NCERT Solutions for Exercise 6.4 Class 10 Maths Chapter 6 - Triangles

NCERT Solutions for Exercise 6.4 Class 10 Maths Chapter 6 - Triangles

Edited By Ramraj Saini | Updated on Nov 25, 2023 08:12 PM IST | #CBSE Class 10th
Upcoming Event
CBSE Class 10th  Exam Date : 15 Feb' 2025 - 15 Feb' 2025

NCERT Solutions For Class 10 Maths Chapter 6 Exercise 6.4

NCERT Solutions for Exercise 6.4 Class 10 Maths Chapter 6 Triangles are discussed here. These NCERT solutions are created by subject matter expert at Careers360 considering the latest syllabus and pattern of CBSE 2023-24. Class 10 maths ex 6.4 states the theorem “The square of the ratio of the corresponding sides of two comparable triangles is equal to the ratio of their areas”. Also discusses about criteria to find similarities between triangles and learn about simple geometry problems.

This Story also Contains
  1. NCERT Solutions For Class 10 Maths Chapter 6 Exercise 6.4
  2. Download Free PDF of NCERT Solutions for Class 10 Maths chapter 6 exercise 6.4
  3. Assess NCERT Solutions for Class 10 Maths chapter 6 exercise 6.4
  4. More About NCERT Solutions for Class 10 Maths Exercise 6.4
  5. Benefits of NCERT Solutions for Class 10 Maths Exercise 6.4
  6. NCERT Solutions of Class 10 Subject Wise
  7. Subject Wise NCERT Exemplar Solutions
NCERT Solutions for Exercise 6.4 Class 10 Maths Chapter 6 - Triangles
NCERT Solutions for Exercise 6.4 Class 10 Maths Chapter 6 - Triangles

NCERT solutions for exercise 6.4 Class 10 Maths chapter 6 Triangles discusses mainly on the ratio of area and ratio of squared sides. 10th class Maths exercise 6.4 answers are designed as per the students demand covering comprehensive, step by step solutions of every problem. Practice these questions and answers to command the concepts, boost confidence and in depth understanding of concepts. Students can find all exercise together using the link provided below.

Pearson | PTE

Register now for PTE & Unlock 20% OFF : Use promo code: 'C360SPL20'. Valid till 31st DEC'24! Trusted by 3,500+ universities globally

Download Free PDF of NCERT Solutions for Class 10 Maths chapter 6 exercise 6.4

Download PDF

Assess NCERT Solutions for Class 10 Maths chapter 6 exercise 6.4

Triangles Class 10 Chapter 6 Exercise: 6.4

Q1 Let \Delta ABC \sim \Delta DEF and their areas be, respectively, 64 cm^2 and 121 cm^2 . If EF = 15.4 cm, find BC.

Answer:

\Delta ABC \sim \Delta DEF ( Given )

ar(ABC) = 64 cm^2 and ar(DEF)=121 cm^2 .

EF = 15.4 cm (Given )

\frac{ar(\triangle ABC)}{ar(\triangle DEF)}=\frac{AB^2}{DE^2}=\frac{BC^2}{EF^2}=\frac{AC^2}{DF^2}

\frac{64}{121}=\frac{BC^2}{(15.4)^2}

\Rightarrow \frac{8}{11}=\frac{BC}{15.4}

\Rightarrow \frac{8\times 15.4}{11}=BC

\Rightarrow BC=11.2 cm

Q2 Diagonals of a trapezium ABCD with AB || DC intersect each other at the point O. If AB = 2 CD, find the ratio of the areas of triangles AOB and COD.

Answer:

1635931770237

Given: Diagonals of a trapezium ABCD with AB || DC intersect each other at the point O.

AB = 2 CD ( Given )

In \triangle AOB\, and\, \triangle COD,

\angle COD=\angle AOB (vertically opposite angles )

\angle OCD=\angle OAB (Alternate angles)

\angle ODC=\angle OBA (Alternate angles)

\therefore \triangle AOB\, \sim \, \triangle COD (AAA similarity)

\frac{ar(\triangle AOB)}{ar(\triangle COD)}=\frac{AB^2}{CD^2}

\frac{ar(\triangle AOB)}{ar(\triangle COD)}=\frac{(2CD)^2}{CD^2}

\frac{ar(\triangle AOB)}{ar(\triangle COD)}=\frac{4.CD^2}{CD^2}

\Rightarrow \frac{ar(\triangle AOB)}{ar(\triangle COD)}=\frac{4}{1}

\Rightarrow ar(\triangle AOB)=ar(\triangle COD)=4:1

Q3 In Fig. 6.44, ABC and DBC are two triangles on the same base BC. If AD intersects BC at O, show that \frac{ar (ABC)}{ar ( DBC )} = \frac{AO}{DO}

1635931784662

Answer:

1635931796737

Let DM and AP be perpendicular on BC.

area\,\,of\,\,triangle=\frac{1}{2}\times base\times perpendicular

\frac{ar(\triangle ABC)}{ar(\triangle BCD)}=\frac{\frac{1}{2}\times BC\times AP}{\frac{1}{2}\times BC\times MD}

In \triangle APO\, and\, \triangle DMO,

\angle APO=\angle DMO (Each 90 \degree )

\angle AOP=\angle MOD (Vertically opposite angles)

\triangle APO\, \sim \, \triangle DMO, (AA similarity)

\frac{AP}{DM}=\frac{AO}{DO}

Since

\frac{ar(\triangle ABC)}{ar(\triangle BCD)}=\frac{\frac{1}{2}\times BC\times AP}{\frac{1}{2}\times BC\times MD}

\Rightarrow \frac{ar(\triangle ABC)}{ar(\triangle BCD)}=\frac{AP}{ MD}=\frac{AO}{DO}

Q5 D, E, and F are respectively the mid-points of sides AB, BC and CA of \Delta ABC . Find the ratio of the areas of \Delta DEF \: \:and \: \: \Delta ABC

Answer:

1635932236410

D, E, and F are respectively the mid-points of sides AB, BC and CA of \Delta ABC . ( Given )

DE=\frac{1}{2}AC and DE||AC

In \Delta BED \: \:and \: \: \Delta ABC ,

\angle BED=\angle BCA (corresponding angles )

\angle BDE=\angle BAC (corresponding angles )

\Delta BED \: \:\sim \: \: \Delta ABC (By AA)

\frac{ar(\triangle BED)}{ar(\triangle ABC)}=\frac{DE^2}{AC^2}

\Rightarrow \frac{ar(\triangle BED)}{ar(\triangle ABC)}=\frac{(\frac{1}{2}AC)^2}{AC^2}

\Rightarrow \frac{ar(\triangle BED)}{ar(\triangle ABC)}=\frac{1}{4}

\Rightarrow ar(\triangle BED)=\frac{1}{4}\times ar(\triangle ABC)

Let {ar(\triangle ABC) be x.

\Rightarrow ar(\triangle BED)=\frac{1}{4}\times x

Similarly,

\Rightarrow ar(\triangle CEF)=\frac{1}{4}\times x and \Rightarrow ar(\triangle ADF)=\frac{1}{4}\times x

ar(\triangle ABC)=ar(\triangle ADF)+ar(\triangle BED)+ar(\triangle CEF)+ar(\triangle DEF)

\Rightarrow x=\frac{x}{4}+\frac{x}{4}+\frac{x}{4}+ar(\triangle DEF)

\Rightarrow x=\frac{3x}{4}+ar(\triangle DEF)

\Rightarrow x-\frac{3x}{4}=ar(\triangle DEF)

\Rightarrow \frac{4x-3x}{4}=ar(\triangle DEF)

\Rightarrow \frac{x}{4}=ar(\triangle DEF)


\frac{ar(\triangle DEF)}{ar(\triangle ABC)}=\frac{\frac{x}{4}}{x}

\Rightarrow \frac{ar(\triangle DEF)}{ar(\triangle ABC)}=\frac{1}{4}

Q6 Proves that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding medians.

Answer:

1635932258592

Let AD and PS be medians of both similar triangles.

\triangle ABC\sim \triangle PQR

\frac{AB}{PQ}=\frac{BC}{QR}=\frac{AC}{PR}............................1

\angle A=\angle P,\angle B=\angle Q,\angle \angle C=\angle R..................2

BD=CD=\frac{1}{2}BC\, \, and\, QS=SR=\frac{1}{2}QR

Purring these value in 1,

\frac{AB}{PQ}=\frac{BD}{QS}=\frac{AC}{PR}..........................3

In \triangle ABD\, and\, \triangle PQS,

\angle B=\angle Q (proved above)

\frac{AB}{PQ}=\frac{BD}{QS} (proved above)

\triangle ABD\, \sim \triangle PQS (SAS )

Therefore,

\frac{AB}{PQ}=\frac{BD}{QS}=\frac{AD}{PS}................4

\frac{ar(\triangle ABC)}{ar(\triangle PQR)}=\frac{AB^2}{PQ^2}=\frac{BC^2}{QR^2}=\frac{AC^2}{PR^2}

From 1 and 4, we get

\frac{AB}{PQ}=\frac{BC}{QR}=\frac{AC}{PR}=\frac{AD}{PS}

\frac{ar(\triangle ABC)}{ar(\triangle PQR)}=\frac{AD^2}{PS^2}

Q7 Prove that the area of an equilateral triangle described on one side of a square is equal to half the area of the equilateral triangle described on one of its diagonals.

Answer:

1635932273637

Let ABCD be a square of side units.

Therefore, diagonal = \sqrt{2}a

Triangles form on the side and diagonal are \triangle ABE and \triangle DEF, respectively.

Length of each side of triangle ABE = a units

Length of each side of triangle DEF = \sqrt{2}a units

Both the triangles are equilateral triangles with each angle of 60 \degree .

\triangle ABE\sim \triangle DBF ( By AAA)

Using area theorem,

\frac{ar(\triangle ABC)}{ar(\triangle DBF)}=(\frac{a}{\sqrt{2}a})^2=\frac{1}{2}

Q8 Tick the correct answer and justify : ABC and BDE are two equilateral triangles such that D is the mid-point of BC. The ratio of the areas of triangles ABC and BDE is

(A) 2: 1 (B) 1: 2 (C) 4 : 1 (D) 1: 4

Answer:

1635932291018

Given: ABC and BDE are two equilateral triangles such that D is the mid-point of BC.

All angles of the triangle are 60 \degree .

\triangle ABC \sim \triangle BDE (By AAA)

Let AB=BC=CA = x

then EB=BD=ED= \frac{x}{2}

\frac{ar(\triangle ABC)}{ar(\triangle BDE)}=(\frac{x}{\frac{x}{2}})^2=\frac{4}{1}

Option C is correct.

Q9 Sides of two similar triangles are in the ratio 4: 9. Areas of these triangles are in the ratio

(A) 2 : 3 (B) 4: 9 (C) 81: 16 (D) 16: 81

Answer:

Sides of two similar triangles are in the ratio 4: 9.

Let triangles be ABC and DEF.

We know that

\frac{ar(\triangle ABC)}{ar(\triangle DEF)}=\frac{AB^2}{DE^2}=\frac{4^2}{9^2}=\frac{16}{81}

Option D is correct.

More About NCERT Solutions for Class 10 Maths Exercise 6.4

Class 10 Maths chapter 6 exercise 6.4: Most of the questions are based on the ratio of areas of similar triangles in exercise 6.4 Class 10 Maths, but we should be also aware of some basic geometry which helps to solve problems of NCERT solutions for Class 10 Maths exercise 6.4. We should know the properties of the trapezium and the criterion of similarity of triangles. Questions given in the Exercise 6.4 Class 10 Maths are very important for the board exam. Students can also access Triangles Class 10 Notes here and use them for quickly revision of the concepts related to Triangles.

Benefits of NCERT Solutions for Class 10 Maths Exercise 6.4

  • Class 10 NCERT solutions Math is thought to be the best material for problem-solving Class 10 Maths chapter 6 exercise 6.4.
  • NCERT Class 10 Maths chapter 6 exercise 6.4, All questions are updated from Class 10 Maths chapter 6 exercise 6.4 and contain all crucial questions from test pov.
  • Exercise 6.4 Class 10 Maths, is founded on irrational numbers and the Fundamental Theorem of Arithmetic, both of which are key concepts in the chapter.

Also, See

NCERT Solutions of Class 10 Subject Wise

Subject Wise NCERT Exemplar Solutions

Frequently Asked Questions (FAQs)

1. Do Similar triangles have same areas?

No, it is not always true but it is proved in NCERT solutions for Class 10 Maths 1 exercise 6.4 that ratio of areas of two similar triangles is equal to the square of ratio of corresponding sides of that triangles.

2. What is the area of equilateral triangle of side a?

No, it is not always true but it is proved in NCERT solutions for Class 10 Maths 1 exercise 6.4 that ratio of areas of two similar triangles is equal to the square of ratio of corresponding sides of that triangles.

3. Which criterion of similarity of triangle is used for right angled triangle?

RHS rule is used to prove similarity

4. If two similar triangles have same area, are they congruent?

Yes, by using theorem 6.6 given in NCERT solutions for Class 10 Maths 1 exercise 6.4, we can prove this.

5. What is the relation between the ratio of areas of similar triangles and their sides?

Ratio of areas of similar triangles is equal to the ratio of square of corresponding sides of that triangles.

Sides of similar triangles are in ratio 25:36, find the ratio of areas of triangle.

Ratio is 625:1296.

6. Are two triangles similar if they have two corresponding equal angles?

Yes, they are similar by AAA rule.

7. What do you understand by ASA rule?

Two triangles are congruent if two angles and the included side of one triangle are congruent with two angles and the included side of another triangle.

Articles

Upcoming School Exams

Application Date:11 November,2024 - 10 January,2025

Application Date:11 November,2024 - 10 January,2025

Admit Card Date:13 December,2024 - 06 January,2025

Late Fee Application Date:13 December,2024 - 22 December,2024

View All School Exams

Explore Top Universities Across Globe

University of Essex, Colchester
 Wivenhoe Park Colchester CO4 3SQ
University College London, London
 Gower Street, London, WC1E 6BT
The University of Edinburgh, Edinburgh
 Old College, South Bridge, Edinburgh, Post Code EH8 9YL
University of Bristol, Bristol
 Beacon House, Queens Road, Bristol, BS8 1QU
University of Nottingham, Nottingham
 University Park, Nottingham NG7 2RD

Questions related to CBSE Class 10th

Have a question related to CBSE Class 10th ?

If you're looking for directions or steps to reach Sadhu Ashram on Ramgart Road in Aligarh, here’s how you can get there:

Steps to Reach Sadhu Ashram, Ramgart Road, Aligarh:

  1. Starting Point:

    • Determine your starting point in Aligarh or the nearby area.
  2. Use Google Maps:

    • Open Google Maps on your phone or computer.
    • Enter "Sadhu Ashram, Ramgart Road, Aligarh" as your destination.
    • Follow the navigation instructions provided by Google Maps.
  3. By Local Transport:

    • Auto-rickshaw/Taxi: Hire an auto-rickshaw or taxi and inform the driver about your destination. Most local drivers should be familiar with Sadhu Ashram.
    • Bus: Check if there are any local buses that operate on Ramgart Road. Ask the bus conductor if the bus stops near Sadhu Ashram.
  4. Landmarks to Look For:

    • As you approach Ramgart Road, look for local landmarks that might help you confirm you’re on the right path, such as known shops, temples, or schools nearby.
  5. Ask for Directions:

    • If you're unsure, ask locals for directions to Sadhu Ashram on Ramgart Road. It's a known location in the area.
  6. Final Destination:

    • Once you reach Ramgart Road, Sadhu Ashram should be easy to spot. Look for any signage or ask nearby people to guide you to the exact location.

If you need detailed directions from a specific location or more information about Sadhu Ashram, feel free to ask

Hello Aspirant,  Hope your doing great,  your question was incomplete and regarding  what exam your asking.

Yes, scoring above 80% in ICSE Class 10 exams typically meets the requirements to get into the Commerce stream in Class 11th under the CBSE board . Admission criteria can vary between schools, so it is advisable to check the specific requirements of the intended CBSE school. Generally, a good academic record with a score above 80% in ICSE 10th result is considered strong for such transitions.

hello Zaid,

Yes, you can apply for 12th grade as a private candidate .You will need to follow the registration process and fulfill the eligibility criteria set by CBSE for private candidates.If you haven't given the 11th grade exam ,you would be able to appear for the 12th exam directly without having passed 11th grade. you will need to give certain tests in the school you are getting addmission to prove your eligibilty.

best of luck!

According to cbse norms candidates who have completed class 10th, class 11th, have a gap year or have failed class 12th can appear for admission in 12th class.for admission in cbse board you need to clear your 11th class first and you must have studied from CBSE board or any other recognized and equivalent board/school.

You are not eligible for cbse board but you can still do 12th from nios which allow candidates to take admission in 12th class as a private student without completing 11th.

View All

A block of mass 0.50 kg is moving with a speed of 2.00 ms-1 on a smooth surface. It strikes another mass of 1.00 kg and then they move together as a single body. The energy loss during the collision is

Option 1)

0.34\; J

Option 2)

0.16\; J

Option 3)

1.00\; J

Option 4)

0.67\; J

A person trying to lose weight by burning fat lifts a mass of 10 kg upto a height of 1 m 1000 times.  Assume that the potential energy lost each time he lowers the mass is dissipated.  How much fat will he use up considering the work done only when the weight is lifted up ?  Fat supplies 3.8×107 J of energy per kg which is converted to mechanical energy with a 20% efficiency rate.  Take g = 9.8 ms−2 :

Option 1)

2.45×10−3 kg

Option 2)

 6.45×10−3 kg

Option 3)

 9.89×10−3 kg

Option 4)

12.89×10−3 kg

 

An athlete in the olympic games covers a distance of 100 m in 10 s. His kinetic energy can be estimated to be in the range

Option 1)

2,000 \; J - 5,000\; J

Option 2)

200 \, \, J - 500 \, \, J

Option 3)

2\times 10^{5}J-3\times 10^{5}J

Option 4)

20,000 \, \, J - 50,000 \, \, J

A particle is projected at 600   to the horizontal with a kinetic energy K. The kinetic energy at the highest point

Option 1)

K/2\,

Option 2)

\; K\;

Option 3)

zero\;

Option 4)

K/4

In the reaction,

2Al_{(s)}+6HCL_{(aq)}\rightarrow 2Al^{3+}\, _{(aq)}+6Cl^{-}\, _{(aq)}+3H_{2(g)}

Option 1)

11.2\, L\, H_{2(g)}  at STP  is produced for every mole HCL_{(aq)}  consumed

Option 2)

6L\, HCl_{(aq)}  is consumed for ever 3L\, H_{2(g)}      produced

Option 3)

33.6 L\, H_{2(g)} is produced regardless of temperature and pressure for every mole Al that reacts

Option 4)

67.2\, L\, H_{2(g)} at STP is produced for every mole Al that reacts .

How many moles of magnesium phosphate, Mg_{3}(PO_{4})_{2} will contain 0.25 mole of oxygen atoms?

Option 1)

0.02

Option 2)

3.125 × 10-2

Option 3)

1.25 × 10-2

Option 4)

2.5 × 10-2

If we consider that 1/6, in place of 1/12, mass of carbon atom is taken to be the relative atomic mass unit, the mass of one mole of a substance will

Option 1)

decrease twice

Option 2)

increase two fold

Option 3)

remain unchanged

Option 4)

be a function of the molecular mass of the substance.

With increase of temperature, which of these changes?

Option 1)

Molality

Option 2)

Weight fraction of solute

Option 3)

Fraction of solute present in water

Option 4)

Mole fraction.

Number of atoms in 558.5 gram Fe (at. wt.of Fe = 55.85 g mol-1) is

Option 1)

twice that in 60 g carbon

Option 2)

6.023 × 1022

Option 3)

half that in 8 g He

Option 4)

558.5 × 6.023 × 1023

A pulley of radius 2 m is rotated about its axis by a force F = (20t - 5t2) newton (where t is measured in seconds) applied tangentially. If the moment of inertia of the pulley about its axis of rotation is 10 kg m2 , the number of rotations made by the pulley before its direction of motion if reversed, is

Option 1)

less than 3

Option 2)

more than 3 but less than 6

Option 3)

more than 6 but less than 9

Option 4)

more than 9

Back to top