NEET Most scoring concepts
ApplyThis ebook serves as a valuable study guide for NEET 2025 exam.
NCERT Solutions for Class 11 Maths Chapter 9 Sequences And Series Miscellaneous Exercise- In this article, you will get NCERT solutions for Class 11 Maths Chapter 9 miscellaneous exercise. The miscellaneous exercise consists of mixed kinds of questions from all the topics covered in this chapter. You must have solved the previous exercise of this chapter. Now you can try to solve problems from the miscellaneous exercise chapter 9 Class 11.
JEE Main Scholarship Test Kit (Class 11): Narayana | Physics Wallah | Aakash | Unacademy
Suggested: JEE Main: high scoring chapters | Past 10 year's papers
As you have already familiar with the NCERT syllabus Class 11 Maths chapter 9 concepts, you can try to solve problems from miscellaneous exercise chapter 9 Class 11. These problems are a bit lengthy and complex as compared to the other exercise of this chapter but these problems will check your understanding of this chapter. You don't need to worry if you are not able to solve these problems by yourself at first. Class 11 Maths Chapter 9 miscellaneous exercise solutions are here to help you where you will get detailed miscellaneous solutions. The class 11 maths ch 9 miscellaneous exercise solutions Maths Miscellaneous Exercises are meticulously crafted by subject experts from Careers360. Each step is explained in detail, providing comprehensive and well-explained solutions. Furthermore, the availability of a PDF version of class 11 chapter 9 maths miscellaneous solutions allows students to access the solutions offline, providing flexibility and convenience to study according to their preferences. You can check NCERT Solutions link if you are looking for NCERT solutions for all the Classes at one place.
Also, see
** As per the CBSE Syllabus for the academic year 2023-24, it has been noted that miscellaneous exercise class 11 chapter 9 has been renumbered and is now recognized as Chapter 8.
Answer:
Let a be first term and d be common difference of AP.
Kth term of a AP is given by,
$a_k=a+(k-1)d$
$\therefore a_{m+n}=a+(m+n-1)d$
$\therefore a_{m-n}=a+(m-n-1)d$
$a_m=a+(m-1)d$
$a_{m+n}+ a_{m-n}=a+(m+n-1)d+a+(m-n-1)d$
$=2a+(m+n-1+m-n-1)d$
$=2a+(2m-2)d$
$=2(a+(m-1)d)$
$=2.a_m$
Hence, the sum of $( m+n)^{th}$ and $( m-n)^{th}$ terms of an A.P. is equal to twice the $m^{th}$term.
Question:2 If the sum of three numbers in A.P., is 24 and their product is 440, find the numbers.
Answer:
Let three numbers of AP are a-d, a, a+d.
According to given information ,
$a-d+a+a+d=24$
$3a=24$
$\Rightarrow a=8$
$(a-d)a(a+d)=440$
$\Rightarrow (8-d)8(8+d)=440$
$\Rightarrow (8-d)(8+d)=55$
$\Rightarrow (8^2-d^2)=55$
$\Rightarrow (64-d^2)=55$
$\Rightarrow d^2=64-55=9$
$\Rightarrow d=\pm 3$
When d=3, AP= 5,8,11 also if d=-3 ,AP =11,8,5.
Thus, three numbers are 5,8,11.
Answer:
Let a be first term and d be common difference of AP.
$S_n=\frac{n}{2}[2a+(n-1)d]=S_1..................................1$
$S_2n=\frac{2n}{2}[2a+(2n-1)d]=S_2..................................2$
$S_2_n=\frac{3n}{2}[2a+(3n-1)d]=S_3..................................3$
Subtract equation 1 from 2,
$S_2-S_1=\frac{2n}{2}[2a+(2n-1)d]-\frac{n}{2}[2a+(n-1)d]$
$=\frac{n}{2}[4a+4nd-2d-2a-nd+d]$
$=\frac{n}{2}[2a+3nd-d]$
$=\frac{n}{2}[2a+(3n-1)d]$
$\therefore 3(S_2-S_1)=\frac{3n}{2}[2a+(3n-1)d]=S_3$
Hence, the result is proved.
Question:4 Find the sum of all numbers between 200 and 400 which are divisible by 7.
Answer:
Numbers divisible by 7 from 200 to 400 are $203,210,.............399$
This sequence is an A.P.
Here , first term =a =203
common difference = 7.
We know , $a_n = a+(n-1)d$
$399 = 203+(n-1)7$
$\Rightarrow \, \, 196 = (n-1)7$
$\Rightarrow \, \, 28 = (n-1)$
$\Rightarrow \, \, n=28+1=29$
$S_n = \frac{n}{2}[2a+(n-1)d]$
$= \frac{29}{2}[2(203)+(29-1)7]$
$= \frac{29}{2}[2(203)+28(7)]$
$= 29\times 301$
$= 8729$
The sum of numbers divisible by 7from 200 to 400 is 8729.
Question:5 Find the sum of integers from 1 to 100 that are divisible by 2 or 5.
Answer:
Numbers divisible by 2 from 1 to 100 are $2,4,6................100$
This sequence is an A.P.
Here , first term =a =2
common difference = 2.
We know , $a_n = a+(n-1)d$
$100= 2+(n-1)2$
$\Rightarrow \, \, 98 = (n-1)2$
$\Rightarrow \, \, 49 = (n-1)$
$\Rightarrow \, \, n=49+1=50$
$S_n = \frac{n}{2}[2a+(n-1)d]$
$= \frac{50}{2}[2(2)+(50-1)2]$
$= \frac{50}{2}[2(2)+49(2)]$
$= 25\times 102$
$= 2550$
Numbers divisible by 5 from 1 to 100 are $5,10,15................100$
This sequence is an A.P.
Here , first term =a =5
common difference = 5.
We know , $a_n = a+(n-1)d$
$100= 5+(n-1)5$
$\Rightarrow \, \, 95 = (n-1)5$
$\Rightarrow \, \, 19 = (n-1)$
$\Rightarrow \, \, n=19+1=20$
$S_n = \frac{n}{2}[2a+(n-1)d]$
$= \frac{20}{2}[2(5)+(20-1)5]$
$= \frac{20}{2}[2(5)+19(5)]$
$= 10\times 105=1050$
Numbers divisible by both 2 and 5 from 1 to 100 are $10,20,30................100$
This sequence is an A.P.
Here , first term =a =10
common difference = 10
We know , $a_n = a+(n-1)d$
$100= 10+(n-1)10$
$\Rightarrow \, \, 90 = (n-1)10$
$\Rightarrow \, \, 9 = (n-1)$
$\Rightarrow \, \, n=9+1=10$
$S_n = \frac{n}{2}[2a+(n-1)d]$
$= \frac{10}{2}[2(10)+(10-1)10]$
$= \frac{10}{2}[2(10)+9(10)]$
$= 5\times 110=550$
$\therefore Required \, \, sum=2550+1050-550=3050$
Thus, the sum of integers from 1 to 100 that are divisible by 2 or 5 is 3050.
Question:6 Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.
Answer:
Numbers divisible by 4, yield remainder as 1 from 10 to 100 are $13,17,..................97$
This sequence is an A.P.
Here , first term =a =13
common difference = 4.
We know , $a_n = a+(n-1)d$
$97 = 13+(n-1)4$
$\Rightarrow \, \, 84 = (n-1)4$
$\Rightarrow \, \, 21 = (n-1)$
$\Rightarrow \, \, n=21+1=22$
$S_n = \frac{n}{2}[2a+(n-1)d]$
$= \frac{22}{2}[2(13)+(22-1)4]$
$= \frac{22}{2}[2(13)+21(4)]$
$= 11\times 110$
$=1210$
The sum of numbers divisible by 4 yield 1 as remainder from 10 to 100 is 1210.
Question:7 If f is a function satisfying f (x +y) = f(x) f(y) for all x, y $\epsilon$ N such that f(1) = 3 and
$\sum_{x=1}^{n} f(x) = 120$ , find the value of n.
Answer:
Given : f (x +y) = f(x) f(y) for all x, y $\epsilon$ N such that f(1) = 3
$f(1) = 3$
Taking $x=y=1$ , we have
$f(1+1)=f(2)=f(1)*f(1)=3*3=9$
$f(1+1+1)=f(1+2)=f(1)*f(2)=3*9=27$
$f(1+1+1+1)=f(1+3)=f(1)*f(3)=3*27=81$
$f(1),f(2),f(3),f(4).....................$ is $3,9,27,81,..............................$ forms a GP with first term=3 and common ratio = 3.
$\sum_{x=1}^{n} f(x) = 120=S_n$
$S_n=\frac{a(1-r^n)}{1-r}$
$120=\frac{3(1-3^n)}{1-3}$
$40=\frac{(1-3^n)}{-2}$
$-80=(1-3^n)$
$-80-1=(-3^n)$
$-81=(-3^n)$
$3^n=81$
Therefore, $n=4$
Thus, value of n is 4.
Answer:
Let the sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2
$S_n=\frac{a(1-r^n)}{1-r}$
$315=\frac{5(1-2^n)}{1-2}$
$63=\frac{(1-2^n)}{-1}$
$-63=(1-2^n)$
$-63-1=(-2^n)$
$-64=(-2^n)$
$2^n=64$
Therefore, $n=6$
Thus, the value of n is 6.
Last term of GP=6th term$=a.r^{n-1}=5.2^5=5*32=160$
The last term of GP =160
Answer:
Given: The first term of a G.P. is 1. The sum of the third term and fifth term is 90.
$a=1$
$a_3=a.r^2=r^2$ $a_5=a.r^4=r^4$
$\therefore \, \, r^2+r^4=90$
$\therefore \, \, r^4+r^2-90=0$
$\Rightarrow \, \, r^2=\frac{-1\pm \sqrt{1+360}}{2}$
$r^2=\frac{-1\pm \sqrt{361}}{2}$$r^2=-10 \, or \, 9$
$r=\pm 3$
Thus, the common ratio of GP is $\pm 3$.
Answer:
Let three terms of GP be $a,ar,ar^2.$
Then, we have $a+ar+ar^2=56$
$a(1+r+r^2)=56$...............................................1
$a-1,ar-7,ar^2-21$ from an AP.
$\therefore ar-7-(a-1)=ar^2-21-(ar-7)$
$ar-7-a+1=ar^2-21-ar+7$
$ar-6-a=ar^2-14-ar$
$\Rightarrow ar^2-2ar+a=8$
$\Rightarrow ar^2-ar-ar+a=8$
$\Rightarrow a(r^2-2r+1)=8$
$\Rightarrow a(r^2-1)^2=8$....................................................................2
From equation 1 and 2, we get
$\Rightarrow 7(r^2-2r+1)=1+r+r^2$
$\Rightarrow 7r^2-14r+7-1-r-r^2=0$
$\Rightarrow 6r^2-15r+6=0$
$\Rightarrow 2r^2-5r+2=0$
$\Rightarrow 2r^2-4r-r+2=0$
$\Rightarrow 2r(r-2)-1(r-2)=0$
$\Rightarrow (r-2)(2r-1)=0$
$\Rightarrow r=2,r=\frac{1}{2}$
If r=2, GP = 8,16,32
If r=0.2, GP= 32,16,8.
Thus, the numbers required are 8,16,32.
Answer:
Let GP be $A_1,A_2,A_3,...................A_2_n$
Number of terms = 2n
According to the given condition,
$(A_1,A_2,A_3,...................A_2_n)=5(A_1,A_3,...................A_{2_n-1})$
$\Rightarrow (A_1,A_2,A_3,...................A_2_n)-5(A_1,A_3,...................A_{2n-1})=0$
$\Rightarrow (A_2,A_4,A_6,...................A_2_n)=4(A_1,A_3,...................A_{2n-1})$
Let the be GP as $a,ar,ar^2,..................$
$\Rightarrow \frac{ar(r^n-1)}{r-1}=\frac{4.a(r^{n}-1)}{r-1}$
$\Rightarrow ar=4a$
$\Rightarrow r=4$
Thus, the common ratio is 4.
Answer:
Given : first term =a=11
Let AP be $11,11+d,11+2d,11+3d,...........................................11+(n-1)d$
Given: The sum of the first four terms of an A.P. is 56.
$11+11+d+11+2d+11+3d=56$
$\Rightarrow 44+6d=56$
$\Rightarrow 6d=56-44=12$
$\Rightarrow 6d=12$
$\Rightarrow d=2$
Also, The sum of the last four terms is 112.
$11+(n-4)d+11+(n-3)d+11+(n-2)d+11+(n-1)d=112$$\Rightarrow 44+(n-4)2+(n-3)2+(n-2)2+(n-1)2=112$
$\Rightarrow 44+2n-8+2n-6+2n-4+2n-2=112$
$\Rightarrow 44+8n-20=112$
$\Rightarrow 24+8n=112$
$\Rightarrow 8n=112-24$
$\Rightarrow 8n=88$
$\Rightarrow n=11$
Thus, the number of terms of AP is 11.
Answer:
Given :
$\frac{a+ bx}{a-bx} = \frac{b+cx}{b-cx} = \frac{c+dx}{c-dx} (x\neq 0 )$
Taking ,
$\frac{a+ bx}{a-bx} = \frac{b+cx}{b-cx}$
$\Rightarrow (a+ bx) (b-cx) = (b+cx) (a-bx)$
$\Rightarrow ab+ b^2x-bcx^2-acx) = ba-b^2x+acx-bcx^2$
$\Rightarrow 2 b^2x = 2acx$
$\Rightarrow b^2 = ac$
$\Rightarrow \frac{b}{a}=\frac{c}{b}..................1$
Taking,
$\frac{b+cx}{b-cx} = \frac{c+dx}{c-dx}$
$\Rightarrow (b+cx)(c-dx)=(c+dx)(b-cx)$
$\Rightarrow bc-bdx+c^2x-cdx^2=bc-c^2x+bdx-cdx^2$
$\Rightarrow 2bdx=2c^2x$
$\Rightarrow bd=c^2$
$\Rightarrow \frac{d}{c}=\frac{c}{b}..............................2$
From equation 1 and 2 , we have
$\Rightarrow \frac{d}{c}=\frac{c}{b}=\frac{b}{a}$
Thus, a,b,c,d are in GP.
Answer:
Ler there be a GP $=a,ar,ar^2,ar^3,....................$
According to given information,
$S=\frac{a(r^n-1)}{r-1}$
$P=a^n \times r^{(1+2+...................n-1)}$
$P=a^n \times r^{\frac{n(n-1)}{2}}$
$R=\frac{1}{a}+\frac{1}{ar}+\frac{1}{ar^2}+..................\frac{1}{ar^{n-1}}$
$R=\frac{r^{n-1}+r^{n-2}+r^{n-3}+..............r+1}{a.r^{n-1}}$
$R=\frac{1}{a.r^{n-1}}\times \frac{1(r^n-1)}{r-1}$
$R= \frac{(r^n-1)}{a.r^{n-1}.(r-1)}$
To prove : $P^2 R^n = S ^n$
LHS : $P^2 R^n$
$= a^{2n}.r^{n(n-1)}\frac{(r^n-1)^n}{a^n.r^{n(n-1)}.(r-1)^n}$
$= a^{n} \frac{(r^n-1)^n}{(r-1)^n}$
$= \left ( \frac{a(r^n-1)}{(r-1)} \right )^{n}$
$=S^n=RHS$
Hence proved
Question:15 The pth, qth and rth terms of an A.P. are a, b, c, respectively. Show that
$(q - r )a + (r - p )b + (p - q )c = 0$
Answer:
Given: The pth, qth and rth terms of an A.P. are a, b, c, respectively.
To prove : $(q - r )a + (r - p )b + (p - q )c = 0$
Let the first term of AP be 't' and common difference be d
$a_p=t+(p-1)d=a...............................1$
$a_q=t+(q-1)d=b...............................2$
$a_r=t+(r-1)d=c...............................3$
Subtracting equation 2 from 1, we get
$(p-1-q+1)d=a-b$
$\Rightarrow (p-q)d=a-b$
$\Rightarrow d=\frac{a-b}{p-q}....................................4$
Subtracting equation 3 from 2, we get
$(q-1-r+1)d=b-c$
$\Rightarrow (q-r)d=b-c$
$\Rightarrow d=\frac{b-c}{q-r}....................................5$
Equating values of d, from equation 4 and 5, we have
$d=\frac{a-b}{p-q}=\frac{b-c}{q-r}.$
$\Rightarrow \frac{a-b}{p-q}=\frac{b-c}{q-r}.$
$\Rightarrow (a-b)(q-r)=(b-c)(p-q)$
$\Rightarrow aq-ar-bq+br=bp-bq-cp+cq$
$\Rightarrow aq-ar+br=bp-cp+cq$
$\Rightarrow aq-ar+br-bp+cp-cq=0$
$\Rightarrow a(q-r)+b(r-p)+c(p-q)=0$
Hence proved.
Answer:
Given:$a (\frac{1}{b}+\frac{1}{c}) , b ( \frac{1}{c}+\frac{1}{a}) , c ( \frac{1}{a}+ \frac{1}{b})$ are in A.P.
$\therefore \, \, \, b ( \frac{1}{c}+\frac{1}{a})-a (\frac{1}{b}+\frac{1}{c}) = c ( \frac{1}{a}+ \frac{1}{b})- b ( \frac{1}{c}+\frac{1}{a})$
$\therefore \, \, \, ( \frac{b(a+c)}{ac})- (\frac{a(c+b)}{bc}) = ( \frac{c(b+a)}{ab})- ( \frac{b(a+c)}{ac})$
$\therefore \, \, \, ( \frac{ab^2+b^2c-a^2c-a^2b}{abc}) = ( \frac{c^2b+c^2a-b^2a-b^2c}{abc})$
$\Rightarrow \, \, \, ab^2+b^2c-a^2c-a^2b= c^2b+c^2a-b^2a-b^2c$
$\Rightarrow \, \, \, ab(b-a)+c(b^2-a^2)= a(c^2-b^2)+bc(c-b)$
$\Rightarrow \, \, \, ab(b-a)+c(b-a)(b+a)= a(c-b)(c+b)+bc(c-b)$
$\Rightarrow \, \, \, (b-a)(ab+c(b+a))= (c-b)(a(c+b)+bc)$
$\Rightarrow \, \, \, (b-a)(ab+cb+ac)= (c-b)(ac+ab+bc)$
$\Rightarrow \, \, \, (b-a)= (c-b)$
Thus, a,b,c are in AP.
Question:17 If a, b, c, d are in G.P, prove that $(a^n + b^n), (b^n + c^n), (c^n + d^n)$ are in G.P.
Answer:
Given: a, b, c, d are in G.P.
To prove:$(a^n + b^n), (b^n + c^n), (c^n + d^n)$ are in G.P.
Then we can write,
$b^2=ac...............................1$
$c^2=bd...............................2$
$ad=bc...............................3$
Let $(a^n + b^n), (b^n + c^n), (c^n + d^n)$ be in GP
$(b^n + c^n)^2 =(a^n + b^n) (c^n + d^n)$
LHS: $(b^n + c^n)^2$
$(b^n + c^n)^2 =b^{2n}+c^{2n}+2b^nc^n$
$(b^n + c^n)^2 =(b^2)^n+(c^2)^n+2b^nc^n$
$=(ac)^n+(bd)^n+2b^nc^n$
$=a^nc^n+b^nc^n+a^nd^n+b^nd^n$
$=c^n(a^n+b^n)+d^n(a^n+b^n)$
$=(a^n+b^n)(c^n+d^n)=RHS$
Hence proved
Thus,$(a^n + b^n), (b^n + c^n), (c^n + d^n)$ are in GP
Answer:
Given: a and b are the roots of $x^2 -3 x + p = 0$
Then, $a+b=3\, \, \, \, and\, \, \, \, ab=p......................1$
Also, c, d are roots of $x^2 -12 x + q = 0$
$c+d=12\, \, \, \, and\, \, \, \, cd=q......................2$
Given: a, b, c, d form a G.P
Let, $a=x,b=xr,c=xr^2,d=xr^3$
From 1 and 2, we get
$x+xr=3$ and $xr^2+xr^3=12$
$\Rightarrow x(1+r)=3$ $xr^2(1+r)=12$
On dividing them,
$\frac{xr^2(1+r)}{x(1+r)}=\frac{12}{3}$
$\Rightarrow r^2=4$
$\Rightarrow r=\pm 2$
When , r=2 ,
$x=\frac{3}{1+2}=1$
When , r=-2,
$x=\frac{3}{1-2}=-3$
CASE (1) when r=2 and x=1,
$ab=x^2r=2\, \, \, and \, \, \, \, cd=x^2r^5=32$
$\therefore \frac{q+p}{q-p}=\frac{32+2}{32-2}=\frac{34}{30}=\frac{17}{15}$
i.e. (q + p) : (q – p) = 17:15.
CASE (2) when r=-2 and x=-3,
$ab=x^2r=-18\, \, \, and \, \, \, \, cd=x^2r^5=-288$
$\therefore \frac{q+p}{q-p}=\frac{-288-18}{-288+18}=\frac{-305}{-270}=\frac{17}{15}$
i.e. (q + p) : (q – p) = 17:15.
Answer:
Let two numbers be a and b.
$AM=\frac{a+b}{2}\, \, \, and\, \, \, \, \, GM=\sqrt{ab}$
According to the given condition,
$\frac{a+b}{2\sqrt{ab}}=\frac{m}{n}$
$\Rightarrow \frac{(a+b)^2}{4ab}=\frac{m^2}{n^2}$
$\Rightarrow (a+b)^2=\frac{4ab.m^2}{n^2}$
$\Rightarrow (a+b)=\frac{2\sqrt{ab}.m}{n}$...................................................................1
$(a-b)^2=(a+b)^2-4ab$
We get,
$(a-b)^2=\left ( \frac{4abm^2}{n^2} \right )-4ab$
$(a-b)^2=\left ( \frac{4abm^2-4abn^2}{n^2} \right )$
$\Rightarrow (a-b)^2=\left ( \frac{4ab(m^2-n^2)}{n^2} \right )$
$\Rightarrow (a-b)=\left ( \frac{2\sqrt{ab}\sqrt{(m^2-n^2)}}{n} \right )$.....................................................2
From 1 and 2, we get
$2a =\left ( \frac{2\sqrt{ab}}{n} \right )\left ( m+\sqrt{(m^2-n^2)} \right )$
$a =\left ( \frac{\sqrt{ab}}{n} \right )\left ( m+\sqrt{(m^2-n^2)} \right )$
Putting the value of a in equation 1, we have
$b=\left ( \frac{2.\sqrt{ab}}{n} \right ) m-\left ( \frac{\sqrt{ab}}{n} \right )\left ( m+\sqrt{(m^2-n^2)} \right )$
$b=\left ( \frac{\sqrt{ab}}{n} \right ) m-\left ( \frac{\sqrt{ab}}{n} \right )\left ( \sqrt{(m^2-n^2)} \right )$
$=\left ( \frac{\sqrt{ab}}{n} \right )\left (m- \sqrt{(m^2-n^2)} \right )$
$\therefore a:b=\frac{a}{b}=\frac{\left ( \frac{\sqrt{ab}}{n} \right )\left (m+ \sqrt{(m^2-n^2)} \right )}{\left ( \frac{\sqrt{ab}}{n} \right )\left (m- \sqrt{(m^2-n^2)} \right )}$
$=\frac{\left (m+ \sqrt{(m^2-n^2)} \right )}{\left (m- \sqrt{(m^2-n^2)} \right )}$
$a:b=\left (m+ \sqrt{(m^2-n^2)} \right ) : \left (m- \sqrt{(m^2-n^2)} \right )$
Question:20 If a, b, c are in A.P.; b, c, d are in G.P. and 1/c , 1/d , 1/e are in A.P. prove that a, c, e are in G.P.
Answer:
Given: a, b, c are in A.P
$b-a=c-b..............................1$
Also, b, c, d are in G.P.
$c^2=bd..............................2$
Also, 1/c, 1/d, 1/e are in A.P
$\frac{1}{d}-\frac{1}{c}=\frac{1}{e}-\frac{1}{d}...........................3$
To prove: a, c, e are in G.P. i.e.$c^2=ae$
From 1, we get $2b=a+c$
$b=\frac{a+c}{2}$
From 2, we get
$d=\frac{c^2}{b}$
Putting values of b and d, we get
$\frac{1}{d}-\frac{1}{c}=\frac{1}{e}-\frac{1}{d}$
$\frac{2}{d}=\frac{1}{c}+\frac{1}{e}$
$\Rightarrow \frac{2b}{c^2}=\frac{1}{c}+\frac{1}{e}$
$\Rightarrow \frac{2(a+c)}{2c^2}=\frac{1}{c}+\frac{1}{e}$
$\Rightarrow \frac{(a+c)}{c^2}=\frac{e+c}{ce}$
$\Rightarrow \frac{(a+c)}{c}=\frac{e+c}{e}$
$\Rightarrow e(a+c)=c(e+c)$
$\Rightarrow ea+ec=ec+c^2$
$\Rightarrow ea=c^2$
Thus, a, c, e are in G.P.
Question:21(i) Find the sum of the following series up to n terms: $5 + 55+ 555 + ....$
Answer:
$5 + 55+ 555 + ....$ is not a GP.
It can be changed in GP by writing terms as
$S_n=5 + 55+ 555 + ....$ to n terms
$S_n=\frac{5}{9}[9+99+999+9999+................]$
$S_n=\frac{5}{9}[(10-1)+(10^2-1)+(10^3-1)+(10^4-1)+................]$
$S_n=\frac{5}{9}[(10+10^2+10^3+........)-(1+1+1.....................)]$
$S_n=\frac{5}{9}[\frac{10(10^n-1)}{10-1}-(n)]$
$S_n=\frac{5}{9}[\frac{10(10^n-1)}{9}-(n)]$
$S_n=\frac{50}{81}[(10^n-1)]-\frac{5n}{9}$
Thus, the sum is
$S_n=\frac{50}{81}[(10^n-1)]-\frac{5n}{9}$
Question:21(ii) Find the sum of the following series up to n terms: .6 +. 66 +. 666+…
Answer:
Sum of 0.6 +0. 66 + 0. 666+….................
It can be written as
$S_n=0.6+0.66+0.666+..........................$ to n terms
$S_n=6[0.1+0.11+0.111+0.1111+................]$
$S_n=\frac{6}{9}[0.9+0.99+0.999+0.9999+................]$
$S_n=\frac{6}{9}[(1-\frac{1}{10})+(1-\frac{1}{10^2})+(1-\frac{1}{10^3})+(1-\frac{1}{10^4})+................]$
$S_n=\frac{2}{3}[(1+1+1.....................n\, terms)-\frac{1}{10}(1+\frac{1}{10}+\frac{1}{10^2}+...................n \, terms)]$
$S_n=\frac{2}{3}[n-\frac{\frac{1}{10}(\frac{1}{10}^n-1)}{\frac{1}{10}-1}]$
$S_n=\frac{2n}{3}-\frac{2}{30}[\frac{10(1-10^-^n)}{9}]$
$S_n=\frac{2n}{3}-\frac{2}{27}(1-10^-^n)$
Question:22 Find the 20th term of the series $2 \times 4+4\times 6+\times 6\times 8+....+n$ terms.
Answer:
the series = $2 \times 4+4\times 6+\times 6\times 8+....+n$
$\therefore n^{th}\, term=a_n=2n(2n+2)=4n^2+4n$
$\therefore a_2_0=2(20)[2(20)+2]$
$=40[40+2]$
$=40[42]$
$=1680$
Thus, the 20th term of series is 1680
Question:23 Find the sum of the first n terms of the series: 3+ 7 +13 +21 +31 +…
Answer:
The series: 3+ 7 +13 +21 +31 +…..............
n th term = $n^2+n+1=a_n$
$S_n=\sum _{k=1}^{n} a_k=\sum _{k=1}^{n} k^{2}+k+1$
$=\sum _{k=1}^{n} k^2+\sum _{k=1}^{n} k+\sum _{k=1}^{n} 1$
$=\frac{n(n+1)(2n+1)}{6}+\frac{n(n+1)}{2}+n$
$=n\left ( \frac{(n+1)(2n+1)}{6}+\frac{n+1}{2}+1 \right )$
$=n\left ( \frac{(n+1)(2n+1)+3(n+1)+6}{6} \right )$
$=n\left ( \frac{2n^2+n+2n+1+3n+3+6}{6} \right )$
$=n\left ( \frac{2n^2+6n+10}{6} \right )$
$=n\left ( \frac{n^2+3n+5}{3} \right )$
Answer:
To prove : $9 S ^2 _2 = S_3 ( 1+ 8 S_1)$
From given information,
$S_1=\frac{n(n+1)}{2}$
$S_3=\frac{n^2(n+1)^2}{4}$
Here ,$RHS= S_3 ( 1+ 8 S_1)$
$\Rightarrow S_3 ( 1+ 8 S_1)=\frac{n^2(n+1)^2}{4}\left ( 1+8\frac{n(n+1)}{2} \right )$
$=\frac{n^2(n+1)^2}{4}\left ( 1+4.n(n+1) \right )$
$=\frac{n^2(n+1)^2}{4}\left ( 1+4n^2+4n \right )$
$=\frac{n^2(n+1)^2}{4}\left ( 2n+1 \right )^2$
$=\frac{n^2(n+1)^2(2n+1)^2}{4}.........................................................1$
Also, $RHS=9S_2^2$
$\Rightarrow 9S_2^2=\frac{9\left [ n(n+2)(2n+1) \right ]^2}{6^2}$
$=\frac{9\left [ n(n+2)(2n+1) \right ]^2}{36}$
$=\frac{\left [ n(n+2)(2n+1) \right ]^2}{4}..........................................2$
From equation 1 and 2 , we have
$9S_2^2=S_3(1+8S_1)=\frac{\left [ n(n+2)(2n+1) \right ]^2}{4}$
Hence proved .
Answer:
n term of series :
$\frac{1^3}{1} + \frac{1^3+2^3}{1+3}+ \frac{1^3+2^3+3^3}{1+3+5}+ ........=\frac{1^3+2^3+3^3+..........n^3}{1+3+5+...........(2n-1)}$
$=\frac{\left [ \frac{n(n+1)}{2} \right ]^2}{1+3+5+............(2n-1)}$
Here, $1,3,5............(2n-1)$ are in AP with first term =a=1 , last term = 2n-1, number of terms =n
$1+3+5............(2n-1)=\frac{n}{2}\left [ 2(1)+(n-1)2 \right ]$
$=\frac{n}{2}\left [ 2+2n-2 \right ]=n^2$
$a_n=\frac{n^2(n+1)^2}{4n^2}$
$=\frac{(n+1)^2}{4}$
$=\frac{n^2}{4}+\frac{n}{2}+\frac{1}{4}$
$S_n=\sum _{k=1}^{n} a_k=\sum _{k=1}^{n} \frac{(k+1)^2}{4}$
$=\frac{1}{4}\sum _{k=1}^{n} k^2+\frac{1}{2}\sum _{k=1}^{n} k+\sum _{k=1}^{n}\frac{1}{4}$
$=\frac{1}{4}\frac{n(n+1)(2n+1)}{6}+\frac{1}{2}\frac{n(n+1)}{2}+\frac{n}{4}$
$=n\left ( \frac{(n+1)(2n+1)}{24}+\frac{n+1}{4}+\frac{1}{4} \right )$
$=n\left ( \frac{(n+1)(2n+1)+6(n+1)+6}{24} \right )$
$=n\left ( \frac{2n^2+n+2n+1+6n+6+6}{24} \right )$
$=n\left ( \frac{2n^2+9n+13}{24} \right )$
Answer:
To prove :
$\frac{1 \times 2 ^ 2 + 2 \times 3^2 + ... + n \times (n+1)^2}{1^2 \times 2 + 2 ^2 \times 3 + ...+ n^2 \times ( n+1)} = \frac{3n+5}{3n+1}$
the nth term of numerator $=n(n+1)^2=n^3+2n^2+n$
nth term of the denominator $=n^2(n+1)=n^3+n^2$
$RHS:\frac{1 \times 2 ^ 2 + 2 \times 3^2 + ... + n \times (n+1)^2}{1^2 \times 2 + 2 ^2 \times 3 + ...+ n^2 \times ( n+1)}..........................1$
$=\frac{\sum _{k=1}^{n} a_k}{\sum _{k=1}^{n} a_k}=\frac{\sum _{k=1}^{n} k^{3}+2k^2+k}{\sum _{k=1}^{n} (k^3+k^2)}$
Numerator :
$S_n=\sum _{k=1}^{n} k^3+2\sum _{k=1}^{n} k^2+\sum _{k=1}^{n} k$
$=\left [ \frac{n(n+1)}{2} \right ]^2+\frac{2.n(n+1)(2n+1)}{6}+\frac{n(n+1)}{2}$
$=\left [ \frac{n(n+1)}{2} \right ]^2+\frac{n(n+1)(2n+1)}{3}+\frac{n(n+1)}{2}$
$=\left [ \frac{n(n+1)}{2} \right ] (\frac{n(n+1)}{2}+\frac{2(2n+1)}{3}+1)$
$=\left [ \frac{n(n+1)}{2} \right ] \left ( \frac{3n^2+3n+8n+4+6}{6} \right )$
$=\left [ \frac{n(n+1)}{2} \right ] \left ( \frac{3n^2+11n+10}{6} \right )$
$=\left [ \frac{n(n+1)}{12} \right ] \left ( 3n^2+11n+10 \right )$
$=\left [ \frac{n(n+1)}{12} \right ] \left ( 3n^2+6n+5n+10 \right )$
$=\left [ \frac{n(n+1)}{12} \right ] \left ( 3n(n+2)+5(n+2) \right )$
$=\left [ \frac{n(n+1)}{12} \right ] \left ((n+2)(3n+5) \right )$
$=\frac{n(n+1)(n+2)(3n+5)}{12}........................................................2$
Denominator :
$S_n=\sum _{k=1}^{n} k^3+\sum _{k=1}^{n} k^2$
$=\left [ \frac{n(n+1)}{2} \right ]^2+\frac{n(n+1)(2n+1)}{6}$
$=\left [ \frac{n(n+1)}{2} \right ]^2+\frac{n(n+1)(2n+1)}{6}$
$=\left [ \frac{n(n+1)}{2} \right ] (\frac{n(n+1)}{2}+\frac{2n+1}{3})$
$=\left [ \frac{n(n+1)}{2} \right ] \left ( \frac{3n^2+3n+4n+2}{6} \right )$
$=\left [ \frac{n(n+1)}{2} \right ] \left ( \frac{3n^2+7n+2}{6} \right )$
$=\left [ \frac{n(n+1)}{12} \right ] \left ( 3n^2+7n+2 \right )$
$=\left [ \frac{n(n+1)}{12} \right ] \left ( 3n^2+6n+n+2 \right )$
$=\left [ \frac{n(n+1)}{12} \right ] \left ( 3n(n+2)+1(n+2)\right )$
$=\left [ \frac{n(n+1)}{12} \right ] \left ( (n+2)(3n+1)\right )$
$=\left [ \frac{n(n+1)(n+2)(3n+1)}{12} \right ].....................................3$
From equation 1,2,3,we have
$\frac{1 \times 2 ^ 2 + 2 \times 3^2 + ... + n \times (n+1)^2}{1^2 \times 2 + 2 ^2 \times 3 + ...+ n^2 \times ( n+1)}$ $=\frac{\frac{n(n+1)(n+2)(3n+5)}{12}}{\frac{n(n+1)(n+2)(3n+1)}{12}}$
$=\frac{3n+5}{3n+1}$
Hence, the above expression is proved.
Answer:
Given : Farmer pays Rs 6000 cash.
Therefore , unpaid amount = 12000-6000=Rs. 6000
According to given condition, interest paid annually is
12% of 6000,12% of 5500,12% of 5000,......................12% of 500.
Thus, total interest to be paid
$=12\%of\, 6000+12\%of\, 5500+.............12\%of\, 500$
$=12\%of\, (6000+ 5500+.............+ 500)$
$=12\%of\, (500+ 1000+.............+ 6000)$
Here, $500, 1000,.............5500,6000$ is a AP with first term =a=500 and common difference =d = 500
We know that $a_n=a+(n-1)d$
$\Rightarrow 6000=500+(n-1)500$
$\Rightarrow 5500=(n-1)500$
$\Rightarrow 11=(n-1)$
$\Rightarrow n=11+1=12$
Sum of AP:
$S_1_2=\frac{12}{2}\left [ 2(500)+(12-1)500 \right ]$
$S_1_2=6\left [ 1000+5500 \right ]$
$=6\left [ 6500 \right ]$
$=39000$
Thus, interest to be paid :
$=12\%of\, (500+ 1000+.............+ 6000)$
$=12\%of\, ( 39000)$
$=Rs. 4680$
Thus, cost of tractor = Rs. 12000+ Rs. 4680 = Rs. 16680
Answer:
Given: Shamshad Ali buys a scooter for Rs 22000.
Therefore , unpaid amount = 22000-4000=Rs. 18000
According to the given condition, interest paid annually is
10% of 18000,10% of 17000,10% of 16000,......................10% of 1000.
Thus, total interest to be paid
$=10\%of\, 18000+10\%of\, 17000+.............10\%of\, 1000$
$=10\%of\, (18000+ 17000+.............+ 1000)$
$=10\%of\, (1000+ 2000+.............+ 18000)$
Here, $1000, 2000,.............17000,18000$ is a AP with first term =a=1000 and common difference =d = 1000
We know that $a_n=a+(n-1)d$
$\Rightarrow 18000=1000+(n-1)1000$
$\Rightarrow 17000=(n-1)1000$
$\Rightarrow 17=(n-1)$
$\Rightarrow n=17+1=18$
Sum of AP:
$S_1_8=\frac{18}{2}\left [ 2(1000)+(18-1)1000 \right ]$
$=9\left [ 2000+17000 \right ]$
$=9\left [ 19000 \right ]$
$=171000$
Thus, interest to be paid :
$=10\%of\, (1000+ 2000+.............+ 18000)$
$=10\%of\, ( 171000)$
$=Rs. 17100$
Thus, cost of tractor = Rs. 22000+ Rs. 17100 = Rs. 39100
Answer:
The numbers of letters mailed forms a GP : $4,4^2,4^3,.............4^8$
first term = a=4
common ratio=r=4
number of terms = 8
We know that the sum of GP is
$S_n=\frac{a(r^n-1)}{r-1}$
$=\frac{4(4^8-1)}{4-1}$
$=\frac{4(65536-1)}{3}$
$=\frac{4(65535)}{3}$
$=87380$
costs to mail one letter are 50 paise.
Cost of mailing 87380 letters
$=Rs. \, 87380\times \frac{50}{100}$
$=Rs. \,43690$
Thus, the amount spent when the 8th set of the letter is mailed is Rs. 43690.
Answer:
Given : A man deposited Rs 10000 in a bank at the rate of 5% simple interest annually.
$=\frac{5}{100}\times 10000=Rs.500$
$\therefore$ Interest in fifteen year 10000+ 14 times Rs. 500
$\therefore$ Amount in 15 th year $=Rs. 10000+14\times 500$
$=Rs. 10000+7000$
$=Rs. 17000$
$\therefore$ Amount in 20 th year $=Rs. 10000+20\times 500$
$=Rs. 10000+10000$
$=Rs. 20000$
Answer:
Cost of machine = Rs. 15625
Machine depreciate each year by 20%.
Therefore, its value every year is 80% of the original cost i.e. $\frac{4}{5}$ of the original cost.
$\therefore$ Value at the end of 5 years
$=15625\times \frac{4}{5}\times \frac{4}{5}\times \frac{4}{5}\times \frac{4}{5}\times \frac{4}{5}$
$=5120$
Thus, the value of the machine at the end of 5 years is Rs. 5120
Answer:
Let x be the number of days in which 150 workers finish the work.
According to the given information, we have
$150x=150+146+142+............(x+8)terms$
Series $150x=150+146+142+............(x+8)terms$ is a AP
first term=a=150
common difference= -4
number of terms = x+8
$\Rightarrow 150x=\frac{x+8}{2}\left [ 2(150)+(x+8-1)(-4) \right ]$
$\Rightarrow 300x=x+8\left [ 300-4x-28 \right ]$
$\Rightarrow 300x= 300x-4x^2-28x+2400-32x+224$
$\Rightarrow x^2+15x-544=0$
$\Rightarrow x^2+32x-17x-544=0$
$\Rightarrow x(x+32)-17(x+32)=0$
$\Rightarrow (x+32)(x-17)=0$
$\Rightarrow x=-32,17$
Since x cannot be negative so x=17.
Thus, in 17 days 150 workers finish the work.
Thus, the required number of days = 17+8=25 days.
Class 11 Maths chapter 9 miscellaneous solutions consist of questions related to finding the nth term of the arithmetic progression, the sum of the terms of arithmetic progression, arithmetic mean, nth term of the geometric progression, the sum of the terms of geometric progression, geometric mean, etc. There are few solved examples given before the miscellaneous exercise chapter 9 Class 11 that you can try to solve.
The Miscellaneous Exercise in NCERT Solutions for Class 11 Maths Chapter 9 - Sequences and Series covers the following topics:
By engaging with the concepts presented in NCERT Solutions for Class 11 Maths, students can address any doubts related to these topics, establishing a strong foundation for their understanding of Class 12 Maths.
Also Read| Sequences And Series Class 11 Notes
Also see-
Happy learning!!!
Sequence means an arrangement of numbers in a definite order according to some rule.
The finite sequence is s sequence containing a finite number of terms.
The infinite sequence is s sequence containing an infinite number of terms.
If the terms of a sequence are expressed as the sum of terms then it is called a series.
Sum of A.P. = n(a+l)/2
Arithmetic mean (A.M.) = (5+9)/2 = 7
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest 2024 syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
Accepted by more than 11,000 universities in over 150 countries worldwide
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE