Careers360 Logo
NCERT Exemplar Class 9 Maths Solutions Chapter 10 Circles

NCERT Exemplar Class 9 Maths Solutions Chapter 10 Circles

Edited By Komal Miglani | Updated on Apr 14, 2025 11:18 PM IST

Albert Einstein once said, “The circle is the symbol of eternity. It has no beginning and no end.” In the NCERT Exemplar Class 9 Maths Chapter 10 solutions, students will learn about circles in detail and recall the concepts they have learnt in previous classes, such as radius, diameter, chords, tangents, and arcs. After completing the textbook exercises, students can practice questions from class 9 math NCERT exemplar books to deepen their understanding.

This Story also Contains
  1. NCERT Class 9 Exemplar Solutions for Other Subjects
  2. NCERT Exemplar Class 9 Maths Solutions Chapter-Wise
  3. Importance of NCERT Exemplar Solutions Class 9 Maths Chapter 10
  4. NCERT Solutions for class 9 Mathematics: Chapter wise

Circles are one of the most important and common shapes in our day-to-day lives. NCERT exemplar class 9 maths problems are prepared to test students' higher thinking skills and build strong conceptual understanding, as it is a significant chapter not only in this class but also in higher classes and other competitive exams. These maths exemplar problems class 9 solutions are prepared by experienced Careers360 teachers following the latest CBSE Syllabus. Students can also click on this link to check NCERT book solutions.

Background wave

Exercise: 10.1
Total Questions: 10
Page number: 99-101

Question:1

AD is a diameter of a circle, and AB is a chord. If AD = 34 cm, AB = 30 cm, the distance of AB from the center of the circle is:
(A) 17 cm
(B) 15 cm
(C) 4 cm
(D) 8 cm

Answer:

(D) 8 cm
Solution:
Given AD = 34 cm and AB = 30 cm
In the figure, draw OL AB

AL=LB=12AB=15cm
In Right angled OLA
OA2 = OL2 + AL2
(By Pythagoras' Theorem)
(17)2 = OL2 + (15)2
OL2 = 289 – 225 = 64
OL = 8 cm
(Taking positive square root, because length is always positive)
Hence, the distance of the chord from the centre is 8 cm.
Therefore, option (D) is correct.

Question:2

In Fig. 10.3, if OA = 5 cm, AB = 8 cm and OD is perpendicular to AB, then CD is equal to:

Fig. 10.3
(A) 2 cm
(B) 3 cm
(C) 4 cm
(D) 5 cm

Answer:

(A) 2 cm
Solution:
We know that the perpendicular from the centre of a circle to a chord bisects the chord.

AC=CB=12AB=12×8=4cm
Given OA = 5 cm
Using Pythagoras theorem,
AO2=AC2+OC2
(5)2=(4)2+OC2
25=16+OC2
OC2=2516=9
OC=3 cm
(Taking positive square root, because length is always positive)
OA = OD (same because both are radius)
OD = 5 cm
CD = OD – OC = 5 – 3 = 2 cm
Therefore, option (A) is correct.

Question:3

If AB = 12 cm, BC = 16 cm and AB is perpendicular to BC, then the radius of the circle passing through the points A, B and C is:
(A) 6 cm
(B) 8 cm
(C) 10 cm
(D) 12 cm

Answer:

(C) 10 cm
Solution:
Given: AB = 12 cm, BC = 16 cm and AB is perpendicular to BC

ABBC
We know that every angle inscribed in a semicircle is a right angle.
So AOC is the diameter of this circle with O as the centre.
Now, applying Pythagoras theorem
(Hypotenuse)2= (Perpendicular2 + (Base)2
AC2=AB2+BC2
AC2=122+162
AC2=144+256
AC2=400
AC=400
AC=20 cm
As AC is the diameter, Radius
=AC2=202=10cm
Therefore, option (C) is correct.

Question:4

In Fig.10.4, if ABC=20, then AOC is equal to:

(A)20(B)40(C)60(D)10

Answer:

(B)

Solution:

Given,ABC=20

We know that,

The angle subtended at the center by an arc is twice the angle subtended by it at any part of the circle.

Hence,

AOC=2ABC=2×20=40

Therefore, option (B) is correct.

Question:5

In Fig.10.5, if AOB is a diameter of the circle and AC = BC, then CAB is equal to:

(A) 30º
(B) 60º
(C) 90º
(D) 45º

Answer:

(D)
Solution:
We know that the diameter subtends a right angle to the circle.
BCA=90(i)
Now,
AC = BC
ABC=CAB(ii) (Angles opposite to equal sides are equal in a triangle)
In ABC,
CAB+ABC+BCA=180 (By angle sum property of a triangle)
CAB+CAB+90=180
2CAB=18090
CAB=902
CAB=45
Therefore, option (D) is correct.

Question:6

In Fig. 10.6, if OAB=40 , then ACB is equal to:

Fig. 10.6
(A) 50º
(B) 40º
(C) 60º
(D) 70°

Answer:

(A) 50º
Solution:
AO = OB (Radius of circle)
OBA=OAB=40 (angles opposite to equal sides in a triangle are equal)
In OAB
40+AOB+40=180 (angle sum property of a triangle)
AOB=100
We know that
2ACB=AOB (Angle subtended at the centre by an arc is twice the angle subtended by it at any part of the circle)
ACB=1002
ACB=50
Hence, option A is the correct answer.

Question:7

In Fig. 10.7, if DAB=60,ABD=50, then ACB is equal to:

Fig. 10.7
(A) 60º
(B) 50º
(C) 70º
(D) 80º

Answer:

(C) 70°
Solution:
In ABD,
ABD+ADB+DAB=180
(Angle sum property of triangle)

50o+ADB+60o=180o
ADB=70o
Now, ACB=ADB=70
(Angles in the same segment are equal)
ADB=70
ACB=70
Therefore, option (C) is correct.

Question:8

ABCD is a cyclic quadrilateral such that AB is a diameter of the circle circumscribing it and ADC = 140º, then BAC is equal to:
(A) 80º
(B) 50º
(C) 40º
(D) 30º

Answer:

(B) 50°
Solution:
Given, ABCD is a cyclic Quadrilateral and ADC = 140°
We know that the sum of the opposite angles in a cyclic quadrilateral is 180°.

ADC + ABC = 180°
140° + ABC = 180°
ABC = 180° – 140°
ABC = 40°
Since ACB is an angle in semi circle
ACB = 90°
In ABC
BAC + ACB + ABC = 180° (angle sum property of a triangle)
BAC + 90° + 40° = 180°
BAC = 180° – 130° = 50°
Therefore, option (B) is correct.

Question:9

In Fig. 10.8, BC is a diameter of the circle and BAO = 60º. Then ADC is equal to:

Fig. 10.8
(A) 30º
(B) 45º
(C) 60º
(D) 120º

Answer:

(C)
Solution:
In AOB, AO = OB (Radius)
ABO = BAO [Angle opposite to equal sides are equal]

ABO = 60° [ BAO = 60° Given]
In AOB,
ABO + OAB =AOC (exterior angle is equal to the sum of interior opposite angles)
60° + 60° = 120° =AOC
ADC=12AOC
(The angle subtended at the centre by an arc is twice the angle subtended by it at any part of the circle)
ADC=12(120)
ADC = 60°
Therefore, option (C) is correct.

Question:10

In Fig. 10.9, AOB = 90º and ABC = 30º, then CAO is equal to:

(A) 30º
(B) 45º
(C) 90º
(D) 60º

Answer:

(D)
Solution:

In AOB,
OAB +ABO + BOA = 180° … (i) (angle sum property of Triangle)
OA = OB = radius
Angles opposite to equal sides are equal
OAB = ABO
Equation (i) becomes
OAB + OAB + 90° = 180°
2OAB = 180° – 90°
OAB = 45° …(ii)
In ACB,
ACB + CBA + CAB = 180° (angle sum property of Triangle)
ACB=12BOA=45
(The angle subtended at the centre by an arc is twice the angle subtended by it at any part of the circle)
45° + 30° + CAB = 180°
CAB = 180° – 75° = 105°
CAO + OAB = 105°
CAO + 45° = 105°
CAO = 105° – 45° = 60°
Therefore, option (D) is correct.
Exercise: 10.2
Total Questions: 10
Page number: 101-102

Question:1

Write True or False and justify your answer in each of the following: Two chords AB and CD of a circle are each at distances 4 cm from the centre. Then AB = CD.

Answer:

True
Solution:
Given,
AB & CD are chords of a circle, and they are equidistant (4 cm) from the centre O.

To find whether AB = CD
As, the two chords AB and CD are each at a distance 4 cm from the centre, this distance will be a perpendicular distance.
Hence OM AB & ON CD
OM = ON = 4 cm
OM bisects AB & ON bisects CD
i.e., AM=12AB and DN=12DC
OMA = OND = 90°
OA = OD (Both are radius)
AOM DON (RHS Congruence)
AM = DN (by CPCT)
2AM = 2DN (Multiplying both sides by 2)
AB = DC
Therefore, the given statement is true.

Question:2

Write True or False and justify your answer in each of the following: Two chords AB and AC of a circle with centre O are on the opposite sides of OA. Then OAB=OAC.

Answer:

False
Solution:
Given:

AB & AC are chords of a circle with centre O.
They are given to be at the opposite sides of OA.
To find out
If OAB =OAC
Join OB and OC
Consider AOC & AOB we have
OB = OC (Radii of the same circle)
AO = AO (common)
But it is not sure whether AB = AC or not.
Also, we do not have any other condition to prove that the triangles are congruent.
OAB OAC
Therefore, the given statement is false.

Question:3

Write True or False and justify your answer in each of the following: Two congruent circles with centres O and O intersect at two points A and B. Then AOB=AOB.

Answer:

True
Solution:

Two congruent circles with centres O and O intersecting at two points A and B are shown in the above figure.
These are congruent circles, which means that their radius is the same.
If the figure, we have joined the centres O and O
In OAOandOBO
OA=OA (Radius)
So, AOO=AOO
(Angles opposite to equal sides in a triangle are equal) …(i)
Similarly, in OBO
OB=OB (Radius)
BOO=BOO (angles opposite to equal sides in a triangle are equal) …(ii)
Adding (i) and (ii)
AOO+BOO=AOO+BOO
AOB=AOB
Therefore, the given statement is true.

We can draw a circle from one given point.
For example, from point A in the figure, we can draw infinite circles passing through that point

We can draw a circle from two given points as well, taking those two points as the diameter or any chord of that circle. For example, from points A and B, we can draw infinite circles, as shown below:

But when we talk about three collinear points, it means that these three points lie on a straight line.
So, it is not possible to draw a circle passing through three points on a straight line.

Hence, the given statement is False.

Question:5

Write True or False and justify your answer in each of the following: A circle of radius 3 cm can be drawn through two points A, B such that AB = 6 cm.

Answer:

True
Solution:
Yes, we can draw a circle of radius 3 cm.
Points A & B are such that AB = 6 cm.
So AB will become the diameter of the required circle as AB = 2 (Radius)
Hence, 2 × 3 = 6 cm

Therefore, the given statement is true.

Question:6

Write True or False and justify your answer in each of the following: If AOB is a diameter of a circle and C is a point on the circle, then AC2 + BC2 = AB2.

Answer:

True
Solution:

Given: AOB is a diameter of a circle
AOB is a straight line
AOB = 180°
Now, the angle subtended at the centre by an arc is twice the angle subtended by it at any part of the circle
ACB=(12)AOB
ACB=(12)180
ACB=90
ACB is a Right angle.
So, ABC follows Pythagoras theorem,
i.e., AB2 = AC2 + BC2
Therefore, the given statement is true.

Question:7

Write True or False and justify your answer in each of the following: ABCD is a cyclic quadrilateral such that A=90,B=70,C=95andD=105.

Answer:

False.
Solution:
In a cyclic Quadrilateral, the sum of opposite pairs of the angles in the given quadrilateral must be equal to 180°.
Here A+C=90+95=185
B+D=70+105=175
Hence, it is not a cyclic Quadrilateral because the sum of the measures of opposite angles is not equal to 180°
Therefore, the given statement is false.

Question:8

Write True or False and justify your answer in each of the following: If A, B, C, D are four points such that BAC=30andBDC=60, then D is the centre of the circle through A, B and C.

Answer:

True
Solution:
Given, ∠BAC = 30° and ∠BDC = 60°

We know that,
The angle subtended at the centre by an arc is twice the angle subtended by it at any part of the circle.
Considering BC,
At centre, BDC=60
At any other point on the circle,
BAC=30=12(60)
Hence, the above rule is justified.
Therefore, the given statement is true.

Question:9

Write True or False and justify your answer in each of the following: If A, B, C and D are four points such that BAC=45 and BDC=45, then A, B, C, and D are concyclic.

Answer:

True
Solution:
Definition of concyclic points: The points that lie on the same circle.
We know that angles in the same segment of a circle are equal
Since BAC=45=BDC
We know that these angles are in the same segment of a circle.
This can be represented as shown below:

BC is the chord of the circle, and hence A, B, C & D are concyclic.
Therefore, the given statement is true.

Question:10

Write True or False and justify your answer in each of the following: In Fig. 10.10, if AOB is a diameter and ADC = 120°, then CAB = 30°.

Answer:

True
Solution:
Given, AOB is a diameter and ADC = 120°
Join CA & CB

Since ADCB is a cyclic quadrilateral
ADC + CBA = 180° (Sum of opposite angles of a cyclic quadrilateral is 180°)
120° + CBA = 180°
CBA = 60°
In ACB,
CAB + CBA +ACB = 180° (angle sum property of a triangle)
ACB = 90° (Since, ACB is an angle in a semi-circle)
CAB + 60° + 90° = 180°
CAB = 180° – 150° = 30°
Therefore, the given statement is true.
Exercise: 10.3
Total Questions: 20
Page number: 103-105

Question:1

If arcs AXB and CYD of a circle are congruent, find the ratio of AB and CD.

Answer:

Given that arcs AXB and CYD are congruent arcs of a circle
To find: the ratio AB:CD
Join AB and CD

It is given that AXB and CYD are congruent arcs of a circle
Their respective chords will be equal.
So, AB = CD
Hence, the ratio of AB and CD is 1 : 1.

Question:2

If the perpendicular bisector of a chord AB of a circle PXAQBY intersects the circle at P and Q, prove that arc PXA ≅ Arc PYB.

Answer:

Given that the perpendicular bisector of a chord AB of a circle PXAQBY intersects the circle at P and Q
Let AB be the chord having its centre at O.
Let PQ be the perpendicular bisector of the chord AB, which intersects AB at M and it is passes through the centre O.
Join AP and BP.

In APM and BPM
AM = MB (PM is the perpendicular bisector of AB)
PM = PM (Common)
PMA=PMB (90° each)
APMBPM (SAS congruence)
PA = PB (by CPCT)
If 2 chords of a circle are equal, then the corresponding arcs are congruent
Hence, arc PXA arc PYB.
Hence, proved.

Question:3

A, B and C are three points on a circle. Prove that the perpendicular bisectors of AB, BC and CA are concurrent

Answer:

Given: A, B, and C are 3 points on a circle
Construction Draw a perpendicular dissector of AB and AC, and they meet at a point O. Then join OA, OB and OC.

To prove: perpendicular bisector of AB, BC and CA are concurrent.
Proof: In OEA and OEB
AE = BE [OL is ^ar bisector of AB]
OE = OE [Common side]
AEO = BEO [each 90°]
OEA DEB [By SAS congruence Rule]
OA = OC
Similarly, OFA OFC [by SAS congruence]
OB = OC = OA = t [Say]
SO, we draw a perpendicular from O to the BC on join
In OMB and OMC
OB = OC [Proved Above]
OM = OM [Common side]
OMB = OMC [90° each]
OMB OMC [by RHS congruence rule]
BN = MC [by corresponding parts of congruent triangle]
Hence, OM is the perpendicular bisector of side BC.
Hence, OL, ON, and OM are concernment.
Hence proved.

Question:4

AB and AC are two equal chords of a circle. Prove that the bisector of the angle BAC passes through the centre of the circle.

Answer:

Given: AB and AC are two equal chords of the circle.
Prove: The Centre lies on the bisector of the BAC.
Construction: Join BC

Proof: In AOB and AOC
AB = AC (given)
BAO = CAO (given)
AO = AO (common)
AOB AOC (by SAS congruence)
BO = CO (CPCT) …(i)
and AOB = AOC (CPCT)
AOB + AOC = 180° (Linear pair)
2 AOB = 180° (APB = APC)
AOB = 90°
AO is a perpendicular bisector of the chord BC, and BC is the diameter as BO = CO
Hence, AO passes through the centre of the circle, and O is the centre of the circle.
Hence, proved.

Question:5

If a line segment joining mid-points of two chords of a circle passes through the centre of the circle, prove that the two chords are parallel.

Answer:

Given: M and N are midpoints of chords AB and CD, respectively.
MN passes through the centre of the circle O

To prove: Chord AB and Chord CD are parallel
Construction: Join B and C.
Proof:
M = N = 90° (Segment joining the midpoint of the chord to the centre)
Consider, DOMB and DONC
BOM = CON (Vertically opposite angles)
OB = OC (Radii of the same circle)
OMB = ONC (90° each)
OMB ONC (AAS congruence)
OBM = OCN (CPCT)
ABC = BCD
We can see that ABC and BCD are alternate angles of the chords AB and CD with BC as transversal.
Hence, chord AB || chord CD.

Question:6

ABCD is such a quadrilateral such that A is the centre of the circle passing through B, C, and D. Prove that CBD+CDB=12BAD.

Answer:

Given: A circle passing through points B, C, D and ABCD is a quadrilateral having its centre at A.
To prove: CBD+CDB=12BAD
Construction: Join AC & BD

Proof:
We know that the angle subtended at the centre by an arc is twice the angle subtended by it at any part of the circle
Arc DC subtends DAC at the centre and DBC at a point B in the remaining part of the circle.
DAC = 2CBD … (i)
Similarly, arc BC subtends ÐBAC at the centre and ÐBDC at a point D in the remaining part of the circle.
CAB = 2 CDB … (ii)
On adding equations (i) and (ii)
We get
DAC + CAB = 2 CBD + 2 CDB
DAB = 2 (CBD + CDB)
CBD+CDB=12BAD
Hence proved.

Question:7

O is the circumcentre of the triangle ABC, and D is the mid-point of the base BC. Prove that BOD = A.

Answer:

Given: O is the circumcentre of the triangle ABC and D is the mid-point of the base BC.
OD is perpendicular to BC.

In the right triangles OBD and OCD.
We have OB = OC (Radii of the same circle)
OD = OD (common)
ODB = ODC (90o)
OBD OCD (R.H.S. congruence)
BOD = COD (CPCT)
BOD=12BOC … (1)
Also, the angle subtended at the centre by an arc is twice the angle subtended by it at any part of the circle. Consider arc BC,
BAC=12BOC … (2)
From (1) and (2), we have
BOD = BAC
Hence Proved.

Question:8

On a common hypotenuse AB, two right triangles ACB and ADB are situated on opposite sides. Prove that BAC = BDC.

Answer:

Given that on a common hypotenuse AB, two right triangles ACB and ADB are situated on opposite sides.
Let ACB and ADB be two right-angled triangles with common hypotenuse AB.
To prove: BAC = BDC

Proof:
Let O be the mid-point of AB
Then, OA = OB = OC = OD
Mid-point of the hypotenuse of a right triangle is equidistant from both vertices.
We can draw a circle passing through the points A, B, C and D with O as the centre and radius equal to OA.
We know that angles in the same segment of a circle are equal
From the figure, BAC and BDC are angles of the same segment BC.
BAC = BDC
Hence proved.

Question:9

Two chords AB and AC of a circle subtend angles equal to 90º and 150º, respectively, at the centre. Find BAC if AB and AC lie on the opposite sides of the centre.

Answer:

60°
Solution:
Given: Two chords AB and AC of a circle subtend angles equal to 90º and 150º, respectively, at the centre.
AB and AC lie on the opposite sides of the centre
In BOA
OB = OA (Both equal to radius)
OAB = OBA … (i) (angles opposite to equal sides in a triangle are equal)

In OAB,
OBA + BAO + AOB = 180° (angle sum property of a triangle)
OAB + OAB + 90° = 180° [From equation (1)]
2OAB = 180° – 90°
OAB = 902= 45°
Now in AOC, AO = OC (Both equal to radius)
OCA = OAC … (ii) (angles opposite to equal sides in a triangle are equal)
Also,
AOC + OAC + OCA = 180° (angle sum property of a triangle)
150° + 2 OAC = 180°
2OAC = 180° – 150°
2OAC = 30°
OAC = 15°
BAC = OAB +OAC = 45° + 15° = 60°
Hence, the answer is 60°.

Question:10

If BM and CN are the perpendiculars drawn on the sides AC and AB of the triangle ABC, prove that the points B, C, M and N are concyclic.

Answer:

Given: In DABC, MB AC and CN AB.
To Prove: Points B, C, M and N are Concyclic (lie on the same circle)

Proof:
Assume BC is the diameter of a circle.
So, BC will subtend an angle of 90° at any point on the circle.
Now, MB AC and CN AB.
So, these angles lie on the circle, and the points N and M lie on this circle.
Hence, BCMN is concyclic.
Hence Proved.

Question:11

If a line is drawn parallel to the base of an isosceles triangle to intersect its equal sides, prove that the quadrilateral so formed is cyclic.

Answer:

Given: A line is drawn parallel to the base of an isosceles triangle to intersect its equal sides
Let PQR be an isosceles triangle such that PR = PQ
Also, RQ || MN
To prove: Quadrilateral MNQR is a cyclic quadrilateral.
Proof:

In DPQR
PR = PQ [Given]
PQR = PRQ … (1) (angles opposite to equal sides in a triangle are equal)
Now, RQ || MN and PQ is a transversal
PNM = PQR … (2) (Corresponding angles)
On adding MNQ to both sides in equation (2), we get:
PNM + MNQ = PQR + MNQ
180° = PQR + MNQ (PNM + MNQ forms a linear pair)
MNQ + PRQ = 180° (From equation (1))
Hence, MNRQ is a cyclic quadrilateral, as the sum of opposite angles is 180o
Hence proved.

Question:12

If a pair of opposite sides of a cyclic quadrilateral are equal, prove that its diagonals are also equal.

Answer:

Given: A pair of opposite sides of a cyclic quadrilateral are equal.
Let ABCD be a cyclic quadrilateral with AD = BC

To Prove: Diagonals are equal, i.e., AC = BD
Proof:
We know that angles in the same segment are equal.
Consider segment CD, DAC = DBC
So we can write, DAO = CBO …(i)
Consider segment AB, ADB = ACD
So we can write, ADO = BCO…(ii)
In AOD & BOC,
DAO = CBO (from (i))
ADO = BCO (from (ii))
AOD = BOC (vertically opposite angles)
AOD BOC [AAA congruence rule]
AO = BO (CPCT)…(iii)
DO = CO (CPCT)…(iv)
Adding (iii) and (iv),
AO + OC = BO + OD
Hence, AC = BD
Hence proved.

Question:13

The circumcenter of the triangle ABC is O. Prove that OBC + BAC = 90º.

Answer:

Given that the circumcenter of the triangle ABC is O. So O will be the radius of the circle passing through the points A, B, C

Now, OB = OC = radius of the circle
We know that angles opposite to equal sides in a triangle are equal
OBC = OCB = Let x
In DOBC,
x + x + BOC = 180° (angle sum property of a triangle)
2x + BOC = 180°
BOC = 180° – 2x
Now, the angle subtended at the centre by an arc is twice the angle subtended by it at any part of the circle
So, considering the arc BC,
BOC = 2 BAC
Putting the value of BOC
180° – 2x = 2 BAC
90° – x = BAC
We have to find OBC + BAC
ÐBAC +OBC = (90° – x) + x
BAC + OBC = 90°
Hence proved.

Question:14

A chord of a circle is equal to its radius. Find the angle subtended by this chord at a point in a major segment

Answer:

30o
Solution:
Given that a chord of a circle is equal to its radius
Let the chord be AB, as shown in the figure.
AB = Radius of Circle.

Now, AB = OA = OB
In OAB,
AB = OA = OB = radius
Hence, it is an equilateral triangle. So all angles are 60o
OAB =ABO = BOA = 60o
Let point D be a point on the major arc.
Considering the arc AB, we know that the angle subtended at the centre by an arc is twice the angle subtended by it at any part of the circle
So,
ADB=12AOB=12(60)=30

Question:16

In Fig.10.14, ACB = 40º. Find OAB.

Answer:

50°
Solution:
Given, ACB = 40°
As we know, the angle subtended at the centre by an arc is twice the angle subtended by it at any part of the circle
AOB=2ACB
ACB=AOB2
40=12AOB
AOB=80
In AOB, AO = BO (Both are the radius of the same circle)
OBA = OAB (angles opposite to equal sides in a triangle are equal)
As we know, the sum of all three angles in a triangle AOB is 180°.
In AOB
AOB+OBA+OAB=180
800+OAB+OAB=180
2OAB=18080
2OAB=1000
OAB=1002=50

Question:17

A quadrilateral ABCD is inscribed in a circle such that AB is the diameter and ADC = 130º. Find BAC.

Answer:

40°
Solution:
Given: Quadrilateral ABCD inscribed in a circle
ADC = 130º
Quadrilateral ABCD is a cyclic Quadrilateral.
Sum of opposite angles in a cyclic quadrilateral is 180°.

ADC + ABC = 180°
130° + ABC = 180°
ABC = 180° – 130°
ABC = 50° …(i)
AB is the diameter of a circle (given)
ACB = 90° (angle in a semicircle is 90º)
In ABC,
ABC + ACB + BAC = 180°(angle sum property of a triangle)
Putting all the values,
50° + 90° + BAC = 180°
BAC = 180° –50° – 90°
BAC = 40°

Question:18

Two circles with centres O and O′ intersect at two points A and B. A line PQ is drawn parallel to OO′ through A(or B) intersecting the circles at P and Q. Prove that PQ = 2 OO′.

Answer:

Two circles with centres O and O′ intersect at two points A and B.
PQ || OO'

To Prove that: PQ = 2OO'
Proof:
Draw OM perpendicular to PB and O'N perpendicular to BQ
From the figure, we have:
OP = OB (radius of same circle)
O'B = O'Q (radius of the same circle)
In OPB,
BM = MP … (i) (perpendicular from the centre of the circle bisects the chord)
Similarly in O'BQ,
BN = NQ … (ii) (perpendicular from the centre of the circle bisects the chord)
Adding (i) and (ii),
BM + BN = PM + NQ
Adding BM + BN to both sides,
BM + BN + BM + BN = BM + PM + NQ + BN.
2BM + 2BN = PQ
2(BM + BN) = PQ … (iii)
OO' = MN (As OO' NM is a rectangle)
OO' = BM + BN ... (iv)
Using equation (iv) in (iii)
2 OO'= PQ
Hence proved.

Question:19

In Fig.10.15, AOB is a diameter of the circle, and C, D, E are any three points on the semi-circle. Find the value of ACD + BED.

Answer:

270°
Solution:
Join AE

ACDE is a cyclic quadrilateral, and the sum of opposite angles in a cyclic quadrilateral is 180°
ACD + AED = 180° … (i)
Now, we know that the angle in a semi-circle is 90°
So, AEB = 90° … (ii)
Adding equations (i) & (ii), we get,
ACD + AED + AEB = 180° + 90°
ACD + BED = 270°
Hence the value of ACD + BED is 270°

Question:20

In Fig. 10.16, OAB = 30º and OCB = 57º. Find BOC and AOC.

Answer:

AOC = 54° and BOC = 66°
Solution:
Given: OAB = 30°, OCB = 57°C
In OAB,
AO = BO (radius of the same circle)
OAB = OBA = 30° (Angles opposite to equal sides are equal)
In AOB, the sum of all angles is 180°.
OAB + OBA + AOB = 180°.
30° + 30° + AOB = 180°
AOB = 180° – 30° – 30°
AOB = 120° … (i)
Now, in OBC,
OC = OB (radius of the same circle)
OBC = OCB = 57° (Angles Opposite to equal sides are equal).
In OBC, the sum of all angles is 180°.
OBC + OCB + BOC = 180°
57° + 57° + BOC = 180°
BOC = 180° – 57° – 57°
BOC = 66° … (ii)
Now, from equation (i), we have,
AOB = 120°.
AOC + COB = 120°
AOC + 66° = 120° (from ii)
AOC = 120° – 66°
AOC = 54° and BOC = 66°.
Exercise: 10.4
Total Questions: 14
Page number: 106-107

Question:1

If two equal chords of a circle intersect, prove that the parts of one chord are separately equal to the parts of the other chord.

Answer:

Given: Two equal chords of a circle intersect
Let us construct a circle with centre O.
Its two equal chords are AB and CD, which intersect at E, as shown in the figure.
To prove: AE = DE and CE = BE
Proof:
Draw OM AB and ON CD
Join OE
In OME and ONE,
OM = ON (Equals chords of a circle are equidistant from the centre.)
OE = OE (Common)
OME =ONE (90o)
OME ONE (RHS congruence)
ME = NE (C.P.C.T.) ..…(i)
Now, as AB = CD
12AB=12CD
AM = DN..…(ii)
Adding (i) and (ii)
AM + ME = DN + NE
⇒ AE = DE
Also, AB – AE = CD – DE (AB = CD)
BE = CE
Hence proved

Question:2

If non-parallel sides of a trapezium are equal, prove that it is cyclic.

Answer:

Given: non-parallel sides of a trapezium are equal
Let ABCD be a trapezium where AB || CD & non-parallel sides are equal
i.e., AD = BC

To Prove: ABCD is a cyclic quadrilateral
Proof:
Draw DE AB
And CF AB
In ADE & BCF
AED = BFC (Both are 90°)
AD = BC (Given)
DE = CF (perpendicular distance between parallel sides will remain the same)
ADE BCF (RHS congruence rule)
SoDAE = CBF (CPCT)
i.e. A = B ....…(i)
Now, AB || DC, AD is a transversal line
A + D = 180° [Interior angles on the same side of the transversal are supplementary]
B + D = 180° [From (i)]
So, in ABCD, the sum of one pair of opposite angles is 180°.
Therefore, ABCD is a cyclic quadrilateral.
Hence Proved.

Question:3

If P, Q and R are the midpoints of the sides BC, CA and AB of a triangle and AD is the perpendicular from A on BC, prove that P, Q, R and D are concyclic.

Answer:

In ABC, P, Q and R are the midpoints of the sides BC, CA and AB, respectively
Also AD BC

To prove: P, Q, R and D are concyclic
Constructions: Join PR, RD, QD
Proof:
By midpoint theorem
RP || AC
QP || AB
So, ARPQ is a parallelogram
RAQ = RPQ … (1) (opposite angles of a ||gm are equal)
Now, in right-angled ADB, R is the midpoint of AB.
The median on the hypotenuse of a right triangle divides the triangle into two isosceles triangles because the median equals one-half the hypotenuse.
RD = RA
RAD = RDA … (2) (angles opposite to equal sides in a triangle are equal)
Similarly, inADQ
DAQ = ADQ … (3)
Adding (2) and (3),
RAD + DAQ = RDA +ADQ
RAQ = vRDQ
From (1), RAQ =RPQ
Hence, we can see if we consider arc RQ of a circle then RAQ andRPQ are the angles subtended by it on a circle as these angles are equal.
So, P, Q, R and D are concyclic.
Hence proved

Question:4

ABCD is a parallelogram. A circle through A, B is so drawn that it intersects AD at P and BC at Q. Prove that P, Q, C and D are concyclic.

Answer:

Given: ABCD is a parallelogram. A circle whose centre O passes through A, B has intersected AD at P and BC at Q.
To Prove: Points P, Q, C and D are concyclic.

Proof:
Join PQ
We know that the sum of opposite angles of a cyclic quadrilateral is 180°
A + PQB = 180°
Also, PQB + PQC = 180° (linear pair)
Comparing the above two equations, we get
PQC = A
Let PQC = 1
Then, A = 1
Also, A = C (Opposite angles of a parallelogram are equal)
So, 1 = C
But, C + D = 180° (As ABCD is a parallelogram)
Hence, 1 + D = 180°
Therefore, P, Q, C and D are concyclic
Hence proved

Question:5

Prove that angle bisector of any angle of a triangle and the perpendicular bisector of the opposite side if intersect, they will intersect on the circumcircle of the triangle.

Answer:

Given: Angle bisector of any angle of a triangle and the perpendicular bisector of the opposite side intersect on the circumcircle of the triangle.

Consider DABC
Let the angle bisector of angle A intersect the circumcircle of triangle ABC at point D.
Join DC and DB
BCD = BAD (Angle in the same segment are equal)
BCD = BAD = 12 A … (1) (AD is bisector of ÐCAB)
Similarly,
DAC = DBC (Angle in the same segment are equal)
DBC =DAC = 12 ÐA … (2) (AD is bisector of ÐCAB)
From (1) and (2), we have
DBC =BCD
BD = DC (sides opposite to equal angles in a triangle are equal)
Hence, D also lies on the perpendicular bisector of BC.
Hence, proved

Question:6

If two chords AB and CD of a circle AYDZBWCX intersect at right angles (see Fig.10.18), prove that arc CXA + arc DZB = arc AYD + arc BWC = a semicircle.

Answer:

Given: In circle AYDZBWCX, two chords AB and CD intersect at right angles
To Prove: Arc CXA + Arc DZB = arc AYD + arc BWC = Semicircle
Proof:
Draw Diameter EF || CD having centre M
Since CD || EF
Arc EC = DF … (i)
Arc ECXA = arc EWB (Symmetrical about diameter of circle)
Arc AF = arc FB … (ii) (Symmetrical about the diameter of the circle)
We know that arc ECXAYDF = Semicircle

Arc EA + arc AF = Semicircle
arc EC + arc CXA + arc FB = semicircle (from ii, Arc AF = arc FB)
arc DF + arc CXA + arc FB = semicircle (from i, Arc EC = arc DF)
=> arc DF + arc FB + arc CXA = semicircle
Arc DZB + arc CXA = semicircle. (First statement is proved)
Now, we know that a circle is divided into two semi-circles.
Therefore, the remaining portion of the circle (other than, Arc DZB + arc CXA) is also equal to a semi-circle
So, Arc AYD + arc BWC = semicircle
So we get: Arc CXA + Arc DZB = arc AYD + arc BWC = Semicircle
Hence proved

Question:7

If ABC is an equilateral triangle inscribed in a circle and P be any point on the minor arc BC which does not coincide with B or C, prove that PA is angle bisector of BPC.

Answer:

Let DABC be an equilateral triangle inscribed in a circle with centre O.
So all sides of this equilateral triangle are equal by definition
AB = AC = BC

Now, we know that equal chords subtend and equal angles at the centre. So,
AOB = AOC =BOC … (i)
Consider the arc AB, AOB and APB are the angles subtended by AB at the centre and at a remaining part of the circle
Therefore
APB=12AOB … (ii)
Similarly,
APC=12AOC … (iii)
Using (i), (ii) and (iii), we have
APB = APC
Hence, PA is the angle bisector of BPC.
Hence proved

Question:8

In Fig. 10.19, AB and CD are two chords of a circle intersecting each other at point E. Prove that AEC =12 (Angle subtended by arc CXA at the centre + angle subtended by arc DYB at the centre).

Answer:

Given: AB and CD are two chords of a circle intersecting each other at point E
To prove:
AEC =0.5 (Angle subtended by arc CXA at centre + angle subtended by arc DYB at the centre)
AEC=0.5(AOC+DOB)

Proof:
Extend the lines DO to L and BO to point X on the circle. Join AC.
Now, we know that the angle subtended at the centre by an arc is twice the angle subtended by it at any part of the circle.
For arc LC,
1 = 26 … (i)
For arc XA,
3 = 27 … (ii)
Consider OAC
OC = OA (Radius of the same circle)
OCA = 4 … (iii) (angles opposite to equal sides in a triangle are equal)
AOC + OCA + 4 = 180° (angle sum property of a triangle)
AOC + 4 + 4 = 180°
AOC = 180° – 2 4 …(iv)
Consider DCO
OD = OC (Radius of the same circle)
OCD = 6 … (v) (angles opposite to equal sides in a triangle are equal)
Consider AEC
AEC + ECA + CAE = 180° (angle sum property of a triangle)
AEC = 180° – (ECA + CAE)
AEC = 180° – [(ECO + OCA) + (CAO + OAE)]
AEC = 180° – (6 + 4 + 4 + 5) [from (iii) and (v)]
AEC = 180° – (24 + 5 + 6)
AEC = 180° – 24 - 5 - 6
From (iv), AOC = 180° – 2 4
AEC = AOC - 5 - 6
Also, AOC = 1 + 2 + 3
So, AEC = 1 + 2 + 3 - 5 - 6
In AOB,
OA = OB (Radius of the same circle)
5 =7 (angles opposite to equal sides in a triangle are equal)
AEC = 1 +2 + 3 - 7 - 6
From (ii), 3 = 27
AEC = 1 + 2 + 3 - 0.5<3 - 6
From (i), 1 = 26
AEC = 1 + 2 + 3 - 0.53 - 0.51
AEC = 0.51 + 0.53 + 2
AEC=121+123+122+122
2 = 8 (vertically opposite angles)
AEC=121+123+122+128
AEC = 0.5 (1 + 2 + 3 + 8)
AEC=0.5(AOC+DOB)
AEC =0.5 (Angle subtended by arc CXA at centre + angle subtended by arc DYB at the centre)
Hence proved.

Question:9

If bisectors of opposite angles of a cyclic quadrilateral ABCD intersect the circle, circumscribing it at the points P and Q, prove that PQ is a diameter of the circle.

Answer:

Given: Bisectors of opposite angles of a cyclic quadrilateral ABCD intersect the circle, circumscribing it at the points P and Q
Let ABCD be a cyclic quadrilateral
DP and QB are the bisectors of ADC and ABC, respectively.
To Prove: PQ is the diameter of the circle

Proof:
Joint QD and QC.
As DP and QB are the bisectors of ADC and ABC, respectively.
1=12CDAand2=12CBA
Since ABCD is a cyclic quadrilateral, the sum of opposite angles is 180°.
CDA +CBA = 180°
Divide both sides by 2,
12CDA+12CBA=90
1 + 2 = 90° … (i)
Now, consider the segment QC. We know that angles in the same segment of a circle are equal. So,
2 = 3
Putting the value in equation (i),
1 + 3 = 90°
POQ = 90°
We know that the angle in a semicircle is 90°
Hence PQ is a diameter of a circle.

Question:10

A circle has a radius of 2 cm. It is divided into two segments by a chord of length 2 cm. Prove that the angle subtended by the chord at a point in the major segment is 45º.

Answer:

A circle with radius 2 cm is divided into two segments by a chord of length 2 cm.
We have drawn a circle having centre O
Let AB = 2 cm be the required chord which divides the circle into two segments.

To Prove: The angle subtended by the chord at a point in the major segment is 45º.
This means we have to prove that APB = 45°
We have, radius = 2 cm
OA = OB = 2 cm (given)
OA2 = OB2 = 2 cm
Also, chord AB = 2 cm (given)
AB2 = 4cm
Now, we can see that in DAOB,
OA2 + OB2 = AB2
As, 2 + 2 = 4
So this follows Pythagoras' theorem.
Hence AOB = 90°
Now we know that the angle subtended at the centre by an arc is twice the angle subtended by it at any part of the circle
APB=AOBAPB=45
Hence proved.

Question:11

Two equal chords AB and CD of a circle, when produced, intersect at a point P. Prove that PB = PD

Answer:

Given: Two equal chords AB and CD of a circle intersect at a point P.
To Prove: PB = PD

Proof: Given,
Join OP draw OL AB and OM CD
AB = CD
OL = OM (equal chords are equidistant from the centre)
Consider OLP and OMP
OL = OM
OLP = OMP (both are 90o)
OP = OP
OLP OMP (SAS congruence)
LP = MP …(i) (CPCT)
AB = CD (Given)
12(AB)=12(CD)
BL = DM …(ii)
Subtracting equation (ii) from equation (i), we get
LP – BL = MP – DM
PB = PD
Hence proved.

Question:12

AB and AC are two chords of a circle of radius r such that AB = 2AC. If p and q are the distances of AB and AC from the centre, prove that 4q2 = p2 + 3r2

Answer:

AB and AC are two chords of a circle of radius r such that AB = 2AC.
The distances of AB and AC from the centre are p and q, respectively
To Prove: 4q2 = p2 + 3r2
Proof:

Let AB = 2x then AC = x (Given, AB = 2AC)
Draw ON perpendicular to AB and OM perpendicular to AC
AM = MC = x/2 (perpendicular from the centre bisects the chord)
AN = NB = x (perpendicular from the centre bisects the chord)
In DOAM, applying Pythagoras theorem
AO2 = AM2 + MO2
AO2 = (x/2)2 + q2 ….(i)
InOAN, applying Pythagoras theorem
AO2 = (AN)2 + (NO)2
AO2 = (x)2 + p2 ….(ii)
From equations (i) and (ii)
(x2)2+(q)2=x2+(p)2x24+q2=x2+p2
x2 + 4q2 = 4x2 + 4p2 [Multiply both sides by 4]
4q2 = 3x2 + 4p2
4q2 = p2 + 3 (x2 + p2)
4q2 = p2 + 3r2 (In right angle OAN, r2 = x2 + p2)
Hence Proved.

Question:13

In Fig. 10.20, O is the centre of the circle, BCO = 30°. Find x and y.

Answer:

x = 30° and y = 15°
Solution:
Given: O is the centre of the circle
BCO = 30°
Join OB and AC.
In BOC,

CO = BO (Radius of the same circle)
OBC =OCB = 30° (angles opposite to equal sides in a triangle are equal)
In OBC,
OBC + OCB + BOC = 180° (angle sum property of a triangle)
BOC = 180° – (30° + 30°) = 120°
BOC = 2BAC (Angle subtended at the centre by an arc is twice the angle subtended by it at any part of the circle)
BAC=1202=60
Consider AEB, AEC
AE = AE (common)
AEB =AEC = 90°
BE = EC (given)
AEB AEC (SAS congruence)
BAE =CAE (CPCT)
BAE + CAE = BAC = 60°
2BAE = 60°
BAE = 30° = x
Now, OD is perpendicular to AE
and CE is perpendicular to AE
Two lines perpendicular to the same line are parallel to each other
So, OD || CE and OC is transversal
DOC = ECO = 30° (alternate interior angles)
Now, the angle subtended at the centre by an arc is twice the angle subtended by it at any part of the circle.
Consider the arc CD,
DOC = 2DBC = 2y
30° = y
y = 15°
Hence, x = 30° and y = 15°

Question:14

In Fig. 10.21, O is the centre of the circle, BD = OD and CD AB. Find CAB.

Answer:

30°
Solution:
Given: In the figure BD = OD, CD AB
In OBD,
BD = OD (given)
OD = OB (radius of the same circle)
OB = OD = BD
Hence, the triangle is equilateral

BOD = OBD = ODB = 60°
Consider MBC and MBD
MB = MB (common)
CMB = BMD = 90° (given)
CM = MD (perpendicular from the centre on the chord bisects the chord]
MBC =MBD (SAS rule)
MBC =MBD (CPCT)
MBC = OBD = 60° (OBD = 60°)
Since AB is the diameter of the circle
ACB = 90° (angle is a semi-circle)
CAB +CBA + ACB = 180° (By angle sum property of a triangle)
Putting the values,
CAB + 60° + 90° = 180°
CAB = 180° – (60° + 90°) = 30°

NCERT Class 9 Exemplar Solutions for Other Subjects

Students can also check the solutions of other subjects using the following links.

NEET/JEE Offline Coaching
Get up to 90% Scholarship on your NEET/JEE preparation from India’s Leading Coaching Institutes like Aakash, ALLEN, Sri Chaitanya & Others.
Apply Now

Importance of NCERT Exemplar Solutions Class 9 Maths Chapter 10

NCERT Exemplar Class 9 Maths chapter 10 solutions are highly detailed and give a step-by-step solution to the problems, extensively clarifying students' queries. Here are some more important features of these solutions.

  • These NCERT exemplar problems contain MCQ, Short answer, long answer and assertion type questions, that will help students build a strong core in this chapter.
  • These solutions are not only ideal for class 9 board exams but also in exams like NTSE, Olympiads, JEE, NEET, etc.
  • Some of the questions include real-life scenarios and practical uses of circle geometry. Students can relate these questions to real-life situations.
  • Finding solutions to these questions will give students well-deserved confidence and boost their morale before the exam.
  • Consistent practice of these Exemplar problems will increase the problem-solving speed and reduce the errors.

NCERT Solution Subject Wise

These are the subject-wise solutions links that are very beneficial for students.

NCERT Notes Subject Wise

Notes are an important revision tool. The following links will lead students to those well-structured notes that they can use to achieve excellence.

NCERT Books and NCERT Syllabus

We at Careers360 believe, before planning the study routine, students should always check the latest syllabus and get a reference book ready for practice. The below links are very helpful in these causes.

Frequently Asked Questions (FAQs)

1. Can we always form a circle passing through any four points given in a plane?

No, it is not always possible to form a circle passing through four points given in any plane.

For three non-Collinear points, a unique circle can be formed but it is not necessary that it will pass through the fourth point.

2. Three vertices of a right-angle triangle with perpendicular sides a and b lie on a circle, what will be the diameter of that circle?

We know that diameter subtends 90° at any point of the circle.

Therefore, the hypotenuse of the given right angle triangle will be diameter. The length of diameter will be the length of the hypotenuse.

3. What is the longest chord length in a circle of radius R?

 The longest chord of any circle will be its diameter. Hence, its length will be twice the radius that is 2R.

4. How many questions are expected from the chapter on Circles in the final exam?

Generally, you can expect 2-3 questions under the segment of concise answer type or long answer type questions from Circles. The NCERT exemplar Class 9 Maths solutions chapter 10 can help you score well in the exam.

Articles

A block of mass 0.50 kg is moving with a speed of 2.00 ms-1 on a smooth surface. It strikes another mass of 1.00 kg and then they move together as a single body. The energy loss during the collision is

Option 1)

0.34\; J

Option 2)

0.16\; J

Option 3)

1.00\; J

Option 4)

0.67\; J

A person trying to lose weight by burning fat lifts a mass of 10 kg upto a height of 1 m 1000 times.  Assume that the potential energy lost each time he lowers the mass is dissipated.  How much fat will he use up considering the work done only when the weight is lifted up ?  Fat supplies 3.8×107 J of energy per kg which is converted to mechanical energy with a 20% efficiency rate.  Take g = 9.8 ms−2 :

Option 1)

2.45×10−3 kg

Option 2)

 6.45×10−3 kg

Option 3)

 9.89×10−3 kg

Option 4)

12.89×10−3 kg

 

An athlete in the olympic games covers a distance of 100 m in 10 s. His kinetic energy can be estimated to be in the range

Option 1)

2,000 \; J - 5,000\; J

Option 2)

200 \, \, J - 500 \, \, J

Option 3)

2\times 10^{5}J-3\times 10^{5}J

Option 4)

20,000 \, \, J - 50,000 \, \, J

A particle is projected at 600   to the horizontal with a kinetic energy K. The kinetic energy at the highest point

Option 1)

K/2\,

Option 2)

\; K\;

Option 3)

zero\;

Option 4)

K/4

In the reaction,

2Al_{(s)}+6HCL_{(aq)}\rightarrow 2Al^{3+}\, _{(aq)}+6Cl^{-}\, _{(aq)}+3H_{2(g)}

Option 1)

11.2\, L\, H_{2(g)}  at STP  is produced for every mole HCL_{(aq)}  consumed

Option 2)

6L\, HCl_{(aq)}  is consumed for ever 3L\, H_{2(g)}      produced

Option 3)

33.6 L\, H_{2(g)} is produced regardless of temperature and pressure for every mole Al that reacts

Option 4)

67.2\, L\, H_{2(g)} at STP is produced for every mole Al that reacts .

How many moles of magnesium phosphate, Mg_{3}(PO_{4})_{2} will contain 0.25 mole of oxygen atoms?

Option 1)

0.02

Option 2)

3.125 × 10-2

Option 3)

1.25 × 10-2

Option 4)

2.5 × 10-2

If we consider that 1/6, in place of 1/12, mass of carbon atom is taken to be the relative atomic mass unit, the mass of one mole of a substance will

Option 1)

decrease twice

Option 2)

increase two fold

Option 3)

remain unchanged

Option 4)

be a function of the molecular mass of the substance.

With increase of temperature, which of these changes?

Option 1)

Molality

Option 2)

Weight fraction of solute

Option 3)

Fraction of solute present in water

Option 4)

Mole fraction.

Number of atoms in 558.5 gram Fe (at. wt.of Fe = 55.85 g mol-1) is

Option 1)

twice that in 60 g carbon

Option 2)

6.023 × 1022

Option 3)

half that in 8 g He

Option 4)

558.5 × 6.023 × 1023

A pulley of radius 2 m is rotated about its axis by a force F = (20t - 5t2) newton (where t is measured in seconds) applied tangentially. If the moment of inertia of the pulley about its axis of rotation is 10 kg m2 , the number of rotations made by the pulley before its direction of motion if reversed, is

Option 1)

less than 3

Option 2)

more than 3 but less than 6

Option 3)

more than 6 but less than 9

Option 4)

more than 9

Back to top