ALLEN Coaching
ApplyRegister for ALLEN Scholarship Test & get up to 90% Scholarship
Understanding the behaviour of a function near a certain given point is essential in calculus. Limit is the basic tool that helps to determine this behaviour. A limit helps to understand the behaviour of a function as its input approaches a specific value. The main focus of this exercise is on evaluating the limits of a function using different methods, like the intuitive method and the algebraic method. Exercise 12.1 of the NCERT introduces simple methods for solving limits of functions like polynomial, rational and trigonometric functions.
New: Get up to 90% Scholarship on NEET/JEE Coaching from top Coaching Institutes
JEE Main Scholarship Test Kit (Class 11): Narayana | Physics Wallah | Aakash | Unacademy
Suggested: JEE Main: high scoring chapters | Past 10 year's papers
Solutions of Exercise 12.1 are designed by subject experts; these solutions are well structured and adhere to the CBSE curriculum. Solutions are provided in a very comprehensive and step-by-step manner that helps students not just in boards but in competitive exams as well. Basic understanding of limits is essential for solving complex problems of differentiation and integration. Check NCERT Solutions to get detailed solutions for Science and Maths from Class 6 to Class 12.
Question 1: Evaluate the following limits
$\lim\limits_{x\rightarrow 3} x +3$
Answer:
$\lim\limits_{x\rightarrow 3} x +3$
$\Rightarrow \lim\limits_{x\rightarrow 3} 3 +3$
$\Rightarrow 6$ Answer
Question 2: Evaluate the following limits $\lim\limits_{x \rightarrow \pi } \left ( x - 22/7 \right )$
Answer:
Below you can find the solution:
$\lim\limits_{x \rightarrow \pi } \left ( x - 22/7 \right )=\pi-\frac{22}{7}$
Question:3 Evaluate the following limits $\lim\limits_{r \rightarrow 1} \pi r^2$
Answer:
The limit
$\lim\limits_{r \rightarrow 1} \pi r^2=\pi(1)^2=\pi$
Answer is $\pi$
Question 4: Evaluate the following limits $\lim\limits_{x \rightarrow {4}} \frac{4x+3 }{x-2}$
Answer:
The limit
$\lim\limits_{x \rightarrow {4}} \frac{4x+3 }{x-2}$
$\Rightarrow \frac{4(4)+3 }{(4)-2}$
$\Rightarrow \frac{19 }{2}$ (Answer)
Question:5 Evaluate the following limits $\lim\limits_{x \rightarrow {-1}}\frac{x^{10}+ x^5 + 1}{x-1}$
Answer:
The limit
$\lim\limits_{x \rightarrow {4}} \frac{x^{10}+ x^5 + 1 }{x-1}$
$\Rightarrow \frac{(-1)^{10}+ (-1)^5 + 1 }{(-1)-1}$
$\Rightarrow \frac{1-1+1}{-2}$
$\Rightarrow -\frac{1}{2}$ (Answer)
Question 6: Evaluate the following limits $\lim\limits_{x \rightarrow 0 }\frac{( x+1)^5 -1}{x }$
Answer:
The limit
$\lim\limits_{x \rightarrow 0 }\frac{( x+1)^5 -1}{x }$
Lets put
$x+1=y$
since we have changed the function, its limit will also change,
so
$x\rightarrow 0,y\rightarrow 0+1=1$
So our function have became
$\lim\limits_{y \rightarrow 1 }\frac{ y^5 -1}{y-1 }$
Now As we know the property
$\lim\limits_{x \rightarrow 1 }\frac{ x^5 -a^n}{x-a }=na^{n-1}$
$\lim\limits_{y \rightarrow 1 }\frac{ y^5 -1}{y-1 }=5(1)^5=5$
Hence,
$\lim\limits_{x \rightarrow 0 }\frac{( x+1)^5 -1}{x }=5$
Question 7: Evaluate the following limits $\lim\limits_{x \rightarrow 2} \frac{3 x^2 - x -10 }{x^2 -4}$
Answer:
The limit
$\lim\limits_{x \rightarrow 2} \frac{3 x^2 - x -10 }{x^2 -4}$
$\Rightarrow \lim\limits_{x \rightarrow 2} \frac{(x-2)(3x+5) }{(x-2)(x+2)}$
$\Rightarrow \lim\limits_{x \rightarrow 2} \frac{(3x+5) }{(x+2)}$
$\Rightarrow \frac{(3(2)+5) }{((2)+2)}$
$\Rightarrow \frac{11 }{4}$ (Answer)
Question 8: Evaluate the following limits $\lim\limits_{x \rightarrow 3} \frac{x ^4 -81}{2x^2 -5x -3}$
Answer:
The limit
$\lim\limits_{x \rightarrow 3} \frac{x ^4 -81}{2x^2 -5x -3}$
At x = 2 both numerator and denominator becomes zero, so lets factorise the function
$\lim\limits_{x \rightarrow 3} \frac{(x-3)(x+3)(x^2+9)}{(x-3)(2x+1)}$
$\lim\limits_{x \rightarrow 3} \frac{(x+3)(x^2+9)}{(2x+1)}$
Now we can put the limit directly, so
$\lim\limits_{x \rightarrow 3} \frac{(x+3)(x^2+9)}{(2x+1)}$
$\Rightarrow \frac{((3)+3)((3)^2+9)}{(2(3)+1)}$
$\Rightarrow \frac{6\times18}{7}$
$\Rightarrow \frac{108}{7}$
Question 9: Evaluate the following limits $\lim\limits_{x \rightarrow 0 } \frac{ax +b}{cx+1}$
Answer:
The limit,
$\lim\limits_{x \rightarrow 0 } \frac{ax +b}{cx+1}$
$\Rightarrow \frac{a(0) +b}{c(0)+1}$
$\Rightarrow b$ (Answer)
Question:10 Evaluate the following limits $\lim\limits_{z\rightarrow 1} \frac{z^{1/3}-1}{z^{1/6}-1}$
Answer:
The limit
$\lim\limits_{z\rightarrow 1} \frac{z^{1/3}-1}{z^{1/6}-1}$
Here on directly putting limit , both numerator and the deniminator becomes zero so we factorize the function and then put the limit.
$\lim\limits_{z\rightarrow 1} \frac{z^{1/3}-1}{z^{1/6}-1}=\lim\limits_{z\rightarrow 1} \frac{z^{(1/6)^2}-1^2}{z^{1/6}-1}$
$=\lim\limits_{z\rightarrow 1} \frac{(z^{(1/6)}-1)(z^{(1/6)}+1)}{z^{1/6}-1}$
$\begin{aligned} & =\lim\limits _{z \rightarrow 1}\left(z^{1 / 6}+1\right) \\ & =\left(1^{1 / 6}+1\right)\end{aligned}$
$=1+1$
$=2$ (Answer)
Question 11: Evaluate the following limits $\lim\limits_{x \rightarrow 1} \frac{ax ^2 +bx + c }{cx^2 + bx + a }, a+b +c \neq 0$
Answer:
The limit:
$\lim\limits_{x \rightarrow 1} \frac{ax ^2 +bx + c }{cx^2 + bx + a }, a+b +c \neq 0$
Since Denominator is not zero on directly putting the limit, we can directly put the limits, so,
$\lim\limits_{x \rightarrow 1} \frac{ax ^2 +bx + c }{cx^2 + bx + a }, a+b +c \neq 0$
$=\frac{a(1) ^2 +b(1) + c }{c(1)^2 + b(1) + a },$
$=\frac{a+b+c }{a+b+c },$
$=1$ (Answer)
Question 12: Evaluate the following limits $\lim\limits_{x\rightarrow -2} \frac{\frac{1}{x}+ \frac{1}{2}}{x+2}$
Answer:
$\lim\limits_{x\rightarrow -2} \frac{\frac{1}{x}+ \frac{1}{2}}{x+2}$
Here, since denominator becomes zero on putting the limit directly, so we first simplify the function and then put the limit,
$\lim\limits_{x\rightarrow -2} \frac{\frac{1}{x}+ \frac{1}{2}}{x+2}$
$=\lim\limits_{x\rightarrow -2} \frac{\frac{x+2}{2x}}{x+2}$
$=\lim\limits_{x\rightarrow -2} \frac{1}{2x}$
$= \frac{1}{2(-2)}$
$= -\frac{1}{4}$ (Answer)
Question 13: Evaluate the following limits $\lim\limits_{x \rightarrow 0 } \frac{\sin ax }{bx }$
Answer:
The limit
$\lim\limits_{x \rightarrow 0 } \frac{\sin ax }{bx }$
Here on directly putting the limits, the function becomes $\frac{0}{0}$ form. so we try to make the function in the form of $\frac{sinx}{x}$ . so,
$\lim\limits_{x \rightarrow 0 } \frac{\sin ax }{bx }$
$=\lim\limits_{x \rightarrow 0 } \frac{\sin ax(ax) }{bx(ax) }$
$=\lim\limits_{x \rightarrow 0 } \frac{\sin ax }{ax }\frac{a}{b}$
As $\lim\limits_{x\rightarrow 0}\frac{sinx}{x}=1$
$=1\cdot\frac{a}{b}$
$=\frac{a}{b}$ (Answer)
Question 14: Evaluate the following limits $\lim\limits_{x \rightarrow 0} \frac{\sin ax }{\sin bx } , a,b \neq 0$
Answer:
The limit,
$\lim\limits_{x \rightarrow 0} \frac{\sin ax }{\sin bx } , a,b \neq 0$
On putting the limit directly, the function takes the zero by zero form So,we convert it in the form of $\frac{sina}{a}$ .and then put the limit,
$\Rightarrow \lim\limits_{x\rightarrow {0}}\frac{\frac{sinax}{ax}}{\frac{sinbx}{bx}}\cdot\frac{ax}{bx}$
$=\frac{\lim\limits_{ax\rightarrow {0}}\frac{sinax}{ax}}{\lim\limits_{bx\rightarrow {0}}\frac{sinbx}{bx}}\cdot\frac{a}{b}$
$=\frac{a}{b}$ (Answer)
Question 15: Evaluate the following limits $\lim\limits_{x \rightarrow \pi } \frac{\sin ( \pi -x )}{\pi ( \pi -x)}$
Answer:
The limit
$\lim\limits_{x \rightarrow \pi } \frac{\sin ( \pi -x )}{\pi ( \pi -x)}$
$\Rightarrow \lim\limits_{x \rightarrow \pi } \frac{\sin ( \pi -x )}{ ( \pi -x)}\times\frac{1}{\pi}$
$= 1\times\frac{1}{\pi}$
$= \frac{1}{\pi}$ (Answer)
Question 16: Evaluate the following limits $\lim\limits_{x\rightarrow 0}\frac{\cos x }{\pi -x }$
Answer:
The limit
$\lim\limits_{x\rightarrow 0}\frac{\cos x }{\pi -x }$
the function behaves well on directly putting the limit,so we put the limit directly. So.
$\lim\limits_{x\rightarrow 0}\frac{\cos x }{\pi -x }$
$=\frac{\cos (0) }{\pi -(0) }$
$=\frac{1 }{\pi }$ (Answer)
Question 17: Evaluate the following limits $\lim\limits_{x\rightarrow 0}$ $\frac{\cos 2x -1}{\cos x -1}$
Answer:
The limit:
$\lim\limits_{x\rightarrow 0}$ $\frac{\cos 2x -1}{\cos x -1}$
The function takes the zero by zero form when the limit is put directly, so we simplify the function and then put the limit
$\lim\limits_{x\rightarrow 0}$ $\frac{\cos 2x -1}{\cos x -1}$
$\lim\limits_{x\rightarrow 0}$ $\frac{-2(sin^2x)}{-2(sin^2(\frac{x}{2}))}$
$=\lim\limits_{x\rightarrow 0}$ $\frac{\frac{(sin^2x)}{x^2}}{\frac{(sin^2(\frac{x}{2}))}{(\frac{x}{2})^2}}\times\frac{x^2}{(\frac{x}{2})^2}$
$=\frac{1^2}{1^2}\times 4$
$= 4$ (Answer)
Question 18: Evaluate the following limits $\lim\limits_{x \rightarrow 0}\frac{ax + x \cos x }{b \sin x }$
Answer:
$\lim\limits_{x \rightarrow 0}\frac{ax + x \cos x }{b \sin x }$
The function takes the form zero by zero when we put the limit directly in the function,. since function consist of sin function and cos function, we try to make the function in the form of $\frac{sinx}{x}$ as we know that it tends to 1 when x tends to 0.
So,
$\lim\limits_{x \rightarrow 0}\frac{ax + x \cos x }{b \sin x }$
$=\frac{1}{b}\lim\limits_{x \rightarrow 0}\frac{x(a+ \cos x) }{ \sin x }$
$=\frac{1}{b}\lim\limits_{x \rightarrow 0}\frac{x }{ \sin x }\times(a+ \cos x)$
$=\frac{1}{b}\times1\times(a+ \cos (0))$
$=\frac{a+1}{b}$ (Answer)
Question 19: Evaluate the following limits $\lim\limits_{x \rightarrow 0} x \sec x$
Answer:
$\lim\limits_{x \rightarrow 0} x \sec x$
As function doesn't create any abnormality on putting the limit directly,we can put limit directly. So,
$\lim\limits_{x \rightarrow 0} x \sec x$
$=(0) \sec (0)$
$=(0)\times 1$
$=0$ . (Answer)
Question 20: Evaluate the following limits $\lim\limits_{x\rightarrow 0} \frac{\sin ax + bx }{ax + \sin bx } a,b ,a + b \neq 0$
Answer:
$\lim\limits_{x\rightarrow 0} \frac{\sin ax + bx }{ax + \sin bx } a,b ,a + b \neq 0$
The function takes the zero by zero form when we put the limit into the function directly, so we try to eliminate this case by simplifying the function. So
$\lim\limits_{x\rightarrow 0} \frac{\sin ax + bx }{ax + \sin bx } a,b ,a + b \neq 0$
$=\lim\limits_{x\rightarrow 0} \frac{\frac{\sin ax}{ax} \cdot ax+ bx }{ax + \frac{\sin bx}{bx}\cdot bx }$
$=\lim\limits_{x\rightarrow 0} \frac{\frac{\sin ax}{ax} \cdot a+ b }{a + \frac{\sin bx}{bx}\cdot b }$
$=\frac{1\cdot a+b}{a+1\cdot b}$
$=\frac{a+b}{a+ b}$
$=1$ (Answer)
Question 21: Evaluate the following limits $\lim\limits_{x \rightarrow 0} \left ( \csc x - \cot x \right )$
Answer:
$\lim\limits_{x \rightarrow 0} \left ( \csc x - \cot x \right )$
On putting the limit directly the function takes infinity by infinity form, So we simplify the function and then put the limit
$\lim\limits_{x \rightarrow 0} \left ( \csc x - \cot x \right )$
$=\lim\limits_{x \rightarrow 0} \left (\frac{1}{sinx}-\frac{cosx}{sinx}\right )$
$=\lim\limits_{x \rightarrow 0} \left (\frac{1-cosx}{sinx}\right )$
$=\lim\limits_{x \rightarrow 0} \left (\frac{2sin^2(\frac{x}{2})}{sinx}\right )$
$=\lim\limits_{x \rightarrow 0} \left (\frac{2sin^2(\frac{x}{2})}{(\frac{x}{2})^2}\right )\left ( \frac{(\frac{x}{2})^2}{sinx} \right )$
$=\lim\limits_{x \rightarrow 0} \frac{2}{4}\left (\frac{sin^2(\frac{x}{2})}{(\frac{x}{2})^2}\right )\left ( \frac{(x)}{sinx} \right )\cdot x$
$=\frac{2}{4}\times (1)^2\times0$
$=0$ (Answer)
Question 22: Evaluate the following limits $\lim\limits_{x \rightarrow \pi /2 } \frac{\tan 2x }{x - \pi /2 }$
Answer:
$\lim\limits_{x \rightarrow \pi /2 } \frac{\tan 2x }{x - \pi /2 }$
The function takes zero by zero form when the limit is put directly, so we simplify the function and then put the limits,
So
Let's put
$y=x-\frac{\pi}{2}$
Since we are changing the variable, limit will also change.
as
$x\rightarrow \frac{\pi}{2},y=x-\frac{\pi}{2}\rightarrow \frac{\pi}{2}-\frac{\pi}{2}=0$
So function in new variable becomes,
$\lim\limits_{y \rightarrow 0 } \frac{\tan 2(y+\frac{\pi}{2}) }{y+\pi/2- \pi /2 }$
$=\lim\limits_{y \rightarrow 0 } \frac{\tan (2y+\pi) }{y }$
As we know tha property $tan(\pi+x)=tanx$
$=\lim\limits_{y \rightarrow 0 } \frac{\tan (2y) }{y }$
$=\lim\limits_{y \rightarrow 0 } \frac{sin2y}{2y}\cdot\frac{2}{cos2y}$
$=1\times 2$
$=2$ (Answer)
Answer:
Given Function
$f (x) = \left\{\begin{matrix} 2x+3 & x \leq 0 \\ 3 ( x+1)& x > 0 \end{matrix}\right.$
Now,
Limit at x = 0 :
$at\:x=0^-$
: $\lim\limits_{x\rightarrow{0^-}}f(x)=\lim\limits_{x\rightarrow{0^-}}(2x+3)=2(0)+3=3$
$at\:x=0^+$
$\lim\limits_{x\rightarrow{0^+}}f(x)=\lim\limits_{x\rightarrow{0^+}}3(x+1)=3(0+1)=3$
Hence limit at x = 0 is 3.
Limit at x = 1
$at\:x=1^+$
$\lim\limits_{x\rightarrow{1^+}}f(x)=\lim\limits_{x\rightarrow{1^+}}3(x+1)=3(1+1)=6$
$at\:x=1^-$
$\lim\limits_{x\rightarrow{1^-}}f(x)=\lim\limits_{x\rightarrow{1^-}}3(x+1)=3(1+1)=6$
Hence limit at x = 1 is 6.
Question 24: Find $\lim\limits _{x \rightarrow 1} f(x)$, where $f(x)= \begin{cases}x^2-1, & x \leq 1 \\ -x^2-1, & x>1\end{cases}$
Answer:
$\lim\limits _{x \rightarrow 1} f(x)$, where $f(x)= \begin{cases}x^2-1, & x \leq 1 \\ -x^2-1, & x>1\end{cases}$
Limit at $x=1^+$
$\lim\limits_{x \rightarrow 1^+} f (x ) = \lim\limits_{x \rightarrow 1} (-x^2-1)=-(1)^2-1=-2$
Limit at $x=1^-$
$\lim\limits_{x \rightarrow 1^-} f (x ) = \lim\limits_{x \rightarrow 1} (x^2-1)=(1)^2-1=0$
As we can see that Limit at $x=1^+$ is not equal to Limit at $x=1^-$ ,The limit of this function at x = 1 does not exists.
Answer:
$\lim\limits_{x \rightarrow 0} f (x) , \: \: where \: \: f (x) = \left\{\begin{matrix} \frac{|x|}{x} & x \neq 0 \\ 0 & x = 0 \end{matrix}\right.$
The right-hand Limit or Limit at $x=0^+$
$\lim\limits_{x \rightarrow 0^+} f (x) = \lim\limits_{x \rightarrow 0^+} \frac{|x|}{x}=\frac{x}{x}=1$
The left-hand limit or Limit at $x=0^-$
$\lim\limits_{x \rightarrow 0^-} f (x) = \lim\limits_{x \rightarrow 0^-} \frac{|x|}{x}=\frac{-x}{x}=-1$
Since Left-hand limit and right-hand limit are not equal, The limit of this function at x = 0 does not exists.
Answer:
$\lim\limits_{x \rightarrow 0} f (x) , \: \: where \: \: f (x) = \left\{\begin{matrix} \frac{x}{|x|} & x \neq 0 \\ 0 & x = 0 \end{matrix}\right.$
The right-hand Limit or Limit at $x=0^+$
$\lim\limits_{x \rightarrow 0^+} f (x) = \lim\limits_{x \rightarrow 0^+} \frac{x}{|x|}=\frac{x}{x}=1$
The left-hand limit or Limit at $x=0^-$
$\lim\limits_{x \rightarrow 0^-} f (x) = \lim\limits_{x \rightarrow 0^-} \frac{x}{|x|}=\frac{x}{-x}=-1$
Since Left-hand limit and right-hand limit are not equal, The limit of this function at x = 0 does not exists.
Question:27 Find $\lim\limits_{x \rightarrow 5 } f (x) , where f( x) = |x| -5$
Answer:
$\lim\limits_{x \rightarrow 5 } f (x) , where f( x) = |x| -5$
The right-hand Limit or Limit at $x=5^+$
$\lim\limits_{x \rightarrow 5^+} f (x) = \lim\limits_{x \rightarrow 5^+} |x|-5=5-5=0$
The left-hand limit or Limit at $x=5^-$
$\lim\limits_{x \rightarrow 5^-} f (x) = \lim\limits_{x \rightarrow 5^-}|x|-5=5-5=0$
Since Left-hand limit and right-hand limit are equal, The limit of this function at x = 5 is 0.
Answer:
Given,
$f (x) = \left\{\begin{matrix} a+bx & x < 1 \\ 4 & x = 1 \\ b - ax & x > 1 \end{matrix}\right.$
And
$\lim\limits_{x\rightarrow 1} f(x)=f(1)$
Since the limit exists,
left-hand limit = Right-hand limit = f(1).
Left-hand limit = f(1)
$\lim\limits_{x\rightarrow 1^-} f(x)= \lim\limits_{x\rightarrow 1}(a+bx)=a+b(1)=a+b=4$
Right-hand limit
$\lim\limits_{x\rightarrow 1^+} f(x)= \lim\limits_{x\rightarrow 1}(b-ax)=b-a(1)=b-a=4$
From both equations, we get that,
$a=0$ and $b=4$
Hence the possible value of a and b are 0 and 4 respectively.
Answer:
Given,
$f (x) = (x - a_1 ) (x - a_2 )...(x - a_n ) .$
Now,
$\lim\limits _{x \rightarrow a_1} f(x)=\lim\limits _{x \rightarrow a_1}\left[\left(x-a_1\right)\left(x-a_2\right) \ldots\left(x-a_n\right)\right] .=$$\left[\lim\limits _{x \rightarrow a_1}\left(x-a_1\right)\right]\left[\lim\limits _{x \rightarrow a_1}\left(x-a_2\right)\right]\left[\lim\limits _{x \rightarrow a_1}\left(x-a_n\right)\right]=0$
Hence
, $\lim\limits_{x \rightarrow a _ 1 }f(x)=0$
Now,
$\lim\limits_{ x \rightarrow a } f (x)=\lim\limits_{ x \rightarrow a } (x-a_1)(x-a_2)...(x-a_n)$
$\lim\limits_{ x \rightarrow a } f (x)=(a-a_1)(a-a_2)(a-a_3)$
Hence
$\lim\limits_{ x \rightarrow a } f (x)=(a-a_1)(a-a_2)(a-a_3)$ .
Answer:
$f (x) = \left\{\begin{matrix} |x| + 1 & x < 0 \\ 0 & x = 0 \\ |x| -1& x > 0 \end{matrix}\right.$
Limit at x = a exists when the right-hand limit is equal to the left-hand limit. So,
Case 1: when a = 0
The right-hand Limit or Limit at $x=0^+$
$\lim\limits_{x \rightarrow 0^+} f (x) = \lim\limits_{x \rightarrow 0^+} |x|-1=1-1=0$
The left-hand limit or Limit at $x=0^-$
$\lim\limits_{x \rightarrow 0^-} f (x) = \lim\limits_{x \rightarrow 0^-} |x|+1=0+1=1$
Since Left-hand limit and right-hand limit are not equal, The limit of this function at x = 0 does not exists.
Case 2: When a < 0
The right-hand Limit or Limit at $x=a^+$
$\lim\limits_{x \rightarrow a^+} f (x) = \lim\limits_{x \rightarrow a^+} |x|-1=a-1$
The left-hand limit or Limit at $x=a^-$
$\lim\limits_{x \rightarrow a^-} f (x) = \lim\limits_{x \rightarrow a^-} |x|-1=a-1$
Since LHL = RHL, Limit exists at x = a and is equal to a-1.
Case 3: When a > 0
The right-hand Limit or Limit at $x=a^+$
$\lim\limits_{x \rightarrow a^+} f (x) = \lim\limits_{x \rightarrow a^+} |x|+1=a+1$
The left-hand limit or Limit at $x=a^-$
$\lim\limits_{x \rightarrow a^-} f (x) = \lim\limits_{x \rightarrow a^-} |x|+1=a+1$
Since LHL = RHL, Limit exists at x = a and is equal to a+1
Hence,
The limit exists at all points except at x=0.
Answer:
Given
$\lim\limits_{x \rightarrow 1} \frac{f (x)-2}{x^2-1} = \pi$
Now,
$\lim\limits_{x \rightarrow 1} \frac{f (x)-2}{x^2-1} = \frac{\lim\limits_{x \rightarrow 1}(f (x)-2)}{\lim\limits_{x \rightarrow 1}(x^2-1)}=\pi$
${\lim\limits_{x \rightarrow 1}(f (x)-2)}=\pi{\lim\limits_{x \rightarrow 1}(x^2-1)}$
${\lim\limits_{x \rightarrow 1}(f (x)-2)}=\pi{(1-1)}$
${\lim\limits_{x \rightarrow 1}(f (x)-2)}=0$
${\lim\limits_{x \rightarrow 1}f (x)}=2$
Answer:
Given,
$f(x)=\left[\begin{array}{cl}m x^2+n & ; x<0 \\ n x+m & ; x \leq 0 \leq 1 t \\ n x^3+m & ; x>1\end{array}\right]$
Case 1: Limit at x = 0
The right-hand Limit or Limit at $x=0^+$
$\lim\limits_{x \rightarrow 0^+} f (x) = \lim\limits_{x \rightarrow 0^+} nx+m=n(0)+m=m$
The left-hand limit or Limit at $x=0^-$
$\lim\limits_{x \rightarrow 0^-} f (x) = \lim\limits_{x \rightarrow 0^-} mx^2+n=m(0)^2+n=n$
Hence Limit will exist at x = 0 when m = n .
Case 2: Limit at x = 1
The right-hand Limit or Limit at $x=1^+$
$\lim\limits_{x \rightarrow 1^+} f (x) = \lim\limits_{x \rightarrow 1^+} nx^3+m=n(1)^3+m=n+m$
The left-hand limit or Limit at $x=1^-$
$\lim\limits_{x \rightarrow 1^-} f (x) = \lim\limits_{x \rightarrow 1^-} nx+m=n(1)+m=n+m$
Hence Limit at 1 exists at all integers.
Also read
This exercise introduces the concept of the limits of a function. In this, students will find problems and exercises that primarily revolve around the following key concepts:
1) Intuitive idea of derivative : The intuitive idea of derivative measures how a function changes at a specific point. For example the speed of vehicles tells us how fast the vehicle is moving at a particular point of time. Basically Derivative tells how fastly value of a function is changing at a certain input.
2) Limit : It is the value that a function approaches as the input gets closer to a certain given point.
3) Algebra of Limits: The set of rules that calculate the limit of a combination of functions using the limit of the individual functions.
4) Limits of Polynomials: Limit of a Polynomial function is the value of polynomial at a given point let the point is $x \rightarrow a$
So, the limit of polynomial is $\lim\limits _{x \rightarrow a} f(x)=f(a)$
5) Limits of Rational functions: Rational function is basically the ratio of two polynomials
Let a rational function $f(x)=\frac{p(x)}{q(x)}$
The limit for this function only exists at x=a if $q(a) \neq 0$.
Also Read
Students can refer to the subject-wise NCERT solutions. The links to solutions are given below:
Students can access the NCERT exemplar solutions to enhance their deep understanding of the topic. These solutions are aligned with the CBSE syllabus and also help in competitive exams.
The conclusion is that the limit of g(x) as x tends to a does not exist.
The value of the given limit =1
The value of 1/cosx as x approaches 0 is 1
The given limits can be expressed as the product of limit (sinx/x) and 1/cosx as x approaches zero. Therefore limit of the function tanx/x as x tends to be zero=1
4 examples with their subquestions are given in the book
Thirty two
The main subject of interest of the exercise is the limits of different types of function(trigonometry and polynomial) and the algebra involved in limits
Yes the concepts of trigonometric limits and the unit limits, continuity and differentiability are important for JEE Main exam.
Register for ALLEN Scholarship Test & get up to 90% Scholarship
Get up to 90% Scholarship on Offline NEET/JEE coaching from top Institutes
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest 2024 syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters