NEET/JEE Coaching Scholarship
ApplyGet up to 90% Scholarship on Offline NEET/JEE coaching from top Institutes
NCERT Solutions for Class 11 Maths Chapter 9 Sequences And Series Miscellaneous Exercise- In this article, you will get NCERT solutions for Class 11 Maths Chapter 9 miscellaneous exercise. The miscellaneous exercise consists of mixed kinds of questions from all the topics covered in this chapter. You must have solved the previous exercise of this chapter. Now you can try to solve problems from the miscellaneous exercise chapter 9 Class 11.
New: Get up to 90% Scholarship on NEET/JEE Coaching from top Coaching Institutes
JEE Main Scholarship Test Kit (Class 11): Narayana | Physics Wallah | Aakash | Unacademy
Suggested: JEE Main: high scoring chapters | Past 10 year's papers
As you have already familiar with the NCERT syllabus Class 11 Maths chapter 9 concepts, you can try to solve problems from miscellaneous exercise chapter 9 Class 11. These problems are a bit lengthy and complex as compared to the other exercise of this chapter but these problems will check your understanding of this chapter. You don't need to worry if you are not able to solve these problems by yourself at first. Class 11 Maths Chapter 9 miscellaneous exercise solutions are here to help you where you will get detailed miscellaneous solutions. The class 11 maths ch 9 miscellaneous exercise solutions Maths Miscellaneous Exercises are meticulously crafted by subject experts from Careers360. Each step is explained in detail, providing comprehensive and well-explained solutions. Furthermore, the availability of a PDF version of class 11 chapter 9 maths miscellaneous solutions allows students to access the solutions offline, providing flexibility and convenience to study according to their preferences. You can check NCERT Solutions link if you are looking for NCERT solutions for all the Classes at one place.
Also, see
** As per the CBSE Syllabus for the academic year 2023-24, it has been noted that miscellaneous exercise class 11 chapter 9 has been renumbered and is now recognized as Chapter 8.
Answer:
Let a be first term and d be common difference of AP.
Kth term of a AP is given by,
Hence, the sum of
Question:2 If the sum of three numbers in A.P., is 24 and their product is 440, find the numbers.
Answer:
Let three numbers of AP are a-d, a, a+d.
According to given information ,
When d=3, AP= 5,8,11 also if d=-3 ,AP =11,8,5.
Thus, three numbers are 5,8,11.
Question:3 Let the sum of n, 2n, 3n terms of an A.P. be
Answer:
Let a be first term and d be common difference of AP.
Subtract equation 1 from 2,
Hence, the result is proved.
Question:4 Find the sum of all numbers between 200 and 400 which are divisible by 7.
Answer:
Numbers divisible by 7 from 200 to 400 are
This sequence is an A.P.
Here , first term =a =203
common difference = 7.
We know ,
The sum of numbers divisible by 7from 200 to 400 is 8729.
Question:5 Find the sum of integers from 1 to 100 that are divisible by 2 or 5.
Answer:
Numbers divisible by 2 from 1 to 100 are
This sequence is an A.P.
Here , first term =a =2
common difference = 2.
We know ,
Numbers divisible by 5 from 1 to 100 are
This sequence is an A.P.
Here , first term =a =5
common difference = 5.
We know ,
Numbers divisible by both 2 and 5 from 1 to 100 are
This sequence is an A.P.
Here , first term =a =10
common difference = 10
We know ,
Thus, the sum of integers from 1 to 100 that are divisible by 2 or 5 is 3050.
Question:6 Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.
Answer:
Numbers divisible by 4, yield remainder as 1 from 10 to 100 are
This sequence is an A.P.
Here , first term =a =13
common difference = 4.
We know ,
The sum of numbers divisible by 4 yield 1 as remainder from 10 to 100 is 1210.
Question:7 If f is a function satisfying f (x +y) = f(x) f(y) for all x, y
Answer:
Given : f (x +y) = f(x) f(y) for all x, y
Taking
Therefore,
Thus, value of n is 4.
Answer:
Let the sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2
Therefore,
Thus, the value of n is 6.
Last term of GP=6th term
The last term of GP =160
Answer:
Given: The first term of a G.P. is 1. The sum of the third term and fifth term is 90.
Thus, the common ratio of GP is
Answer:
Let three terms of GP be
Then, we have
From equation 1 and 2, we get
If r=2, GP = 8,16,32
If r=0.2, GP= 32,16,8.
Thus, the numbers required are 8,16,32.
Answer:
Let GP be
Number of terms = 2n
According to the given condition,
Let the be GP as
Thus, the common ratio is 4.
Answer:
Given : first term =a=11
Let AP be
Given: The sum of the first four terms of an A.P. is 56.
Also, The sum of the last four terms is 112.
Thus, the number of terms of AP is 11.
Question:13 If
Answer:
Given :
Taking ,
Taking,
From equation 1 and 2 , we have
Thus, a,b,c,d are in GP.
Question:14 Let S be the sum, P the product and R the sum of reciprocals of n terms in a G.P. Prove that
Answer:
Ler there be a GP
According to given information,
To prove :
LHS :
Hence proved
Question:15 The pth, qth and rth terms of an A.P. are a, b, c, respectively. Show that
Answer:
Given: The pth, qth and rth terms of an A.P. are a, b, c, respectively.
To prove :
Let the first term of AP be 't' and common difference be d
Subtracting equation 2 from 1, we get
Subtracting equation 3 from 2, we get
Equating values of d, from equation 4 and 5, we have
Hence proved.
Question:16 If
Answer:
Given:
Thus, a,b,c are in AP.
Question:17 If a, b, c, d are in G.P, prove that
Answer:
Given: a, b, c, d are in G.P.
To prove:
Then we can write,
Let
LHS:
Hence proved
Thus,
Answer:
Given: a and b are the roots of
Then,
Also, c, d are roots of
Given: a, b, c, d form a G.P
Let,
From 1 and 2, we get
On dividing them,
When , r=2 ,
When , r=-2,
CASE (1) when r=2 and x=1,
i.e. (q + p) : (q – p) = 17:15.
CASE (2) when r=-2 and x=-3,
i.e. (q + p) : (q – p) = 17:15.
Question:19 The ratio of the A.M. and G.M. of two positive numbers a and b, is m : n. Show that
Answer:
Let two numbers be a and b.
According to the given condition,
We get,
From 1 and 2, we get
Putting the value of a in equation 1, we have
Question:20 If a, b, c are in A.P.; b, c, d are in G.P. and 1/c , 1/d , 1/e are in A.P. prove that a, c, e are in G.P.
Answer:
Given: a, b, c are in A.P
Also, b, c, d are in G.P.
Also, 1/c, 1/d, 1/e are in A.P
To prove: a, c, e are in G.P. i.e.
From 1, we get
From 2, we get
Putting values of b and d, we get
Thus, a, c, e are in G.P.
Question:21(i) Find the sum of the following series up to n terms:
Answer:
It can be changed in GP by writing terms as
Thus, the sum is
Question:21(ii) Find the sum of the following series up to n terms: .6 +. 66 +. 666+…
Answer:
Sum of 0.6 +0. 66 + 0. 666+….................
It can be written as
Question:22 Find the 20th term of the series
Answer:
the series =
Thus, the 20th term of series is 1680
Question:23 Find the sum of the first n terms of the series: 3+ 7 +13 +21 +31 +…
Answer:
The series: 3+ 7 +13 +21 +31 +…..............
n th term =
Question:24 If
Answer:
To prove :
From given information,
Here ,
Also,
From equation 1 and 2 , we have
Hence proved .
Question:25 Find the sum of the following series up to n terms:
Answer:
n term of series :
Here,
Question:26 Show that
Answer:
To prove :
the nth term of numerator
nth term of the denominator
Numerator :
Denominator :
From equation 1,2,3,we have
Hence, the above expression is proved.
Answer:
Given : Farmer pays Rs 6000 cash.
Therefore , unpaid amount = 12000-6000=Rs. 6000
According to given condition, interest paid annually is
12% of 6000,12% of 5500,12% of 5000,......................12% of 500.
Thus, total interest to be paid
Here,
We know that
Sum of AP:
Thus, interest to be paid :
Thus, cost of tractor = Rs. 12000+ Rs. 4680 = Rs. 16680
Answer:
Given: Shamshad Ali buys a scooter for Rs 22000.
Therefore , unpaid amount = 22000-4000=Rs. 18000
According to the given condition, interest paid annually is
10% of 18000,10% of 17000,10% of 16000,......................10% of 1000.
Thus, total interest to be paid
Here,
We know that
Sum of AP:
Thus, interest to be paid :
Thus, cost of tractor = Rs. 22000+ Rs. 17100 = Rs. 39100
Answer:
The numbers of letters mailed forms a GP :
first term = a=4
common ratio=r=4
number of terms = 8
We know that the sum of GP is
costs to mail one letter are 50 paise.
Cost of mailing 87380 letters
Thus, the amount spent when the 8th set of the letter is mailed is Rs. 43690.
Answer:
Given : A man deposited Rs 10000 in a bank at the rate of 5% simple interest annually.
Answer:
Cost of machine = Rs. 15625
Machine depreciate each year by 20%.
Therefore, its value every year is 80% of the original cost i.e.
Thus, the value of the machine at the end of 5 years is Rs. 5120
Answer:
Let x be the number of days in which 150 workers finish the work.
According to the given information, we have
Series
first term=a=150
common difference= -4
number of terms = x+8
Since x cannot be negative so x=17.
Thus, in 17 days 150 workers finish the work.
Thus, the required number of days = 17+8=25 days.
Class 11 Maths chapter 9 miscellaneous solutions consist of questions related to finding the nth term of the arithmetic progression, the sum of the terms of arithmetic progression, arithmetic mean, nth term of the geometric progression, the sum of the terms of geometric progression, geometric mean, etc. There are few solved examples given before the miscellaneous exercise chapter 9 Class 11 that you can try to solve.
The Miscellaneous Exercise in NCERT Solutions for Class 11 Maths Chapter 9 - Sequences and Series covers the following topics:
By engaging with the concepts presented in NCERT Solutions for Class 11 Maths, students can address any doubts related to these topics, establishing a strong foundation for their understanding of Class 12 Maths.
Also Read| Sequences And Series Class 11 Notes
Also see-
Happy learning!!!
Sequence means an arrangement of numbers in a definite order according to some rule.
The finite sequence is s sequence containing a finite number of terms.
The infinite sequence is s sequence containing an infinite number of terms.
If the terms of a sequence are expressed as the sum of terms then it is called a series.
Sum of A.P. = n(a+l)/2
Arithmetic mean (A.M.) = (5+9)/2 = 7
Get up to 90% Scholarship on Offline NEET/JEE coaching from top Institutes
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest 2024 syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
Accepted by more than 11,000 universities in over 150 countries worldwide