CBSE Class 10th Exam Date:17 Feb' 26 - 17 Feb' 26
Understanding the decimal representation of real numbers becomes essential for mathematics because real numbers contain all rational and irrational elements. The behavior of these numbers in decimal format is addressed in this exercise. We use this method to identify non-terminating decimals while understanding how rational numbers form repeating patterns. Learning these concepts establishes our ability to correctly identify numbers while linking theoretical number concepts to their actual decimal expressions.
This Story also Contains
Students obtain maximum benefit from these concepts when they consult with NCERT Solutions. The NCERT Books related solutions provide step-by-step explanations to simplify difficult proofs. Students who refer to these educational resources can develop fundamental number theory knowledge that helps them succeed in advanced mathematics studies as well as competitive exams.
Q1 Prove that $\sqrt 5$ is irrational.
Answer:
Let us assume $\sqrt{5}$ is rational, which means it can be written in the form $\frac{p}{q}$ where p and q are co-primes and $q\neq 0$
$\\\sqrt{5}=\frac{p}{q}$
Squaring both sides, we obtain
$\\\left ( \sqrt{5} \right )^{2}=\left (\frac{p}{q} \right )^{2}\\$
$5=\frac{p^{2}}{q^{2}}\\$
$p^{2}=5q^{2}$
From the above equation, we can see that p2 is divisible by 5, therefore, p will also be divisible by 5, as 5 is a prime number. $(i)$
Therefore, p can be written as 5r
p = 5r
p2 = (5r)2
5q2 = 25r2
q2 = 5r2
From the above equation, we can see that q2 is divisible by 5, Therefore, q will also be divisible by 5 as 5 is a prime number. $(ii)$
From (i) and (ii), we can see that both p and q are divisible by 5. This implies that p and q are not co-primes. This contradiction arises because our initial assumption that $\sqrt{5}$ is rational was wrong. Hence proved that $\sqrt{5}$ is irrational.
Q2 Prove that $3 + 2 \sqrt 5$ is irrational.
Answer:
Let us assume $3 + 2 \sqrt 5$ is rational, this means it can be written in the form $\frac{p}{q}$ where p and q are co-prime integers.
$\\3+2\sqrt{5}=\frac{p}{q}$
$2\sqrt{5}=\frac{p}{q}-3$
$\sqrt{5}=\frac{p-3q}{2q}$
As p and q are integers $\frac{p-3q}{2q}\\$ would be rational, which contradicts the fact that $\sqrt{5}$ is irrational. This contradiction arises because our initial assumption that $3 + 2 \sqrt 5$ is rational was wrong. Therefore $3 + 2 \sqrt 5$ is irrational.
Q3 Prove that the following are irrationals :
(i) $\frac{1}{\sqrt 2}$
Answer:
Let us assume $\frac{1}{\sqrt{2}}$ is rational, this means it can be written in the form $\frac{p}{q}$ where p and q are co-prime integers.
$\frac{1}{\sqrt{2}}=\frac{p}{q}$
$\sqrt{2}=\frac{q}{p}$
Since p and q are co-prime integers $\frac{q}{p}$ will be rational, which contradicts the fact that $\sqrt{2}$ is irrational. This contradiction arises because our initial assumption that $\frac{1}{\sqrt{2}}$ is rational was wrong. Therefore $\frac{1}{\sqrt{2}}$ is irrational.
Q3 (2) Prove that the following are irrationals :
(ii) $7 \sqrt 5$
Answer:
Let us assume $7 \sqrt 5$ is rational, this means it can be written in the form $\frac{p}{q}$ where p and q are co-prime integers.
$7\sqrt{5}=\frac{p}{q}$
$\sqrt{5}=\frac{p}{7q}$
As p and q are integers $\frac{p}{7q}\\$ would be rational, which contradicts the fact that $\sqrt{5}$ is irrational. This contradiction arises because our initial assumption that $7 \sqrt 5$ is rational was wrong. Therefore $7 \sqrt 5$ is irrational.
Q3 (3) Prove that the following are irrationals : $6 + \sqrt 2$
Answer:
Let us assume $6 + \sqrt 2$ is rational, this means it can be written in the form $\frac{p}{q}$ where p and q are co-prime integers.
$6+\sqrt{2}=\frac{p}{q}$
$\sqrt{2}=\frac{p}{q}-6$
$\sqrt{2}=\frac{p-6q}{q}$
As p and q are integers $\frac{p-6q}{q}$ would be rational, which contradicts the fact that $\sqrt{2}$ is irrational. This contradiction arises because our initial assumption that $6 + \sqrt 2$ is rational was wrong. Therefore $6 + \sqrt 2$ is irrational.
Also Read-
Also see-
Students must check the NCERT solutions for class 10 of Mathematics and Science Subjects.
Students must check the NCERT Exemplar solutions for class 10 of the Mathematics and Science Subjects.
Frequently Asked Questions (FAQs)
Sum and difference of a rational and irrational number is irrational.
“Fundamental theorem of Arithmetic” given in the Class 10 Maths chapter 1 states that “Every composite number can be expressed (factorised) as a product of primes, and this factorisation is unique, apart from the order in which the prime factors occur”.
The proof is based on a most common technique called ‘proof by contradiction.
important in board exams, you can check previous year papers for better understanding.
On Question asked by student community
Hello,
You can find the Class 10 Half-Yearly Exam Question Papers for all subjects on the Careers360 website. It provides PDFs of all subject-wise question papers along with answer keys. It also gives you a detailed idea of the exam overview and is very useful for your preparation.
Follow the Link:
Hello,
The CBSE exam fee for Class 10 students is as follows:
For up to 5 subjects: Rs. 1,600 per student
For each additional subject: Rs. 320
Late fee (after the due date): Rs. 2,000
These fees are applicable for students studying in India as per the latest CBSE notification.
The school fee depends upon the particular school.
Hope it helps !
Hello aspirant,
The Sample Question Paper (SQP) and marking guidelines have been made available by the Central Board of Secondary Education (CBSE). Although the board does not formally provide distinct half-yearly sample papers, many of the final CBSE sample papers' questions address subjects that are covered in the exams.
To get the sample papers, you can visit our site through following link:
https://school.careers360.com/boards/cbse/cbse-class-12-half-yearly-sample-papers-2025-26
Thank you
You can get CBSE half yearly english question papers on the Careers360 website by searching for your class and subject. You can view or download the papers in PDF format and use them to prepare well for your exams.
Hello! If you are looking for the CM Shri School admission result, here is the link provided by Careers360. You can check your result directly and stay updated about the admission status. I’ll be attaching it for your reference.
https://school.careers360.com/articles/cm-shri-school-admission-test-2025
https://school.careers360.com/articles/cm-shri-school-admission-test-result-2025
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters