ALLEN Coaching
ApplyRegister for ALLEN Scholarship Test & get up to 90% Scholarship
Have you ever seen how the clock hand makes an ideal right angle at 3 o'clock? Or the roads stand out at different inclinations - something sharp, some wide? These scenarios are practical examples of what you want to see in Chapter 6, lines and angles. This chapter familiarizes you with the attractive world of geometry, where the lines spread endlessly and make angles when they meet. You'll learn about acute, obtuse, right, and straight angles, and how lines can be parallel, intersecting, or perpendicular. You will also learn important theorems and axioms, such as the sum of angles on a straight line is 180 degrees. This is where the NCERT Exemplar solutions for Class 9 Chapter 6, Lines and Angles, play an important role by providing a rich source of reference material equipped with numerous practice problems of lines and angles.
NCERT Exemplar Class 9 Maths Solutions Chapter 6 provides students with detailed solutions of exercises that will help you to understand the chapter better and are extremely useful in understanding the Lines and Angles concepts. The NCERT exemplar Class 9 Maths chapter 6 solutions are intricate and helpful in pinpointing the critical understanding of concepts and solving questions in the NCERT Class 9 Maths Book. The exemplar questions and answers are based on the CBSE Class 9 Syllabus.
NCERT Exemplar Class 9 Maths Solutions Chapter 6: Exercise 6.1 Page: 55-56, Total Questions: 8 |
Question 1: Write the correct answer in each of the following:
Answer:
Here in this question, it is given,
Hence, option C is the right answer.
Question:2 Write the correct answer in each of the following:
If one angle of a triangle is equal to the sum of the other two angles, then the triangle is
(A) an isosceles triangle
(B) An obtuse triangle
(C) An equilateral triangle
(D) a right triangle
In a
Thus triangle ABC is a right-angled triangle.
Hence Option (D) is the correct answer.
Question:3 Write the correct answer in each of the following:
An exterior angle of a triangle is 105°, and its two interior opposite angles are equal. Each of these equal angles is
Answer:
Given ® Exterior Angle =Let the two equal interior angles be
The sum of opposite interior angles of a triangle = Exterior angle of the triangle.
SoAnoption (B) is the correct answer.
Question:4 Write the correct answer in each of the following: The angles of a triangle are in the ratio 5 : 3: 7. The triangle is
(A) an acute angled triangle
(B) an obtuse-angled triangle
(C) a right triangle
(D) an isosceles triangle
Given: The ratio of angles of triangles is 5 : 3: 7
Let angles of the triangle be
Then,
In
All angles are less than 90° hence acute.
In
[Sum of all interior angles of triangle is
Put value of equation (1) in equation (2)
Question:6 Write the correct answer in each of the following:
In Fig. 6.2, POQ is a line. The value of x is
Answer:
Given that POQ is a lineQuestion:7 Write the correct answer in each of the following:
Answer:
Also, for line OP
Now, we know that the sum of the angles of a triangle is 1800
Hence, option C is the correct answer
Question:8 Write the correct answer in each of the following: Angles of a triangle are in the ratio 2: 4 : 3. The smallest angle of the triangle is
Answer:
Hence, option (B) is correct
NCERT Exemplar Class 9 Maths Solutions Chapter 6: Exercise 6.2 |
Question:1 For what value of x+y in Fig. 6.4 will ABC b,e a line? Justify our answer.
Answer:
Here x & y are two adjacent angles and for straight-line x+y=1800Justification: As we know if the sum of two adjacent angles is 1800 it represents the straight line.
Question:2 Can a triangle have all angles less than 600? Give a reason for your answer.
Answer:
In a triangle, the sum of interior angles is always equal to 1800So it is not possible to have all angles less than 600 because their sum will not be equal to 1800
Hence, the answer is No
Question:3 Can a triangle have two obtuse angles? Give a reason for your answer
Answer:No, a triangle91 °nnot have two obtuse angles
Reason: the obtuse angle is greater than 900
Let us consider the smallest obtuse angle, i.e., 910
Let the two obtuse angles be equal to 91o, so the sum of these two obtuse angles is equal to 1820
But the sum of the interior angles of a triangle is always equal to 1800
So the given condition is not possible.
Hence, we cannot create a triangle with two obtuse angles
Question:4: How many triangles can be drawn having angles of 450, 640, and 720? Give a reason for your answer.
Answer:The three angles given are 450, 640 and 720
Now, the sum of these angles = 450+640+720
= 181o
The sum of angles of a triangle cannot be more than 1800.
Hence, the triangle is not possible
So the answer is zero
Question:5: How many triangles can be drawn having angles 530, 640, and 630? Give a reason for your answer.
Answer:
Infinitely many triangles can be drawn having angles as 530, 640, and 630
The sum of given angles = 530 + 640+ 630 = 1800
Here, we can see that the sum of all interior angles of triangles is 1800, so infinitely many triangles can be drawn depending on the lengths of their sides.
So, infinitely many triangles can be drawn from the given angles.
Question:6 In Fig. 6.5, find the value of x for which the lines l and m are parallel.
In the given °figure, the lines l and m are parallel.
Line n is a transversal line.
So,
We know that the sum of co-interior angles is 180o.
Hencegle x +
Given that two adjacent angles are equal.
No, it is not necessary that each of these angles will be a right angle.
Let us see why.
Adjacent angles: Two angles are said to be adjacent only when they have a common vertex, a common side, but they do not overlap.
The following figure shows adjacent angles (
But in the case that bot:h adjacent angles are right angles, they should form a linear pair, or we can say that they should lie on the same line, but such a condition is not given to us.
If one of the angles is formed by two intersecting lines is a right angle,
Hence all the other angles should be at right angles.
Question:9 In Fig.6.6, which of the two lines are parallel and why?
Answer:
Consider l and m, now n is the transversal
Hence, the lines are parallel
Consider p and q, now r is the transversal
Hence, the lines are not parallel
Therefore, l and m are parallel
The two lines l and m are perpendicular to the same line n.
We can have 3 possible scenarios:
1. The lines l and m may lie on the same side of n
As we can see corresponding angles are equal, so l is parallel to m
l and m are not pe, perpendicular to each other
2. The lines l and m may lie on the opposite side of n
Extend lA to point B and mC to point D
As we can see the interior opposite angles are equal, so l is parallel to m
l and m are not perpendicular to each other
3. The lines l and m are the same and overlap each other.
Again, l and m are not perpendicular to each other
Hence, the lines l and m are not perpendicular.
NCERT Exemplar Class 9 Maths Solutions Chapter 6: Exercise 6.3 Page: 58-60, Total Questions: 10 |
Answer:
Given in the figure
To show: Points A, O & B are collinear, i.e., AOB is a straight line
Proof: Since O, D, and OE bisect angles
And
On adding equations (i) and (ii) we get
So,
AOB is a straight line.
Therefore, points A and B are collinear.
Hence proved
Question:2
Answer:
Given: The figure
To show :
Proof:
Here,
Here
Now,
We know if the sum of two interior angles on the same side is
Hence proved,
Answer:
Given: I,n the figure,
To prove:
Proof: Since
Now consider, two lines AP and BQ with transversal AB
Hence,
Hence proved
Question:4. If in Figure bisectors AP and BQ of the alternate interior angles are parallel, then show that.
Answer:
In the figure
To show :
Proof: Since
Now, AP and BQ are the bisectors of alternate interior angles
So,
Now consider lines l and m
Hence
Hence proved
Question:5 In Fig. 6.12,
Answer:
Produce DE to intersect BC at P
Now,
Now
From (i) and (ii) we get
Hence, Proved
Question:6 In Fig. 6.13,
Answer:
Given
To show
Construction:
Extend EF to point P on AB
Proof: In figure,
Now,
From Equations (i) and (ii)
Hence proved
Question:7. In Fig. 6.14,
Answer:
We know that the interior angles on the same side of the transversal are supplementary
So,
AP and BP are the bisectors,s of
On adding equations (ii) and (iii) we get
From equation (i)
In
Hence
Question:8
Answer:
Angles of the triangle are in the ratio- 2 : 3: 4
Let the angles are 2x, 3x, 4x then:
Then the angles of the triangle are:
This triangle is scalene as all the angles are of different measures.
Question:9 A triangle ABC is right-angled at A. L is a point on BC such that
Answer:
Proof: In
And
In
In
Hence,
Hence proved
Question:10: Two lines are respectively perpendicular to two parallel lines. Show that they are parallel to each other.
Answer:
Given: Two lines m and n are parallel, and another two lines p and q are respectively perpendicular to m and n, i.e.,
To prove
Proof:
Since m||n and p are perpendicular to m and n.
Similarly, q is perpendicular to m and n.
Now for lines p and q, m is the transversal
So we can see that all the conditions are fulfilled for the lines to be parallel, i.e., Corresponding angles are equal, the sum of interior angles is 180o, and alternate angles are equal.
Hence,
Hence proved
NCERT Exemplar Class 9 Maths Solutions Chapter 6: Exercise 6.4 Page: 61-62, Total Questions: 7 |
Question:1 If two lines intersect, prove that the vertically opposite angles are equal.
Answer:
It is given that if two lines intersect, the vertically opposite angles are equal.
Proof:
Now let AB and CD be two lines intersecting at point O.
From the figure, we have two pairs of vertically opposite angles, namely: ,
(i)
(ii)
Now we have to prove that
And
Similarly, can we write
From equation (i) and (ii) comparing
Similarly, we can prove that
Hence Proved.
Question:2 Bisectors of interior
Answer:
According to the question,
Bisectors of interior
And
Now from
And from
Or
Or
Using (3),
So,
Hence Proved
Answer:
Given: A transversal EF cuts two parallel lines AB and CD at points G & H. GL and HM are bisectors of angles
To prove:
Proof:
These are the corresponding angles formed by the line GL and HM, where EF is the transversal.
Hence proved
Answer:
Given: Consider a line R and a point P
Construction:
Draw two lines (m and n) passing through P, which are perpendicular to line R.
To prove: Only one perpendicular line can be drawn through a point P
Proof: In
So lines n and m will coincide
Therefore, we can draw only one perpendicular to a given line.
Hence proved
Answer:
Given: Let lines be and y be two intersecting lines. Let n and p be another two lines which are perpendicular to x and y,
To prove: n and p interse,ct at a point
Proof: Let lines n and p are not intersecting then
Since n and p are parallel and n is perpendicular to x, and p is perpendicular to y respectively
So,
But, it is a contradiction as it is given that x and y are two intersecting lines.
Thus our assumption is wrong.
n and p intersect at a point
Hence proved
Question:6 Prove that a triangle must have at least two acute angles.
Answer:
It is given that a triangle must have at least two acute angles.
An acute angle is less than 90 degrees
Let us assume that a triangle does not have two acute angles.
So, it has two angles that are either right angles (=90 degrees) or obtuse angles (greater than 90 degrees)
So let two right angles be present,
So, using the nanglesum property of a triangle, the third angle must be zero, which is not possible.
Also, let one angle be right and one be obtuse. We can take the smallest obtuse angle, i.e.,
So, using the angle sum property of a triangle, the third angle must be negative, which is not possible.
Again, if both the angles are obtuse, the third angle must be negative, which is not possible.
So a triangle must have at least two acute angles.
Hence proved
Question 7: In Fig. 6.17,
Answer:
Given : In
PA is the bisector of
To prove :
Proof: Since PA is the bisector of
In right angled
Now
Hence proved
The major topics covered through the NCERT Exemplar Class 9 Maths Solutions Chapter 6 are as follows:
Here are the subject-wise links for the NCERT solutions of class 9:
Given below are the subject-wise NCERT Notes of class 9:
Here are some useful links for NCERT books and the NCERT syllabus for class 9:
No, parallel lines can never intersect each other in other words we can say that Parallel line meets or intersect at infinity.
No, the sum of all three interior angles has to be 180°, and all the angles will be non-zero angles. If two angles are right-angle, then these two corresponding lines will be parallel to each other and never intersect to form a triangle.
Yes, the concepts of lines and angles are beneficial in understanding problems of physics and mathematics. Mathematics is not the part of the syllabus of NEET; however, knowledge of lines and triangle is very much required in physics
Generally, a total of 3-4 questions appear yearly on the final examination, which includes the MCQs, very short answers, and occasionally a long-answer type question. These NCERT exemplar Class 9 Maths solutions chapter 6 are sufficient to grasp the concepts and practice required to attempt the paper successfully.
Register for ALLEN Scholarship Test & get up to 90% Scholarship
Get up to 90% Scholarship on Offline NEET/JEE coaching from top Institutes
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest 2024 syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters