VMC VIQ Scholarship Test
Register for Vidyamandir Intellect Quest. Get Scholarship and Cash Rewards.
NCERT Solutions for Exercise 6.5 Class 12 Maths Chapter 6 Application of Derivatives are discussed here. These NCERT solutions are created by subject matter expert at Careers360 considering the latest syllabus and pattern of CBSE 2023-24. Throughout the NCERT solutions for exercise 6.5 Class 12 Maths chapter 6 the topic maxima and minima is discussed. NCERT solutions for Class 12 Maths chapter 6 exercise 6.5 uses the concept of derivatives to find the maximum and minimum of different functions. Exercise 6.5 Class 12 Maths also give ideas about absolute minimum and maximum. In the NCERT Class 12 Mathematics Book, some real-life examples of finding maximum and minimum values are given. And certain definitions are discussed after the examples in the NCERT book. Such as definitions of maximum and minimum values, extreme point, monotonic functions, local maxima and minima and certain theorems etc. After these the Class 12 Maths chapter 6 exercise 6.5 is given for practice.
12th class Maths exercise 6.5 answers are designed as per the students demand covering comprehensive, step by step solutions of every problem. Practice these questions and answers to command the concepts, boost confidence and in depth understanding of concepts. Students can find all exercise together using the link provided below.
Also, read
Question:1(i) Find the maximum and minimum values, if any, of the following functions
given by
( )
Answer:
Given function is,
add and subtract 2 in given equation
Now,
for every
Hence, minimum value occurs when
Hence, the minimum value of function occurs at
and the minimum value is
and it is clear that there is no maximum value of
Question:1(ii) Find the maximum and minimum values, if any, of the following functions
given by
Answer:
Given function is,
add and subtract 2 in given equation
Now, for every
Hence, minimum value occurs when
Hence, the minimum value of function occurs at and the minimum value isand it is clear that there is no maximum value of
Question:1(iii) Find the maximum and minimum values, if any, of the following functions
given by
Answer:
Given function is,
for every
Hence, maximum value occurs when
Hence, maximum value of function occurs at x = 1
and the maximum value is
and it is clear that there is no minimum value of
Question:1(iv) Find the maximum and minimum values, if any, of the following functions
given by
Answer:
Given function is,
value of varies from
Hence, function neither has a maximum or minimum value
Question:2(i) Find the maximum and minimum values, if any, of the following functions
given by
Answer:
Given function is
Hence, minimum value occurs when |x + 2| = 0
x = -2
Hence, minimum value occurs at x = -2
and minimum value is
It is clear that there is no maximum value of the given function
Question:2(ii) Find the maximum and minimum values, if any, of the following functions
given by
Answer:
Given function is
Hence, maximum value occurs when -|x + 1| = 0
x = -1
Hence, maximum value occurs at x = -1
and maximum value is
It is clear that there is no minimum value of the given function
Question:2(iii) Find the maximum and minimum values, if any, of the following functions
given by
Answer:
Given function is
We know that value of sin 2x varies from
Hence, the maximum value of our function is 6 and the minimum value is 4
Question:2(iv) Find the maximum and minimum values, if any, of the following functions
given by
Answer:
Given function is
We know that value of sin 4x varies from
Hence, the maximum value of our function is 4 and the minimum value is 2
Question:2(v) Find the maximum and minimum values, if any, of the following functions
given by
Answer:
Given function is
It is given that the value of
So, we can not comment about either maximum or minimum value
Hence, function has neither has a maximum or minimum value
Answer:
Given function is
So, x = 0 is the only critical point of the given function
So we find it through the 2nd derivative test
Hence, by this, we can say that 0 is a point of minima
and the minimum value is
Answer:
Given function is
Hence, the critical points are 1 and - 1
Now, by second derivative test
Hence, 1 is the point of minima and the minimum value is
Hence, -1 is the point of maxima and the maximum value is
Answer:
Given function is
Now, we use the second derivative test
Hence, is the point of maxima and the maximum value is which is
Answer:
Given function is
Now, we use second derivative test
Hence, is the point of maxima and maximum value is which is
Answer:
Givrn function is
Hence 1 and 3 are critical points
Now, we use the second derivative test
Hence, x = 1 is a point of maxima and the maximum value is
Hence, x = 1 is a point of minima and the minimum value is
Answer:
Given function is
( but as we only take the positive value of x i.e. x = 2)
Hence, 2 is the only critical point
Now, we use the second derivative test
Hence, 2 is the point of minima and the minimum value is
Answer:
Gien function is
Hence., x = 0 is only critical point
Now, we use the second derivative test
Hence, 0 is the point of local maxima and the maximum value is
Question:3(viii) Find the local maxima and local minima, if any, of the following functions. Find
also the local maximum and the local minimum values, as the case may be:
Answer:
Given function is
Hence, is the only critical point
Now, we use the second derivative test
Hence, it is the point of minima and the minimum value is
Question:4(i) Prove that the following functions do not have maxima or minima:
Answer:
Given function is
But exponential can never be 0
Hence, the function does not have either maxima or minima
Question:4(ii) Prove that the following functions do not have maxima or minima:
Answer:
Given function is
Since log x deifne for positive x i.e.
Hence, by this, we can say that for any value of x
Therefore, there is no such that
Hence, the function does not have either maxima or minima
Question:4(iii) Prove that the following functions do not have maxima or minima:
Answer:
Given function is
But, it is clear that there is no such that
Hence, the function does not have either maxima or minima
Question:5(i) Find the absolute maximum value and the absolute minimum value of the following
functions in the given intervals:
Answer:
Given function is
Hence, 0 is the critical point of the function
Now, we need to see the value of the function at x = 0 and as
we also need to check the value at end points of given range i.e. x = 2 and x = -2
Hence, maximum value of function occurs at x = 2 and value is 8
and minimum value of function occurs at x = -2 and value is -8
Question:5(ii) Find the absolute maximum value and the absolute minimum value of the following
functions in the given intervals:
Answer:
Given function is
as
Hence, is the critical point of the function
Now, we need to check the value of function at and at the end points of given range i.e.
Hence, the absolute maximum value of function occurs at and value is
and absolute minimum value of function occurs at and value is -1
Question:5(iii) Find the absolute maximum value and the absolute minimum value of the following
functions in the given intervals:
Answer:
Given function is
Hence, x = 4 is the critical point of function
Now, we need to check the value of function at x = 4 and at the end points of given range i.e. at x = -2 and x = 9/2
Hence, absolute maximum value of function occures at x = 4 and value is 8
and absolute minimum value of function occures at x = -2 and value is -10
Question:5(iv) Find the absolute maximum value and the absolute minimum value of the following functions in the given intervals:
Answer:
Given function is
Hence, x = 1 is the critical point of function
Now, we need to check the value of function at x = 1 and at the end points of given range i.e. at x = -3 and x = 1
Hence, absolute maximum value of function occurs at x = -3 and value is 19
and absolute minimum value of function occurs at x = 1 and value is 3
Question:6 . Find the maximum profit that a company can make, if the profit function is
given by
Answer:
Profit of the company is given by the function
x = -2 is the only critical point of the function
Now, by second derivative test
At x = -2
Hence, maxima of function occurs at x = -2 and maximum value is
Hence, the maximum profit the company can make is 113 units
Question:7 . Find both the maximum value and the minimum value of
on the interval [0, 3].
Answer:
Given function is
Now, by hit and trial let first assume x = 2
Hence, x = 2 is one value
Now,
which is not possible
Hence, x = 2 is the only critical value of function
Now, we need to check the value at x = 2 and at the end points of given range i.e. x = 0 and x = 3
Hence, maximum value of function occurs at x = 0 and vale is 25
and minimum value of function occurs at x = 2 and value is -39
Question:8 . At what points in the interval does the function attain its maximum value?
Answer:
Given function is
So, values of x are
These are the critical points of the function
Now, we need to find the value of the function at and at the end points of given range i.e. at x = 0 and
Hence, at function attains its maximum value i.e. in 1 in the given range of
Question:9 What is the maximum value of the function ?
Answer:
Given function is
Hence, is the critical point of the function
Now, we need to check the value of the function at
Value is same for all cases so let assume that n = 0
Now
Hence, the maximum value of the function is
Question:10. Find the maximum value of in the interval [1, 3]. Find the
the maximum value of the same function in [–3, –1].
Answer:
Given function is
we neglect the value x =- 2 because
Hence, x = 2 is the only critical value of function
Now, we need to check the value at x = 2 and at the end points of given range i.e. x = 1 and x = 3
Hence, maximum value of function occurs at x = 3 and vale is 89 when
Now, when
we neglect the value x = 2
Hence, x = -2 is the only critical value of function
Now, we need to check the value at x = -2 and at the end points of given range i.e. x = -1 and x = -3
Hence, the maximum value of function occurs at x = -2 and vale is 139 when
Question:11. It is given that at x = 1, the function attains its maximum value, on the interval [0, 2]. Find the value of a.
Answer:
Given function is
Function attains maximum value at x = 1 then x must one of the critical point of the given function that means
Now,
Hence, the value of a is 120
Question:12 . Find the maximum and minimum values of
Answer:
Given function is
So, values of x are
These are the critical points of the function
Now, we need to find the value of the function at and at the end points of given range i.e. at x = 0 and
Hence, at function attains its maximum value and value is in the given range of
and at x= 0 function attains its minimum value and value is 0
Question:13 . Find two numbers whose sum is 24 and whose product is as large as possible.
Answer:
Let x and y are two numbers
It is given that
x + y = 24 , y = 24 - x
and product of xy is maximum
let
Hence, x = 12 is the only critical value
Now,
at x= 12
Hence, x = 12 is the point of maxima
Noe, y = 24 - x
= 24 - 12 = 12
Hence, the value of x and y are 12 and 12 respectively
Question:14 Find two positive numbers x and y such that x + y = 60 and is maximum.
Answer:
It is given that
x + y = 60 , x = 60 -y
and is maximum
let
Now,
Now,
hence, 0 is neither point of minima or maxima
Hence, y = 45 is point of maxima
x = 60 - y
= 60 - 45 = 15
Hence, values of x and y are 15 and 45 respectively
Question:15 Find two positive numbers x and y such that their sum is 35 and the product is a maximum.
Answer:
It is given that
x + y = 35 , x = 35 - y
and is maximum
Therefore,
Now,
Now,
Hence, y = 35 is the point of minima
Hence, y= 0 is neither point of maxima or minima
Hence, y = 25 is the point of maxima
x = 35 - y
= 35 - 25 = 10
Hence, the value of x and y are 10 and 25 respectively
Question:16 . Find two positive numbers whose sum is 16 and the sum of whose cubes is minimum.
Answer:
let x an d y are positive two numbers
It is given that
x + y = 16 , y = 16 - x
and is minimum
Now,
Hence, x = 8 is the only critical point
Now,
Hence, x = 8 is the point of minima
y = 16 - x
= 16 - 8 = 8
Hence, values of x and y are 8 and 8 respectively
Answer:
It is given that the side of the square is 18 cm
Let assume that the length of the side of the square to be cut off is x cm
So, by this, we can say that the breath of cube is (18-2x) cm and height is x cm
Then,
Volume of cube =
But the value of x can not be 9 because then the value of breath become 0 so we neglect value x = 9
Hence, x = 3 is the critical point
Now,
Hence, x = 3 is the point of maxima
Hence, the length of the side of the square to be cut off is 3 cm so that the volume of the box is the maximum possible
Answer:
It is given that the sides of the rectangle are 45 cm and 24 cm
Let assume the side of the square to be cut off is x cm
Then,
Volume of cube
But x cannot be equal to 18 because then side (24 - 2x) become negative which is not possible so we neglect value x= 18
Hence, x = 5 is the critical value
Now,
Hence, x = 5 is the point of maxima
Hence, the side of the square to be cut off is 5 cm so that the volume of the box is maximum
Question:19 Show that of all the rectangles inscribed in a given fixed circle, the square has the maximum area.
Answer:
Let assume that length and breadth of rectangle inscribed in a circle is l and b respectively
and the radius of the circle is r
Now, by Pythagoras theorem
a = 2r
Now, area of reactangle(A) = l b
Now,
Hence, is the point of maxima
Since, l = b we can say that the given rectangle is a square
Hence, of all the rectangles inscribed in a given fixed circle, the square has the maximum area
Answer:
Let r be the radius of the base of cylinder and h be the height of the cylinder
we know that the surface area of the cylinder
Volume of cylinder
Hence, is the critical point
Now,
Hence, is the point of maxima
Hence, the right circular cylinder of given surface and maximum volume is such that its height is equal to the diameter(D = 2r) of the base
Answer:
Let r be the radius of base and h be the height of the cylinder
The volume of the cube (V) =
It is given that the volume of cylinder = 100
Surface area of cube(A) =
Hence, is the critical point
Hence, is the point of minima
Hence, and are the dimensions of the can which has the minimum surface area
Answer:
Area of the square (A) =
Area of the circle(S) =
Given the length of wire = 28 m
Let the length of one of the piece is x m
Then the length of the other piece is (28 - x) m
Now,
and
Area of the combined circle and square = A + S
Now,
Hence, is the point of minima
Other length is = 28 - x
=
Hence, two lengths are and
Answer: Volume of cone (V) =
Volume of sphere with radius r =
By pythagoras theorem in we ca say that
V =
Now,
Hence, point is the point of maxima
Hence, the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is
Volume =
Hence proved
Answer:
Volume of cone(V)
curved surface area(A) =
Now , we can clearly varify that
when
Hence, is the point of minima
Hence proved that the right circular cone of least curved surface and given volume has an altitude equal to time the radius of the base
Question:25 Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is
Answer:
Let a be the semi-vertical angle of cone
Let r , h , l are the radius , height , slent height of cone
Now,
we know that
Volume of cone (V) =
Now,
Now,
Now, at
Therefore, is the point of maxima
Hence proved
Question:26 Show that semi-vertical angle of the right circular cone of given surface area and maximum volume is
Answer:
Let r, l, and h are the radius, slant height and height of cone respectively
Now,
Now,
we know that
The surface area of the cone (A) =
Now,
Volume of cone(V) =
On differentiate it w.r.t to a and after that
we will get
Now, at
Hence, we can say that is the point if maxima
Hence proved
Question:27 The point on the curve which is nearest to the point (0, 5) is
Answer:
Given curve is
Let the points on curve be
Distance between two points is given by
Hence, x = 0 is the point of maxima
Hence, the point is the point of minima
Hence, the point is the point on the curve which is nearest to the point (0, 5)
Hence, the correct answer is (A)
Question:28 For all real values of x, the minimum value of
is
(A) 0 (B) 1 (C) 3 (D) 1/3
Answer:
Given function is
Hence, x = 1 and x = -1 are the critical points
Now,
Hence, x = 1 is the point of minima and the minimum value is
Hence, x = -1 is the point of maxima
Hence, the minimum value of
is
Hence, (D) is the correct answer
Question:29 The maximum value of
Answer:
Given function is
Hence, x = 1/2 is the critical point s0 we need to check the value at x = 1/2 and at the end points of given range i.e. at x = 1 and x = 0
Hence, by this we can say that maximum value of given function is 1 at x = 0 and x = 1
option c is correct
Also Read| Application of Derivatives Class 12 Notes
As per latest 2024 syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters
The topic of maxima and minima is covered in Class 12th Maths chapter 6 exercise 6.5.
16 questions are explained before exercise 6.5
A sum of 41 questions are solved till the Class 12th Maths chapter 6 exercise 6.5
The problems of maxima and minima are used in business, science and mathematics etc. Examples are problems related to maximising profit, minimising the distance between the two points etc
In the given interval, a monotonic function is either increasing or decreasing.
The local maximum value is f(k)
f(u) is the local minimum value of function f
Yes, maxima and minima are one of the important topics of the chapter from where 1 question can be expected for CBSE board exam
You can use them people also used problem
Hi,
The Medhavi National Scholarship Program, under the Human Resources & Development Mission (HRDM), offers financial assistance to meritorious students through a scholarship exam. To be eligible, candidates must be between 16 and 40 years old as of the last date of registration and have at least passed the 10th grade from a recognized board. Higher qualifications, such as 11th/12th grade, graduation, post-graduation, or a diploma, are also acceptable.
To apply, download the Medhavi App from the Google Play Store, sign up, and read the detailed notification about the scholarship exam. Complete the registration within the app, take the exam from home using the app, and receive your results within two days. Following this, upload the necessary documents and bank account details for verification. Upon successful verification, the scholarship amount will be directly transferred to your bank account.
The scholarships are categorized based on the marks obtained in the exam: Type A for those scoring 60% or above, Type B for scores between 50% and 60%, and Type C for scores between 40% and 50%. The cash scholarships range from Rs. 2,000 to Rs. 18,000 per month, depending on the exam and the marks obtained.
Since you already have a 12th-grade qualification with 84%, you meet the eligibility criteria and can apply for the Medhavi Scholarship exam. Preparing well for the exam can increase your chances of receiving a higher scholarship.
hello mahima,
If you have uploaded screenshot of your 12th board result taken from CBSE official website,there won,t be a problem with that.If the screenshot that you have uploaded is clear and legible. It should display your name, roll number, marks obtained, and any other relevant details in a readable forma.ALSO, the screenshot clearly show it is from the official CBSE results portal.
hope this helps.
Hello Akash,
If you are looking for important questions of class 12th then I would like to suggest you to go with previous year questions of that particular board. You can go with last 5-10 years of PYQs so and after going through all the questions you will have a clear idea about the type and level of questions that are being asked and it will help you to boost your class 12th board preparation.
You can get the Previous Year Questions (PYQs) on the official website of the respective board.
I hope this answer helps you. If you have more queries then feel free to share your questions with us we will be happy to assist you.
Thank you and wishing you all the best for your bright future.
Hello student,
If you are planning to appear again for class 12th board exam with PCMB as a private candidate here is the right information you need:
Remember
, these are tentative dates based on last year. Keep an eye on the CBSE website ( https://www.cbse.gov.in/ ) for the accurate and official announcement.
I hope this answer helps you. If you have more queries then feel free to share your questions with us, we will be happy to help you.
Good luck with your studies!
Register for Vidyamandir Intellect Quest. Get Scholarship and Cash Rewards.
Register for Tallentex '25 - One of The Biggest Talent Encouragement Exam
As per latest 2024 syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
Accepted by more than 11,000 universities in over 150 countries worldwide
Register now for PTE & Unlock 10% OFF : Use promo code: 'C360SPL10'. Limited Period Offer! Trusted by 3,500+ universities globally