-24$
(ii) Here $p(x)=4x^{2}+x-2$
According to remainder theorem if x-2 is a factor of p(x) then p(2)=0
$\\p(2)=4(2)^{2}+2-2\\ =16\\ p(2)\neq 0$
Hence x-2 is not a factor of $4x^{2}+x-2$.
Question 18
Show that p - 1 is a factor of p10 - 1 and also of p11 - 1 .
Answer:
To prove : Here we have to prove that $p-1$ is a factor of $p^{10}-1$ and also of $p^{11}-1$ .
We know that if (x+a) is factor of the polynomial f(x), then it always satisfies f(-a)=0
If $p-1$ is a factor of $p^{11}-1$ and $p^{10}-1$ then by putting the value of p = 1, the given polynomials should be equal to zero.
Let
$\\f(p)=p^{10}-1\\ f(1)=(1)^{10}-1\\ =1-1=0\\ f(1)=0$
Hence p-1 is a factor of $p^{10}-1$
Let
$\\g(p)=p^{11}-1\\ g(1)=(1)^{11}-1\\ =1-1=0\\ g(1)=0$
Hence p-1 is a factor of $p^{11}-1$
Hence proved
Question 19
For what value of m is $x^{3}-2mx^{2}+16$ divisible by $x+2$ ?
Answer:
m = 1
Solution
Given : $x^{3}-2mx^{2}+16$ is divisible by $x+2$
We know that if (x+a) is factor of the polynomial f(x), then it always satisfies f(-a)=0
If $x^{3}-2mx^{2}+16$ is divisible by $x+2$ then according to remainder theorem if we put x=-2 in the polynomial $x^{3}-2mx^{2}+16$ then the output must be equal to 0.
Let $x^{3}-2mx^{2}+16$
Put x=-2
$\\p(-2)=(-2)^{3}-2m(-2)^{2}+16\\ 0=-8-8m+16\\ 0=-8m+8\\ 8m=8\\ m=\frac{8}{8}=1\\$
Hence, m=1
Question 20
If $x+2a$ is a factor of $x^{5}-4a^{2}x^{3}+2x+2a+3$ , find a.
Answer:
$a=\frac{3}{2}$
Solution
We know that if (x+a) is factor of the polynomial p(x), then it always satisfies p(-a)=0
Given $x+2a$ is a factor of $x^{5}-4a^{2}x^{3}+2x+2a+3$
Let
$p(x)=x^{5}-4a^{2}x^{3}+2x+2a+3$
$g(x)=x+2a$
If g(x) is a factor of p(x), then p(-2a)=0
$\\p(-2a)=(-2a)^{5}-4a^{2}(-2a)^{3}+2(-2a)+2a+3$
$ 0=-32a^{5}+32a^{5}-4a+2a+3$
$ 0=-2a+3$
$ 2a=3$
So, $a=\frac{3}{2}$
Question 21
Find the value of m so that $2x-1$ be a factor of $8x^{4}+4x^{3}-16x^{2}+10x+m$ .
Answer:
m=-2
Solution
We know that if (x+a) is factor of the polynomial f(x), then it always satisfies f(-a)=0
Given, $2x-1$ is a factor of $8x^{4}+4x^{3}-16x^{2}+10x+m$
Let $p(x)=8x^{4}+4x^{3}-16x^{2}+10x+m$
$g(x)=2x-1$
According to remainder theorem if g(x) is a factor of p(x) then $p\left (\frac{1}{2} \right )=0$
$\\p\left (\frac{1}{2} \right )=8\left (\frac{1}{2} \right )^{4}+4\left (\frac{1}{2} \right )^{3}-16\left (\frac{1}{2} \right )^{2}+10\left (\frac{1}{2} \right )+m$
$ 0=8\times \frac{1}{16}+4\times \frac{1}{8}-16 \times \frac{1}{4}+5+m$
$ 0=\frac{1}{2}+\frac{1}{2}-4+5+m\\ 0=1+1+m\\ m=-2$
Question 22
If $x+1$ is a factor of $ax^{3}+x^{2}-2x+4a-9$ , find the value of a.
Answer:
a = 2
Solution:
We know that if (x+a) is factor of the polynomial f(x), then it always satisfies f(-a)=0
Given $x+1$ is a factor of $ax^{3}+x^{2}-2x+4a-9$
Let $p(x)=ax^{3}+x^{2}-2x+4a-9$
$g(x)=x+1$
According to remainder theorem if g(x) is a factor of p(x) then p(-1)=0
$\\p(-1)=a(-1)^{3}+(-1)^{2}-2(-1)+4a-9\\ 0=-a+1+2+4a-9$
$ 0=3a-6\\ 3a=6\\ a=\frac{6}{3}=2$
Hence a = 2.
Question 23
Factorize :
(i) $x^{2}+9x+18$
(ii) $6x^{2}+7x-3$
(iii) $2x^{2}-7x-15$
(iv)$84-2r-2r^{2}$
Answer:
$(i)(x+6)(x+3)$
Solution
Given, $x^{2}+9x+18$
To factorize $ax^{2} + bx + c$, we have to distribute “bx” into “px” and “qx” such that
p + q = b and p.q = a.c
The given equation can be written as:
$x^{2}+9x+18\\ \Rightarrow x^{2}+3x+6x+18 \; \; \; \; \; \; \; \left \{ 6+3=9, (6)(3)=18 \right \}$
$ \Rightarrow x(x+3)+6(x+3)\\ \Rightarrow (x+3)(x+6).$
$(ii) (2x+3)(3x-1)$
Solution
Given, $6x^{2}+7x-3$
To factorize $ax^{2} + bx + c$, we have to distribute “bx” into “px” and “qx” such that
p + q = b and p.q = a.c
The given equation can be written as:
$6x^{2}+7x-3\\ \Rightarrow 6x^{2}+9x-2x-3\; \; \; \; \; \; \; \left \{ 9-2=7, (9)(-2)=(6)(-3) \right \}$
$ \Rightarrow (6x^{2}+9x)-(2x+3)\\ \Rightarrow 3x(2x+3)-1(2x+3)\\ \Rightarrow (2x+3)(3x-1).$
$(iii) (x-5)(2x-3)$
Solution
Given, $2x^{2}-7x-15$
To factorize $ax^{2} + bx + c$, we have to distribute “bx” into “px” and “qx” such that
p + q = b and p.q = a.c
The given equation can be written as:
$2x^{2}-7x-15\\ \Rightarrow 2x^{2}-10x+3x-15\; \; \; \; \; \; \; \left \{ -10+3=-7, (-10)(3)=(2)(-15) \right \}$
$ \Rightarrow (2x^{2}-10x)+(3x-15) \\ \Rightarrow 2x(x-5)+3(x-5)\\ \Rightarrow (x-5)(2x+3).$
$(iv) (6-r)(14-2r)$
Solution
Given, $84-2r-2r^{2}$
To factorize $ax^{2} + bx + c$, we have to distribute “bx” into “px” and “qx” such that
p + q = b and p.q = a.c
The given equation can be written as:
$84-2r-2r^{2}\\ \Rightarrow 84-14r+12r-2r^{2}\; \; \; \; \; \; \; \left \{ -14+12=-2, (-14)(12)=(84)(-2) \right \}$
$ \Rightarrow (84-14r)+(12r-2r^{2}) \\ \Rightarrow 14(6-r)+2r(6-r)\\ \Rightarrow (6-r)(14+2r).$
Question 24
Factorize :
$(i) 2x^{3}-3x^{2}-17x+30$
$(ii) x^{3}-6x^{2}+11x-6$
$(iii) x^{3}+x^{2}-4x-4$
$(iv) 3x^{3}-x^{2}-3x+1$
Answer:
$(i) (x-2)(x+3)(2x-5)$
Solution
Let $p(x)= 2x^{3}-3x^{2}-17x+30$
By trail, we find that $p(2)=0$
$p(2)= 2(2)^{3}-3(2)^{2}-17(2)+30=16-12-34+30=0$
Hence $x-2$ is a factor of $p(x)$
$\\2x^{3}-3x^{2}-17x+30=\left ( x-2 \right )\left ( 2x^{2}+x-15 \right )\\ =(x-2)(2x^{2}+6x-5x-15)$
$ =(x-2)(2x(x+3)-5(x+3))\\ 2x^{3}-3x^{2}-17x+30= (x-2)(x+3)(2x-5)$
Hence the factorized form is $(x-2)(x+3)(2x-5)$
$(ii) (x-1)(x-2)(x-3)$
Solution
Let $p(x)= x^{3}-6x^{2}+11x-6$
By trail, we find that $p(1)=0$
$p(1)=1-6+11-6=0$
Hence $x-1$ is a factor of $p(x)$

$\\p(x)=(x-1)(x^{2}-5x+6)\\ =(x-1)(x^{2}-3x-2x+6))$
$ =(x-1)(x(x-3)-2(x-3))\\= (x-1)(x-2)(x-3)$
Hence the factorized form is $(x-1)(x-2)(x-3)$
$(iii) (x+1)(x-2)(x+2)$
Solution
Let $p(x)=x^{3}+x^{2}-4x-4$
By trail, we find that $p(-1)=0$
$p(-1)=-1+1+4-4=0$
Hence $x+1$ is a factor of $p(x)$

$\\p(x)=(x+1)(x^{2}-4)\\ =(x+1)(x^{2}-(2)^{2}))$
$ =(x+1)(x-2)(x+2)\; \; \; \; (using a^{2}-b^{2}=(a-b)(a+b))$
$= (x+1)(x-2)(x+2)$
Hence the factorized form is $(x+1)(x-2)(x+2)$
$(iv) (x-1)(x+1)(3x-1)$
Solution
Let $p(x)=3x^{3}-x^{2}-3x-1$
By trail, we find that $p(1)=0$
$\\p(1)=3(1)^{3}-(1)^{2}+3(1)+1\\=3-1-3+1=0$
Hence $x-1$ is a factor of $p(x)$

$\\p(x)=(x-1)(3x^{3}+2x-1)\\ =(x-1)(3x^{2}+3x-x-1)$
$ =(x-1)(3x(x+1)-1(x+1)) \\= (x-1)(x+1)(3x-1)$
Hence the factorized form is $(x-1)(x+1)(3x-1)$.
Question 25
Using suitable identity, evaluate the following
$\\(i)103^{3}\\ (ii)101 \times 102\\ (iii)999^{2}$
Answer:
(i) 1092727
Solution
Given,
$\\(103)^{3}=(100+3)^{3}$
$ =100^{3}+3^{3}+3(100)^{2}(3)+3(100)(3)^{2} (using \; (a+b)^{3}=a^{3}+b^{3}+3a^{2}b+3ab^{2})$
$ =1000000+27+90000+2700\\ =1092727$
Hence the answer is 1092727
(ii) 10302
Solution
Given, $101 \times 102=(100+1)(100+2)$
Using $(x+a)(x+b)=x^{2}+(a+b)x+ab$
Put x = 100, a = 1, b = 2
$(100+1)(100+2)=100^{2}+(1+2)100+(1)(2)\\ =10000+300+2\\ =10302$
Hence the answer is 10302
(iii)998001
Solution
Given, $(999)^{2}=(1000-1)^{2}\\$
Using $(a-b)^{2}=a^{2}+b^{2}-2ab$
Putting a = 1000, b = 1
$\\(1000-1)^{2}=(1000)^{2}+(1)^{2}-2(1000)(1)\\ =1000000+1-2000\\ =998001$
Hence the answer is 998001.
Question 26
Factorize the following
$(i)4x^{2}+20x+25$
$(ii)9y^{2}-66yz+121z^{2}$
$(iii)\left ( 2x+\frac{1}{3} \right )^{2}-\left ( x-\frac{1}{2} \right )^{2}$
Answer:
$(i)\left ( 2x+5 \right )\left ( 2x+5 \right )$
Solution
Given, $4x^{2}+20x+25$
We can write the given expression as:
$(2x)^{2}+(5)^{2}+2(2x)(5) \; \; \; \; \cdots (i)$
Now, we know that
$(a+b)^{2}=a^{2}+b^{2}+2ab$
Comparing equation (i) with the above identity, we have:
a = 2x, b = 5
So,
$\\(2x)^{2}+(5)^{2}+2(2x)(5) =(2x+5)^{2}\\ =(2x+5)(2x+5)$
$(ii)\left ( 3y-11z \right )\left ( 3y-11z \right )$
Solution
Given, $9y^{2}-66yz+121z^{2}$
We can write the given expression as:
$(3y)^{2}+(11z)^{2}-2(3y)(11z) \; \; \; \; \cdots (i)$
Now, we know that
$(a-b)^{2}=a^{2}+b^{2}-2ab$
Comparing equation (i) with the above identity, we have:
a = 3y, b = 11z
So,
$\\=(3y)^{2}+(11z)^{2}-2(3y)(11z)=(3y-11z)^{2}\\ =(3y-11z)(3y-11z)$
$(iii)\left ( x+\frac{5}{6} \right )\left ( 3x-\frac{1}{6} \right )$
Solution
Given, $\left ( 2x+\frac{1}{3} \right )^{2}-\left ( x-\frac{1}{2} \right )^{2}$
Now, we know that
$a^{2}-b^{2}=(a-b)(a+b)$
So,
$\\ \left ( 2x+\frac{1}{3} \right )^{2}-\left ( x-\frac{1}{2} \right )^{2}=\left ( 2x+\frac{1}{3}- \left ( x-\frac{1}{2} \right )\right ).\left ( 2x+\frac{1}{3}+ \left ( x-\frac{1}{2} \right )\right )$
$ =\left ( 2x+\frac{1}{3}- x+\frac{1}{2} \right ).\left ( 3x+\frac{2-3}{6} \right )\\ =\left ( x+\frac{2+3}{6} \right )\left ( 3x-\frac{1}{6} \right )\\ =\left ( x+\frac{5}{6} \right )\left ( 3x-\frac{1}{6} \right )$
Hence the factorized form is: $\left ( x+\frac{5}{6} \right )\left ( 3x-\frac{1}{6} \right )$.
Question 27
Factorize the following :-
$(i) 9x^{2} - 12x + 3$
$(ii) 9x^{2} - 12x + 4$
Answer:
$(i)(x-1)(9x-3)$
Given, $9x^{2} - 12x + 3$
To factorize ax2 + bx + c, we have to distribute “bx” into “px” and “qx” such that
p + q = b and p.q = a.c
The given equation can be written as:
$9x^{2}-9x-3x+3$ {-9 - 3 = -12, (-9) (-3) = (9) (3)}
$\\=\left (9x^{2}-9x \right )-\left (3x-3 \right )\\ =9x(x-1)-3(x-1)\\ =(x-1)(9x-3)$
$(ii)(3x-2)(3x-2)$
Given, $9x^{2} - 12x + 4$
To factorize ax2 + bx + c, we have to distribute “bx” into “px” and “qx” such that
p + q = b and p.q = a.c
The given equation can be written as:
$9x^{2}-6x-6x+4$ {-6 - 6 = -12, (-6) (-6) = (9) (4)}
$\\=\left (9x^{2}-6x \right )-\left (6x-4 \right )\\ =3x(3x-2)-2(3x-2)\\ =(3x-2)(3x-2)$
Question 28
Expand the following
$\\(i) (4a - b + 2c)^{2} \\ (ii) (3a - 5b - c)^{2}\\ (iii) (- x + 2y - 3z)^{2}$
Answer:
(i) $16a^{2}+b^{2}+4c^{2}-8ab-4bc+16ac$
Solution
$(4a-b+2c)^{2}=(4a+(-b)+2c)^{2}\cdots \cdots (i)$
Now, we know that
$(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2ab+2bc+2ac$
Comparing the equation (i) with the above identity, we get:
$\\(4a-b+2c)^{2}=(4a)^{2}+(-b)^{2}+(2c)^{2}+2(4a)(-b)+2(-b)(2c)+2(4a)(2c)$
$=16a^{2}+b^{2}+4c^{2}-8ab-4bc+16ac$
Hence the expanded form is $16a^{2}+b^{2}+4c^{2}-8ab-4bc+16ac$
(ii) $9a^{2}+25b^{2}+c^{2}-30ab+10bc-6ac$
Solution
$(3a-5b-c)^{2}=(3a+(-5b)+(-c))^{2}\cdots \cdots (i)$
Now, we know that
$(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2ab+2bc+2ac$
Comparing the equation (i) with the above identity, we get:
$\\(3a-5b-c)^{2}\\ =(3a)^{2}+(-5b)^{2}+(-c)^{2}+2(3a)(-5b)+2(-5b)(-c)+2(3a)(-c)$
$=9a^{2}+25b^{2}+c^{2}-30ab+10bc-6ac$
Hence the expanded form is $9a^{2}+25b^{2}+c^{2}-30ab+10bc-6ac$
(iii) $x^{2}+4y^{2}+9z^{2}-4xy-12yz+6xz$
Solution
Now, we know that
$(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2ab+2bc+2ac$
Comparing the equation (i) with the above identity, we get:
$\\(-x+2y-3z)^{2}\\ =(-x)^{2}+(2y)^{2}+(-3z)^{2}+2(-x)(2y)+2(2y)(-3z)+2(-3z)(-x)$
$=x^{2}+4y^{2}+9z^{2}-4xy-12yz+6xz$
Hence the expanded form is $x^{2}+4y^{2}+9z^{2}-4xy-12yz+6xz$.
Question 29
Factorize the following
$(i)9x^{2}+4y^{2}+16z^{2}+12xy-16yz-24xz$
$(ii)25x^{2}+16y^{2}+4z^{2}-40xy+16yz-20xz$
$(iii)16x^{2}+4y^{2}+9z^{2}-16xy-12yz+24xz$
Answer:
$(i)(3x+2y-4z)(3x+2y-4z)$
Solution
Given, $9x^{2}+4y^{2}+16z^{2}+12xy-16yz-24xz$
This can be written as:
$(3x)^{2}+(2y)^{2}+(4z)^{2}+2(3x)(2y)+2(2y)(-4z)+2(3x)(-4z)$ …(i)
We know that,
$(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2ab+2bc+2ca$
Comparing equation (i) with RHS of above identity, we get:
a = 3x, b = 2y, c = -4z
So, we get:
$(3x)^{2}+(2y)^{2}+(-4z)^{2}+2(3x)(2y)+2(2y)(-4z)+2(3x)(-4z)$
$=(3x+2y-4z)^{2}$
Hence the factorized form is $(3x+2y-4z)(3x+2y-4z)$
$(ii)(-5x+4y+2z)(-5x+4y+2z)$
Solution
Given, $25x^{2}+16y^{2}+4z^{2}-40xy+16yz-20xz$
This can be written as:
$(-5x)^{2}+(4y)^{2}+(2z)^{2}+2(-5x)(4y)+2(4y)(2z)+2(-5x)(2z)$ …(i)
We know that,
$(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2ab+2bc+2ca$
Comparing equation (i) with RHS of above identity, we get:
a = -5x, b = 4y, c = 2z
So, we get:
$(-5x)^{2}+(4y)^{2}+(2z)^{2}+2(-5x)(4y)+2(4y)(2z)+2(-5x)(2z)$
$=(-5x+4y+2z)^{2}=(-5x+4y+2z)(-5x+4y+2z)$
Hence the factorized form is $(-5x+4y+2z)(-5x+4y+2z)$
$(iii)(4x-2y+3z)(4x-2y+3z)$
Solution
Given, $16x^{2}+4y^{2}+9z^{2}-16xy-12yz+24xz$
This can be written as:
$(4x)^{2}+(-2y)^{2}+(3z)^{2}+2(4x)(-2y)+2(-2y)(3z)+2(4x)(3z)$ …(i)
We know that,
$(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2ab+2bc+2ca$
Comparing equation (i) with RHS of above identity, we get:
a = 4x, b = -2y, c = 3z
So, we get:
$(4x)^{2}+(-2y)^{2}+(3z)^{2}+2(4x)(-2y)+2(-2y)(3z)+2(4x)(3z)$
$=(4x-2y+3z)^{2}=(4x-2y+3z)(4x-2y+3z)$
Hence the factorized form is $(4x-2y+3z)(4x-2y+3z)$.
Question 30
If $a+b+c=9$ and $ab+bc+ca=26$ , find $a^{2}+b^{2}+c^{2}$ .
Answer:
29
Solution
Given ab+bc+ac=26, a+b+c=9
As we know that
$(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2(ab+bc+ca)$ …..(1)
Put a+b+c=9 , ab+bc+ac=26 in (1)
$\\(9)^{2}=a^{2}+b^{2}+c^{2}+2 \times 26 \\ a^{2}+b^{2}+c^{2}=81-52\\ a^{2}+b^{2}+c^{2}=29$
Hence the answer is 29.
Question 31
Expand the following :
$(i)(3a-2b)^{3}$
$(ii)\left ( \frac{1}{x}+\frac{y}{3} \right )^{3}$
$(iii)\left ( 4-\frac{1}{3x} \right )^{3}$
Answer:
$(i)27a^{3}-8b^{2}-54a^{2}b+36ab^{2}$
Solution: Given $(3a-2b)^{3}$
We know that
$(a-b)^{3}=a^{3}-b^{3}-3a^{2}b+3ab^{2}$
So we get:
$(3a-2b)^{3}=(3a)^{3}-(2b)^{3}-3(3a)^{2}(2b)+3(3a)(2b)^{2}$
$(3a-2b)^{3}=27a^{3}-8b^{2}-54a^{2}b+36ab^{2}$
Hence the expanded form is $27a^{3}-8b^{2}-54a^{2}b+36ab^{2}$
$(ii)\frac{1}{x^{3}}+\frac{y^{3}}{27}+\frac{y}{x^{2}}+\frac{y^{2}}{3x}$
Solution: Given $\left ( \frac{1}{x}+\frac{y}{3} \right )^{3}$
We know that
$(a+b)^{3}=a^{3}+b^{3}+3a^{2}b+3ab^{2}$
So we get:
$\left ( \frac{1}{x}+\frac{y}{3} \right )^{3}=\left (\frac{1}{x} \right )^{3}+\left (\frac{y}{3} \right )^{3}+3 \left (\frac{1}{x} \right )^{2}\left (\frac{y}{3} \right )+3\left ( \frac{1}{x} \right )\left (\frac{y}{3} \right )^{2}$
$=\frac{1}{x^{3}}+\frac{y^{3}}{27}+\frac{3y}{3x^{2}}+\frac{3y^{2}}{9x}$
$=\frac{1}{x^{3}}+\frac{y^{3}}{27}+\frac{y}{x^{2}}+\frac{y^{2}}{3x}$
Hence the expanded form is $=\frac{1}{x^{3}}+\frac{y^{3}}{27}+\frac{y}{x^{2}}+\frac{y^{2}}{3x}$
$(iii)64-\frac{1}{27x^{3}}-\frac{16}{x}+\frac{4}{3x^{2}}$
Solution: Given $\left ( 4-\frac{1}{3x} \right )^{3}$
We know that
$(a-b)^{3}=a^{3}-b^{3}-3a^{2}b+3ab^{2}$
So we get:
$\left ( 4-\frac{1}{3x} \right )^{3}=(4)^{3}-\left ( \frac{1}{3x} \right )^{3}-3(4)^{2}\left ( \frac{1}{3x} \right )+3(4)\left ( \frac{1}{3x} \right )^{2}$
$=64-\frac{1}{27x^{3}}-\frac{48}{3x}+\frac{12}{9x^{2}}$
$=64-\frac{1}{27x^{3}}-\frac{16}{x}+\frac{4}{3x^{2}}$
Hence the expanded form is $64-\frac{1}{27x^{3}}-\frac{16}{x}+\frac{4}{3x^{2}}$.
Question 32
Factorize the following :
$\\(i)1-64a^{3}-12a+48a^{2}\\ (ii)8p^{3}+\frac{12}{5}p^{2}+\frac{6}{25}p+\frac{1}{125}$
Answer:
(i)(1−4a)(1−4a)(1−4a)
Given, 1−64a3−12a+48a2
The given equation can be written as:
=(1)3−(4a)3−3(1)2(4a)+3(1)(4a)2 ..........(i)
Now we know that:
a3−b3−3a2b+3ab2=(a−b)3
Comparing equation (i) with the above identity, we get:
∴(1)3−(4a)3−3(1)2(4a)+3(1)(4a)2
=(1−4a)3
Hence the factorized form is (1−4a)(1−4a)(1−4a)
(ii) $\left ( 2p+\frac{1}{5} \right )\left ( 2p+\frac{1}{5} \right )\left ( 2p+\frac{1}{5} \right )$
Given, $8p^{3}+\frac{12}{5}p^{2}+\frac{6}{25}p+\frac{1}{125}$
The given equation can be written as:
$(2p)^{3}+\left ( 3 \times (2p)^{2} \times \frac{1}{5}\right )+\left ( 3 (2p) \left (\frac{1}{5} \right )^{2}\right )+\left ( \frac{1}{5} \right )^{3}$
$ =(2p)^{3}+\left ( \frac{1}{5} \right )^{3}+\left ( 3 \times (2p)^{2} \times \frac{1}{5}\right )+\left ( 3 (2p) \left (\frac{1}{5} \right )^{2}\right )\\$ …(i)
Now we know that:
$a^{3}+b^{3}+3a^{2}b+3ab^{2}=(a+b)^{3}$
Comparing equation (i) with the above identity, we get:
$(2p)^{3}+\left ( \frac{1}{5} \right )^{3}+\left ( 3 \times (2p)^{2} \times \frac{1}{5}\right )+\left ( 3 (2p) \left (\frac{1}{5} \right )^{2}\right )=\left ( 2p+\frac{1}{5} \right )^{3}$
Hence the factorized form is$\left ( 2p+\frac{1}{5} \right )\left ( 2p+\frac{1}{5} \right )\left ( 2p+\frac{1}{5} \right )$
Question 33
Find the following product
(i) $\left (\frac{x}{2}+2y \right )\left ( \frac{x^{2}}{4}-xy+4y^{2} \right )$
(ii) $(x^{2}-1)(x^{4}+x^{2}+1)$
Answer:
(i) $\frac{x^{3}}{8}+8y^{3}$
Given: $\left (\frac{x}{2}+2y \right )\left ( \frac{x^{2}}{4}-xy+4y^{2} \right )$
$=\frac{x}{2}\left ( \frac{x^{2}}{4}-xy+4y^{2} \right )+2y \left ( \frac{x^{2}}{4}-xy+4y^{2} \right )$
$=\frac{x^{3}}{8}-\frac{x^{2}y}{2}+\frac{4xy^{2}}{2}+\frac{2yx^{2}}{4}-2xy^{2}+8y^{3}$
$=\frac{x^{3}}{8}-\frac{x^{2}y}{2}+\frac{x^{2}y}{2}+2xy^{2}-2xy^{2}+8y^{3}\\ =\frac{x^{3}}{8}+8y^{3}$
(ii) $x^{6}-1$
Given $(x^{2}-1)(x^{4}+x^{2}+1)$
$=x^{2}(x^{4}+x^{2}+1)-1(x^{4}+x^{2}+1)\\ =x^{6}+x^{4}+x^{2}-x^{2}-x^{4}-x^{2}-1\\ =x^{6}-1$
Question 34
Factorise:
(i) $1+64x^{3}$
(ii) $a^{3}-2\sqrt{2}b^{3}$
Answer:
(i) $(1+4x)(1+16x^{2}-4x)$
Given $1+64^{3}$
$(1)^{3}+(4x)^{3}$
we know that $a^{3}+b^{3}=(a+b)(a^{2}+b^{2}-ab)$
so $(1)^{3}+\left (4x \right )^{3}=(1+4x)((1)^{2}+\left (4x \right )^{2}-(1)\left (4x \right ))$
$(1+4x)(1+16x^{2}-4x)$
(ii) $(a-\sqrt{2}b)(a^{2}+2b^{2}+\sqrt{2}ab)$
Given $a^{3}-2\sqrt{2}b^{3}$
This can be written as
$(a)^{3}-(\sqrt{2}b)^{3}$
we know that $a^{3}-b^{3}=(a+b)(a^{2}+b^{2}+ab)$
so $(a)^{3}-(\sqrt{2}b)^{3}=(a-\sqrt{2}b)(a^{2}+(\sqrt{2}b)^{2}+\sqrt{2}ab)$
$(a-\sqrt{2}b)(a^{2}+2b^{2}+\sqrt{2}ab)$
Question 35
Find the following product $(2x-y+3z)(4x^{2}+y^{2}+9z^{2}+2xy+3yz-6xz)$
Answer:
$8x^{3}-y^{3}+27x^{3}$
Solution
Given: $(2x-y+3z)(4x^{2}+y^{2}+9z^{2}+2xy+3yz-6xz)$
This can be written as
$(2x-y+3z)((2x)^{2}+(y)^{2}+(3z)^{2}-(2x)(-y)-(-y)(3z)-(2x)(3z))$
We know that
$a^{3}+b^{3}+c^{3}-3abc= (a+b+c)(a^{2}+b^{2}+c^{2}-ab-bc-ca)$
Comparing equation (i) with the above identity we get:
a = 2x, b = -y, c = 3z
Hence,
$(2x-y+3z)((2x)^{2}+(y)^{2}+(3z)^{2}-(2x)(-y)-(-y)(3z)-(2x)(3z))$
$ =(2x)^{3}+(-y)^{3}+(3z)^{3}-3(2x)(-y)(3z)\\ =8x^{3}-y^{3}+27z^{3}+18xyz$
Question 36
Factorize
(i) $a^{3}-8b^{3}-64c^{3}-24abc$
(ii) $2\sqrt{2}a^{3}+8b^{3}-27c^{3}+18\sqrt{2}abc$
Answer:
(i) $(a-2b-4c)(a^{2}+4b^{2}+16c^{2}+2ab-8bc+4ac)$
Solution:
Given: $a^{3}-8b^{3}-64c^{3}-24abc$
This can be written as:
$a^{3}+(-2b)^{3}+(-4c)^{3}-3(a)(-2b)(-4c)$
We know that
$a^{3}+b^{3}+c^{3}-3abc=\left ( a+b+c \right )\left ( a^{2}+b^{2}+c^{2}-ab-bc-ac \right )$
Using this identity we get
$a^{3}+(-2b)^{3}+(-4c)^{3}-3(a)(-2b)(-4c)$
$=\left ( a+(-2b)+(-4c)\right )\left ( a^{2}-(-2b)^{2}+(-4c)^{2}-(a)(-2b)-(-2b)(-4c)-(a)(-4c) \right )\\$
$=(a-2b-4c)(a^{2}+4b^{2}+16c^{2}+2ab-8bc+4ac)$
(i) $(\sqrt{2}a+2b-3c)(2a^{2}+4b^{2}+9c^{2}-2\sqrt{2}ab+6bc+3\sqrt{2}ca)$
Solution:
Given: $2\sqrt{2}a^{3}+8b^{3}-27c^{3}+18\sqrt{2}abc$
This can be written as:
$(\sqrt{2}a)^{3}+(2b)^{3}-(3c)^{3}-3(\sqrt{2}a)\left (2b \right )(3c)$
We know that
$a^{3}+b^{3}+c^{3}-3abc=\left ( a+b+c \right )\left ( a^{2}+b^{2}+c^{2}-ab-bc-ac \right )$
Using this identity we get
$(\sqrt{2}a)^{3}+(2b)^{3}-(3c)^{3}-3(\sqrt{2}a)\left (2b \right )(3c)$
= $(\sqrt{2}a+2b-3c)(2a^{2}+4b^{2}+9c^{2}-2\sqrt{2}ab+6bc+3\sqrt{2}ca)$
Question 37
Without actually calculating the cubes, find the value of
(i) $\left ( \frac{1}{2} \right )^{3}+\left ( \frac{1}{3} \right )^{3}-\left ( \frac{5}{6} \right )^{3}$
(ii) $(0.2)^{3}-(0.3)^{3}+(0.1)^{3}$
Answer:
(i) $\frac{-5}{12}$
Given $\left ( \frac{1}{2} \right )^{3}+\left ( \frac{1}{3} \right )^{3}-\left ( \frac{5}{6} \right )^{3}$
We know that
$a^{3}+b^{3}+c^{3}-3abc=(a+b+c)(a^{2}+b^{2}+c^{2}-ab-bc-ca)$
When a + b + c = 0, we get $a^{3}+b^{3}+c^{3}=3abc$
Here,
$\frac{1}{2} +\frac{1}{3}- \frac{5}{6} =\frac{3+2-5}{6}=\frac{0}{6}=0$
So using the above identity, we get:
$\therefore \left ( \frac{1}{2} \right )^{3}+\left ( \frac{1}{3} \right )^{3}+\left ( \frac{-5}{6} \right )^{3}=3 \times \frac{1}{2} \times \frac{1}{3}\times \frac{-5}{6}=\frac{-5}{12}$
Hence the answer is $\frac{-5}{12}$
(ii)-0.018
Solution
Given: $(0.2)^{3}-(0.3)^{3}+(0.1)^{3}$
We know that
$a^{3}+b^{3}+c^{3}-3abc=(a+b+c)(a^{2}+b^{2}+c^{2}-ab-bc-ca)$
When a + b + c = 0, we get $a^{3}+b^{3}+c^{3}=3abc$
Here,
$0.2+(-0.3)+0.1=0$
So,
$(0.2)^{3}-(0.3)^{3}+(0.1)^{3}=3(0.2)(-0.3)(0.1)=-0.018$
Hence the answer is -0.018.
Question 38
Without finding the cubes, factorize $(x-2y)^{3}+(2y-3z)^{3}+(3z-x)^{3}$
Answer:
$3(x-2y)(2y-3z)(3z-x)$
solution :
given $(x-2y)^{3}+(2y-3z)^{3}+(3z-x)^{3}$
We know that
$a^{3}+b^{3}+c^{3}-3abc=(a+b+c)(a^{2}+b^{2}+c^{2}-ab-bc-ca)$
When a + b + c = 0, we get $a^{3}+b^{3}+c^{3}=3abc$
Here,
$(x-2y)+(2y-3z)+(3z-x)=0$
So using the above identity, we get:
$(x-2y)^{3}+(2y-3z)^{3}+(3z-x)^{3}$
$=3(x-2y)(2y-3z)(3z-x)$
Hence the answer is $3(x-2y)(2y-3z)(3z-x)$.
Question 39
Find the value of
(i) $x^{3}+y^{3}-12xy-64$ when $x+y=-4$
(ii) $x^{3}-8y^{3}-36xy-216$ when $x=2y+6$
Answer:
(i) 0
Solution :-
Here $x+y=-4$
We know that
$a^{3}+b^{3}+c^{3}-3abc=(a+b+c)(a^{2}+b^{2}+c^{2}-ab-bc-ca)$
When a + b + c = 0, we get $a^{3}+b^{3}+c^{3}=3abc$
Here,
$x+y+4=0$
So using the above identity, we get:
$x^{3}+y^{3}+4^{3}=3 \times x \times y\times 4= 12xy \cdots \cdots (i)$
Now
$\\x^{3}+y^{3}-12xy+64=x^{3}+y^{3}+(4)^{3}-12xy\\ 12xy-12xy=0${from equation i}
Hence the answer is 0
(ii) 0
Solution :-
We know that
$a^{3}+b^{3}+c^{3}-3abc=(a+b+c)(a^{2}+b^{2}+c^{2}-ab-bc-ca)$
When a + b + c = 0, we get $a^{3}+b^{3}+c^{3}=3abc$
Here,
$x-2y-6=0$
So using the above identity, we get:
$x^{3}+(-2y)^{3}-(-6)^{3}=3x(-2y)(-6)= 36xy$
$x^{3}+8y^{3}-216=36xy$ ....................(i)
Now
$\\x^{3}-8y^{3}-216-36xy=36xy-36xy =0$
Hence the answer is 0.
Question 40
Answer:
Length (2a+3)
Breadth (2a-1)
Or
Length = (2a-1)
Breadth =(2a+3)
Solution:
Given : Area of rectangle is 4a2+4a-3 …..(1)
Factorize equation 1, we get
=4a2+6a-2a-3
=2a(2a+3)-1(2a+3)
=(2a+3)(2a-1)
We know that area of rectangle is length × breadth
Hence
Length (2a+3)
Breadth (2a-1)
Or
Length = (2a-1)
Breadth =(2a+3)
| NCERT Exemplar Class 9 Maths Solutions Chapter 2 Exercise: 2.4 Page: 23 Total Questions: 9 |
Question 1
Answer:
a = –1
Solution
Let $p(z)=az^{3}+4z^{2}+3z-4\\$
$q(z)=z^{3}-4z+a$
According to remainder theorem when p(x) is divided by (x+a) then the remainder is (-a) .
So when p(z) is divided by z – 3 then remainder is given by p(3).
$p(3)=a \times 3^{3}+ 4 \times 3^{2}+3 \times 3-4\\p(3) =27a+36+9-4\\ p(3)=27a+41 \cdots \cdots (1)$
Similarly
$q(3)= 3^{3}- 4 \times 3+a \\q(3) =27-12+a\\ q(3)=15+a \cdots \cdots (2)$
According to question p(3) = q(3)
$27a+41=15+a \\ 27a-a=15-41\\ 26a=-26\\ a=-\frac{26}{26}\\ a=-1$
Hence the answer is a=-1.
Question 2
Answer:
Value of a is 5
Remainder is 62
Solution
Given: p(x) = x4 – 2x3 + 3x2 – ax + 3a – 7
According to remainder theorem when p(x) is divided by (x+a) then the remainder is p(-a) .
When we divide p(x) by (x + 1) then according to remainder theorem remainder is p(–1)
$\\p(-1)=(-1)^{4}-2(-1)^{3}+3(-1)^{2}-a(-1)+3a-7$
$ =1+2+3+a+3a-7\\ =4a-1$
According to question p(-1)=19
$\Rightarrow 4a-1=19\\ \Rightarrow 4a=19+1\\ \Rightarrow 4a=20$
$ \Rightarrow a=\frac{20}{4}=5\\ \therefore p(x)=x^{4}-2x^{3}+3x^{2}-5x+3(5)-7\\ =x^{4}-2x^{3}+3x^{2}-5x+8$
When we divide p(x) by x + 2 then we get the remainder p(–2)
$p(-2)=(-2)^{4}-2(-2)^{3}+3(-2)^{2}-5(-2)+8\\ =16+16+12+10+8\\ =62$
Hence, value of a is 5.
Remainder is 62.
Question 3
If both x – 2 and $x-\frac{1}{2}$ are factors of px2 + 5x + r, show that p = r.
Answer:
Let $f(x)=px^{2}+5x+r$
We know that if $(x+a)$ is factor of the polynomial f(x), then it always satisfies $f(-a)=0$
(x-2) is a factor of f(x) then f(2) = 0
So,
$p(2)^{2}+5(2)+r=0\\ 4p+10+r=0 \cdots \cdots (1)$ …..(1)
Also $x-\frac{1}{2}$ is a factor of f(x) then $f\left (\frac{1}{2} \right )=0$
$p\left ( \frac{1}{2} \right )^{2}+5\left ( \frac{1}{2} \right )+r=0\\ \frac{p}{4}+\frac{5}{2}+r=0\\ p+10+4r=0 \cdots (2)$
Since (x – 2) and $x-\frac{1}{2}$ are factors of f(x) then equation 1 and 2 are equal
$4p+10+r=9+10+4r\\ 4p-p=4r-r\\ 3p=3r\\ p=r$
Hence proved.
Question 4
Answer:
First of all, factorize x2 – 3x + 2
We get
x2 – 2x-3x + 2
= x(x-2)-1(x-2)
= (x-2)(x-1)
According to remainder theorem when p(x) is divided by (x+a) then the remainder is p(-a) .
So if p(x) is divide by x2 – 3x + 2 then p(2) and p(1) must be zero
p(2)=2(2)4 -5(2)3 +2(2)2 -2+2
=32-40+8
=0
p(1)=2(1)4 -5(1)3 +2(1)2 -1+2
=2-5+2-1+2
=6-6
=0
Hence both p(1) and p(2) are zero therefore p(x) is divisible by x2 – 3x + 2
Hence proved.
Question 5
Simplify: $(2x-5y)^{3}-(2x+5y)^{3}$
Answer:
$-250y^{2}-120x^{2}y$
Solution
We know that
$(a-b)^{3}=a^{3}-b^{3}-3ab(a-b)\\ (a+b)^{3}=a^{3}+b^{3}+3ab(a+b)$
$(2x-5y)^{3}-(2x+5y)^{3}$
$=(18x^{3}-125y^{3}-30xy(2x-5y))-(18x^{3}+125y^{3}+30xy(2x+5y))$
$=-250y^{3}-60x^{2}y+150xy^{2}-60x^{2}y-150xy^{3}$
$=-250y^{3}-120x^{2}y$
Question 6
Multiply: $x^{2}+4y^{2}+z^{2}+2xy+xz-2yz$ by $\left ( -z+x-2y \right )$
Answer:
$x^{3}-8y^{3}-z^{3}-6xyz$
Solution
We have, $\left (x^{2}+4y^{2}+z^{2}+2xy+xz-2yz \right ) \left ( -z+x-2y \right )$
This can be written as:
$\left ( x+(-2y)+(-z) \right )\left ((x)^{2}+(-2y)^{2}+(z)^{2}-(x)(-z)-(-z)(-2y)\right )\cdots \cdots (i)$
We know that
$a^{3}+b^{3}+c^{3}-3abc=(a+b+c)(a^{2}+b^{2}+c^{2}-ab-bc-ca)$
So comparing the RHS of equation (i) with the above identity:
a = x
b = -2y
c = -z
We get:
$\left ( x+(-2y)+(-z) \right )\left ((x)^{2}+(-2y)^{2}+(z)^{2}-(x)(-z)-(-z)(-2y)\right )$
$ =(x)^{3}+(-2y)^{3}+(-z)^{3}-3(x)(-2y)(-z)\\ =x^{3}-8y^{3}-z^{3}-6xyz$
Hence the answer is $x^{3}-8y^{3}-z^{3}-6xyz$.
Question 7
If a, b, c are all non-zero and a + b + c = 0, prove that$\frac{a^{2}}{bc}+\frac{b^{2}}{ca}+\frac{c^{2}}{ab}=3$
Answer:
Given, $\frac{a^{2}}{bc}+\frac{b^{2}}{ca}+\frac{c^{2}}{ab}=3$
L.H.S. $\frac{a^{2}}{bc}+\frac{b^{2}}{ca}+\frac{c^{2}}{ab}$
Taking LCM of denominators, we get
L.H.S $\frac{a^{3}+b^{3}+c^{3}}{abc}$
Now we know that if a + b + c = 0 then $a^{3}+b^{3}+c^{3}=3abc$
Putting the value in the above equation:
L.H.S = $\frac{3abc}{abc}$ = 3 = RHS
Hence proved.
Question 8
If a + b + c = 5 and ab + bc + ca = 10, then prove that a3 + b3 + c3 –3abc = – 25
Answer:
Given: (a + b + c) = 5, ab + bc + ca = 10
To Prove: a3 + b3 + c3 –3abc = – 25
We know that
$(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2(ab+bc+ca)\\ (5)^{2}=a^{2}+b^{2}+c^{2}+2(10)$
$ 25=a^{2}+b^{2}+c^{2}+20\\ 25-20=a^{2}+b^{2}+c^{2}\\ 5=a^{2}+b^{2}+c^{2}$
Now,
$a^{3}+b^{3}+c^{3}-3abc=(a+b+c)(a^{2}+b^{2}+c^{2}-ab-bc-ca)$
Putting the values, we get:
$a^{3}+b^{3}+c^{3}-3abc=5\left [ 5-(ab+bc+ca) \right ]\\ =5(5-10)\\ =5(-5)\\ =-25\\=R.H.S$
Hence proved.
Question 9
prove that: $(a+b+c)^{3}-a^{3}-b^{3}-c^{3}=3(a+b)(b+c)(c+a)$
Answer:
prove that: $(a+b+c)^{3}-a^{3}-b^{3}-c^{3}=3(a+b)(b+c)(c+a)$
Taking left-hand side
$(a+b+c)^{3}-a^{3}-b^{3}-c^{3}=\left ( (a+b+c)^{3}-a^{3} \right )\left ( b^{3}+c^{3} \right )\cdots \cdots \cdots \cdots (i)$
Now using the identity
$x^{3}-y^{3}=(x-y)(x^{2}+y^{2}+xy)$
So,
$\left ( (a+b+c)^{3}-a^{3} \right )=(a+b+c-a)\left [ (a+b+c)^{2}+a^{2}+a(a+b+c) \right ]$
Now using $x^{3}-y^{3}=(x-y)(x^{2}+y^{2}+xy)$
$(b^{3}+c^{3})=\left [ (b+c)(b^{2}+c^{2}-bc) \right ]$
So equation (i) becomes:
$\\(a+b+c)^{3}-a^{3}-b^{3}-c^{3}\\$
$ =(a+b+c-a)\left [ (a+b+c)^{2}+a^{2}+a(a+b+c) \right ]-\left [ (b+c)(b^{2}+c^{2}-bc) \right ]\\ $
$=(b+c)\left [ (a+b+c)^{2}+a^{2}+a(a+b+c)\right ]\left [ (b+c)(b^{2}+c^{2}-bc) \right ]\cdots \cdots \cdots (ii)\\$
Now,
$(a+b+c)^{3}-a^{3}-b^{3}-c^{3}$
$=(b+c)\left [ a^{2}+b^{2}+c^{2}+2ab+2bc+2ca+a^{2}+a^{2}+ab+ac-(b^{2}+c^{2}-bc) \right ]\\ $
$=(b+c)\left [ b^{2}+c^{2}+3a^{2}+3ab+3ac-b^{2}-c^{2}+3bc \right ]\\ $
$=(b+c)\left [ 3(a^{2})+ab+ac+bc \right ]\\ =3(b+c)\left [ a(a+b)+c(a+b) \right ]\\ $
$=3(b+c)\left [ (a+b)(b+c) \right ]\\ =3(a+b)(b+c)(c+a)=R.H.S$
Hence proved.
Topics covered in the NCERT exemplar Class 9 Maths solutions chapter 2 deal with the understanding of:
For students’ ease, Careers360 provides all NCERT Exemplar Class 9 Maths Solutions together. Simply click the links given below.
Given below are the subject-wise exemplar solutions of class 9 NCERT:
Careers360 has put all NCERT Class 9 Maths Solutions in one place to help students. Use the links below to open them.
Here are the subject-wise links for the NCERT solutions of class 9:
Given below are the subject-wise NCERT Notes of class 9:
As students step into a new class, they must first explore the latest syllabus to identify the chapters included. Below are the links to the most recent syllabus and essential reference books.
Frequently Asked Questions (FAQs)
In an equation, two expressions are equated, whereas expression is the mathematical representation of different terms of any variable.
A clear understanding of Polynomials can prepare a student to solve problems based on Algebra, which ranges up to 3% of the whole paper.
A student can always solve the zeros of a polynomial with degree 2. It is known as the quadratic equation. Sometimes we can solve cubic equations or zeros of higher degree polynomials. With the help of a computer, we can draw the graph of a polynomial of any degree and then locate it's zero.
NCERT exemplar Class 9 Maths solutions chapter 2 states that it is the expansion of the nth power of any binomial such as (a+b)^2; this is also known as a binomial theorem.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters