CBSE Class 10th Exam Date:17 Feb' 26 - 17 Feb' 26
The study of number patterns forms a fundamental mathematical aspect which arithmetic progressions enable us to examine. A sequence forms an arithmetic progression when each term differs from its predecessor by a constant amount. When we perform this exercise, we gain insight into how numbered sequences emerge along with methods to calculate absent data points. Through pattern recognition, we learn to generate their own number sequences that establish a connection between mathematical concepts and practical arrangements, together with planning procedures.
This Story also Contains
In this portion of the NCERT Solutions, your Class 10 Maths students learn to detect arithmetic progressions and determine their common difference and recognise AP structural patterns. The patterns and recognition ability among students improve through their practice of the NCERT Books Exercise 5.1, which will benefit them when solving advanced mathematical problems in higher education. These educational tools enhance analytical thinking skills before students advance to study the topic of the nth term, along with the sum of n terms in an AP.
Answer:
It is given that
Fare for $1^{st} \ km$ = Rs. 15
And after that $\small Rs\hspace{1mm}8$ for each additional $\small km$
Now,
Fare for $2^{nd} \ km$ = Fare of first km + Additional fare for 1 km
= Rs. 15 + 8 = Rs 23
Fare for $3^{rd} \ km$ = Fare of first km + Fare of additional second km + Fare of additional third km
= Rs. 23 + 8= Rs 31
Fare of n km = $15 + 8 \times (n - 1)$
( We multiplied by n - 1 because the first km was fixed and for the rest, we are adding additional fare.
In this, each subsequent term is obtained by adding a fixed number (8) to the previous term.)
Now, we can clearly see that this is an A.P. with the first term (a) = 15 and common difference (d) = 8
Answer:
It is given that
Vacum pump removes $\small \frac{1}{4}$ of the air remaining in the cylinder at a time
Let us take an initial quantity of air = 1
Now, the quantity of air removed in the first step = 1/4
Remaining quantity after 1st step
$= 1-\frac{1}{4}= \frac{3}{4}$
Similarly, Quantity removed after 2nd step = Quantity removed in first step $\times$ Remaining quantity after 1st step
$=\frac{3}{4}\times \frac{1}{4}= \frac{3}{16}$
Now,
Remaining quantity after 2nd step would be = Remaining quantity after 1st step - Quantity removed after 2nd step
$=\frac{3}{4}- \frac{3}{16}= \frac{12-3}{16}= \frac{9}{16}$
Now, we can clearly see that
After the second step, the difference between the second and first and first and initial step is not the same, hence
The common difference (d) is not the same after every step
Therefore, it is not an AP.
Answer:
It is given that
Cost of digging of 1st meter = Rs 150
And
Rises by $\small Rs\hspace{1mm}50$ for each subsequent meter
Therefore,
Cost of digging of first 2 meters = cost of digging of first meter + cost of digging the additional meter
Cost of digging of first 2 meters = 150 + 50
= Rs 200
Similarly,
Cost of digging of first 3 meters = cost of digging of first 2 meters + cost of digging of additional meter
Cost of digging of first 3 meters = 200 + 50
= Rs 250
We can clearly see that 150, 200,250, ... is in AP with each subsequent term obtained by adding a fixed number (50) to the previous term.
Therefore, it is an AP with first term (a) = 150 and common difference (d) = 50
Answer:
Amount in the beginning = Rs. 10000
Interest at the end of 1st year at the rate of $\small 8\hspace{1mm}\%$
is $\small 8\hspace{1mm}\%$ of 10000 = $\frac{8\times 10000}{100}= 800$
Therefore, the amount at the end of 1st year will be
= 10000 + 800
= 10800
Now,
Interest at the end of 2nd year at rate of $\small 8\hspace{1mm}\%$
is $\small 8\hspace{1mm}\%$ of 10800 = $\frac{8\times 10800}{100}= 864$
Therefore, the amount at the end of 2nd year
= 10800 + 864 = 11664
Since each subsequent term is not obtained by adding a unique number to the previous term; hence, it is not an AP
Answer:
It is given that
$\small a=10,d=10$
Now,
$a_1= a =10$
$a_2= a_1 + d= 10 + 10 = 20$
$a_3= a_2 + d= 20 + 10 = 30$
$a_4= a_3 + d= 30 + 10 = 40$
Therefore, the first four terms of the given series are 10, 20, 30, 40.
Q2 (ii) Write first four terms of the AP when the first term a and the common difference d are given as follows: $\small a=-2,d=0$
Answer:
It is given that
$\small a=-2,d=0$
Now,
$a_1= a = -2$
$a_2= a_1 + d= -2 + 0 = -2$
$a_3= a_2 + d= -2 + 0 = -2$
$a_4= a_3 + d= -2 + 0 = -2$
Therefore, the first four terms of the given series are -2, -2, -2, -2.
Answer:
It is given that
$\small a=4,d=-3$
Now,
$a_1= a =4$
$a_2= a_1 + d= 4 - 3 = 1$
$a_3= a_2 + d= 1 - 3 = -2$
$a_4= a_3 + d= -2- 3 = -5$
Therefore, the first four terms of the given series are 4, 1, -2, -5
Answer:
It is given that
$\small a=-1,d=\frac{1}{2}$
Now,
$a_1= a =-1$
$a_2= a_1 + d= -1 + \frac{1}{2} = -\frac{1}{2}$
$a_3= a_2 + d= -\frac{1}{2} + \frac{1}{2} = 0$
$a_4= a_3 + d= 0+\frac{1}{2}= \frac{1}{2}$
Therefore, the first four terms of the given series are $-1,-\frac{1}{2},0, \frac{1}{2}$
Answer:
It is given that
$\small a=-1.25,d=-0.25$
Now,
$a_1= a =-1.25$
$a_2= a_1 + d= -1.25 -0.25= -1.50$
$a_3= a_2 + d= -1.50-0.25=-1.75$
$a_4= a_3 + d= -1.75-0.25=-2$
Therefore, the first four terms of the given series are -1.25, -1.50, -1.75, -2
Q3 (i) For the following APs, write the first term and the common difference $\small 3,1,-1,-3,...$
Answer:
Given AP series is
$\small 3,1,-1,-3,...$
Now, the first term of this AP series is 3
Therefore,
First term of AP series (a) = 3
Now,
$a_1=3 \ \ and \ \ a_2 = 1$
And common difference (d) = $a_2-a_1 = 1-3 = -2$
Therefore, the first term and the common difference are 3 and -2, respectively
Q3 (ii) For the following APs, write the first term and the common difference: $\small -5,-1,3,7,...$
Answer:
Given AP series is
$\small -5,-1,3,7,...$
Now, the first term of this AP series is -5
Therefore,
First-term of AP series (a) = -5
Now,
$a_1=-5 \ \ and \ \ a_2 = -1$
And common difference (d) = $a_2-a_1 = -1-(-5) = 4$
Therefore, the first term and the common difference are -5 and 4, respectively
Answer:
Given AP series is
$\small \frac{1}{3},\frac{5}{3},\frac{9}{3},\frac{13}{3},...$
Now, the first term of this AP series is $\frac{1}{3}$
Therefore,
The first term of AP series (a) = $\frac{1}{3}$
Now,
$a_1=\frac{1}{3} \ \ and \ \ a_2 = \frac{5}{3}$
And common difference (d) = $a_2-a_1 = \frac{5}{3}-\frac{1}{3} = \frac{5-1}{3} =\frac{4}{3}$
Therefore, the first term and the common difference is $\frac{1}{3}$ and $\frac{4}{3}$ respectively
Q3 (iv) For the following APs, write the first term and the common difference: $\small 0.6,1.7,2.8,3.9,...$
Answer:
Given the AP series is
$\small 0.6,1.7,2.8,3.9,...$
Now, the first term of this AP series is 0.6
Therefore,
First term of AP series (a) = 0.6
Now,
$a_1=0.6 \ \ and \ \ a_2 = 1.7$
And common difference (d) = $a_2-a_1 = 1.7-0.6 = 1.1$
Therefore, the first term and the common difference are 0.6 and 1.1, respectively.
Answer:
Given series is
$\small 2,4,8,12,...$
Now,
The first term of this series is = 2
Now,
$a_1 = 2 \ \ and \ \ a_2 = 4 \ \ and \ \ a_3 = 8$
$a_2-a_1 = 4-2 = 2$
$a_3-a_2 = 8-4 = 4$
We can see that the difference between the terms is not equal
Hence, the given series is not an AP.
Answer:
Given series is
$\small 2,\frac{5}{2},3,\frac{7}{2},...$
Now,
The first term of this series is = 2
Now,
$a_1 = 2 \ \ and \ \ a_2 = \frac{5}{2} \ \ and \ \ a_3 = 3 \ \ and \ \ a_4 = \frac{7}{2}$
$a_2-a_1 = \frac{5}{2}-2 = \frac{5-4}{2}=\frac{1}{2}$
$a_3-a_2 = 3-\frac{5}{2} = \frac{6-5}{2} = \frac{1}{2}$
$a_4-a_3=\frac{7}{2}-3=\frac{7-6}{2} =\frac{1}{2}$
We can clearly see that the difference between terms are equal and equal to $\frac{1}{2}$
Hence, the given series is in AP.
Now, the next three terms are
$a_5=a_4+d = \frac{7}{2}+\frac{1}{2} = \frac{8}{2}=4$
$a_6=a_5+d = 4+\frac{1}{2} = \frac{8+1}{2}=\frac{9}{2}$
$a_7=a_6+d =\frac{9}{2} +\frac{1}{2} = \frac{10}{2}=5$
Therefore, the next three terms of the given series are $4,\frac{9}{2} ,5$
Answer:
Given series is
$\small -1.2,-3.2,-5.2,-7.2,...$
Now,
The first term of this series is = -1.2
Now,
$a_1 = -1.2 \ \ and \ \ a_2 = -3.2 \ \ and \ \ a_3 = -5.2 \ \ and \ \ a_4 = -7.2$
$a_2-a_1 = -3.2-(-1.2) =-3.2+1.2=-2$
$a_3-a_2 = -5.2-(-3.2) =-5.2+3.2 = -2$
$a_4-a_3=-7.2-(-5.2)=-7.2+5.2=-2$
We can clearly see that the difference between terms are equal and equal to -2
Hence, the given series is in AP.
Now, the next three terms are
$a_5=a_4+d = -7.2-2 =-9.2$
$a_6=a_5+d = -9.2-2 =-11.2$
$a_7=a_6+d = -11.2-2 =-13.2$
Therefore, the next three terms of the given series are -9.2, -11.2, -13.2
Answer:
Given series is
$\small -10,-6,-2,2,...$
Now,
The first term of this series is = -10
Now,
$a_1 = -10 \ \ and \ \ a_2 = -6 \ \ and \ \ a_3 = -2 \ \ and \ \ a_4 = 2$
$a_2-a_1 = -6-(-10) =-6+10=4$
$a_3-a_2 = -2-(-6) =-2+6 = 4$
$a_4-a_3=2-(-2)=2+2=4$
We can clearly see that the difference between the terms are equal and equal to 4
Hence, the given series is in AP.
Now, the next three terms are
$a_5=a_4+d = 2+4 =6$
$a_6=a_5+d = 6+4=10$
$a_7=a_6+d = 10+4=14$
Therefore, the next three terms of the given series are 6,10,14
Answer:
Given series is
$\small 3,3+\sqrt{2},3+2\sqrt{2},3+3\sqrt{2},...$
Now,
The first term of this series is = 3
Now,
$a_1 = 3 \ \ and \ \ a_2 = 3+\sqrt2 \ \ and \ \ a_3 = 3+2\sqrt2 \ \ and \ \ a_4 = 3+3\sqrt2$
$a_2-a_1 = 3+\sqrt2-3= \sqrt2$
$a_3-a_2 = 3+2\sqrt2-3-\sqrt2 = \sqrt2$
$a_4-a_3 = 3+3\sqrt2-3-2\sqrt2 = \sqrt2$
We can clearly see that the difference between terms are equal and equal to $\sqrt2$
Hence, given series is in AP
Now, the next three terms are
$a_5=a_4+d = 3+3\sqrt2+\sqrt2=3+4\sqrt2$
$a_6=a_5+d = 3+4\sqrt2+\sqrt2=3+5\sqrt2$
$a_7=a_6+d = 3+5\sqrt2+\sqrt2=3+6\sqrt2$
Therefore, the next three terms of given series are $3+4\sqrt2, 3+5\sqrt2,3+6\sqrt2$
Answer:
Given series is
$\small 0.2, 0.22, 0.222, 0.2222,...$
Now,
The first term to this series is = 0.2
Now,
$a_1 = 0.2 \ \ and \ \ a_2 = 0.22 \ \ and \ \ a_3 = 0.222 \ \ and \ \ a_4 = 0.2222$
$a_2-a_1 = 0.22-0.2=0.02$
$a_3-a_2 = 0.222-0.22=0.002$
We can clearly see that the difference between the terms is not equal.
Hence, the given series is not an AP
Answer:
Given series is
$\small 0,-4,-8,-12,...$
Now,
the first term to this series is = 0
Now,
$a_1 = 0 \ \ and \ \ a_2 = -4 \ \ and \ \ a_3 = -8 \ \ and \ \ a_4 = -12$
$a_2-a_1 = -4-0 =-4$
$a_3-a_2 = -8-(-4) =-8+4 = -4$
$a_4-a_3=-12-(-8)=-12+8=-4$
We can clearly see that the difference between terms are equal and equal to -4
Hence, given series is in AP
Now, the next three terms are
$a_5=a_4+d = -12-4 =-16$
$a_6=a_5+d = -16-4=-20$
$a_7=a_6+d = -20-4=-24$
Therefore, the next three terms of the given series are -16,-20,-24
Q4 (viii) Which of the following are APs? If they form an AP, find the common difference d and write three more terms. $\small -\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},...$
Answer:
Given series is
$\small -\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},...$
Now,
The first term to this series is = $-\frac{1}{2}$
Now,
$a_1 = -\frac{1}{2} \ \ and \ \ a_2 = -\frac{1}{2} \ \ and \ \ a_3 = -\frac{1}{2} \ \ and \ \ a_4 = -\frac{1}{2}$
$a_2-a_1 = -\frac{1}{2}-\left ( -\frac{1}{2} \right ) = -\frac{1}{2}+\frac{1}{2}=0$
$a_3-a_2 = -\frac{1}{2}-\left ( -\frac{1}{2} \right ) = -\frac{1}{2}+\frac{1}{2}=0$
$a_4-a_3 = -\frac{1}{2}-\left ( -\frac{1}{2} \right ) = -\frac{1}{2}+\frac{1}{2}=0$
We can clearly see that the difference between terms are equal and equal to 0
Hence, given series is in AP
Now, the next three terms are
$a_5=a_4+d = -\frac{1}{2}+0=-\frac{1}{2}$
$a_6=a_5+d = -\frac{1}{2}+0=-\frac{1}{2}$
$a_7=a_6+d = -\frac{1}{2}+0=-\frac{1}{2}$
Therefore, the next three terms of given series are $-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}$
Answer:
Given series is
$\small 1, 3, 9, 27,...$
Now,
The first term to this series is = 1
Now,
$a_1 = 1 \ \ and \ \ a_2 = 3 \ \ and \ \ a_3 = 9 \ \ and \ \ a_4 = 27$
$a_2-a_1 = 3-1=2$
$a_3-a_2 =9-3=6$
We can clearly see that the difference between terms are not equal.
Hence, given series is not an AP.
Answer:
Given series is
$\small a,2a,3a,4a,...$
Now,
the first term to this series is = a
Now,
$a_1 = a \ \ and \ \ a_2 = 2a \ \ and \ \ a_3 = 3a \ \ and \ \ a_4 = 4a$
$a_2-a_1 = 2a-a =a$
$a_3-a_2 = 3a-2a =a$
$a_4-a_3=4a-3a=a$
We can clearly see that the difference between terms are equal and equal to a
Hence, given series is in AP
Now, the next three terms are
$a_5=a_4+d =4a+a=5a$
$a_6=a_5+d =5a+a=6a$
$a_7=a_6+d =6a+a=7a$
Therefore, next three terms of given series are 5a,6a,7a
Q4 (xi) Which of the following are APs ? If they form an AP, find the common difference d and write three more terms. $\small a,a^2,a^3,a^4,...$
Answer:
Given series is
$\small a,a^2,a^3,a^4,...$
Now,
the first term to this series is = a
Now,
$a_1 = a \ \ and \ \ a_2 = a^2 \ \ and \ \ a_3 = a^3 \ \ and \ \ a_4 = a^4$
$a_2-a_1 = a^2-a =a(a-1)$
$a_3-a_2 = a^3-a^2 =a^2(a-1)$
We can clearly see that the difference between terms are not equal
Hence, given series is not in AP
Answer:
Given series is
$\small \sqrt{2},\sqrt{8},\sqrt{18},\sqrt{32},...$
We can rewrite it as
$\sqrt2,2\sqrt2,3\sqrt2,4\sqrt2,....$
Now,
first term to this series is = a
Now,
$a_1 = \sqrt2 \ \ and \ \ a_2 = 2\sqrt2 \ \ and \ \ a_3 = 3\sqrt2 \ \ and \ \ a_4 = 4\sqrt2$
$a_2-a_1 = 2\sqrt2-\sqrt2 =\sqrt2$
$a_3-a_2 = 3\sqrt2-2\sqrt2 =\sqrt2$
$a_4-a_3=4\sqrt2-3\sqrt2=\sqrt2$
We can clearly see that difference between terms are equal and equal to $\sqrt2$
Hence, given series is in AP
Now, the next three terms are
$a_5=a_4+d =4\sqrt2+\sqrt2=5\sqrt2$
$a_6=a_5+d =5\sqrt2+\sqrt2=6\sqrt2$
$a_7=a_6+d =6\sqrt2+\sqrt2=7\sqrt2$
Therefore, next three terms of given series are $5\sqrt2,6\sqrt2,7\sqrt2$
That is the next three terms are $\sqrt{50},\ \sqrt{72},\ \sqrt{98}$
Answer:
Given series is
$\small \sqrt{3},\sqrt{6},\sqrt{9},\sqrt{12},...$
Now,
the first term to this series is = $\sqrt3$
Now,
$a_1 = \sqrt3 \ \ and \ \ a_2 = \sqrt6 \ \ and \ \ a_3 = \sqrt9 \ \ and \ \ a_4 = \sqrt{12}$
$a_2-a_1 = \sqrt6-\sqrt3 =\sqrt3(\sqrt2-1)$
$a_3-a_2 = 3-\sqrt3 =\sqrt3(\sqrt3-1)$
We can clearly see that the difference between terms are not equal
Hence, given series is not in AP
Answer:
Given series is
$\small 1^2,3^2,5^2,7^2,...$
we can rewrite it as
$1,9,25,49,....$
Now,
the first term to this series is = 1
Now,
$a_1 =1 \ \ and \ \ a_2 = 9 \ \ and \ \ a_3 =25 \ \ and \ \ a_4 = 49$
$a_2-a_1 = 9-1 = 8$
$a_3-a_2 = 25-9=16$
We can clearly see that the difference between terms are not equal
Hence, given series is not in AP
Q4 (xv) Which of the following are APs ? If they form an AP, find the common difference d and write three more terms. $\small 1^2,5^2,7^2,73,...$
Answer:
Given series is
$\small 1^2,5^2,7^2,73,...$
we can rewrite it as
$1,25,49,73....$
Now,
the first term to this series is = 1
Now,
$a_1 =1 \ \ and \ \ a_2 = 25 \ \ and \ \ a_3 =49 \ \ and \ \ a_4 = 73$
$a_2-a_1 = 25-1 = 24$
$a_3-a_2 = 49-25=24$
$a_4-a_3 = 73-49=24$
We can clearly see that the difference between terms are equal and equal to 24
Hence, given series is in AP
Now, the next three terms are
$a_5=a_4+d = 73+24=97$
$a_6=a_5+d = 97+24=121$
$a_7=a_6+d = 121+24=145$
Therefore, the next three terms of given series are 97,121,145
Also Read-
1. Definition of Arithmetic Progression (AP): Knowledge of Arithmetic Progression (AP) includes its definition and skills for recognising series patterns following this sequence.
2. Common Difference: Calculating the constant difference between consecutive terms in an AP.
3. Identifying APs: Determining whether a given sequence is an AP by analysing the differences between terms.
4. Real-life Applications: Identification and creation of APs occur through recognising such patterns in actual world situations.
5. Extending Sequences: The common difference enables students to find more terms within an arithmetic progression.
Also see-
Students must check the NCERT solutions for class 10 of Mathematics and Science Subjects.
Students must check the NCERT Exemplar solutions for class 10 of Mathematics and Science Subjects.
Frequently Asked Questions (FAQs)
Arithmetic progression is a series of numbers in which each term is obtained by adding a constant number to the next term except the first term.
The general equation of the A.P series is a, a+d, a+2d and so on.
A very basic example of A.P series is 1,2,3,4 in which the first term is 1 and the common difference is also 1.
Common differences can be zero, positive and even negative.
Yes, it is considered A.P series as in exercise 5.1 Class 10 Maths it is clearly stated common difference can be zero so it is an AP series with a common difference zero.
The finite A.P series has limited-term while the infinite A.P series has unlimited terms and it never ends.
Before the Class 10 Mathematics chapter 5 exercise 5.1, there are two primary questions that must be answered.
There are 4 questions in Class 10th Maths chapter exercise 5.1. Question 1 consist of four subparts.
Question 2 consists of 5 subparts. Question 3 consists of four subparts. Question 1 consists of 15 subparts
On Question asked by student community
HELLO,
If you want admission to 9th grade under the CBSE board in Andhra Pradesh , visit nearby CBSE affiliated schools during the admission period that is generally from January to April or you can check the official websites of the schools in which you are interested for admission if they are accepting the admissions now .
After deciding the school and getting information about admission deadline from the school you can fill out the admission form with documents submission like your previous report card , transfer certificate and birth certificate , they make take entrance test or interview to confirm your admission
To know more visit :- https://school.careers360.com/schools/cbse-schools-in-andhra-pradesh
Hope this Helps!
Hello,
From the below website, you can get the CBSE Maths Sample paper of class 10.
https://school.careers360.com/boards/cbse/cbse-class-10-sample-papers-2025-26
Visit the below website to obtain the previous year question papers of class 10 CBSE.
https://school.careers360.com/boards/cbse/cbse-previous-year-question-papers-class-10
By solving both sample papers and previous year question papers, you can score well in your examination.
All the best.
Hello,
From the below website, you can get the sample papers of CBSE class 10 Hindi subject.
https://school.careers360.com/boards/cbse/cbse-class-10-sample-papers-2025-26
You'll also get sample papers of other subjects. Refer them to prepare well.
Hello,
If you're from Karnataka Board, then visit the below website to get the key answers of Social Science question paper of SA 1 of class 10.
https://school.careers360.com/boards/kseeb/karnataka-sslc-mid-term-exam-question-paper-2025-26
Let us know if you're from a different board.
Hello,
Since you applied over a month and a half ago and haven't received your 10th-grade certificate, the best course of action is to check the status of your application on the official website. If that doesn't yield results, you should contact your school and the relevant education board's regional office for an update.
I hope it will clear your query!!
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters