Sequences and patterns are significant parts of fields such as finance, science, and architecture, among others. Consider an example where the growth of investments over time is calculated, and an analysis of population increase is done. In such scenarios, the concept of geometric progression is used. Along with this, concepts like arithmetic mean and geometric mean are widely used in statistics, economics, and data analysis to find central tendencies.
This Story also Contains
The Solutions for Exercise 8.2 of NCERT discuss in detail the problems related to Geometric Progression (G.P.), General Term of a G.P., Sum to n Terms of a G.P., Geometric Mean (G.M.), and Relationship Between A.M. and G.M. The NCERT solutions discuss the step-by-step methodology to apply these techniques effectively. If you are looking for NCERT Solutions, you can click on the given link to get NCERT Solutions for Classes 6 to 12.
Question 1: Find the $20 ^{th}$ and $n ^{th}$ terms of the G.P. $\frac{5}{2},\frac{5}{4},\frac{5}{8},....$
Answer:
G.P :
$\frac{5}{2},\frac{5}{4},\frac{5}{8},....$
first term = a
$a=\frac{5}{2}$
common ratio =r
$r=\frac{\frac{5}{4}}{\frac{5}{2}}=\frac{1}{2}$
$a_n=a.r^{n-1}$
$a_{20}=\frac{5}{2} \cdot\left(\frac{1}{2}\right)^{20-1}$
$a_{20}=\frac{5}{2} \cdot\left(\frac{1}{2^{19}}\right)$
$a_{20}=\frac{5}{2^{20}}$
$a_n=a.r^{n-1}$
$a_n=\frac{5}{2}.\left ( \frac{1}{2} \right )^{n-1}$
$a_n=\frac{5}{2}. \frac{1}{2^{n-1}}$
$a_n=\frac{5}{2^n}$ the nth term of G.P
Question 2: Find the $12 ^{th}$ term of a G.P. whose $8 ^{th}$ term is 192 and the common ratio is 2.
Answer:
First term = a
common ratio =r=2
$8 ^{th}$ term is 192
$a_n=a.r^{n-1}$
$a_8=a.(2)^{8-1}$
$192=a.(2)^{7}$
$a=\frac{2^6.3}{2^7}$
$a=\frac{3}{2}$
$a_n=a.r^{n-1}$
$a_{12}=\frac{3}{2} \cdot(2)^{12-1}$
$a_{12}=\frac{3}{2} \cdot(2)^{11}$
$a_{12}=3 \cdot(2)^{10}$
$a_{12}=3072$ is the $12 ^{th}$ term of a G.P.
Answer:
To prove : $q ^2 = ps$
Let first term=a and common ratio = r
$a_5=a.r^4=p..................(1)$
$a_8=a.r^7=q..................(2)$
$$
a_{11}=a \cdot r^{10}=s .
$$
Dividing equation 2 by 1, we have
$\frac{a.r^7}{a.r^4}=\frac{q}{p}$
$\Rightarrow r^3=\frac{q}{p}$
Dividing equation 3 by 2, we have
$\frac{a \cdot r^{10}}{a \cdot r^7}=\frac{s}{q}$
$\Rightarrow r^3=\frac{s}{q}$
Equating values of $r^3$ , we have
$\frac{q}{p}=\frac{s}{q}$
$\Rightarrow q^2=ps$
Hence proved
Answer:
First term =a= -3
$4^{th}$ term of a G.P. is square of its second term
$\Rightarrow a_4=(a_2)^2$
$\Rightarrow a.r^{4-1}=(a.r^{2-1})^2$
$\Rightarrow a.r^{3}=a^2.r^{2}$
$\Rightarrow r=a=-3$
$a_7=a.r^{7-1}$
$\Rightarrow a_7=(-3).(-3)^{6}$
$\Rightarrow a_7=(-3)^{7}=-2187$
Thus, seventh term is -2187.
Question 5:(a) Which term of the following sequences: $2,2\sqrt 2 , 4 .,....is \: \: 128 ?$
Answer:
Given : $GP = 2,2\sqrt 2 , 4 .,............$
$a=2\, \, \, \, \, and \, \, \, \, \, r=\frac{2\sqrt{2}}{2}=\sqrt{2}$
n th term is given as 128.
$a_n=a.r^{n-1}$
$\Rightarrow 128=2.(\sqrt{2})^{n-1}$
$\Rightarrow 64=(\sqrt{2})^{n-1}$
$\Rightarrow 2^6=(\sqrt{2})^{n-1}$
$\Rightarrow \sqrt{2}^{12}=(\sqrt{2})^{n-1}$
$\Rightarrow n-1=12$
$\Rightarrow n=12+1=13$
The, 13 th term is 128.
Question 5:(b) Which term of the following sequences: $\sqrt 3 ,3 , 3 \sqrt 3 ,...is \: \: 729 ?$
Answer:
Given : $GP=\sqrt 3 ,3 , 3 \sqrt 3 ,........$
$a=\sqrt{3}\, \, \, \, \, and \, \, \, \, \, r=\frac{3}{\sqrt{3}}=\sqrt{3}$
n th term is given as 729.
$a_n=a.r^{n-1}$
$\Rightarrow 729=\sqrt{3}.(\sqrt{3})^{n-1}$
$\Rightarrow 729=(\sqrt{3})^{n}$
$\Rightarrow(\sqrt{3})^{12}=(\sqrt{3})^n$
$\Rightarrow n=12$
The, 12 th term is 729.
Question 5:(c) Which term of the following sequences: $\frac{1}{3} , \frac{1}{9} , \frac{1}{27} ,....is \: \: \frac{1}{19683}?$
Answer:
Given : $GP=\frac{1}{3} , \frac{1}{9} , \frac{1}{27} ,............$
$a=\frac{1}{3}\, \, \, \, \, and \, \, \, \, \, r=\frac{\frac{1}{9}}{\frac{1}{3}}=\frac{1}{3}$
n th term is given as $\frac{1}{19683}$
$a_n=a.r^{n-1}$
$\Rightarrow \frac{1}{19683}=\frac{1}{3}.(\frac{1}{3})^{n-1}$
$\Rightarrow \frac{1}{19683}=\frac{1}{3^n}$
$\Rightarrow \frac{1}{3^9}=\frac{1}{3^n}$
$\Rightarrow n=9$
Thus, n=9.
Question 6: For what values of x, the numbers $-\frac{2}{7} ,x, -\frac{7}{2}$ are in G.P.?
Answer:
$GP=-\frac{2}{7} ,x, -\frac{7}{2}$
Common ratio=r.
$r=\frac{x}{\frac{-2}{7}}=\frac{\frac{-7}{2}}{x}$
$\Rightarrow x^2=1$
$\Rightarrow x=\pm 1$
Thus, for $x=\pm 1$ ,given numbers will be in GP.
Answer:
geometric progressions is 0.15, 0.015, 0.0015, ... .....
a=0.15 , r = 0.1 , n=20
$S_n=\frac{a(1-r^n)}{1-r}$
$S_{20}=\frac{0.15\left(1-(0.1)^{20}\right)}{1-0.1}$
$S_{20}=\frac{0.15\left(1-(0.1)^{20}\right)}{0.9}$
$S_{20}=\frac{0.15}{0.9}\left(1-(0.1)^{20}\right)$
$S_{20}=\frac{15}{90}\left(1-(0.1)^{20}\right)$
$S_{20}=\frac{1}{6}\left(1-0.1^{20}\right)$
Answer:
$GP=\sqrt 7 , \sqrt {21} , 3 \sqrt 7 ,...............$
$a=\sqrt{7}\, \, \, \, and\, \, \, \, \, r=\frac{\sqrt{21}}{\sqrt{7}}=\sqrt{3}$
$S_n=\frac{a(1-r^n)}{1-r}$
$S_n=\frac{\sqrt{7}(1-\sqrt{3}^n)}{1-\sqrt{3}}$
$S_n=\frac{\sqrt{7}(1-\sqrt{3}^n)}{1-\sqrt{3}}\times \frac{1+\sqrt{3}}{1+\sqrt{3}}$
$S_n=\frac{\sqrt{7}(1-\sqrt{3}^n)}{1-3} (1+\sqrt{3})$
$S_n=\frac{\sqrt{7}(1-\sqrt{3}^n)}{-2} (1+\sqrt{3})$
$S_n=\frac{\sqrt{7}(1+\sqrt{3})}{2} (\sqrt{3}^n-1)$
Answer:
The sum to the indicated number of terms in each of the geometric progressions is:
$GP=1,-a , a^2 , - a ^3 , .............$
$a=1\, \, \, and\, \, \, \, r=-a$
$S_n=\frac{a(1-r^n)}{1-r}$
$S_n=\frac{1(1-(-a)^n)}{1-(-a)}$
$S_n=\frac{1(1-(-a)^n)}{1+a}$
$S_n=\frac{1-(-a)^n}{1+a}$
Answer:
$a=x^3\, \, \, and\, \, r=\frac{x^5}{x^3}=x^2$
$S_n=\frac{a(1-r^n)}{1-r}$
$S_n=\frac{x^3(1-(x^2)^n)}{1-x^2}$
$S_n=\frac{x^3\left(1-x^{2 n}\right)}{1-x^2}$
Question 11: Evaluate $\sum_{k = 1}^{11} ( 2+ 3 ^k )$
Answer:
Given : $\sum_{k = 1}^{11} ( 2+ 3 ^k )=\sum _{k=1}^{11}2 +\sum _{k=1}^{11} 3^k$
$=22 +\sum _{k=1}^{11} 3^k...............(1)$
$\sum_{k=1}^{11} 3^k=3^1+3^2+3^3+\ldots \ldots \ldots \ldots \ldots \ldots \ldots 3^{11}$
These terms form GP with a=3 and r=3.
$S_n=\frac{a(1-r^n)}{1-r}$
$S_n=\frac{3\left(1-3^{11}\right)}{1-3}$
$S_n=\frac{3\left(1-3^{11}\right)}{-2}$
$S_n=\frac{3\left(3^{11}-1\right)}{2}$$=\sum _{k=1}^{11} 3^k$
$\sum_{k = 1}^{11} ( 2+ 3 ^k )$$=22+\frac{3\left(3^{11}-1\right)}{2}$
Answer:
Given : The sum of first three terms of a G.P. is $\frac{39}{10}$ and their product is 1.
Let three terms be $\frac{a}{r},a,ar$.
$S_n=\frac{a(1-r^n)}{1-r}$
$\frac{a}{r}+a+ar=\frac{39}{10}.........1$
Product of 3 terms is 1.
$\frac{a}{r}\times a\times ar=1$
$\Rightarrow a^3=1$
$\Rightarrow a=1$
Put value of a in equation 1,
$\frac{1}{r}+1+r=\frac{39}{10}$
The three terms of AP are $\frac{5}{2},1,\frac{2}{5}$.
Question 13: How many terms of G.P. $3 , 3 ^ 2 , 3 ^ 3$, … are needed to give the sum 120?
Answer:
G.P.= $3 , 3 ^ 2 , 3 ^ 3$, …............
Sum =120
These terms are GP with a=3 and r=3.
Hence, we have value of n as 4 to get sum of 120.
Answer:
Let GP be $a,ar,ar^2,ar^3,ar^4,ar^5,ar^6................................$
Given: The sum of the first three terms of a G.P. is 16
$a+ar+ar^2=16$
$\Rightarrow a(1+r+r^2)=16...............................(1)$
Given : the sum of the next three terms is128.
$ar^3+ar^4+ar^5=128$
$\Rightarrow ar^3(1+r+r^2)=128...............................(2)$
Dividing equation (2) by (1), we have
$\Rightarrow \frac{ar^3(1+r+r^2)}{a(1+r+r^2)}=\frac{128}{16}$
$\Rightarrow r^3=8$
$\Rightarrow r^3=2^3$
$\Rightarrow r=2$
Putting value of r =2 in equation 1,we have
$\Rightarrow a(1+2+2^2)=16$
$\Rightarrow a(7)=16$
$\Rightarrow a=\frac{16}{7}$
$S_n=\frac{a(1-r^n)}{1-r}$
$S_n=\frac{\frac{16}{7}(1-2^n)}{1-2}$
$S_n=\frac{16}{7}(2^n-1)$
Question 15: Given a G.P. with a = 729 and $7 ^{th}$ term 64, determine $s_7$
Answer:
Given a G.P. with a = 729 and $7 ^{th}$ term 64.
$a_n=a.r^{n-1}$
$\Rightarrow 64=729.r^{7-1}$
$\Rightarrow r^6=\frac{64}{729}$
$\Rightarrow r^6=\left ( \frac{2}{3} \right )^6$
$\Rightarrow r=\frac{2}{3}$
$S_n=\frac{a(1-r^n)}{1-r}$
$S_7=\frac{729(1-\left ( \frac{2}{3} \right )^7)}{1-\frac{2}{3}}$
$S_7=\frac{729(1-\left ( \frac{2}{3} \right )^7)}{\frac{1}{3}}$
$S_7=3\times 729 \left ( \frac{3^7-2^7}{3^7} \right )$
$S_7= \left ( 3^7-2^7 \right )$
$S_7= 2187-128$
$S_7= 2059$(Answer)
Question 16: Find a G.P. for which sum of the first two terms is – 4 and the fifth term is 4 times the third term
Answer:
Given : sum of the first two terms is – 4 and the fifth term is 4 times the third term
Let first term be a and common ratio be r
$a_5=4.a_3$
$\Rightarrow a.r^{5-1}=4.a.r^{3-1}$
$\Rightarrow a.r^{4}=4.a.r^{2}$
$\Rightarrow r^{2}=4$
$\Rightarrow r=\pm 2$
If r=2, then
$S_n=\frac{a(1-r^n)}{1-r}$
$\Rightarrow \frac{a(1-2^2)}{1-2}=-4$
$\Rightarrow \frac{a(1-4)}{-1}=-4$
$\Rightarrow a(-3)=4$
$\Rightarrow a=\frac{-4}{3}$
If r= - 2, then
$S_n=\frac{a(1-r^n)}{1-r}$
$\Rightarrow \frac{a(1-(-2)^2)}{1-(-2)}=-4$
$\Rightarrow \frac{a(1-4)}{3}=-4$
$\Rightarrow a(-3)=-12$
$\Rightarrow a=\frac{-12}{-3}=4$
Thus, required GP is $\frac{-4}{3},\frac{-8}{3},\frac{-16}{3},.........$ or $4,-8,-16,-32,..........$
Question 17: If the $4 ^{th} , 10 ^{th} , 16 ^ {th}$ terms of a G.P. are x, y and z, respectively. Prove that x,y, z are in G.P.
Answer:
Let x,y, z are in G.P.
Let first term=a and common ratio = r
$a_4=a.r^3=x..................(1)$
$
a_{10}=a \cdot r^9=y .
$
$
a_{16}=a . r^{15}=z .
$
Dividing equation 2 by 1, we have
$\frac{a.r^9}{a.r^3}=\frac{y}{x}$
$\Rightarrow r^4=\frac{y}{x}$
Dividing equation 3 by 2, we have
$\frac{a \cdot r^{15}}{a \cdot r^9}=\frac{z}{y}$
$\Rightarrow r^4=\frac{z}{y}$
Equating values of $r^4$ , we have
$\frac{y}{x}=\frac{z}{y}$
Thus, x,y,z are in GP
Question 18: Find the sum to n terms of the sequence, 8, 88, 888, 8888… .
Answer:
8, 88, 888, 8888… is not a GP.
It can be changed in GP by writing terms as
$S_n=8+88+888+8888+.............$ to n terms
$S_n=\frac{8}{9}[9+99+999+9999+................]$
$S_n=\frac{8}{9}[(10-1)+(10^2-1)+(10^3-1)+(10^4-1)+................]$
$S_n=\frac{8}{9}[(10+10^2+10^3+........)-(1+1+1.....................)]$
$S_n=\frac{8}{9}[\frac{10(10^n-1)}{10-1}-(n)]$
$S_n=\frac{8}{9}[\frac{10(10^n-1)}{9}-(n)]$
$S_n=\frac{80}{81}(10^n-1)-\frac{8n}{9}$
Question 19: Find the sum of the products of the corresponding terms of the sequences 2, 4, 8, 16, 32 and 128, 32, 8, 2,1/2
Answer:
$Required \, \, sum=2\times 128+4\times 32+8\times 8+16\times 2+32\times \frac{1}{2}$
$Required \, \, sum=64\left [ 4+2+1+\frac{1}{2}+\frac{1}{2^2} \right ]$
Here, $4,2,1,\frac{1}{2},\frac{1}{2^2}$ is a GP.
first term =a=4
common ratio =r
$r=\frac{1}{2}$
$S_n=\frac{a(1-r^n)}{1-r}$
$S_5=\frac{4(1-\left ( \frac{1}{2} \right )^5)}{1-\frac{1}{2}}$
$S_5=\frac{4(1-\left ( \frac{1}{2} \right )^5)}{\frac{1}{2}}$
$S_5=8(1-\left ( \frac{1}{32} \right ))$
$S_5=8(\frac{31}{32})$
$S_5=\frac{31}{4}$
$Required \, \, sum=64\left [ \frac{31}{4} \right ]$
$Required \, \, sum=16\times 31=496$
Answer:
To prove : $aA,arAR,ar^2AR^2,...................$ is a GP.
$\frac{second \, \, term}{first\, \, term}=\frac{arAR}{aA}=rR$
$\frac{third \, \, term}{second\, \, term}=\frac{ar^2AR^2}{arAR}=rR$
Thus, the above sequence is a GP with common ratio of rR.
Answer:
Let first term be a and common ratio be r.
$a_1=a,a_2=ar,a_3=ar^2,a_4=ar^3$
Given : the third term is greater than the first term by 9, and the second term is greater than the $4 ^{th}$ by 18.
$a_3=a_1+9$
$\Rightarrow ar^2=a+9$
$\Rightarrow a(r^2-1)=9.................1$
$a_2=a_4+18$
$\Rightarrow ar=ar^3+18$
$\Rightarrow ar(1-r^2)=18......................2$
Dividing equation 2 by 1 , we get
$\frac{ ar(1-r^2)}{ -a(1-r^2)}=\frac{18}{9}$
$\Rightarrow r=-2$
Putting value of r , we get
$4a=a+9$
$\Rightarrow 4a-a=9$
$\Rightarrow 3a=9$
$\Rightarrow a=3$
Thus, four terms of GP are $3,-6,12,-24.$
Answer:
To prove : $a ^{ q-r } b ^{r- p } C ^{p-q} = 1$
Let A be the first term and R be common ratio.
According to the given information, we have
$a_p=A.R^{p-1}=a$
$a_q=A.R^{q-1}=b$
$a_r=A.R^{r-1}=c$
L.H.S : $a ^{ q-r } b ^{r- p } C ^{p-q}$
$=A^{q-r}.R^{(q-r)(p-1)}.A^{r-p}.R^{(r-p)(q-1)}.A^{p-q}.R^{(p-q)(r-1)}$
$=A^{q-r+r-p+p-q}.R^{(qp-rp-q+r)+(rq-pq+p-r)+(pr-p-qr+q)}$
$=A^0.R^0=1$=RHS
Thus, LHS = RHS.
Hence proved.
Answer:
Given : First term =a and n th term = b.
Common ratio = r.
To prove : $P^2 = ( ab)^n$
Then , $GP = a,ar,ar^2,ar^3,ar^4,..........................$
$a_n=a.r^{n-1}=b..................................1$
P = product of n terms
$P=(a).(ar).(ar^2).(ar^3)..............(ar^{n-1})$
$P=(a.a.a...............a)((1).(r).(r^2).(r^3)..............(r^{n-1}))$
$P=(a^n)(r^{1+2+.........(n-1)})........................................2$
Here, $1+2+.........(n-1)$ is a AP.
$\therefore\, \, \, sum= \frac{n}{2}\left [2a+(n-1)d \right ]$
$= \frac{n-1}{2}\left [2(1)+(n-1-1)1 \right ]$
$= \frac{n-1}{2}\left [2+n-2 \right ]$
$= \frac{n-1}{2}\left [n \right ]$
$= \frac{n(n-1)}{2}$
Put in equation (2),
$P=(a^n)(r^{\frac{n(n-1)}{2}})$
$P^2=\left(a^{2 n}\right)\left(r^{n(n-1)}\right)$
$P^2=(a. a.r^{(n-1)})^n$
$P^2=(a.b)^n$
Hence proved.
Answer:
Let first term =a and common ratio = r.
$sum \, \, of\, \, n\, \, terms=\frac{a(1-r^n)}{1-r}$
Since there are n terms from (n+1) to 2n term.
Sum of terms from (n+1) to 2n.
$S_n=\frac{a_{(n}+{ }_{1)}\left(1-r^n\right)}{1-r}$
$\left.a_{(n}+1\right)=a \cdot r^{n+1-1}=a r^n$
Thus, the required ratio = $\frac{a(1-r^n)}{1-r}\times \frac{1-r}{ar^n(1-r^n)}$
$=\frac{1}{r^n}$
Thus, the common ratio of the sum of first n terms of a G.P. to the sum of terms from $( n+1)^{th} \: \: to\: \: (2n)^{th}$ term is $\frac{1}{r^n}$.
Question 25: If a, b, c and d are in G.P. show that $(a^2 + b^2 + c^2) (b^2 + c^2 + d^2) = (ab + bc + cd)^2 .$
Answer:
If a, b, c and d are in G.P.
$bc=ad....................(1)$
$b^2=ac....................(2)$
$c^2=bd....................(3)$
To prove : $(a^2 + b^2 + c^2) (b^2 + c^2 + d^2) = (ab + bc + cd)^2 .$
RHS : $(ab + bc + cd)^2 .$
$=(ab + ad + cd)^2 .$
$=(ab + d (a+ c))^2 .$
$=a^2b^2 + d^2 (a+ c)^2 + 2(ab)(d(a+c))$
$=a^2b^2 + d^2 (a^2+ c^2+2ac) + 2a^2bd+2bcd$
Using equations (1) and (2),
$=a^2b^2 + 2a^2c^2+ 2b^2c^2+d^2a^2+2d^2b^2+d^2c^2$
$=a^2b^2 + a^2c^2+ a^2c^2+b^2c^2+b^2c^2+d^2a^2+d^2b^2+d^2b^2+d^2c^2$
$=a^2b^2 + a^2c^2+ a^2d^2+b^2.b^2+b^2c^2+b^2d^2+c^2b^2+c^2.c^2+d^2c^2$
$=a^2(b^2 + c^2+ d^2)+b^2(b^2+c^2+d^2)+c^2(b^2+c^2+d^2)$
$=(b^2 + c^2+ d^2)(a^2+b^2+c^2)$ = LHS
Hence proved
Question 26: Insert two numbers between 3 and 81 so that the resulting sequence is G.P.
Answer:
Let A, B be two numbers between 3 and 81 such that the series 3, A, B,81 forms a GP.
Let a= first term and common ratio =r.
$\therefore a_4=a.r^{4-1}$
$81=3.r^{3}$
$27=r^{3}$
$r=3$
For $r=3$,
$A=ar=(3)(3)=9$
$B=ar^2=(3)(3)^2=27$
The, required numbers are 9,27.
Question 27: Find the value of n so that $\frac{a^{n+1}+ b ^{n+1}}{a^n+b^n}$ may be the geometric mean between a and b.
Answer:
M of a and b is $\sqrt{ab}.$
Given :
$\frac{a^{n+1}+ b ^{n+1}}{a^n+b^n}=\sqrt{ab}$
Squaring both sides ,
$\left ( \frac{a^{n+1}+ b ^{n+1}}{a^n+b^n} \right )^2=ab$
$\left (a^{n+1}+ b ^{n+1})^2=({a^n+b^n} \right )^2ab$
$\Rightarrow\left(a^{2 n+2}+b^{2 n+2}+2 \cdot a^{n+1} \cdot b^{n+1}\right)=\left(a^{2 n}+b^{2 n}+2 \cdot a^n \cdot b^n\right) a b$
$\Rightarrow \left (a^{2n+2}+ b ^{2n+2}+2.a^{n+1}.b^{n+1})=({a^{2n+1}.b+a.b^{2n+1}+2.a^{n+1}.b^{n+1}} \right )$
$\Rightarrow \left (a^{2n+2}+ b ^{2n+2})=({a^{2n+1}.b+a.b^{2n+1}} \right )$
$\Rightarrow a^{2n+2}-{a^{2n+1}.b=a.b^{2n+1}} )- b ^{2n+2}$
$\Rightarrow a^{2n+1}(a-b)=b^{2n+1}( a-b)$
$\Rightarrow a^{2n+1}=b^{2n+1}$
$\Rightarrow \left ( \frac{a}{b} \right )^{2n+1}=1$
$\Rightarrow \left ( \frac{a}{b} \right )^{2n+1}=1=\left ( \frac{a}{b} \right )^0$
$\Rightarrow 2n+1=0$
$\Rightarrow 2n=-1$
$\Rightarrow n=\frac{-1}{2}$
Answer:
Let there be two numbers a and b
geometric mean $=\sqrt{ab}$
According to the given condition,
$a+b=6\sqrt{ab}$
$(a+b)^2=36(ab)$.............................................................(1)
Also,$(a-b)^2=(a+b)^2-4ab=36ab-4ab=32ab$
$(a-b)=\sqrt{32}\sqrt{ab}$
$(a-b)=4\sqrt{2}\sqrt{ab}$.......................................................(2)
From (1) and (2), we get
$2a=(6+4\sqrt{2})\sqrt{ab}$
$a=(3+2\sqrt{2})\sqrt{ab}$
Putting the value of 'a' in (1),
$b=6\sqrt{ab}-(3+2\sqrt{2})\sqrt{ab}$
$b=(3-2\sqrt{2})\sqrt{ab}$
$\frac{a}{b}=\frac{(3+2\sqrt{2})\sqrt{ab}}{(3-2\sqrt{2})\sqrt{ab}}$
$\frac{a}{b}=\frac{(3+2\sqrt{2})}{(3-2\sqrt{2})}$
Thus, the ratio is $( 3+ 2 \sqrt 2 ) : ( 3 - 2 \sqrt 2 )$
Answer:
If A and G be A.M. and G.M., respectively between two positive numbers,
Two numbers be a and b.
$AM=A=\frac{a+b}{2}$
$\Rightarrow a+b=2A$...................................................................1
$GM=G=\sqrt{ab}$
$\Rightarrow ab=G^2$...........................................................................2
We know $(a-b)^2=(a+b)^2-4ab$
Put values from equation 1 and 2,
$(a-b)^2=4A^2-4G^2$
$(a-b)^2=4(A^2-G^2)$
$(a-b)^2=4(A+G)(A-G)$
$(a-b)=4\sqrt{(A+G)(A-G)}$..................................................................3
From 1 and 3 , we have
$2a=2A+2\sqrt{(A+G)(A-G)}$
$\Rightarrow a=A+\sqrt{(A+G)(A-G)}$
Put value of a in equation 1, we get
$b=2A-A-\sqrt{(A+G)(A-G)}$
$\Rightarrow b=A-\sqrt{(A+G)(A-G)}$
Thus, numbers are $A \pm \sqrt{( A+G)(A-G)}$
Answer:
The number of bacteria in a certain culture doubles every hour.It forms GP.
Given : a=30 and r=2.
$a_3=a.r^{3-1}=30(2)^2=120$
$a_5=a.r^{5-1}=30(2)^4=480$
$a_n+_1=a.r^{n+1-1}=30(2)^n$
Thus, bacteria present at the end of the 2nd hour, 4th hour and nth hour are 120,480 and $30(2)^n$ respectively.
Answer:
Given: Bank pays an annual interest rate of 10% compounded annually.
Rs 500 amounts are deposited in the bank.
At the end of the first year, the amount
$=500\left ( 1+\frac{1}{10} \right )=500(1.1)$
At the end of the second year, the amount $=500(1.1)(1.1)$
At the end of the third year, the amount $=500(1.1)(1.1)(1.1)$
At the end of 10 years, the amount $=500(1.1)(1.1)(1.1)........(10times)$
$=500(1.1)^{10}$
Thus, at the end of 10 years, amount $=Rs. 500(1.1)^{10}$
Question 32: If A.M. and G.M. of roots of a quadratic equation are 8 and 5, respectively, then obtain the quadratic equation
Answer:
Let roots of the quadratic equation be a and b.
According to given condition,
$AM=\frac{a+b}{2}=8$
$\Rightarrow (a+b)=16$
$GM=\sqrt{ab}=5$
$\Rightarrow ab=25$
We know that $x^2-x(sum\, of\, roots)+(product\, of\, roots)=0$
$x^2-x(16)+(25)=0$
$x^2-16x+25=0$
Thus, the quadratic equation = $x^2-16x+25=0$
Also Read
1. Geometric Progression (G.P.):
A geometric progression refers to a sequence of numbers where each term after the first is obtained by multiplying the previous term by a fixed non-zero number called the common ratio.
2. General Term of a G.P.:
The general term of a G.P. helps find any term in the sequence without listing all previous terms. It depends on the first term and the common ratio.
3. Sum to n Terms of a G.P.:
This refers to the sum of the first 'n' terms in a geometric progression. The formula differs based on whether the common ratio is 1 or not.
4. Geometric Mean (G.M.):
The geometric mean between two positive numbers is the square root of their product. It represents the central tendency in a geometric context.
5. Relationship Between A.M. and G.M.:
For any two positive numbers, the arithmetic mean (A.M.) is always greater than or equal to the geometric mean (G.M.). Equality holds only when both numbers are equal.
Also Read
Follow the links to get your hands on subject-wise NCERT textbook solutions to ace your exam preparation.
NCERT Solutions for Class 11 Maths |
NCERT Solutions for Class 11 Physics |
NCERT Solutions for Class 11 Chemistry |
NCERT Solutions for Class 11 Biology |
Follow the links provided below for various subjects to practise exemplar questions for the examination.
Frequently Asked Questions (FAQs)
Given a = 2
r = 4/2 = 2
a_5 = a$r^4$ = 2$(2)^4$ = 32
Given a = 3
a$r^2$ = 48
3$(r^2)$ = 48
$r^2$ = 16
Common ratio (r) = 4
G.M. = $(ab)^(1/2)$
A.M. = (a+b)/2
Sum of first n natural numbers = n(n+1)/2
Sum of square of first n natural numbers = n(n+1)(2n+1)/6
Take Aakash iACST and get instant scholarship on coaching programs.
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE