NCERT Solutions for Exercise 6.3 Class 12 Maths Chapter 10 - Application of Derivatives

NCERT Solutions for Exercise 6.3 Class 12 Maths Chapter 10 - Application of Derivatives

Komal MiglaniUpdated on 26 Apr 2025, 12:47 PM IST

We have seen the graph of $\sin \theta$ or $\cos \theta$, and by that graph, we have observed that it attains the maximum and minimum value in a given interval of [0,$\frac{\pi}{2}$]. $\sin \theta$ obtains the maximum value at $\frac{\pi}{2}$ and the minimum value at 0. Similarly, $\cos \theta$ attains the maximum value at 0, and the minimum value at $\frac{\pi}{2}$. In this exercise, we will learn to find the local minima and maxima. Also, we will learn to find the absolute minima and maxima for a given function. Local maxima and minima refer to the highest and lowest points of a function within a specific interval or region, while absolute maxima and minima represent the highest and lowest points of the function across its entire domain. The NCERT solutions for Class 12 Maths chapter 6 exercise 6.3 use the concept of derivatives to find the maximum and minimum of different functions. In the NCERT Class 12 Mathematics Book, some real-life examples of finding maximum and minimum values are given.

LiveCBSE 2026 Admit Card LIVE: CBSE Class 10, 12 hall tickets for private candidates declared at cbse.gov.inJan 18, 2026 | 7:28 PM IST

After receiving their CBSE hall ticket 2026, students are encouraged to thoroughly inspect it. The procedures listed below can be used by private candidates to download their CBSE 2026 admit card:

  • Visit cbse.gov.in, the official CBSE website.
  • Click on the "CBSE Admit Card for Private Candidates 2026" link.
  • Select your desired search option: Candidate Name, Application Number, or Previous Roll Number and Year.
  • After making your selection, accurately enter the necessary information and press the "Proceed" button.
  • The screen will display the CBSE 2026 admit card.
  • The CBSE admit card 2026 PDF can be downloaded and printed.
Read More

Class 12 Maths Chapter 6 Exercise 6.3 Solutions: Download PDF

Download PDF

Application of Derivatives Class 12 Chapter 6 Exercise 6.3

Question:1 . Find the slope of the tangent to the curve $y = 3 x ^4 - 4x \: \: at \: \: x \: \: = 4$

Answer:

Given curve is,
$y = 3 x ^4 - 4x$
Now, the slope of the tangent at point x =4 is given by
$\left ( \frac{dy}{dx} \right )_{x=4} = 12x^3 - 4$
$= 12(4)^3-4$
$= 12(64)-4 = 768 - 4 =764$

Question:2 . Find the slope of the tangent to the curve $\frac{x-1}{x-2} , x \neq 2 \: \: at\: \: x = 10$

Answer:

Given curve is,

$y = \frac{x-1}{x-2}$
The slope of the tangent at x = 10 is given by
$\left ( \frac{dy}{dx} \right )_{x=10}= \frac{(1)(x-2)-(1)(x-1)}{(x-2)^2} = \frac{x-2-x+1}{(x-2)^2} = \frac{-1}{(x-2)^2}$
at x = 10
$= \frac{-1}{(10-2)^2} = \frac{-1}{8^2} = \frac{-1}{64}$
hence, slope of tangent at x = 10 is $\frac{-1}{64}$

Question:3 Find the slope of the tangent to curve $y = x ^3 - x +1$ at the point whose x-coordinate is 2.

Answer:

Given curve is,
$y = x ^3 - x +1$
The slope of the tangent at x = 2 is given by
$\left ( \frac{dy}{dx} \right )_{x=2} = 3x^2 - 1 = 3(2)^2 - 1= 3\times 4 - 1 = 12 - 1 = 11$
Hence, the slope of the tangent at point x = 2 is 11

Question:4 Find the slope of the tangent to the curve $y = x ^3 - 3x +2$ at the point whose x-coordinate is 3.

Answer:

Given curve is,
$y = x ^3 - 3x +2$
The slope of the tangent at x = 3 is given by
$\left ( \frac{dy}{dx} \right )_{x=3} = 3x^2 - 3 = 3(3)^2 - 3= 3\times 9 - 3 = 27 - 3 = 24$
Hence, the slope of tangent at point x = 3 is 24

Question:5 Find the slope of the normal to the curve $x = a \cos ^3 \theta , y = a\sin ^3 \theta \: \: at \: \: \theta = \pi /4$

Answer:

The slope of the tangent at a point on a given curve is given by
$\left ( \frac{dy}{dx} \right )$
Now,
$\left ( \frac{dx}{d \theta} \right )_{\theta=\frac{\pi}{4}} = 3a\cos^2 \theta(-\sin \theta) = 3a(\frac{1}{\sqrt2})^2(-\frac{1}{\sqrt2}) = -\frac{3\sqrt2 a}{4}$
Similarly,
$\left ( \frac{dy}{d \theta} \right )_{\theta=\frac{\pi}{4}} = 3a\sin^2 \theta(\cos \theta) = 3a(\frac{1}{\sqrt2})^2(\frac{1}{\sqrt2}) = \frac{3\sqrt2 a}{4}$
$\left ( \frac{dy}{dx} \right ) = \frac{\left ( \frac{dy}{d\theta} \right )}{\left ( \frac{dx}{d\theta} \right )} = \frac{\frac{3\sqrt2 a}{4}}{-\frac{3\sqrt2 a}{4}} = -1$
Hence, the slope of the tangent at $\theta = \frac{\pi}{4}$ is -1
Now,
Slope of normal = $-\frac{1}{slope \ of \ tangent}$ = $-\frac{1}{-1} = 1$
Hence, the slope of normal at $\theta = \frac{\pi}{4}$ is 1

Question:6 Find the slope of the normal to the curve $x = 1- a \sin \theta , y = b \cos ^ 2 \theta \: \: at \: \: \theta = \pi /2$

Answer:

The slope of the tangent at a point on given curves is given by
$\left ( \frac{dy}{dx} \right )$
Now,
$\left ( \frac{dx}{d \theta} \right )_{\theta=\frac{\pi}{2}} = -a(\cos \theta)$
Similarly,
$\left ( \frac{dy}{d \theta} \right )_{\theta=\frac{\pi}{2}} = 2b\cos \theta(-\sin \theta)$
$\left ( \frac{dy}{dx} \right )_{x=\frac{\pi}{2}} = \frac{\left ( \frac{dy}{d\theta} \right )}{\left ( \frac{dx}{d\theta} \right )} = \frac{-2b\cos \theta \sin \theta}{-a\cos \theta} = \frac{2b\sin \theta}{a} = \frac{2b\times1}{a} = \frac{2b}{a}$
Hence, the slope of the tangent at $\theta = \frac{\pi}{2}$ is $\frac{2b}{a}$
Now,
Slope of normal = $-\frac{1}{slope \ of \ tangent}$ = $-\frac{1}{\frac{2b}{a}} = -\frac{a}{2b}$
Hence, the slope of normal at $\theta = \frac{\pi}{2}$ is $-\frac{a}{2b}$

Question:7 Find points at which the tangent to the curve $y = x^3 - 3 x^2 - 9x +7$ is parallel to the x-axis.

Answer:

We are given :

$y = x^3 - 3 x^2 - 9x +7$

Differentiating the equation with respect to x, we get :

$\frac{dy}{dx}\ =\ 3x^2\ -\ 6x\ -\ 9\ +\ 0$

or $=\ 3\left ( x^2\ -\ 2x\ -\ 3 \right )$

or $\frac{dy}{dx}\ =\ 3\left ( x+1 \right )\left ( x-3 \right )$

It is given that tangent is parallel to the x-axis, so the slope of the tangent is equal to 0.

So,

$\frac{dy}{dx}\ =\ 0$

or $0\ =\ 3\left ( x+1 \right )\left ( x-3 \right )$

Thus, Either x = -1 or x = 3

When x = -1 we get y = 12 and if x =3 we get y = -20

So the required points are (-1, 12) and (3, -20).

Question:8 Find a point on the curve $y = ( x-2)^2$ at which the tangent is parallel to the chord joining the points (2, 0) and

(4, 4).

Answer:

Points joining the chord is (2,0) and (4,4)
Now, we know that the slope of the curve with given two points is
$m = \frac{y_2-y_1}{x_2 - x_1} = \frac{4-0}{4-2} = \frac{4}{2} =2$
As it is given that the tangent is parallel to the chord, so their slopes are equal
i.e. slope of the tangent = slope of the chord
Given the equation of the curve is $y = ( x-2)^2$
$\therefore \frac{dy}{dx} = 2(x-2) = 2$
$(x-2) = 1\\ x = 1+2\\ x=3$
Now, when $x=3$ $y=(3- 2)^2 = (1)^2 = 1$
Hence, the coordinates are (3, 1)

Question:9 Find the point on the curve $y = x^3 - 11x + 5$ at which the tangent is $y = x -11$

Answer:

We know that the equation of a line is y = mx + c
Know the given equation of tangent is
y = x - 11
So, by comparing with the standard equation we can say that the slope of the tangent (m) = 1 and value of c if -11
As we know that slope of the tangent at a point on the given curve is given by $\frac{dy}{dx}$
Given the equation of curve is
$y = x^3 - 11x + 5$
$\frac{dy}{dx} = 3x^2 -11$
$3x^2 -11 = 1\\ 3x^2 = 12 \\ x^2 = 4 \\ x = \pm2$
When x = 2 , $y = 2^3 - 11(2) +5 = 8 - 22+5=-9$
and
When x = -2 , $y = (-2)^3 - 11(22) +5 = -8 + 22+5=19$
Hence, the coordinates are (2,-9) and (-2,19), here (-2,19) does not satisfy the equation y=x-11

Hence, the coordinate is (2,-9) at which the tangent is $y = x -11$

Question:10 Find the equation of all lines having slope –1 that are tangents to the curve $y = \frac{1}{x-1} , x \neq 1$

Answer:

We know that the slope of the tangent of at the point of the given curve is given by $\frac{dy}{dx}$

Given the equation of curve is
$y = \frac{1}{x-1}$
$\frac{dy}{dx} = \frac{-1}{(1-x)^2}$
It is given thta slope is -1
So,
$\frac{-1}{(1-x)^2} = -1 \Rightarrow (1-x)^2 = 1 = 1 - x = \pm 1 \\ \\ x = 0 \ and \ x = 2$
Now, when x = 0 , $y = \frac{1}{x-1} = \frac{1}{0-1} = -1$
and
when x = 2 , $y = \frac{1}{x-1} = \frac{1}{(2-1)} = 1$
Hence, the coordinates are (0,-1) and (2,1)
Equation of line passing through (0,-1) and having slope = -1 is
y = mx + c
-1 = 0 X -1 + c
c = -1
Now equation of line is
y = -x -1
y + x + 1 = 0
Similarly, Equation of line passing through (2,1) and having slope = -1 is
y = mx + c
1 = -1 X 2 + c
c = 3
Now equation of line is
y = -x + 3
y + x - 3 = 0

Question:11 Find the equation of all lines having slope 2 which are tangents to the curve $y = \frac{1}{x-3} , x \neq 3$

Answer:

We know that the slope of the tangent of at the point of the given curve is given by $\frac{dy}{dx}$

Given the equation of curve is
$y = \frac{1}{x-3}$
$\frac{dy}{dx} = \frac{-1}{(x-3)^2}$
It is given that slope is 2
So,
$\frac{-1}{(x-3)^2} = 2 \Rightarrow (x-3)^2 = \frac{-1}{2} = x-3 = \pm \frac{\sqrt-1}{\sqrt2} \\ \\$
So, this is not possible as our coordinates are imaginary numbers
Hence, no tangent is possible with slope 2 to the curve $y = \frac{1}{x-3}$

Question:12 Find the equations of all lines having slope 0 which are tangent to the curve
$y = \frac{1}{x^2 - 2 x +3 }$

Answer:

We know that the slope of the tangent at a point on the given curve is given by $\frac{dy}{dx}$

Given the equation of the curve as
$y = \frac{1}{x^2 - 2x + 3}$
$\frac{dy}{dx} = \frac{-(2x-2)}{(x^2-2x+3)^2}$
It is given thta slope is 0
So,
$\frac{-(2x-2)}{(x^2 - 2x +3)^2} = 0 \Rightarrow 2x-2 = 0 = x = 1$
Now, when x = 1 , $y = \frac{1}{x^2-2x+3} = \frac{1}{1^2-2(1)+3} = \frac{1}{1-2+3} =\frac{1}{2}$

Hence, the coordinates are $\left ( 1,\frac{1}{2} \right )$
Equation of line passing through $\left ( 1,\frac{1}{2} \right )$ and having slope = 0 is
y = mx + c
1/2 = 0 X 1 + c
c = 1/2
Now equation of line is
$y = \frac{1}{2}$

Question:13(i) Find points on the curve $\frac{x^2 }{9} + \frac{y^2 }{16} = 1$ at which the tangents are parallel to x-axis

Answer:

Parallel to x-axis means slope of tangent is 0
We know that slope of tangent at a given point on the given curve is given by $\frac{dy}{dx}$
Given the equation of the curve is
$\frac{x^2 }{9} + \frac{y^2 }{16} = 1 \Rightarrow 9y^2 = 144(1-16x^2)$
$18y\frac{dy}{dx} = -32x$
$\frac{dy}{dx} = \frac{(-32x)}{18y} = 0 \Rightarrow x = 0$
From this, we can say that $x = 0$
Now. when $x = 0$ , $\frac{0^2 }{9} + \frac{y^2 }{16} = 1\Rightarrow \frac{y^2}{16} = 1 \Rightarrow y = \pm 4$
Hence, the coordinates are (0,4) and (0,-4)

Question:13(ii) Find points on the curve $\frac{x^2}{9} + \frac{y^2}{16} = 1$ at which the tangents are parallel to y-axis

Answer:

Parallel to y-axis means the slope of the tangent is $\infty$ , means the slope of normal is 0
We know that slope of the tangent at a given point on the given curve is given by $\frac{dy}{dx}$
Given the equation of the curve is
$\frac{x^2 }{9} + \frac{y^2 }{16} = 1 \Rightarrow 9y^2 = 144(1-16x^2)$
$18y\frac{dy}{dx} = 144(1-32x)$
$\frac{dy}{dx} = \frac{-32x}{18y} = \infty$
Slope of normal = $-\frac{dx}{dy} = \frac{18y}{32x} = 0$
From this we can say that y = 0
Now. when y = 0, $\frac{x^2 }{9} + \frac{0^2 }{16} \Rightarrow 1 = x = \pm 3$
Hence, the coordinates are (3,0) and (-3,0)

Question:14(i) Find the equations of the tangent and normal to the given curves at the indicated
points:
$y = x^4 - 6x^3 + 13x^2 - 10x + 5 \: \: at\: \: (0, 5)$

Answer:

We know that Slope of the tangent at a point on the given curve is given by $\frac{dy}{dx}$
Given the equation of the curve
$y = x^4 - 6x^3 + 13x^2 - 10x + 5$
$\frac{dy}{dx}= 4x^3 - 18x^2 + 26x- 10$
at point (0,5)
$\frac{dy}{dx}= 4(0)^3 - 18(0)^2 + 26(0) - 10 = -10$
Hence slope of tangent is -10
Now we know that,
$slope \ of \ normal = \frac{-1}{slope \ of \ tangent} = \frac{-1}{-10} = \frac{1}{10}$
Now, equation of tangent at point (0,5) with slope = -10 is
$y = mx + c\\ 5 = 0 + c\\ c = 5$
equation of tangent is
$y = -10x + 5\\ y + 10x = 5$
Similarly, the equation of normal at point (0,5) with slope = 1/10 is
$\\y = mx + c \\5 = 0 + c \\c = 5$
equation of normal is
$\\y = \frac{1}{10}x+5 \\ 10y - x = 50$

Question:14(ii) Find the equations of the tangent and normal to the given curves at the indicated
points:
$y = x^4 - 6x^3 + 13x^2 - 10x + 5 \: \: at \: \: (1, 3)$

Answer:

We know that Slope of tangent at a point on given curve is given by $\frac{dy}{dx}$
Given equation of curve
$y = x^4 - 6x^3 + 13x^2 - 10x + 5$
$\frac{dy}{dx}= 4x^3 - 18x^2 + 26x - 10$
at point (1,3)
$\frac{dy}{dx}= 4(1)^3 - 18(1)^2 + 26(1) - 10 = 2$
Hence slope of tangent is 2
Now we know that,
$slope \ of \ normal = \frac{-1}{slope \ of \ tangent} = \frac{-1}{2}$
Now, equation of tangent at point (1,3) with slope = 2 is
y = 2x + 1
y -2x = 1
Similarly, equation of normal at point (1,3) with slope = -1/2 is
y = mx + c
$3 = \frac{-1}{2}\times 1+ c$
$c = \frac{7}{2}$
equation of normal is
$y = \frac{-1}{2}x+\frac{7}{2} \\ 2y + x = 7$

Question:14(iii) Find the equations of the tangent and normal to the given curves at the indicated
points:

$y = x^3\: \: at \: \: (1, 1)$

Answer:

We know that Slope of the tangent at a point on the given curve is given by $\frac{dy}{dx}$
Given the equation of the curve
$y = x^3$
$\frac{dy}{dx}= 3x^2$
at point (1,1)
$\frac{dy}{dx}= 3(1)^2 = 3$
Hence slope of tangent is 3
Now we know that,
$slope \ of \ normal = \frac{-1}{slope \ of \ tangent} = \frac{-1}{3}$
Now, equation of tangent at point (1,1) with slope = 3 is
$y = mx + c\\ 1 = 1 \times 3 + c\\ c = 1 - 3 = -2$
equation of tangent is
$y - 3x + 2 = 0$
Similarly, equation of normal at point (1,1) with slope = -1/3 is
y = mx + c
$1 = \frac{-1}{3}\times 1+ c$
$c = \frac{4}{3}$
equation of normal is
$y = \frac{-1}{3}x+\frac{4}{3} \\ 3y + x = 4$

Question:14(iv) Find the equations of the tangent and normal to the given curves at the indicated points

$y = x^2\: \: at\: \: (0, 0)$

Answer:

We know that Slope of the tangent at a point on the given curve is given by $\frac{dy}{dx}$
Given the equation of the curve
$y = x^2$
$\frac{dy}{dx}= 2x$
at point (0,0)
$\frac{dy}{dx}= 2(0)^2 = 0$
Hence slope of tangent is 0
Now we know that,
$slope \ of \ normal = \frac{-1}{slope \ of \ tangent} = \frac{-1}{0} = -\infty$
Now, equation of tangent at point (0,0) with slope = 0 is
y = 0
Similarly, equation of normal at point (0,0) with slope = $-\infty$ is

$\\y = x \times -\infty + 0\\ x = \frac{y}{-\infty}\\ x=0$

Question:14(v) Find the equations of the tangent and normal to the given curves at the indicated points:

$x = \cos t , y = \sin t \: \: at \: \: t = \pi /4$

Answer:

We know that Slope of the tangent at a point on the given curve is given by $\frac{dy}{dx}$
Given the equation of the curve
$x = \cos t , y = \sin t$
Now,
$\frac{dx}{dt} = -\sin t$ and $\frac{dy}{dt} = \cos t$
Now,
$\left ( \frac{dy}{dx} \right )_{t=\frac{\pi}{4}} = \frac{ \frac{dy}{dt}}{ \frac{dx}{dt}} = \frac{\cos t}{-\sin t} = -\cot t = =- \cot \frac{\pi}{4} = -1$
Hence slope of the tangent is -1
Now we know that,
$slope \ of \ normal = \frac{-1}{slope \ of \ tangent} = \frac{-1}{-1} = 1$
Now, the equation of the tangent at the point $t = \frac{\pi}{4}$ with slope = -1 is
$x= \cos \frac{\pi}{4} = \frac{1}{\sqrt2}$ and

$y= \sin \frac{\pi}{4} = \frac{1}{\sqrt2}$
equation of the tangent at

$t = \frac{\pi}{4}$ i.e. $\left ( \frac{1}{\sqrt2}, \frac{1}{\sqrt2}\right )$ is


$y- y_1 = m(x-x_1)\\ y-\frac{1}{\sqrt2} = -1(x- \frac{1}{\sqrt2})\\ \sqrt2y + \sqrt2x = 2\\ y + x = \sqrt2$
Similarly, the equation of normal at $t = \frac{\pi}{4}$ with slope = 1 is
$x= \cos \frac{\pi}{4} = \frac{1}{\sqrt2}$ and

$y= \sin \frac{\pi}{4} = \frac{1}{\sqrt2}$
equation of the tangent at

$t = \frac{\pi}{4}$ i.e. $\left ( \frac{1}{\sqrt2}, \frac{1}{\sqrt2}\right )$ is
$\\y- y_1 = m(x-x_1)\\ y-\frac{1}{\sqrt2} = 1(x- \frac{1}{\sqrt2})\\ \sqrt2y - \sqrt2x = 0\\ y - x = 0\\ x=y$

Question:15(a) Find the equation of the tangent line to the curve $y = x^2 - 2x +7$ which is parallel to the line $2x - y + 9 = 0$

Answer:

Parellel to line $2x - y + 9 = 0$ means slope of tangent and slope of line is equal
We know that the equation of line is
y = mx + c
on comparing with the given equation we get slope of line m = 2 and c = 9
Now, we know that the slope of tangent at a given point to given curve is given by $\frac{dy}{dx}$
Given equation of curve is
$y = x^2 - 2x +7$
$\frac{dy}{dx} = 2x - 2 = 2\\ \\ x = 2$
Now, when x = 2 , $y = (2)^2 - 2(2) +7 =4 - 4 + 7 = 7$
Hence, the coordinates are (2,7)
Now, equation of tangent paasing through (2,7) and with slope m = 2 is
y = mx + c
7 = 2 X 2 + c
c = 7 - 4 = 3
So,
y = 2 X x+ 3
y = 2x + 3
So, the equation of tangent is y - 2x = 3

Question:15(b) Find the equation of the tangent line to the curve $y = x^2 -2x +7$ which is perpendicular to the line $5y - 15x = 13.$

Answer:

Perpendicular to line $5y - 15x = 13.\Rightarrow y = 3x + \frac{13}{5}$ means $slope \ of \ tangent = \frac{-1}{slope \ of \ line}$
We know that the equation of the line is
y = mx + c
on comparing with the given equation we get the slope of line m = 3 and c = 13/5
$slope \ of \ tangent = \frac{-1}{slope \ of \ line} = \frac{-1}{3}$
Now, we know that the slope of the tangent at a given point to given curve is given by $\frac{dy}{dx}$
Given the equation of curve is
$y = x^2 - 2x +7$
$\frac{dy}{dx} = 2x - 2 = \frac{-1}{3}\\ \\ x = \frac{5}{6}$
Now, when $x = \frac{5}{6}$ , $y = (\frac{5}{6})^2 - 2(\frac{5}{6}) +7 = \frac{25}{36} - \frac{10}{6} + 7 = \frac{217}{36}$
Hence, the coordinates are $(\frac{5}{6} ,\frac{217}{36})$
Now, the equation of tangent passing through (2,7) and with slope $m = \frac{-1}{3}$ is
$y = mx+ c\\ \frac{217}{36}= \frac{-1}{3}\times \frac{5}{6} + c\\ c = \frac{227}{36}$
So,
$y = \frac{-1}{3}x+\frac{227}{36}\\ 36y + 12x = 227$
Hence, equation of tangent is 36y + 12x = 227

Question:16 Show that the tangents to the curve $y = 7x^3 + 11$ at the points where x = 2 and x = – 2 are parallel .

Answer:

Slope of tangent = $\frac{dy}{dx} = 21x^2$
When x = 2
$\frac{dy}{dx} = 21x^2 = 21(2)^{2} = 21 \times4 = 84$
When x = -2
$\frac{dy}{dx} = 21x^2 = 21(-2)^{2} = 21 \times4 = 84$
Slope is equal when x= 2 and x = - 2
Hence, we can say that both the tangents to curve $y = 7x^3 + 11$ is parallel

Question:17 Find the points on the curve $y = x ^3$ at which the slope of the tangent is equal to the y-coordinate of the point.

Answer:

Given equation of curve is $y = x ^3$
Slope of tangent = $\frac{dy}{dx} = 3x^2$
it is given that the slope of the tangent is equal to the y-coordinate of the point
$3x^2 = y$
We have $y = x ^3$
$3x^2 = x^3\\ 3x^2 - x^3=0\\ x^2(3-x)=0\\ x= 0 \ \ \ \ \ \ \ \ and \ \ \ \ \ \ \ \ \ \ x = 3$
So, when x = 0 , y = 0
and when x = 3 , $y = x^3 = 3^3 = 27$

Hence, the coordinates are (3,27) and (0,0)

Question:18 For the curve $y = 4x ^ 3 - 2x ^5$ , find all the points at which the tangent passes
through the origin.

Answer:

Tangent passes through origin so, (x,y) = (0,0)
Given equtaion of curve is $y = 4x ^ 3 - 2x ^5$
Slope of tangent =

$\frac{dy}{dx} = 12x^2 - 10x^4$
Now, equation of tangent is
$Y-y= m(X-x)$
at (0,0) Y = 0 and X = 0
$-y= (12x^3-10x^4)(-x)$
$y= 12x^3-10x^5$
and we have $y = 4x ^ 3 - 2x ^5$
$4x^3-2x^5= 12x^3-10x^5$
$8x^5 - 8x^3=0\\ 8x^3(x^2-1)=0\\ x=0\ \ \ \ \ \ and \ \ \ \ \ \ \ x = \pm1$
Now, when x = 0,

$y = 4(0) ^ 3 - 2(0) ^5 = 0$
when x = 1 ,

$y = 4(1) ^ 3 - 2(1) ^5 = 4-2=2$
when x= -1 ,

$y = 4(-1) ^ 3 - 2(-1) ^5 = -4-(-2)=-4+2=-2$
Hence, the coordinates are (0,0) , (1,2) and (-1,-2)

Question:19 Find the points on the curve $x^2 + y^2 - 2x - 3 = 0$ at which the tangents are parallel
to the x-axis.

Answer:

parellel to x-axis means slope is 0
Given equation of curve is
$x^2 + y^2 - 2x - 3 = 0$
Slope of tangent =
$-2y\frac{dy}{dx} = 2x -2\\ \frac{dy}{dx} = \frac{1-x}{y} = 0\\ x= 1$
When x = 1 ,

$-y^2 = x^2 -2x-3= (1)^2-2(1)-3 = 1-5=-4$
$y = \pm 2$
Hence, the coordinates are (1,2) and (1,-2)

Question:20 Find the equation of the normal at the point $( am^2 , am^3 )$ for the curve $ay ^2 = x ^3.$

Answer:

Given equation of curve is
$ay ^2 = x ^3\Rightarrow y^2 = \frac{x^3}{a}$
Slope of tangent

$2y\frac{dy}{dx} = \frac{3x^2 }{a} \Rightarrow \frac{dy}{dx} = \frac{3x^2}{2ya}$
at point $( am^2 , am^3 )$
$\frac{dy}{dx} = \frac{3(am^2)^2}{2(am^3)a} = \frac{3a^2m^4}{2a^2m^3} = \frac{3m}{2}$
Now, we know that
$Slope \ of \ normal = \frac{-1}{Slope \ of \ tangent} = \frac{-2}{3m}$
equation of normal at point $( am^2 , am^3 )$ and with slope $\frac{-2}{3m}$
$y-y_1=m(x-x_1)\\ y-am^3 = \frac{-2}{3m}(x-am^2)\\ 3ym - 3am^4 = -2(x-am^2)\\ 3ym +2x= 3am^4+2am^2$
Hence, the equation of normal is $3ym +2x= 3am^4+2am^2$

Question:21 Find the equation of the normals to the curve $y = x^3 + 2x + 6$ which are parallel
to the line $x + 14y + 4 = 0.$

Answer:

Equation of given curve is
$y = x^3 + 2x + 6$
Parellel to line $x + 14y + 4 = 0 \Rightarrow y = \frac{-x}{14} -\frac{4}{14}$ means slope of normal and line is equal
We know that, equation of line
y= mx + c
on comparing it with our given equation. we get,
$m = \frac{-1}{14}$
Slope of tangent = $\frac{dy}{dx} = 3x^2+2$
We know that
$Slope \ of \ normal = \frac{-1}{Slope \ of \ tangent} = \frac{-1}{3x^2+2}$
$\frac{-1}{3x^2+2} = \frac{-1}{14}$
$3x^2+2 = 14\\ 3x^2 = 12 \\ x^2 = 4\\ x = \pm 2$
Now, when x = 2, $y = (2)^3 + 2(2) + 6 = 8+4+6 =18$
and
When x = -2 , $y = (-2)^3 + 2(-2) + 6 = -8-4+6 =-6$
Hence, the coordinates are (2,18) and (-2,-6)
Now, the equation of at point (2,18) with slope $\frac{-1}{14}$
$y-y_1=m(x-x_1)\\ y-18=\frac{-1}{14}(x-2)\\ 14y - 252 = -x + 2\\ x+14y = 254$
Similarly, the equation of at point (-2,-6) with slope $\frac{-1}{14}$

$y-y_1=m(x-x_1)\\ y-(-6)=\frac{-1}{14}(x-(-2))\\ 14y + 84 = -x - 2\\ x+14y + 86= 0$
Hence, the equation of the normals to the curve $y = x^3 + 2x + 6$ which are parallel
to the line $x + 14y + 4 = 0.$

are x +14y - 254 = 0 and x + 14y +86 = 0

Question:22 Find the equations of the tangent and normal to the parabola $y ^2 = 4 ax$ at the point $(at ^2, 2at).$

Answer:

Equation of the given curve is
$y ^2 = 4 ax$

Slope of tangent = $2y\frac{dy}{dx} = 4a \Rightarrow \frac{dy}{dx} = \frac{4a}{2y}$
at point $(at ^2, 2at).$
$\frac{dy}{dx}= \frac{4a}{2(2at)} = \frac{4a}{4at} = \frac{1}{t}$
Now, the equation of tangent with point $(at ^2, 2at).$ and slope $\frac{1}{t}$ is
$y-y_1=m(x-x_1)\\ y-2at=\frac{1}{t}(x-at^2)\\ yt - 2at^2 = x - at^2\\ x-yt +at^2 = 0$

We know that
$Slope \ of \ normal = \frac{-1}{Slope \ of \ tangent} = -t$
Now, the equation of at point $(at ^2, 2at).$ with slope -t
$y-y_1=m(x-x_1)\\ y-2at=(-t)(x-at^2)\\ y - 2at = -xt + at^3\\ xt+y -2at -at^3 = 0$
Hence, the equations of the tangent and normal to the parabola

$y ^2 = 4 ax$ at the point $(at ^2, 2at).$ are
$x-yt+at^2=0\ \ \ \ and \ \ \ \ xt+y -2at -at^3 = 0 \ \ respectively$

Question:23 Prove that the curves $x = y^2$ and xy = k cut at right angles* $if \: \: 8k ^ 2 = 1.$

Answer:

Let suppose, Curve $x = y^2$ and xy = k cut at the right angle
then the slope of their tangent also cut at the right angle
means,
$\left ( \frac{dy}{dx} \right )_a \times \left ( \frac{dy}{dx} \right )_b = -1$ -(i)
$2y\left ( \frac{dy}{dx} \right )_a = 1 \Rightarrow \left ( \frac{dy}{dx} \right )_a = \frac{1}{2y}$
$\left ( \frac{dy}{dx} \right )_b = \frac{-k}{x^2}$
Now these values in equation (i)
$\frac{1}{2y} \times \frac{-k}{x^2} = -1\\ -k = -2yx^2\\ k =2(xy)(x)\\ k = 2k(k^{\frac{2}{3}}) \ \ \ \ \left ( x = y^2 \Rightarrow y^2y = k \Rightarrow y = k^{\frac{1}{3}} \ and \ x = k^{\frac{2}{3}} \right ) \\ 2(k^{\frac{2}{3}}) = 1\\ \left ( 2(k^{\frac{2}{3}}) \right )^3 = 1^3\\ 8k^2 = 1$
Hence proved

Question:24 Find the equations of the tangent and normal to the hyperbola
$\frac{x^2 }{a^2} - \frac{y^2 }{b^2 }= 1$ at the point $(x_0 , y_0 )$

Answer:

Given equation is
$\frac{x^2 }{a^2} - \frac{y^2 }{b^2 }= 1 \Rightarrow y^2a^2 = x^2b^2 -a^2b^2$
Now ,we know that
slope of tangent = $2ya^2\frac{dy}{dx} = 2xb^2 \Rightarrow \frac{dy}{dx} = \frac{xb^2}{ya^2}$
at point $(x_0 , y_0 )$
$\frac{dy}{dx} = \frac{x_0b^2}{y_0a^2}$
equation of tangent at point $(x_0 , y_0 )$ with slope $\frac{xb^2}{ya^2}$
$y-y_1=m(x-x_1)\\ y-y_0=\frac{x_0b^2}{y_0a^2}(x-x_0)\\ yy_0a^2-y_0^2a^2 = xx_0b^2-x_0^2b^2\\ xx_0b^2 - yy_0a^2 = x_0^2b^2-y_0^2a^2$
Now, divide both sides by $a^2b^2$
$\frac{xx_0}{a^2} - \frac{yy_0}{b^2} = \left ( \frac{x_0^2}{a^2} - \frac{y_0^2}{b^2} \right )$
$=1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left ( \because \frac{x_0^2}{a^2}-\frac{y_0^2}{b^2 } = 1\right )$
$\frac{xx_0}{a^2} - \frac{yy_0}{b^2} = 1$
Hence, the equation of tangent is

$\frac{xx_0}{a^2} - \frac{yy_0}{b^2} = 1$
We know that
$Slope \ of \ normal= \frac{-1}{slope \ of \ tangent } = -\frac{y_0a^2}{x_0b^2}$
equation of normal at the point $(x_0 , y_0 )$ with slope $-\frac{y_0a^2}{x_0b^2}$
$y-y_1=m(x-x_1)\\ y-y_0=-\frac{y_0a^2}{x_0b^2}(x-x_0)\\ \frac{y-y_0}{y_0a^2} + \frac{x-x_0}{x_0b^2} = 0$

Question:25 Find the equation of the tangent to the curve $y = \sqrt{3x-2}$ which is parallel to the line $4x - 2y + 5 = 0 .$

Answer:

Parellel to line $4x - 2y + 5 = 0 \Rightarrow y = 2x + \frac{5}{2}$ means the slope of tangent and slope of line is equal
We know that the equation of line is
y = mx + c
on comparing with the given equation we get the slope of line m = 2 and c = 5/2
Now, we know that the slope of the tangent at a given point to given curve is given by $\frac{dy}{dx}$
Given the equation of curve is
$y = \sqrt{3x-2}$
$\frac{dy}{dx} = \frac{1}{2}.\frac{3}{\sqrt{3x-2}}=\frac{3}{2\sqrt{3x-2}}$
$\frac{3}{2\sqrt{3x-2}} = 2\\ 3^2 = (4\sqrt{3x-2})^2\\ 9 = 16(3x-2)\\ 3x-2=\frac{9}{16}\\ 3x = \frac{9}{16} +2\\ 3x= \frac{41}{16}\\ x = \frac{41}{48}$
Now, when

$x = \frac{41}{48}$ , $y = \sqrt{3x-2} \Rightarrow y = \sqrt{3\times\frac{41}{48}-2 } = \sqrt{\frac{41}{16}-2}=\sqrt\frac{9}{16 } = \pm \frac{3}{4}$

but y cannot be -ve so we take only positive value
Hence, the coordinates are

$\left ( \frac{41}{48},\frac{3}{4} \right )$
Now, equation of tangent paasing through

$\left ( \frac{41}{48},\frac{3}{4} \right )$ and with slope m = 2 is
$y - y_1=m(x-x_1)\\ y-\frac{3}{4}=2(x-\frac{41}{48})\\ 48y-36=2(48x-41)\\ 48x-24y=41-18\\ 48x-24y=23$
Hence, equation of tangent paasing through $\left ( \frac{41}{48},\frac{3}{4} \right )$ and with slope m = 2 is 48x - 24y = 23

Question:26 The slope of the normal to the curve $y = 2x ^2 + 3 \sin x \: \: at \: \: x = 0$ is
(A) 3 (B) 1/3 (C) –3 (D) -1/3

Answer:

Equation of the given curve is
$y = 2x ^2 + 3 \sin x$
Slope of tangent = $\frac{dy}{dx} = 4x +3 \cos x$
at x = 0
$\frac{dy}{dx} = 4(0) +3 \cos 0= 0 + 3$
$\frac{dy}{dx}= 3$
Now, we know that
$Slope \ of \ normal = \frac{-1}{\ Slope \ of \ tangent} = \frac{-1}{3}$
Hence, (D) is the correct option

Question:27 The line $y = x+1$ is a tangent to the curve $y^2 = 4 x$ at the point
(A) (1, 2) (B) (2, 1) (C) (1, – 2) (D) (– 1, 2)

Answer:

The slope of the given line $y = x+1$ is 1
given curve equation is
$y^2 = 4 x$
If the line is tangent to the given curve than the slope of the tangent is equal to the slope of the curve
The slope of tangent = $2y\frac{dy}{dx} = 4 \Rightarrow \frac{dy}{dx} = \frac{2}{y}$
$\frac{dy}{dx} = \frac{2}{y} = 1\\ y = 2$
Now, when y = 2, $x = \frac{y^2}{4} = \frac{2^2}{4} = \frac{4}{4} = 1$
Hence, the coordinates are (1,2)

Hence, (A) is the correct answer


Also Read,

Topics covered in Chapter 6 APPLICATION OF DERIVATIVES: Exercise 6.3

Maxima and Minima:

  • Let $f$ be a function defined on an interval I. Then
  1. $f$ is said to have a maximum value in I if there exists a point $c$ in I such that $f(c)>f(x)$, for all $x \in \mathrm{I}$. The number $f(c)$ is called the maximum value of $f$ in I, and the point $c$ is called a point of maximum value of $f$ in I.
  2. $f$ is said to have a minimum value in I, if there exists a point $c$ in I such that $f(c)<f(x)$, for all $x \in \mathrm{I}$. The number $f(c)$, in this case, is called the minimum value of $f$ in I, and the point $c$, in this case, is called a point of minimum value of $f$ in I.
  3. $f$ is said to have an extreme value in I if there exists a point $c$ in I such that $f(c)$ is either a maximum value or a minimum value of $f$ in I.
JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook
  • Let $f$ be a real-valued function and let $c$ be an interior point in the domain of $f$. Then
  1. $c$ is called a point of local maxima if there is an $h>0$ such that $f(c) \geq f(x)$, for all $x$ in $(c-h, c+h), x \neq c$. The value $f(c)$ is called the local maximum value of $f$.
  2. $c$ is called a point of local minima if there is an $h>0$ such that $f(c) \leq f(x), \text { for all } x \text { in }(c-h, c+h)$. The value $f(\mathrm{c})$ is called the local minimum value of $f$.

Maximum and Minimum Values of a Function in a Closed Interval:
When we are given a continuous function $f(x)$ on a closed interval $[a, b]$, the function must attain a maximum and a minimum value somewhere in that interval.
These are called the absolute maximum and absolute minimum.

Also, read,

NCERT Solutions Subject Wise

These are links to other subjects' NCERT textbook solutions. Students can check and analyse these well-structured solutions for a deeper understanding.

CBSE Class 12th Syllabus: Subjects & Chapters
Select your preferred subject to view the chapters

Subject-wise NCERT Exemplar solutions

Students can check these NCERT exemplar links for further practice purposes.

Frequently Asked Questions (FAQs)

Q: What is the equation of the tangent to a curve y=f(x) at (x0,y0)?
A:

y-y0=f’(x0)(x-x0) 

Q: Give the equation of normal to the tangent y-y0=f’(x0)(x-x0)
A:

(y-y0)f’(x0)+(x-x0)=0

Q: Equation of a tangent with slope=0 st (x0, y0) is
A:

The slope =0. Therefore the equation of tangent is y=y0

Q: The slope of a tangent is infinity, then what is its equation at (x0,y0)?
A:

The equation of tangent with infinite slope is x=x0

Q: Normal is ……………...to the tangent
A:

Normal is perpendicular to the tangent

Q: What is the relation between the slope of a tangent and the normal to the tangent?
A:

The slope of normal is the negative of the inverse of the slope of the tangent.

Q: Give the number of questions discussed in Exercise 6.3 Class 12 Maths
A:

27 questions are answered in the NCERT Solutions for Class 12 Maths chapter 6 exercise 6.3. For more questions refer to NCERT exemplar. Following NCERT syllabus will be useful for CBSE board exams.

Q: How many solved examples are given in the topic tangents and normals?
A:

There are 7 solved examples explained before the NCERT book Class 12 Maths chapter 6 exercise 6.3.

Articles
|
Upcoming School Exams
Ongoing Dates
Manipur board 12th Admit Card Date

17 Dec'25 - 20 Mar'26 (Online)

Ongoing Dates
Odisha CHSE Admit Card Date

19 Dec'25 - 25 Mar'26 (Online)

Ongoing Dates
RBSE 12th Exam Date

1 Jan'26 - 20 Jan'26 (Offline)

Certifications By Top Providers
Economic Evaluation for Health Technology Assessment
Via Postgraduate Institute of Medical Education and Research Chandigarh
Aspen Plus Simulation Software a Basic Course for Beginners
Via Indian Institute of Technology Guwahati
Yoga Practices 1
Via Swami Vivekananda Yoga Anusandhana Samsthana, Bangalore
Introduction to Biomedical Imaging
Via The University of Queensland, Brisbane
Brand Management
Via Indian Institute of Management Bangalore
Edx
 1071 courses
Coursera
 816 courses
Udemy
 394 courses
Futurelearn
 264 courses
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Hello

You will be able to download the CBSE Previous Year Board Question Papers from our official website, careers360, by using the link given below.

https://school.careers360.com/boards/cbse/cbse-previous-year-question-papers

I hope this information helps you.

Thank you.

Hello

You will be able to download the CBSE Pre-Board Class 12 Question Paper 2025-26 from our official website by using the link which is given below.

https://school.careers360.com/boards/cbse/cbse-pre-board-class-12-question-paper-2025-26

I hope this information helps you.

Thank you.

Hello,

Yes, it's completely fine to skip this year's 12th board exams and give them next year as a reporter or private candidate, allowing you to prepare better; the process involves contacting your current school or board to register as a private candidate or for improvement exams during the specified

HELLO,

Yes i am giving you the link below through which you will be able to download the Class 12th Maths Book PDF

Here is the link :- https://school.careers360.com/ncert/ncert-book-for-class-12-maths

Hope this will help you!

Failing in pre-board or selection tests does NOT automatically stop you from sitting in the CBSE Class 12 board exams. Pre-boards are conducted by schools only to check preparation and push students to improve; CBSE itself does not consider pre-board marks. What actually matters is whether your school issues your