Aakash Repeater Courses
ApplyTake Aakash iACST and get instant scholarship on coaching programs.
Limits and derivatives are the foundational topics of calculus, which help students to understand basic like behaviour of the function and how the function changes at a specific point. Questions based on Key concepts of limits, continuity, and derivatives are discussed in this exercise. Miscellaneous exercise is a blend of questions involving algebraic, trigonometric, and rational functions.
From questions involving the application of limits to using derivatives, this exercise covers all the relevant questions. Solutions of NCERT are designed to provide detailed and step-by-step solutions to every question. Miscellaneous exercise solutions are formulated by subject experts in a very clear and comprehensive manner, which helps students to understand concepts easily. Students can also check NCERT Solutions to get detailed solutions from Class 6 to Class 12 for Science and Maths.
Question 1:(i) Find the derivative of the following functions from first principle: -x
Answer:
Given.
f(x)=-x
Now, As we know, The derivative of any function at x is
$f'(x)=\lim\limits_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}$
$f'(x)=\lim\limits_{h\rightarrow 0}\frac{-(x+h)-(-x)}{h}$
$f'(x)=\lim\limits_{h\rightarrow 0}\frac{-h}{h}$
$f'(x)=-1$
Question 1:(ii) Find the derivative of the following functions from first principle: $( - x ) ^{-1}$
Answer:
Given.
f(x)= $( - x ) ^{-1}$
Now, As we know, The derivative of any function at x is
$f'(x)=\lim\limits_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}$
$f'(x)=\lim_\limits{h\rightarrow 0}\frac{-(x+h)^{-1}-(-x)^{-1}}{h}$
$f'(x)=\lim\limits_{h\rightarrow 0}\frac{-\frac{1}{x+h}+\frac{1}{x}}{h}$
$f'(x)=\lim\limits_{h\rightarrow 0}\frac{\frac{-x+x+h}{x(x+h)}}{h}$
$f'(x)=\lim\limits_{h\rightarrow 0}\frac{\frac{h}{(x+h)(x)}}{h}$
$f'(x)=\lim\limits_{h\rightarrow 0}\frac{1}{x(x+h)}$
$f'(x)=\frac{1}{x^2}$
Question 1:(iii) Find the derivative of the following functions from first principle: $\sin ( x+1)$
Answer:
Given.
$f(x)=\sin ( x+1)$
Now, As we know, The derivative of any function at x is
$f'(x)=\lim\limits_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}$
$f'(x)=\lim\limits_{h\rightarrow 0}\frac{\sin(x+h+1)-\sin(x+1)}{h}$
$f'(x)=\lim\limits_{h\rightarrow 0}\frac{2\cos(\frac{x+h+1+x+1}{2})\sin(\frac{x+h+1-x-1}{2})}{h}$
$f'(x)=\lim\limits_{h\rightarrow 0}\frac{2\cos(\frac{2x+h+2}{2})\sin(\frac{h}{2})}{h}$
$f'(x)=\lim\limits_{h\rightarrow 0}\frac{\cos(\frac{2x+h+2}{2})\sin(\frac{h}{2})}{\frac{h}{2}}$
$f'(x)=\cos(\frac{2x+0+2}{2})\times 1$
$f'(x)=\cos(x+1)$
Question 1:(iv) Find the derivative of the following functions from first principle: $\cos ( x - \pi /8 )$
Answer:
Given.
$f(x)=\cos ( x - \pi /8 )$
Now, As we know, The derivative of any function at x is
$f'(x)=\lim\limits_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}$
$f'(x)=\lim\limits_{h\rightarrow 0}\frac{\cos(x+h-\pi/8)-cos(x-\pi/8)}{h}$
$f'(x)=\lim\limits_{h\rightarrow 0}\frac{-2\sin\left ( \frac{x+h-\pi/8+x-\pi/8 }{2}\right )\sin\left ( \frac{x+h-\pi/8-x+\pi/8}{2} \right )}{h}$
$f'(x)=\lim\limits_{h\rightarrow 0}\frac{-2\sin\left ( \frac{2x+h-\pi/4 }{2}\right )\sin\left ( \frac{h}{2} \right )}{h}$
$f'(x)=\lim\limits_{h\rightarrow 0}\frac{-\sin\left ( \frac{2x+h-\pi/4 }{2}\right )\sin\left ( \frac{h}{2} \right )}{\frac{h}{2}}$
$f'(x)=\sin\left ( \frac{2x+0-\pi/4}{2} \right )\times 1$
$f'(x)=-\sin\left (x-\pi/8 \right )$
Answer:
Given
f(x)= x + a
As we know, the property,
$f'(x^n)=nx^{n-1}$
applying that property we get
$f'(x)=1+0$
$f'(x)=1$
Answer:
Given
$f(x)=\left(px + q\right) \left ( \frac{r}{x}+ s \right )$
$f(x)=pr+psx+\frac{qr}{x}+qs$
As we know, the property,
$f'(x^n)=nx^{n-1}$
applying that property we get
$f'(x)=0 + ps +\frac{-qr}{x^2}+0$
$f'(x)=ps + q \left ( \frac{-r}{x^2} \right )$
$f'(x)=ps - \left ( \frac{qr}{x^2} \right )$
Answer:
Given,
$f(x)=( ax + b ) ( cx + d )^2$
$f(x)=( ax + b ) ( c^2x^2+2cdx+d^2)$
$f(x)=ac^2x^3+2acdx^2+ad^2x+bc^2x^2+2bcdx+bd^2$
Now,
As we know, the property,
$f'(x^n)=nx^{n-1}$
and the property
$\frac{d(y_1+y_2)}{dx}=\frac{dy_1}{dx}+\frac{dy_2}{dx}$
applying that property we get
$f'(x)=3ac^2x^2+4acdx+ad^2+2bc^2x+2bcd+0$
$f'(x)=3ac^2x^2+4acdx+ad^2+2bc^2x+2bcd$
$f'(x)=3ac^2x^2+(4acd+2bc^2)x+ad^2+2bcd$
Answer:
Given,
$f(x)=\frac{ax+b}{cx+d}$
Now, As we know the derivative of any function
$\frac{d(\frac{y_1}{y_2})}{dx}=\frac{y_2d(\frac{dy_1}{dx})-y_1(\frac{dy_2}{dx})}{y_2^2}$
Hence, The derivative of f(x) is
$\frac{d(\frac{ax+b}{cx+d})}{dx}=\frac{(cx+d)d(\frac{d(ax+b)}{dx})-(ax+b)(\frac{d(cx+d)}{dx})}{(cx+d)^2}$
$\frac{d(\frac{ax+b}{cx+d})}{dx}=\frac{(cx+d)a-(ax+b)c}{(cx+d)^2}$
$\frac{d(\frac{ax+b}{cx+d})}{dx}=\frac{acx+ad-acx-bc}{(cx+d)^2}$
$\frac{d(\frac{ax+b}{cx+d})}{dx}=\frac{ad-bc}{(cx+d)^2}$
Hence Derivative of the function is
$\frac{ad-bc}{(cx+d)^2}$ .
$\frac{1 + \frac{1}{x}}{1- \frac{1}{x}}$
Answer:
Given,
$f(x)=\frac{1 + \frac{1}{x}}{1- \frac{1}{x}}$
Also can be written as
$f(x)=\frac{x+1}{x-1}$
Now, As we know the derivative of any function
$\frac{d(\frac{y_1}{y_2})}{dx}=\frac{y_2d(\frac{dy_1}{dx})-y_1(\frac{dy_2}{dx})}{y_2^2}$
Hence, The derivative of f(x) is
$\frac{d(\frac{x+1}{x-1})}{dx}=\frac{(x-1)d(\frac{d(x+1)}{dx})-(x+1)(\frac{d(x-1)}{dx})}{(x-1)^2}$
$\frac{d(\frac{x+1}{x-1})}{dx}=\frac{(x-1)1-(x+1)1}{(x-1)^2}$
$\frac{d(\frac{x+1}{x-1})}{dx}=\frac{x-1-x-1}{(x-1)^2}$
$\frac{d(\frac{x+1}{x-1})}{dx}=\frac{-2}{(x-1)^2}$
Hence Derivative of the function is
$\frac{-2}{(x-1)^2}$
Answer:
Given,
$f(x)=\frac{1 }{ax ^2 + bx + c}$
Now, As we know the derivative of any such function is given by
$\frac{d(\frac{y_1}{y_2})}{dx}=\frac{y_2d(\frac{dy_1}{dx})-y_1(\frac{dy_2}{dx})}{y_2^2}$
Hence, The derivative of f(x) is
$\frac{d(\frac{1}{ax^2+bx+c})}{dx}=\frac{(ax^2+bx+c)d(\frac{d(1)}{dx})-1(\frac{d(ax^2+bx+c)}{dx})}{(ax^2+bx+c)^2}$
$\frac{d(\frac{1}{ax^2+bx+c})}{dx}=\frac{0-(2ax+b)}{(ax^2+bx+c)^2}$
$\frac{d(\frac{1}{ax^2+bx+c})}{dx}=-\frac{(2ax+b)}{(ax^2+bx+c)^2}$
$\frac{ax + b }{px^2 + qx + r }$
Answer:
Given,
$f(x)=\frac{ax + b }{px^2 + qx + r }$
Now, As we know the derivative of any function
$\frac{d(\frac{y_1}{y_2})}{dx}=\frac{y_2d(\frac{dy_1}{dx})-y_1(\frac{dy_2}{dx})}{y_2^2}$
Hence, The derivative of f(x) is
$\frac{d(\frac{ax+b}{px^2+qx+r})}{dx}=\frac{(px^2+qx+r)d(\frac{d(ax+b)}{dx})-(ax+b)(\frac{d(px^2+qx+r)}{dx})}{(px^2+qx+r)^2}$
$\frac{d(\frac{ax+b}{px^2+qx+r})}{dx}=\frac{(px^2+qx+r)a-(ax+b)(2px+q)}{(px^2+qx+r)^2}$
$\frac{d(\frac{ax+b}{px^2+qx+r})}{dx}=\frac{apx^2+aqx+ar-2apx^2-aqx-2bpx-bq}{(px^2+qx+r)^2}$
$\frac{d(\frac{ax+b}{px^2+qx+r})}{dx}=\frac{-apx^2+ar-2bpx-bq}{(px^2+qx+r)^2}$
$\frac{px^2 + qx + r }{ax +b }$
Answer:
Given,
$f(x)=\frac{px^2 + qx + r }{ax +b }$
Now, As we know the derivative of any function
$\frac{d(\frac{y_1}{y_2})}{dx}=\frac{y_2d(\frac{dy_1}{dx})-y_1(\frac{dy_2}{dx})}{y_2^2}$
Hence, The derivative of f(x) is
$\frac{d(\frac{px^2+qx+r}{ax+b})}{dx}=\frac{(ax+b)d(\frac{d(px^2+qx+r)}{dx})-(px^2+qx+r)(\frac{d(ax+b)}{dx})}{(ax+b)^2}$
$\frac{d(\frac{px^2+qx+r}{ax+b})}{dx}=\frac{(ax+b)(2px+q)-(px^2+qx+r)(a)}{(ax+b)^2}$
$\frac{d(\frac{px^2+qx+r}{ax+b})}{dx}=\frac{2apx^2+aqx+2bpx+bq-apx^2-aqx-ar}{(ax+b)^2}$
$\frac{d(\frac{px^2+qx+r}{ax+b})}{dx}=\frac{apx^2+2bpx+bq-ar}{(ax+b)^2}$
$\frac{a}{x^4} - \frac{b}{x^2 } + \cos x$
Answer:
Given
$f(x)=\frac{a}{x^4} - \frac{b}{x^2 } + \cos x$
As we know, the property,
$f'(x^n)=nx^{n-1}$
and the property
$\frac{d(y_1+y_2)}{dx}=\frac{dy_1}{dx}+\frac{dy_2}{dx}$
applying that property we get
$f'(x)=\frac{-4a}{x^5} - (\frac{-2b}{x^3 }) +( -\sin x)$
$f'(x)=\frac{-4a}{x^5} +\frac{2b}{x^3 } -\sin x$
Answer:
Given
$f(x)=4 \sqrt x - 2$
It can also be written as
$f(x)=4 x^{\frac{1}{2}} - 2$
Now,
As we know, the property,
$f'(x^n)=nx^{n-1}$
and the property
$\frac{d(y_1+y_2)}{dx}=\frac{dy_1}{dx}+\frac{dy_2}{dx}$
applying that property we get
$f'(x)=4 (\frac{1}{2})x^{-\frac{1}{2}} - 0$
$f'(x)=2x^{-\frac{1}{2}}$
$f'(x)=\frac{2}{\sqrt{x}}$
Answer:
Given
$f(x)=( ax + b ) ^ n$
Now, As we know the chain rule of derivative,
$[f(g(x))]'=f'(g(x))\times g'(x)$
And, the property,
$f'(x^n)=nx^{n-1}$
Also the property
$\frac{d(y_1+y_2)}{dx}=\frac{dy_1}{dx}+\frac{dy_2}{dx}$
applying those properties we get,
$f'(x)=n(ax+b)^{n-1}\times a$
$f'(x)=an(ax+b)^{n-1}$
Answer:
Given
$f(x)=( ax + b ) ^ n ( cx + d ) ^ m$
Now, As we know the chain rule of derivative,
$[f(g(x))]'=f'(g(x))\times g'(x)$
And the Multiplication property of derivative,
$\frac{d(y_1y_2)}{dx}=y_1\frac{dy_2}{dx}+y_2\frac{dy_1}{dx}$
And, the property,
$f'(x^n)=nx^{n-1}$
Also the property
$\frac{d(y_1+y_2)}{dx}=\frac{dy_1}{dx}+\frac{dy_2}{dx}$
Applying those properties we get,
$f'(x)=(ax+b)^n(m(cx+d)^{m-1})+(cx+d)(n(ax+b)^{n-1})$
$f'(x)=m(ax+b)^n(cx+d)^{m-1}+n(cx+d)(ax+b)^{n-1}$
Answer:
Given,
$f(x)=\sin ( x + a )$
Now, As we know the chain rule of derivative,
$[f(g(x))]'=f'(g(x))\times g'(x)$
Applying this property we get,
$f'(x)=\cos ( x + a )\times 1$
$f'(x)=\cos ( x + a )$
Answer:
Given,
$f(x)=\csc x \cot x$
the Multiplication property of derivative,
$\frac{d(y_1y_2)}{dx}=y_1\frac{dy_2}{dx}+y_2\frac{dy_1}{dx}$
Applying the property
$\frac{d(\csc x)(\cot x))}{dx}=\csc x\frac{d\cot x}{dx}+\cot x\frac{d\csc x}{dx}$
$\frac{d(\csc x)(\cot x))}{dx}=\csc x(-\csc^2x)+\cot x(-\csc x \cot x)$
$\frac{d(\csc x)(\cot x))}{dx}=-\csc^3x-\cot^2 x\csc x$
Hence derivative of the function is $-\csc^3x-\cot^2 x\csc x$ .
Answer:
Given,
$f(x)=\frac{\cos x }{1+ \sin x }$
Now, As we know the derivative of any function
$\frac{d(\frac{\cos x}{1+\sin x})}{dx}=\frac{(1+\sin x )d(\frac{d\cos x}{dx})-\cos x(\frac{d(1+\sin x)}{dx})}{(1+\sin x)^2}$
Hence, The derivative of f(x) is
$\frac{d(\frac{\cos x}{1+\sin x})}{dx}=\frac{(1+\sin x )(-\sin x)-\cos x(\cos x)}{(1+\sin x)^2}$
$\frac{d(\frac{\cos x}{1+\sin x})}{dx}=\frac{-\sin x-\sin^2 x -\cos^2 x}{(1+\sin x)^2}$
$\frac{d(\frac{\cos x}{1+\sin x})}{dx}=\frac{-\sin x-1}{(1+\sin x)^2}$
$\frac{d(\frac{\cos x}{1+\sin x})}{dx}=-\frac{1}{(1+\sin x)}$
Answer:
Given
$f(x)=\frac{\sin x + \cos x }{\sin x - \cos x }$
Also can be written as
$f(x)=\frac{\tan x + 1 }{\tan x - 1 }$
which further can be written as
$f(x)=-\frac{\tan x + tan(\pi/4) }{1-\tan(\pi/4)\tan x }$
$f(x)=-\tan(x-\pi/4)$
Now,
$f'(x)=-\sec^2(x-\pi/4)$
$f'(x)=-\frac{1}{\cos^2(x-\pi/4)}$
Answer:
Given,
$f(x)=\frac{\sec x -1}{\sec x +1}$
which also can be written as
$f(x)=\frac{1-\cos x}{1+\cos x}$
Now,
As we know the derivative of such function
$\frac{d(\frac{y_1}{y_2})}{dx}=\frac{y_2d(\frac{dy_1}{dx})-y_1(\frac{dy_2}{dx})}{y_2^2}$
So, The derivative of the function is,
$\frac{d(\frac{1-\cos x}{1+\cos x})}{dx}=\frac{(1+\cos x)d(\frac{d(1-\cos x)}{dx})-(1-\cos x)(\frac{d(1+\cos x)}{dx})}{(1+\cos x)^2}$
$\frac{d(\frac{1-\cos x}{1+\cos x})}{dx}=\frac{(1+\cos x)(-(-\sin x))-(1-\cos x)(-\sin x)}{(1+\cos x)^2}$
$\frac{d(\frac{1-\cos x}{1+\cos x})}{dx}=\frac{\sin x+\sin x\cos x+\sin x-\cos x\sin x}{(1+\cos x)^2}$
$\frac{d(\frac{1-\cos x}{1+\cos x})}{dx}=\frac{2\sin x}{(1+\cos x)^2}$
Which can also be written as
$\frac{d(\frac{1-\cos x}{1+\cos x})}{dx}=\frac{2\sec x\tan x}{(1+\sec x)^2}$ .
Answer:
Given,
$f(x)=\sin^ n x$
Now, As we know the chain rule of derivative,
$[f(g(x))]'=f'(g(x))\times g'(x)$
And, the property,
$f'(x^n)=nx^{n-1}$
Applying those properties, we get
$f'(x)=n\sin^ {n-1} x \cos x$
Hence Derivative of the given function is $n\sin^ {n-1} x \cos x$
$\frac{a + b \sin x }{c+ d \cos x }$
Answer:
Given Function
$f(x)=\frac{a + b \sin x }{c+ d \cos x }$
Now, As we know the derivative of any function of this type is:
$\frac{d(\frac{y_1}{y_2})}{dx}=\frac{y_2d(\frac{dy_1}{dx})-y_1(\frac{dy_2}{dx})}{y_2^2}$
Hence derivative of the given function will be:
$\frac{d(\frac{a+b\sin x}{c+d\cos x})}{dx}=\frac{(c+d\cos x)(\frac{d(a+b\sin x)}{dx})-(a+b\sin x)(\frac{d(c+d\cos x x)}{dx})}{(c+d\cos x)^2}$
$\frac{d(\frac{a+b\sin x}{c+d\cos x})}{dx}=\frac{(c+d\cos x)(b\cos x)-(a+b\sin x)(d(-\sin x))}{(c+d\cos x)^2}$
$\frac{d(\frac{a+b\sin x}{c+d\cos x})}{dx}=\frac{cb\cos x+bd\cos^2 x+ad\sin x+bd\sin^2 x}{(c+d\cos x)^2}$
$\frac{d(\frac{a+b\sin x}{c+d\cos x})}{dx}=\frac{cb\cos x+ad\sin x+bd(\sin^2 x+\cos^2 x)}{(c+d\cos x)^2}$
$\frac{d(\frac{a+b\sin x}{c+d\cos x})}{dx}=\frac{cb\cos x+ad\sin x+bd}{(c+d\cos x)^2}$
$\frac{\sin ( x+a )}{ \cos x }$
Answer:
Given,
$f(x)=\frac{\sin ( x+a )}{ \cos x }$
Now, As we know the derivative of any function
$\frac{d(\frac{y_1}{y_2})}{dx}=\frac{y_2d(\frac{dy_1}{dx})-y_1(\frac{dy_2}{dx})}{y_2^2}$
Hence the derivative of the given function is:
$\frac{d(\frac{\sin(x+a)}{\cos x})}{dx}=\frac{(\cos x)(\frac{d(\sin (x+a))}{dx})-\sin(x+a)(\frac{d(\cos x)}{dx})}{(\cos x)^2}$
$\frac{d(\frac{\sin(x+a)}{\cos x})}{dx}=\frac{(\cos x)(\cos(x+a))-\sin(x+a)(-\sin (x))}{(\cos x)^2}$
$\frac{d(\frac{\sin(x+a)}{\cos x})}{dx}=\frac{(\cos x)(\cos(x+a))+\sin(x+a)(\sin (x))}{(\cos x)^2}$
$\frac{d(\frac{\sin(x+a)}{\cos x})}{dx}=\frac{\cos (x+a-x)}{(\cos x)^2}$
$\frac{d(\frac{\sin(x+a)}{\cos x})}{dx}=\frac{\cos (a)}{(\cos x)^2}$
Answer:
Given
$f(x)=x ^ 4 ( 5 \sin x - 3 \cos x )$
Now, As we know, the Multiplication property of derivative,
$\frac{d(y_1y_2)}{dx}=y_1\frac{dy_2}{dx}+y_2\frac{dy_1}{dx}$
Hence derivative of the given function is:
$\frac{d(x ^ 4 ( 5 \sin x - 3 \cos x ))}{dx}=x^4\frac{d ( 5 \sin x - 3 \cos x )}{dx}+ ( 5 \sin x - 3 \cos x )\frac{dx^4}{dx}$
$\frac{d(x ^ 4 ( 5 \sin x - 3 \cos x ))}{dx}=x^4(5\cos x+3\sin x)+ ( 5 \sin x - 3 \cos x )4x^3$
$\frac{d(x ^ 4 ( 5 \sin x - 3 \cos x ))}{dx}=5x^4\cos x+3x^4\sin x+ 20x^3 \sin x - 12x^3 \cos x$
Answer:
Given
$f(x)=( x^2 +1 ) \cos x^{}$
Now, As we know the product rule of derivative,
$\frac{d(y_1y_2)}{dx}=y_1\frac{dy_2}{dx}+y_2\frac{dy_1}{dx}$
The derivative of the given function is
$\frac{d(( x^2 +1 ) \cos x)}{dx}=( x^2 +1 ) \frac{d\cos x}{dx}+\cos x\frac{d( x^2 +1 ) }{dx}$
$\frac{d(( x^2 +1 ) \cos x)}{dx}=( x^2 +1 ) (-\sin x)+\cos x(2x)$
$\frac{d(( x^2 +1 ) \cos x)}{dx}= -x^2 \sin x-\sin x+2x\cos x$
Answer:
Given,
$f(x)=( ax ^2 + \sin x ) ( p + q \cos x )$
Now As we know the Multiplication property of derivative,(the product rule)
$\frac{d(y_1y_2)}{dx}=y_1\frac{dy_2}{dx}+y_2\frac{dy_1}{dx}$
And also the property
$\frac{d(y_1+y_2)}{dx}=\frac{dy_1}{dx}+\frac{dy_2}{dx}$
Applying those properties we get,
$\frac{d(( ax ^2 + \sin x ) ( p + q \cos x ))}{dx}=(ax^2+\sin x)\frac{d(p+q\cos x)}{dx}+(p+qx)\frac{d(ax^2+sinx)}{dx}$
$\\\frac{d((ax ^2+\sin x ) ( p + q \cos x ))}{dx}=(ax^2+\sin x)(-q\sin x)+(p+qx)(2ax+\cos x)$
$f'(x)=-aqx^2\sin x-q\sin^2 x+2apx+p\cos x+2aqx^2+qx\cos x$
$f'(x)=x^2(-aq\sin x+2aq) +x(2ap+q\cos x)+p\cos x-q\sin^2 x$
Answer:
Given,
$f(x)=( x+ \cos x ) ( x - \tan x )$
And the Multiplication property of derivative,
$\frac{d(y_1y_2)}{dx}=y_1\frac{dy_2}{dx}+y_2\frac{dy_1}{dx}$
Also the property
$\frac{d(y_1+y_2)}{dx}=\frac{dy_1}{dx}+\frac{dy_2}{dx}$
Applying those properties we get,
$\frac{d(( x+ \cos x ) ( x - \tan x ))}{dx}=(x+\cos x)\frac{d(x-\tan x)}{dx}+(x-\tan x)\frac{d(x+\cos x)}{dx}$
$=(x+\cos x)(1-\sec^2x)+(x-\tan x)(1-\sin x)$
$=(x+\cos x)(-\tan^2x)+(x-\tan x)(1-\sin x)$
$=(-\tan^2x)(x+\cos x)+(x-\tan x)(1-\sin x)$
$\frac{4x + 5 \sin x }{3x+ 7 \cos x }$
Answer:
Given,
$f(x)=\frac{4x + 5 \sin x }{3x+ 7 \cos x }$
Now, As we know the derivative of any function
$\frac{d(\frac{y_1}{y_2})}{dx}=\frac{y_2d(\frac{dy_1}{dx})-y_1(\frac{dy_2}{dx})}{y_2^2}$
Also the property
$\frac{d(y_1+y_2)}{dx}=\frac{dy_1}{dx}+\frac{dy_2}{dx}$
Applying those properties,we get
$\frac{d(\frac{4x+5\sin x}{3x+7\cos x})}{dx}=\frac{(3x+7\cos x)d(\frac{d(4x+5\sin x)}{dx})-(4x+5\sin x)(\frac{d(3x+7\cos x)}{dx})}{(3x+7\cos x)^2}$
$\frac{d(\frac{4x+5\sin x}{3x+7\cos x})}{dx}=\frac{(3x+7\cos x)(4+5\cos x)-(4x+5\sin x)(3-7\sin x)}{(3x+7\cos x)^2}$
$=\frac{12x+28\cos x+15x\cos x+35\cos^2x-12x-15\sin x+28x\sin x+35\sin^2 x}{(3x+7\cos x)^2}$
$=\frac{12x+28\cos x+15x\cos x-12x-15\sin x+28x\sin x+35(\sin^2 x+\cos^2x)}{(3x+7\cos x)^2}$
$=\frac{28\cos x+15x\cos x-15\sin x+28x\sin x+35}{(3x+7\cos x)^2}$
$\frac{x ^2 \cos ( \pi /4 )}{\sin x }$
Answer:
Given,
$f(x)=\frac{x ^2 \cos ( \pi /4 )}{\sin x }$
Now, As we know the derivative of any function
Now, As we know the derivative of any function
$\frac{d(\frac{y_1}{y_2})}{dx}=\frac{y_2d(\frac{dy_1}{dx})-y_1(\frac{dy_2}{dx})}{y_2^2}$
Hence the derivative of the given function is
$\frac{d(\frac{x^2\cos(\pi/4)}{\sin x})}{dx}=\frac{(\sin x)d(\frac{d(x^2\cos(\pi/4))}{dx})-(x^2\cos(\pi/4))(\frac{d\sin x}{dx})}{\sin^2x}$
$\frac{d(\frac{x^2\cos(\pi/4)}{\sin x})}{dx}=\frac{(\sin x)(2x\cos (\pi/4))-(x^2\cos(\pi/4))(\cos x)}{\sin^2x}$
$\frac{d(\frac{x^2\cos(\pi/4)}{\sin x})}{dx}=\frac{2x\sin x\cos (\pi/4)-x^2\cos x\cos(\pi/4)}{\sin^2x}$
Answer:
Given
$f(x)=\frac{x }{ 1+ \tan x }$
Now, As we know the derivative of any function
$\frac{d(\frac{x}{1+\tan x})}{dx}=\frac{(1+\tan x)d(\frac{dx}{dx})-x(\frac{d(1+\tan x)}{dx})}{(1+\tan x)^2}$
$\frac{d(\frac{x}{1+\tan x})}{dx}=\frac{(1+\tan x)(1)-x(\sec^2x)}{(1+\tan x)^2}$
$\frac{d(\frac{x}{1+\tan x})}{dx}=\frac{1+\tan x-x\sec^2x}{(1+\tan x)^2}$
Answer:
Given
$f(x)=( x + \sec x ) ( x - \tan x )$
Now, As we know the Multiplication property of derivative,
$\frac{d(y_1y_2)}{dx}=y_1\frac{dy_2}{dx}+y_2\frac{dy_1}{dx}$
Also the property
$\frac{d(y_1+y_2)}{dx}=\frac{dy_1}{dx}+\frac{dy_2}{dx}$
Applying those properties we get,
the derivative of the given function is,
$\frac{d(( x + \sec x ) ( x - \tan x )}{dx}=(x+\sec x)\frac{d(x-\tan x)}{dx}+(x-\tan x)\frac{d(x+\sec x)}{dx}$
$\frac{d(( x + \sec x ) ( x - \tan x )}{dx}=(x+\sec x)(1-\sec^2x)+(x-\tan x)(1+\sec x\tan x)$
Answer:
Given,
$f(x)=\frac{x }{\sin ^ n x }$
Now, As we know the derivative of any function
$\frac{d(\frac{y_1}{y_2})}{dx}=\frac{y_2d(\frac{dy_1}{dx})-y_1(\frac{dy_2}{dx})}{y_2^2}$
Also chain rule of derivative,
$[f(g(x))]'=f'(g(x))\times g'(x)$
Hence the derivative of the given function is
$\frac{d(\frac{x}{\sin^nx})}{dx}=\frac{\sin^nxd(\frac{dx}{dx})-x(\frac{d(\sin^nx)}{dx})}{sin^{2n}x}$
$\frac{d(\frac{x}{\sin^nx})}{dx}=\frac{\sin^nx(1)-x(n\sin^{n-1}x\times \cos x)}{sin^{2n}x}$
$\frac{d(\frac{x}{\sin^nx})}{dx}=\frac{\sin^nx-x\cos xn\sin^{n-1}x}{sin^{2n}x}$
$\frac{d(\frac{x}{\sin^nx})}{dx}=\frac{\sin^nx-x\cos xn\sin^{n-1}x}{sin^{2n}x}$
$\frac{d(\frac{x}{\sin^nx})}{dx}=\frac{\sin^{n-1}x(\sin x-nx\cos x)}{sin^{2n}x}$
$\frac{d(\frac{x}{\sin^nx})}{dx}=\frac{(\sin x-nx\cos x)}{sin^{n+1}x}$
Also read
The class 11 maths miscellaneous exercise chapter 13 is centred around the following topics:
1). Intuitive Idea of Derivatives
The intuitive idea of derivative measures how a function changes at a specific point. For example,, the speed of vehicles tells us how fast the vehicle is moving at a particular point in time. Basically, the Derivative tells how Fast the value of a function is changing at a certain input.
2). Limits
It is the value that a function approaches as the input gets closer to a certain given point.
3). Limits of Trigonometric Functions
The trigonometric function limit refers to the value that is approached by the function as input gets closer to a particular point.
Let $f(x)$ is a trigonometric function then its limit can be represented as $\lim _{x \rightarrow a} f(x)$
4). Derivatives
Also Read
Students can refer to the subject-wise NCERT solutions. The links to solutions are given below:
Students can access the NCERT exemplar solutions to enhance their deep understanding of the topic. These solutions are aligned with the CBSE syllabus and also help in competitive exams.
cotx=cosx/sinx
Derivative of g(x) is −cosec2x
sin2z=2sinzcosz
The required derivative=2(cos2x−sin2x)
Function x: derivative=1
Function sinx: derivative=cosx
Function xsinx; derivative=xcosx+sinx
The product rule. If f(x)=u and g(x)=v, then (uv)’=uv’+u’v
[u+v]’=u’+v’
30 questions are given in the NCERT solutions for Class 11 Maths chapter 12 miscellaneous exercise
Take Aakash iACST and get instant scholarship on coaching programs.
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE