NEET Most scoring concepts
ApplyThis ebook serves as a valuable study guide for NEET 2025 exam.
NCERT Solutions for Class 11 Maths Chapter 5 – Complex Numbers and Quadratic Equations Miscellaneous Exercise- NCERT solutions for Class 11 Maths Chapter 5 miscellaneous exercise summarises questions from all topics of the NCERT chapter complex numbers and quadratic equations. Class 11 Maths Chapter 5 miscellaneous exercise solutions present questions from basics of complex numbers, algebra of complex numbers, modulus and argument of complex numbers and conjugate of the complex numbers. A few more topics covered in the miscellaneous exercise chapter 5 Class 11 are the polar representation of complex numbers and solutions of quadratic equations with negative discriminant. Along with the NCERT syllabus Class 11 Maths chapter 5 miscellaneous solutions, the following exercises and their solutions are also available. Students can utilise these for their preparation.
JEE Main Scholarship Test Kit (Class 11): Narayana | Physics Wallah | Aakash | Unacademy
Suggested: JEE Main: high scoring chapters | Past 10 year's papers
**As per the CBSE Syllabus 2023-24, this class 11 chapter 5 maths miscellaneous solutions is now designated as Chapter 4.
Access Complex Numbers And Quadratic Equations Class 11 Chapter 5- Miscellaneous Exercise
Answer:
The given problem is
$\small \left [ i^{18}+\left ( \frac{1}{i} \right )^2^5\right ]^3$
Now, we will reduce it into
$\small \left [ i^{18}+\left ( \frac{1}{i} \right )^2^5\right ]^3= \left [ (i^4)^4.i^2+\frac{1}{(i^4)^6.i} \right ]^3$
$=\left [ 1^4.(-1)+\frac{1}{1^6.i} \right ]^3$ $(\because i^4 = 1, i^2 = -1 )$
$= \left [ -1+\frac{1}{i} \right ]^3$
$= \left [ -1+\frac{1}{i} \times \frac{i}{i}\right ]^3$
$= \left [ -1+\frac{i}{i^2} \right ]^3$
$= \left [ -1+\frac{i}{-1} \right ]^3 = \left [ -1-i \right ]^3$
Now,
$-(1+i)^3=-(1^3+i^3+3.1^2.i+3.1.i^2)$ $(using \ (a+b)^3=a^3+b^3+3.a^2.b+3.a.b^2)$
$= -(1 - i +3i+3(-1))$ $(\because i^3=-i , i^2 = -1)$
$= -(1 - i +3i-3)= -(-2+2i)$
$=2-2i$
Therefore, answer is $2-2i$
Answer:
Let two complex numbers are
$z_1=x_1+iy_1$
$z_2=x_2+iy_2$
Now,
$z_1.z_2=(x_1+iy_1).(x_2+iy_2)$
$=x_1x_2+ix_1y_2+iy_1x_2+i^2y_1y_2$
$=x_1x_2+ix_1y_2+iy_1x_2-y_1y_2$ $(\because i^2 = -1)$
$=x_1x_2-y_1y_2+i(x_1y_2+y_1x_2)$
$Re(z_1z_2)= x_1x_2-y_1y_2$
$=Re(z_1z_2)-Im(z_1z_2)$
Hence proved
Answer:
Given problem is
$\small \left ( \frac{1}{1-4i}-\frac{2}{1+i} \right )\left ( \frac{3-4i}{5+i} \right )$
Now, we will reduce it into
$\small \left ( \frac{1}{1-4i}-\frac{2}{1+i} \right )\left ( \frac{3-4i}{5+i} \right ) = \left ( \frac{(1+i)-2(1-4i)}{(1+i)(1-4i)} \right )\left ( \frac{3-4i}{5+i} \right )$
$=\left ( \frac{1+i-2+8i}{1-4i+i-4i^2} \right )\left ( \frac{3-4i}{5+i} \right )$
$=\left ( \frac{-1+9i}{1-3i-4(-1)} \right )\left ( \frac{3-4i}{5+i} \right )$
$=\left ( \frac{-1+9i}{5-3i} \right )\left ( \frac{3-4i}{5+i} \right )$
$=\left ( \frac{-3+4i+27i-36i^2}{25+5i-15i-3i^2} \right )= \left ( \frac{-3+31i+36}{25-10i+3} \right )= \frac{33+31i}{28-10i}= \frac{33+31i}{2(14-5i)}$
Now, multiply numerator an denominator by $(14+5i)$
$\Rightarrow \frac{33+31i}{2(14-5i)}\times \frac{14+5i}{14+5i}$
$\Rightarrow \frac{462+165i+434i+155i^2}{2(14^2-(5i)^2)}$ $(using \ (a-b)(a+b)=a^2-b^2)$
$\Rightarrow \frac{462+599i-155}{2(196-25i^2)}$
$\Rightarrow \frac{307+599i}{2(196+25)}= \frac{307+599i}{2\times 221}= \frac{307+599i}{442}= \frac{307}{442}+i\frac{599}{442}$
Therefore, answer is $\frac{307}{442}+i\frac{599}{442}$
Question:4 If $\small x-iy=\sqrt{\frac{a-ib}{c-id}}$ , prove that $\small (x^2+y^2)^2=\frac{a^2+b^2}{c^2+d^2}.$
Answer:
the given problem is
$\small x-iy=\sqrt{\frac{a-ib}{c-id}}$
Now, multiply the numerator and denominator by
$\sqrt{c+id}$
$x-iy = \sqrt{\frac{a-ib}{c-id}\times \frac{c+id}{c+id}}$
$= \sqrt{\frac{(ac+bd)+i(ad-bc)}{c^2-i^2d^2}}= \sqrt{\frac{(ac+bd)+i(ad-bc)}{c^2+d^2}}$
Now, square both the sides
$(x-iy)^2=\left ( \sqrt{\frac{(ac+bd)+i(ad-bc)}{c^2+d^2}} \right )^2$
$=\frac{(ac+bd)+i(ad-bc)}{c^2+d^2}$
$x^2-y^2-2ixy=\frac{(ac+bd)+i(ad-bc)}{c^2+d^2}$
On comparing the real and imaginary part, we obtain
$x^2-y^2 = \frac{ac+bd}{c^2+d^2} \ \ and \ \ -2xy = \frac{ad-bc}{c^2+d^2} \ \ \ -(i)$
Now,
$(x^2+y^2)^2= (x^2-y^2)^2+4x^2y^2$
$= \left ( \frac{ac+bd}{c^2+d^2} \right )^2+\left ( \frac{ad-bc}{c^2+d^2} \right )^2 \ \ \ \ (using \ (i))$
$=\frac{a^2c^2+b^2d^2+2acbd+a^2d^2+b^2c^2-2adbc}{(c^2+d^2)^2}$
$=\frac{a^2c^2+b^2d^2+a^2d^2+b^2c^2}{(c^2+d^2)^2}$
$=\frac{a^2(c^2+d^2)+b^2(c^2+d^2)}{(c^2+d^2)^2}$
$=\frac{(a^2+b^2)(c^2+d^2)}{(c^2+d^2)^2}$
$=\frac{(a^2+b^2)}{(c^2+d^2)}$
Hence proved
Question:5(i) Convert the following in the polar form:
Answer:
Let
$z =\small \frac{1+7i}{(2-i)^2} = \frac{1+7i}{4+i^2-4i}= \frac{1+7i}{4-1-4i}= \frac{1+7i}{3-4i}$
Now, multiply the numerator and denominator by $3+4i$
$\Rightarrow z = \frac{1+7i}{3-4i}\times \frac{3+4i}{3+4i}= \frac{3+4i+21i+28i^2}{3^2+4^2}= \frac{-25+25i}{25}= -1+i$
Now,
let
$r\cos\theta = -1 \ \ and \ \ r\sin \theta = 1$
On squaring both and then add
$r^2(\cos^2\theta+\sin^2\theta)= (-1)^2+1^2$
$r^2=2$
$r = \sqrt2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (\because r > 0)$
Now,
$\sqrt2 \cos \theta = -1 \ \ and \ \ \sqrt2\sin \theta = 1$
$\cos \theta = -\frac{1}{\sqrt2} \ \ and \ \ \sin \theta = \frac{1}{\sqrt2}$
Since the value of $\cos \theta$ is negative and $\sin \theta$ is positive this is the case in II quadrant
Therefore,
$\theta = \pi - \frac{\pi}{4}= \frac{3\pi}{4} \ \ \ \ \ \ \ \ \ \ \ \ (lies \ in \ II \ quadrant)$
$z = r\cos \theta + ir\sin \theta$
$=\sqrt2\cos \frac{3\pi}{4} + i\sqrt2\sin \frac{3\pi}{4}$
$=\sqrt2\left ( \cos \frac{3\pi}{4} + i\sin \frac{3\pi}{4} \right )$
Therefore, the required polar form is
$\sqrt2\left ( \cos \frac{3\pi}{4} + i\sin \frac{3\pi}{4} \right )$
Question:5(ii) Convert the following in the polar form:
Answer:
Let
$z =\frac{1+3i}{1-2i}$
Now, multiply the numerator and denominator by $1+2i$
$\Rightarrow z =\frac{1+3i}{1-2i} \times \frac{1+2i}{i+2i}= \frac{1+2i+3i-6}{1+4}= \frac{-5+5i}{5}=-1+i$
Now,
let
$r\cos\theta = -1 \ \ and \ \ r\sin \theta = 1$
On squaring both and then add
$r^2(\cos^2\theta+\sin^2\theta)= (-1)^2+1^2$
$r^2=2$
$r = \sqrt2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (\because r > 0)$
Now,
$\sqrt2 \cos \theta = -1 \ \ and \ \ \sqrt2\sin \theta = 1$
$\cos \theta = -\frac{1}{\sqrt2} \ \ and \ \ \sin \theta = \frac{1}{\sqrt2}$
Since the value of $\cos \theta$ is negative and $\sin \theta$ is positive this is the case in II quadrant
Therefore,
$\theta = \pi - \frac{\pi}{4}= \frac{3\pi}{4} \ \ \ \ \ \ \ \ \ \ \ \ (lies \ in \ II \ quadrant)$
$z = r\cos \theta + ir\sin \theta$
$=\sqrt2\cos \frac{3\pi}{4} + i\sqrt2\sin \frac{3\pi}{4}$
$=\sqrt2\left ( \cos \frac{3\pi}{4} + i\sin \frac{3\pi}{4} \right )$
Therefore, the required polar form is
$\sqrt2\left ( \cos \frac{3\pi}{4} + i\sin \frac{3\pi}{4} \right )$
Question:6 Solve each of the equation: $\small 3x^2-4x+\frac{20}{3}=0$
Answer:
Given equation is
$\small 3x^2-4x+\frac{20}{3}=0$
Now, we know that the roots of the quadratic equation are given by the formula
$\frac{-b\pm \sqrt{b^2-4ac}}{2a}$
In this case the value of
$a=3,b=-4 \ and \ c= \frac{20}{3}$
Therefore,
$\frac{-(-4)\pm \sqrt{(-4)^2-4.3.\frac{20}{3}}}{2.3}= \frac{4\pm\sqrt{16-80}}{6} = \frac{4\pm\sqrt{-64}}{6}$ $=\frac{4\pm8i}{6}= \frac{2}{3}\pm i\frac{4}{3}$
Therefore, the solutions of requires equation are
$\frac{2}{3}\pm i\frac{4}{3}$
Question:7 Solve each of the equation: $\small x^2-2x+\frac{3}{2}=0$
Answer:
Given equation is
$\small x^2-2x+\frac{3}{2}=0$
Now, we know that the roots of the quadratic equation are given by the formula
$\frac{-b\pm \sqrt{b^2-4ac}}{2a}$
In this case the value of $a=1,b=-2 \ and \ c= \frac{3}{2}$
Therefore,
$\frac{-(-2)\pm \sqrt{(-2)^2-4.1.\frac{3}{2}}}{2.1}= \frac{2\pm\sqrt{4-6}}{2} = \frac{2\pm\sqrt{-2}}{2}$ $=\frac{2\pm i\sqrt2}{2}=1\pm i\frac{\sqrt2}{2}$
Therefore, the solutions of requires equation are
$1\pm i\frac{\sqrt2}{2}$
Question:8 Solve each of the equation: $\small 27x^2-10x+1=0$ .
Answer:
Given equation is
$\small 27x^2-10x+1=0$
Now, we know that the roots of the quadratic equation are given by the formula
$\frac{-b\pm \sqrt{b^2-4ac}}{2a}$
In this case the value of $a=27,b=-10 \ and \ c= 1$
Therefore,
$\frac{-(-10)\pm \sqrt{(-10)^2-4.27.1}}{2.27}= \frac{10\pm\sqrt{100-108}}{54} = \frac{10\pm\sqrt{-8}}{54}$ $=\frac{10\pm i2\sqrt2}{54}=\frac{5}{27}\pm i\frac{\sqrt2}{27}$
Therefore, the solutions of requires equation are $\frac{5}{27}\pm i\frac{\sqrt2}{27}$
Question:9 Solve each of the equation: $\small 21x^2-28x+10=0$
Answer:
Given equation is
$\small 21x^2-28x+10=0$
Now, we know that the roots of the quadratic equation are given by the formula
$\frac{-b\pm \sqrt{b^2-4ac}}{2a}$
In this case the value of $a=21,b=-28 \ and \ c= 10$
Therefore,
$\frac{-(-28)\pm \sqrt{(-28)^2-4.21.10}}{2.21}= \frac{28\pm\sqrt{784-840}}{42} = \frac{28\pm\sqrt{-56}}{42}$ $=\frac{28\pm i2\sqrt{14}}{42}=\frac{2}{3}\pm i\frac{\sqrt{14}}{21}$
Therefore, the solutions of requires equation are
$\frac{2}{3}\pm i\frac{\sqrt{14}}{21}$
Question:10 If $\small z_1=2-i, z_2=1+i$ , find $\small \left |\frac{z_1+z_2+1}{z_1-z_2+1} \right |$ .
Answer:
It is given that
$\small z_1=2-i, z_2=1+i$
Then,
$\small \left |\frac{z_1+z_2+1}{z_1-z_2+1} \right | =\left | \frac{2-i+1+i+1}{2-i-1-i+1} \right | = \left | \frac{4}{2(1-i)} \right |= \left | \frac{2}{(1-i)} \right |$
Now, multiply the numerator and denominator by $1+i$
$\Rightarrow \left | \frac{2}{(1-i)} \times \frac{1+i}{1+i} \right |=\left |\frac{2(1+i)}{1^2-i^2} \right |=\left | \frac{2(1+i)}{1+1} \right |= \left| 1+i \right |$
Now,
$|1+i| = \sqrt{1^2+1^2}=\sqrt{1+1}=\sqrt{2}$
Therefore, the value of
$\small \left |\frac{z_1+z_2+1}{z_1-z_2+1} \right |$ is $\sqrt{2}$
Question:11 If $\small a+ib=\frac{(x+i)^2}{2x^2+1}$ , prove that $\small a^2+b^2=\frac{(x^2+1)^2}{(2x^2+1)^2}$ .
Answer:
It is given that
$\small a+ib=\frac{(x+i)^2}{2x^2+1}$
Now, we will reduce it into
$\small a+ib=\frac{(x+i)^2}{2x^2+1} = \frac{x^2+i^2+2xi}{2x^2+1}=\frac{x^2-1+2xi}{2x^2+1}=\frac{x^2-1}{2x^2+1}+i\frac{2x}{2x^2+1}$
On comparing real and imaginary part. we will get
$a=\frac{x^2-1}{2x^2+1}\ and \ b=\frac{2x}{2x^2+1}$
Now,
$a^2+b^2=\left ( \frac{x^2-1}{2x^2+1} \right )^2+\left ( \frac{2x}{2x^2+1} \right )^2$
$= \frac{x^4+1-2x^2+4x^2}{(2x^2+1)^2}$
$= \frac{x^4+1+2x^2}{(2x^2+1)^2}$
$= \frac{(x^2+1)^2}{(2x^2+1)^2}$
Hence proved
Question:12(i) Let $\small z_1=2-i,z_2=-2+i.$ Find
$\small Re\left ( \frac{z_1z_2}{\bar{z_1}} \right )$
Answer:
It is given that
$\small z_1=2-i \ and \ z_2=-2+i$
Now,
$z_1z_2= (2-i)(-2+i)= -4+2i+2i-i^2=-4+4i+1= -3+4i$
And
$\bar z_1 = 2+i$
Now,
$\frac{z_1z_2}{\bar z_1}= \frac{-3+4i}{2+i}= \frac{-3+4i}{2+i}\times \frac{2-i}{2-i}= \frac{-6+3i+8i-4i^2}{2^2-i^2}= \frac{-6+11i+4}{4+1}$ $= \frac{-2+11i}{5}= -\frac{2}{5}+i\frac{11}{5}$
Now,
$Re\left ( \frac{z_1z_2}{z_1} \right )= -\frac{2}{5}$
Therefore, the answer is
$-\frac{2}{5}$
Question:12(ii) Let $\small z_1=2-i,z_2=-2+i.$ Find
$\small Im\left ( \frac{1}{z_1\bar{z_1}} \right )$
Answer:
It is given that
$z_1= 2-i$
Therefore,
$\bar z_1= 2+i$
NOw,
$z_1\bar z_1= (2-i)(2+i)= 2^2-i^2=4+1=5$ $(using \ (a-b)(a+b)= a^2-b^2)$
Now,
$\frac{1}{z_1\bar z_1}= \frac{1}{5}$
Therefore,
$Im\left ( \frac{1}{z_1\bar z_1} \right )= 0$
Therefore, the answer is 0
Question:13 Find the modulus and argument of the complex number $\small \frac{1+2i}{1-3i}$ .
Answer:
Let
$z = \small \frac{1+2i}{1-3i}$
Now, multiply the numerator and denominator by $(1+3i)$
$\Rightarrow z=\frac{1+2i}{1-3i}\times \frac{1+3i}{1+3i}= \frac{1+3i+2i+6i^2}{1^2-(3i)^2}= \frac{1+5i-6}{1-9i^2}= \frac{-5+5i}{10}$ $= -\frac{1}{2}+i\frac{1}{2}$
Therefore,
$r\cos \theta= -\frac{1}{2} \ \ and \ \ r\sin \theta =\frac{1}{2}$
Square and add both the sides
$r^2\cos^2\theta +r^2\sin^2\theta= \left ( -\frac{1}{2} \right )^2+\left ( \frac{1}{2} \right )^2$
$r^2(\cos^2\theta +\sin^2\theta)= \left ( \frac{1}{4} \right )+\left ( \frac{1}{4} \right )$
$r^2= \frac{1}{2} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (\because \sin^2\theta +\cos^2\theta = 1)$
$r = \frac{1}{\sqrt2} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (\because r > 0)$
Therefore, the modulus is $\frac{1}{\sqrt2}$
Now,
$\frac{1}{\sqrt2} \cos\theta = -\frac{1}{2} \ \ and \ \ \frac{1}{\sqrt2} \sin\theta = \frac{1}{2}$
$\cos\theta = -\frac{1}{\sqrt2} \ \ and \ \ \sin\theta = \frac{1}{\sqrt2}$
Since the value of $\cos\theta$ is negative and the value of $\sin\theta$ is positive and we know that it is the case in II quadrant
Therefore,
Argument $=\left ( \pi-\frac{\pi}{4} \right )= \frac{3\pi}{4}$
Therefore, Argument and modulus are $\frac{3\pi}{4} \ \ and \ \ \frac{1}{\sqrt2}$ respectively
Question:14 Find the real numbers x andy if $\small (x-iy)(3+5i)$ is the conjugate of $\small -6-24i$ .
Answer:
Let
$z = \small (x-iy)(3+5i) = 3x+5xi-3yi-5yi^2= 3x+5y+i(5x-3y)$
Therefore,
$\bar z = (3x+5y)-i(5x-3y) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -(i)$
Now, it is given that
$\bar z = -6-24i \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -(ii)$
Compare (i) and (ii) we will get
$(3x+5y)-i(5x-3y) = -6-24i$
On comparing real and imaginary part. we will get
$3x+5y=-6 \ \ \ and \ \ \ 5x-3y = 24$
On solving these we will get
$x = 3 \ \ \ and \ \ \ y =- 3$
Therefore, the value of x and y are 3 and -3 respectively
Question:15 Find the modulus of $\small \frac{1+i}{1-i}-\frac{1-i}{1+i}$ .
Answer:
Let
$z =\small \frac{1+i}{1-i}-\frac{1-i}{1+i}$
Now, we will reduce it into
$z =\small \frac{1+i}{1-i}-\frac{1-i}{1+i} = \frac{(1+i)^2-(1-i)^2}{(1+i)(1-i)}= \frac{1^2+i^2+2i-1^2-i^2+2i}{1^2-i^2}$ $= \frac{4i}{1+1}= \frac{4i}{2}=2i$
Now,
$r\cos\theta = 0 \ \ and \ \ r\sin \theta = 2$
square and add both the sides. we will get,
$r^2\cos^2\theta+r^2\sin^2 \theta = 0^2+2^2$
$r^2(\cos^2\theta+\sin^2 \theta) = 4$
$r^2 = 4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (\because \cos^2\theta+\sin^2 \theta = 1)$
$r = 2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (\because r > 0)$
Therefore, modulus of
$\small \frac{1+i}{1-i}-\frac{1-i}{1+i}$ is 2
Question:16 If $\small (x+iy)^3=u+iv$ , then show that $\small \frac{u}{x}+\frac{v}{y}=4 (x^2-y^2).$
Answer:
it is given that
$\small (x+iy)^3=u+iv$
Now, expand the Left-hand side
$x^3+(iy)^3+3.(x)^2.iy+3.x.(iy)^2= u + iv$
$x^3+i^3y^3+3x^2iy+3xi^2y^2= u + iv$
$x^3-iy^3+3x^2iy-3xy^2= u + iv$ $(\because i^3 = -i \ \ and \ \ i^2 = -1)$
$x^3-3xy^2+i(3x^2y-y^3)= u + iv$
On comparing real and imaginary part. we will get,
$u = x^3-3xy^2 \ \ \ and \ \ \ v = 3x^2y-y^3$
Now,
$\frac{u}{x}+\frac{v}{y}= \frac{x(x^2-3y^2)}{x}+\frac{y(3x^2-y^2)}{y}$
$= x^2-3y^2+3x^2-y^2$
$= 4x^2-4y^2$
$= 4(x^2-y^2)$
Hence proved
Answer:
Let
$\alpha = a+ib$ and $\beta = x+iy$
It is given that
$\small |\beta|=1\Rightarrow \sqrt{x^2+y^2} = 1\Rightarrow x^2+y^2 = 1$
and
$\small \bar \alpha = a-ib$
Now,
$\small \left | \frac{\beta -\alpha }{1-\bar{\alpha }\beta } \right | = \left | \frac{(x+iy)-(a+ib)}{1-(a-ib)(x+iy)} \right | = \left | \frac{(x-a)+i(y-b)}{1-(ax+iay-ibx-i^2yb)} \right |$
$\small = \left | \frac{(x-a)+i(y-b)}{(1-ax-yb)-i(bx-ay)} \right |$
$\small = \frac{\sqrt{(x-a)^2+(y-b)^2}}{\sqrt{(1-ax-yb)^2+(bx-ay)^2}}$
$\small = \frac{\sqrt{x^2+a^2-2xa+y^2+b^2-yb}}{\sqrt{1+a^2x^2+b^2y^2-2ax+2abxy-by+b^2x^2+a^2y^2-2abxy}}$
$\small = \frac{\sqrt{(x^2+y^2)+a^2-2xa+b^2-yb}}{\sqrt{1+a^2(x^2+y^2)+b^2(x^2+y^2)-2ax+2abxy-by-2abxy}}$
$\small = \frac{\sqrt{1+a^2-2xa+b^2-yb}}{\sqrt{1+a^2+b^2-2ax-by}}$ $\small (\because x^2+y^2 = 1 \ given)$
$\small =1$
Therefore, value of $\small \left | \frac{\beta -\alpha }{1-\bar{\alpha }\beta } \right |$ is 1
Question:18 Find the number of non-zero integral solutions of the equation $\small |1-i|^x=2^x$ .
Answer:
Given problem is
$\small |1-i|^x=2^x$
Now,
$( \sqrt{1^2+(-1)^2 })^x=2^x$
$( \sqrt{1+1 })^x=2^x$
$\left ( \sqrt{2 }\right )^x=2^x$
$2^{\frac{x}{2}}= 2^x$
$\frac{x}{2}=x$
$\frac{x}{2}=0$
x = 0 is the only possible solution to the given problem
Therefore, there are 0 number of non-zero integral solutions of the equation $\small |1-i|^x=2^x$
Answer:
It is given that
$\small (a+ib)(c+id)(e+if)(g+ih)=A+iB,$
Now, take mod on both sides
$\left | (a+ib)(c+id)(e+if)(g+ih) \right |= \left | A+iB \right |$
$|(a+ib)||(c+id)||(e+if)||(g+ih)|= \left | A+iB \right |$ $(\because |z_1z_2|=|z_1||z_2|)$
$(\sqrt{a^2+b^2})(\sqrt{c^2+d^2})(\sqrt{e^2+f^2})(\sqrt{g^2+h^2})= (\sqrt{A^2+B^2})$
Square both the sides. we will get
$({a^2+b^2})({c^2+d^2})({e^2+f^2})({g^2+h^2})= (A^2+B^2)$
Hence proved
Answer:
Let
$z = \left ( \frac{1+i}{1-i} \right )^m$
Now, multiply both numerator and denominator by $(1+i)$
We will get,
$z = \left ( \frac{1+i}{1-i}\times \frac{1+i}{1+i} \right )^m$
$= \left ( \frac{(1+i)^2}{1^2-i^2} \right )^m$
$= \left ( \frac{1^2+i^2+2i}{1+1} \right )^m$
$= \left ( \frac{1-1+2i}{2} \right )^m$ $(\because i^2 = -1)$
$= \left ( \frac{2i}{2} \right )^m$
$= i^m$
We know that $i^4 = 1$
Therefore, the least positive integral value of $\small m$ is 4
All the 20 questions of miscellaneous exercise chapter 5 Class 11 are important and can use these NCERT solutions for Class 11 Maths chapter 5 miscellaneous exercise as a tool for getting good scores in the Class 11 exams. The concepts covered in the Class 11 Maths chapter 5 miscellaneous solutions not only help in preparation for the Class 11 exam. These are useful for higher studies in the field of mathematics and engineering also. The applications of complex numbers are used in various fields of engineering. For example, electrical circuit analysis uses complex numbers
Also Read| Complex Numbers And Quadratic Equations Class 11th Notes
Miscellaneous Exercise Topics in NCERT Solutions for Class 11 Maths Chapter 5 - Complex Numbers and Quadratic Equations:
NCERT syllabus Class 11 Maths chapter 5 miscellaneous exercise solutions can be accessed easily and downloaded for future reference
Solving miscellaneous exercise chapter 5 Class 11 helps students to make sure that whether they have familiarised them with the concepts discussed in the chapter.
Class 11 Maths chapter 5 miscellaneous solutions also helps in the preparation for competitive exams like JEE Main.
Comprehensive Coverage: The miscellaneous exercise class 11 chapter 5 solutions comprehensively address all 20 questions from the Miscellaneous Exercise in Chapter 5, ensuring a thorough understanding of complex numbers and quadratic equations.
Conceptual Clarity: The class 11 chapter 5 maths miscellaneous solutions provide clear explanations, step-by-step procedures, and valuable insights to help students grasp challenging mathematical concepts effectively.
Relevance to Exams: Designed in alignment with the Class 11 syllabus, the Class 11 maths miscellaneous exercise chapter 5 solutions serve as an invaluable resource for exam preparation, offering a strategic approach to solving miscellaneous exercise questions.
Preparation for Higher Studies: The covered concepts serve as a robust foundation for advanced studies in mathematics and engineering, with a focus on real-world applications of complex numbers.
Competitive Exam Readiness: The class 11 maths ch 5 miscellaneous exercise solutions aid in preparing for competitive exams, such as JEE Main, by reinforcing key mathematical principles and enhancing problem-solving skills.
User-Friendly Access: The class 11 chapter 5 miscellaneous exercise solutions are easily accessible, providing students with the convenience of free PDF downloads for future reference, study, and revision.
Verification of Understanding: Students can use the class 11 chapter 5 maths miscellaneous solutions solutions to verify their understanding of Chapter 5 concepts, ensuring a strong foundation in complex numbers and quadratic equations.
Euler introduced symbol i for root(-1) first time
W,R. Hamilton
Z1Z2=(ac-bd)+i(ad+bc)
Yes, the statement is true. Example: 1 can be written as 1+0i
The argument of (1+i)/(1-i) is pi/2
5 questions are solved in the miscellaneous examples of complex numbers and quadratic equations.
Twenty questions of miscellaneous exercise chapter 5 Class 11 are solved in the Class 11 Maths chapter 5 miscellaneous exercise solutions
(1+i)/(1-i)=i
So the ordered pair is (0,1)
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest 2024 syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
Accepted by more than 11,000 universities in over 150 countries worldwide
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE