NCERT Solutions for Class 9 Maths Chapter 7 Triangles

NCERT Solutions for Class 9 Maths Chapter 7 Triangles

Edited By Ramraj Saini | Updated on Sep 27, 2023 10:38 PM IST

NCERT Solutions for Class 9 Maths Chapter 7 Triangles

NCERT solutions for class 9 maths chapter 7 Triangles are provided here. These NCERT Solutions are developed by subject matter expert at careersers360 considering latest CBSE syllabus 2023. Also these provide step by step solutions to all NCERT problems in comprehensive and simple way therefore these are easy to understand and ultimately beneficial for exams. In Class 9 Maths NCERT Syllabus Triangles, you will learn something of a higher level. NCERT triangles class 9 questions and answers can be a good tool whenever you are stuck in any of the problems. This Class 9 NCERT book chapter will be covering the properties of triangles like congruence of triangles, isosceles triangle, etc in detail.

This Story also Contains
  1. NCERT Solutions for Class 9 Maths Chapter 7 Triangles
  2. Triangles Class 9 Questions And Answers PDF Free Download
  3. Triangles Class 9 Solutions - Important Formulae And Points
  4. Triangles Class 9 NCERT Solutions (Intext Questions and Exercise)
  5. NCERT Solutions For Class 9 - Chapter Wise
  6. NCERT Solutions For Class 9 - Subject Wise
  7. NCERT Solutions for Class 9 Maths
  8. NCERT Books and NCERT Syllabus
NCERT Solutions for Class 9 Maths Chapter 7 Triangles
NCERT Solutions for Class 9 Maths Chapter 7 Triangles

By using NCERT class 9 maths chapter 7 question answer, you can prepare 360 degree for your school as well as for the competitive examinations. Here you will get NCERT solutions for class 9 Maths also.

Triangles Class 9 Questions And Answers PDF Free Download

Download PDF

Triangles Class 9 Solutions - Important Formulae And Points

Congruence:

  • Congruent refers to figures that are identical in all aspects, including their shapes and sizes. For example, two circles with the same radii or two squares with the same side lengths are considered congruent.

Congruent Triangles:

  • Two triangles are considered congruent if and only if one of them can be superimposed (placed or overlaid) over the other in such a way that they entirely cover each other.

>> Congruence Rules for Triangles:

  • Side-Angle-Side (SAS) Congruence:

  • Angle-Side-Angle (ASA) Congruence:

  • Angle-Angle-Side (AAS) Congruence:.

  • Side-Side-Side (SSS) Congruence:

  • Right-Angle Hypotenuse Side (RHS) Congruence:

1696741592817

Free download NCERT Solutions for Class 9 Maths Chapter 7 Triangles for CBSE Exam.

Triangles Class 9 NCERT Solutions (Intext Questions and Exercise)

NCERT solutions for class 10 maths chapter 7 Triangles - Excercise: 7.1

Q1 In quadrilateral \small ABCD , \small AC=AD and \small AB bisects \small \angle A (see Fig.). Show that \small \Delta ABC\cong \Delta ABD . What can you say about \small BC and \small BD ?

1640157021241

Answer:

In the given triangles we are given that:-

(i) \small AC=AD

(ii) Further, it is given that AB bisects angle A. Thus \angle BAC =\ \angle BAD.

(iii) Side AB is common in both the triangles. AB=AB

Hence by SAS congruence, we can say that : \small \Delta ABC\cong \Delta ABD

By c.p.c.t. (corresponding parts of congruent triangles are equal) we can say that BC\ =\ BD

Q2 (i) ABCD is a quadrilateral in which \small AD=BC and \small \angle DAB= \angle CBA (see Fig. ). Prove that

\small \Delta ABD\cong \Delta BAC .

1640157040178

Answer:

It is given that :-

(i) AD = BC

(ii) \small \angle DAB= \angle CBA

(iii) Side AB is common in both the triangles.

So, by SAS congruence, we can write :

\small \Delta ABD\cong \Delta BAC

Q2 (ii) \small ABCD is a quadrilateral in which \small AD=BC and \small \angle DAB=\angle CBA (see Fig.). Prove that \small BD=AC

1640157066047

Answer:

In the previous part, we have proved that \small \Delta ABD\cong \Delta BAC .

Thus by c.p.c.t. , we can write : \small BD=AC

Q2 (iii) \small ABCD is a quadrilateral in which \small AD=BC and \small \angle DAB= \angle BAC (see Fig.). Prove that \small \angle ABD= \angle BAC .

1640157095232

Answer:

In the first part we have proved that \small \Delta ABD\cong \Delta BAC .

Thus by c.p.c.t. , we can conclude :

\small \angle ABD= \angle BAC

Q3 \small AD and \small BC are equal perpendiculars to a line segment \small AB (see Fig.). Show that \small CD bisects \small AB .

1640157122932

Answer:

In the given figure consider \Delta AOD and \Delta BOC.

(i) AD = BC (given)

(ii) \angle A = \angle B (given that the line AB is perpendicular to AD and BC)

(iii) \angle AOD = \angle BOC (vertically opposite angles).

Thus by AAS Postulate, we have

\Delta AOD\ \cong \ \Delta BOC

Hence by c.p.c.t. we can write : AO\ =\ OB

And thus CD bisects AB.

Q4 \small l and \small m are two parallel lines intersected by another pair of parallel lines \small p and \small q (see Fig. ). Show that \small \Delta ABC\cong \Delta CDA .

1640157162694

Answer:

In the given figure, consider \Delta ABC and \Delta CDA :

(i) \angle\ BCA\ =\ \angle DAC

(ii) \angle\ BAC\ =\ \angle DCA

(iii) Side AC is common in both the triangles.

Thus by ASA congruence, we have :

\Delta ABC\ \cong \ \Delta CDA

Q5 (i) Line \small l is the bisector of an angle \small \angle A and B is any point on \small l . \small BP and \small BQ are perpendiculars from \small B to the arms of \small \angle A (see Fig.). Show that: \small \Delta APB\cong \Delta AQB

1640157183354

Answer:

In the given figure consider \small \Delta APB and \small \Delta AQB ,

(i) \angle P\ =\ \angle Q (Right angle)

(ii) \angle BAP\ =\ \angle BAQ (Since it is given that I is bisector)

(iii) Side AB is common in both the triangle.

Thus AAS congruence, we can write :

\small \Delta APB\cong \Delta AQB

Q5 (ii) Line \small l is the bisector of an angle \small \angle A and \small B is any point on \small l . \small BP and \small BQ are perpendiculars from \small B to the arms of \small \angle A (see Fig. ). Show that: \small BP=BQ or \small B is equidistant from the arms of \small \angle A .

1640157219645

Answer:

In the previous part we have proved that \small \Delta APB\cong \Delta AQB .

Thus by c.p.c.t. we can write :

BP\ =\ BQ

Thus B is equidistant from arms of angle A.

Q6 In Fig, \small AC=AE,AB=AD and \small \angle BAD= \angle EAC . Show that \small BC=DE .

1640157243651

Answer:

From the given figure following result can be drawn:-

\angle BAD\ =\ \angle EAC

Adding \angle DAC to the both sides, we get :

\angle BAD\ +\ \angle DAC\ =\ \angle EAC\ +\ \angle DAC

\angle BAC\ =\ \angle EAD

Now consider \Delta ABC and \Delta ADE , :-

(i) AC\ =\ AE (Given)

(ii) \angle BAC\ =\ \angle EAD (proved above)

(iii) AB\ =\ AD (Given)

Thus by SAS congruence we can say that :

\Delta ABC\ \cong \ \Delta ADE

Hence by c.p.c.t., we can say that : BC\ =\ DE

Q7 (i) \small AB is a line segment and \small P is its mid-point. \small D and \small E are points on the same side of \small AB such that \small \angle BAD=\angle ABE and \small \angle EPA=\angle DPB (see Fig). Show that \small \Delta DAP\cong \Delta EBP

1640157265740

Answer:

From the figure, it is clear that :
\angle EPA\ =\ \angle DPB

Adding \angle DPE both sides, we get :

\angle EPA\ +\ \angle DPE =\ \angle DPB\ +\ \angle DPE

or \angle DPA =\ \angle EPB

Now, consider \Delta DAP and \Delta EBP :

(i) \angle DPA =\ \angle EPB (Proved above)

(ii) AP\ =\ BP (Since P is the midpoint of line AB)

(iii) \small \angle BAD=\angle ABE (Given)

Hence by ASA congruence, we can say that :

\small \Delta DAP\cong \Delta EBP

Q7 (ii) AB is a line segment and P is its mid-point. D and E are points on the same side of AB such that \small \angle BAD=\angle ABE and \small \angle EPA=\angle DPA (see Fig). Show that \small AD=BE

1640157291575

Answer:

In the previous part we have proved that \small \Delta DAP\cong \Delta EBP .

Thus by c.p.c.t., we can say that :

\small AD=BE

Q8 (i) In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that \small DM=CM . Point D is joined to point B (see Fig.). Show that: \small \Delta AMC\cong \Delta BMD

1640157315976

Answer:

Consider \Delta AMC and \Delta BMD ,

(i) AM\ =\ BM (Since M is the mid-point)

(ii) \angle CMA\ =\ \angle DMB (Vertically opposite angles are equal)

(iii) CM\ =\ DM (Given)

Thus by SAS congruency, we can conclude that :

\small \Delta AMC\cong \Delta BMD

Q8 (ii) In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that \small DM=CM . Point D is joined to point B (see Fig.). Show that: \small \angle DBC is a right angle.

1640157364987

Answer:

In the previous part, we have proved that \small \Delta AMC\cong \Delta BMD .

By c.p.c.t. we can say that : \angle ACM\ =\ \angle BDM

This implies side AC is parallel to BD.

Thus we can write : \angle ACB\ +\ \angle DBC\ =\ 180^{\circ} (Co-interior angles)

and, 90^{\circ}\ +\ \angle DBC\ =\ 180^{\circ}

or \angle DBC\ =\ 90^{\circ}

Hence \small \angle DBC is a right angle.

Q8 (iii) In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that \small DM=CM . Point D is joined to point B (see Fig.). Show that: \small \Delta DBC\cong \Delta ACB

1640157384655

Answer:

Consider \Delta DBC and \Delta ACB ,

(i) BC\ =\ BC (Common in both the triangles)

(ii) \angle ACB\ =\ \angle DBC (Right angle)

(iii) DB\ =\ AC (By c.p.c.t. from the part (a) of the question.)

Thus SAS congruence we can conclude that :

\small \Delta DBC\cong \Delta ACB

Q8 (iv) In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that \small DM=CM . Point D is joined to point B (see Fig.). Show that: \small CM=\frac{1}{2}AB

1640165513559

Answer:

In the previous part we have proved that \Delta DBC\ \cong \ \Delta ACB .

Thus by c.p.c.t., we can write : DC\ =\ AB

DM\ +\ CM\ =\ AM\ +\ BM

or CM\ +\ CM\ =\ AB (Since M is midpoint.)

or \small CM=\frac{1}{2}AB .

Hence proved.

NCERT Class 9 Maths Chapter 7 Question Answer - Excercise: 7.2

Q1 (i) In an isosceles triangle ABC, with \small AB=AC , the bisectors of \small \angle B and \small \angle C intersect each other at O. Join A to O. Show that : \small OB=OC

Answer:

In the triangle ABC,

Since AB = AC, thus \angle B\ =\ \angle C

or \frac{1}{2}\angle B\ =\ \frac{1}{2}\angle C

or \angle OBC\ =\ \angle OCB (Angles bisectors are equal)

Thus \small OB=OC as sides opposite to equal are angles are also equal.

Q1 (ii) In an isosceles triangle ABC, with \small AB=AC , the bisectors of \small \angle B and \small \angle C intersect each other at O. Join A to O. Show that : AO bisects \small \angle A

Answer:

Consider \Delta AOB and \Delta AOC ,

(i) AB\ =\ AC (Given)

(ii) AO\ =\ AO (Common in both the triangles)

(iii) OB\ =\ OC (Proved in previous part)

Thus by SSS congruence rule, we can conclude that :

\Delta AOB\ \cong \ \Delta AOC

Now, by c.p.c.t.,

\angle BAO\ =\ \angle CAO

Hence AO bisects \angle A .

Q2 In \Delta ABC , AD is the perpendicular bisector of BC (see Fig). Show that \small \Delta ABC is an isosceles triangle in which \small AB=AC .

1640157417015

Answer:

Consider \Delta ABD and \Delta ADC,

(i) AD\ =\ AD (Common in both the triangles)

(ii) \angle ADB\ =\ \angle ADC (Right angle)

(iii) BD\ =\ CD (Since AD is the bisector of BC)

Thus by SAS congruence axiom, we can state :

\Delta ADB\ \cong \ \Delta ADC

Hence by c.p.c.t., we can say that : \small AB=AC

Thus \Delta ABC is an isosceles triangle with AB and AC as equal sides.

Q3 ABC is an isosceles triangle in which altitudes BE and CF are drawn to equal sides AC and AB respectively (see Fig.). Show that these altitudes are equal.

1640165544901

Answer:

Consider \Delta AEB and \Delta AFC ,

(i) \angle A is common in both the triangles.

(ii) \angle AEB\ =\ \angle AFC (Right angles)

(iii) AB\ =\ AC (Given)

Thus by AAS congruence axiom, we can conclude that :

\Delta AEB\ \cong \Delta AFC

Now, by c.p.c.t. we can say : BE\ =\ CF

Hence these altitudes are equal.

Q4 (i) ABC is a triangle in which altitudes BE and CF to sides AC and AB are equal (see Fig). Show that \small \Delta ABE \cong \Delta ACF

1640165562618

Answer:

Consider \Delta ABE and \Delta ACF ,

(i) \angle A is common in both the triangles.

(ii) \angle AEB\ =\ \angle AFC (Right angles)

(iii) BE\ =\ CF (Given)

Thus by AAS congruence, we can say that :

\small \Delta ABE \cong \Delta ACF

Q4 (ii) ABC is a triangle in which altitudes BE and CF to sides AC and AB are equal (see Fig.). Show that \small AB=AC , i.e., ABC is an isosceles triangle.

1640157444769

Answer:

From the prevoius part of the question we found out that : \Delta ABE\ \cong \Delta ACF

Now, by c.p.c.t. we can say that : AB\ =\ AC

Hence \Delta \ ABC is an isosceles triangle.

Q5 ABC and DBC are two isosceles triangles on the same base BC (see Fig.). Show that \small \angle ABD\ \cong \ \angle ACD .

1640165593723

Answer:

Consider \Delta ABD and \Delta ACD ,

(i) AD\ =\ AD (Common in both the triangles)

(ii) AB\ =\ AC (Sides of isosceles triangle)

(iii) BD\ =\ CD (Sides of isosceles triangle)

Thus by SSS congruency, we can conclude that :

\small \angle ABD\ \cong \ \angle ACD

Q6 \Delta ABC is an isosceles triangle in which AB=AC . Side BA is produced to D such that AD=AB (see Fig.). Show that \angle BCD is a right angle.

1640157465047

Answer:

Consider \Delta ABC,
It is given that AB = AC


So, \angle ACB = \angle ABC (Since angles opposite to the equal sides are equal.)

Similarly in \Delta ACD,

We have AD = AB
and \angle ADC = \angle ACD
So,

\angle CAB + \angle ACB + \angle ABC = 180^{\circ}

\angle CAB\ +\ 2\angle ACB = 180^{\circ}
or \angle CAB\ = 180^{\circ}\ -\ 2\angle ACB ...........................(i)

And in \Delta ADC,
\angle CAD\ = 180^{\circ}\ -\ 2\angle ACD ..............................(ii)

Adding (i) and (ii), we get :
\angle CAB\ +\ \angle CAD\ = 360^{\circ}\ -\ 2\angle ACD\ -\ 2\angle ACB

or 180^{\circ}\ = 360^{\circ}\ -\ 2\angle ACD\ -\ 2\angle ACB

and \angle BCD\ =\ 90^{\circ}

Q7 ABC is a right angled triangle in which \small \angle A =90^{\circ} and \small AB=AC . Find \small \angle B and \small \angle C .

Answer:

In the triangle ABC, sides AB and AC are equal.

We know that angles opposite to equal sides are also equal.

Thus, \angle B\ =\ \angle C

Also, the sum of the interior angles of a triangle is 180^{\circ} .

So, we have :

\angle A\ +\ \angle B\ +\ \angle C\ =\ 180^{\circ}

or 90^{\circ} +\ 2\angle B\ =\ 180^{\circ}

or \angle B\ =\ 45^{\circ}

Hence \angle B\ =\ \angle C\ =\ 45^{\circ}

Q8 Show that the angles of an equilateral triangle are \small 60^{\circ} each.

Answer:

Consider a triangle ABC which has all sides equal.

We know that angles opposite to equal sides are equal.

Thus we can write : \angle A\ =\ \angle B\ =\ \angle C

Also, the sum of the interior angles of a triangle is 180 ^{\circ} .

Hence, \angle A\ +\ \angle B\ +\ \angle C\ =\ 180^{\circ}

or 3\angle A\ =\ 180^{\circ}

or \angle A\ =\ 60^{\circ}

So, all the angles of the equilateral triangle are equal ( 60^{\circ} ).

Class 9 Triangles NCERT Solutions - Excercise: 7.3

Q1 (i) \small \Delta ABC and \small \Delta DBC are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC (see Fig.). If AD is extended to intersect BC at P, show that \small \Delta ABD\cong \Delta ACD

1640157485851

Answer:

Consider \Delta ABD and \Delta ACD ,

(i) AD\ =\ AD (Common)

(ii) AB\ =\ AC (Isosceles triangle)

(iii) BD\ =\ CD (Isosceles triangle)

Thus by SSS congruency we can conclude that :

\small \Delta ABD\cong \Delta ACD

Q1 (ii) Triangles ABC and Triangle DBC are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC (see Fig). If AD is extended to intersect BC at P, show that \small \Delta ABP \cong \Delta ACP

1640157528618

Answer:

Consider \Delta ABP and \Delta ACP ,

(i) AP is common side in both the triangles.

(ii) \angle PAB\ =\ \angle PAC (This is obtained from the c.p.c.t. as proved in the previous part.)

(iii) AB\ =\ AC (Isosceles triangles)

Thus by SAS axiom, we can conclude that :

\small \Delta ABP \cong \Delta ACP

Q1 (iii) \small \Delta ABC and \small \Delta DBC are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC (see Fig.). If AD is extended to intersect BC at P, show that AP bisects \small \angle A as well as \small \angle D .

1640157546671

Answer:

In the first part, we have proved that \small \Delta ABD\cong \Delta ACD .

So, by c.p.c.t. \angle PAB\ =\ \angle PAC .

Hence AP bisects \angle A .

Now consider \Delta BPD and \Delta CPD ,

(i) PD\ =\ PD (Common)

(ii) BD\ =\ CD (Isosceles triangle)

(iii) BP\ =\ CP (by c.p.c.t. from the part (b))

Thus by SSS congruency we have :

\Delta BPD\ \cong \ \Delta CPD

Hence by c.p.c.t. we have : \angle BDP\ =\ \angle CDP

or AP bisects \angle D .

Q1 (iv) \small \Delta ABC and \small \Delta DBC are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC (see Fig.). If AD is extended to intersect BC at P, show that AP is the perpendicular bisector of BC.

1640157712234

Answer:

In the previous part we have proved that \Delta BPD\ \cong \ \Delta CPD .

Thus by c.p.c.t. we can say that : \angle BPD\ =\ \angle CPD

Also, BP\ =\ CP

SInce BC is a straight line, thus : \angle BPD\ +\ \angle CPD\ =\ 180^{\circ}

or 2\angle BPD\ =\ 180^{\circ}

or \angle BPD\ =\ 90^{\circ}

Hence it is clear that AP is a perpendicular bisector of line BC.

Q2 (i) AD is an altitude of an isosceles triangle ABC in which \small AB=AC . Show that AD bisects BC

Answer:

Consider \Delta ABD and \Delta ACD ,

(i) AB\ =\ AC (Given)

(ii) AD\ =\ AD (Common in both triangles)

(iii) \angle ADB\ =\ \angle ADC\ =\ 90^{\circ}

Thus by RHS axiom we can conclude that :

\Delta ABD\ \cong \ \Delta ACD

Hence by c.p.c.t. we can say that : BD\ =\ CD or AD bisects BC.

Q2 (ii) AD is an altitude of an isosceles triangle ABC in which \small AB=AC . Show that AD bisects \small \angle A .

Answer:

In the previous part of the question we have proved that \Delta ABD\ \cong \ \Delta ACD

Thus by c.p.c.t., we can write :

\angle BAD\ =\ \angle CAD

Hence AD bisects \angle A .

Q3 Two sides AB and BC and median AM of one triangle ABC are respectively equal to sides PQ and QR and median PN of \small \Delta PQR (see Fig). Show that:

(i) \small \Delta ABM \cong \Delta PQN

(ii) \small \Delta ABC \cong \Delta PQR

1640157733376

Answer:

(i) From the figure we can say that :

BC\ =\ QR

or \frac{1}{2}BC\ =\ \frac{1}{2}QR

or BM\ =\ QN

Now, consider \Delta ABM and \Delta PQN ,

(a) AM\ =\ PN (Given)

(b) AB\ =\ PQ (Given)

(c) BM\ =\ QN (Prove above)

Thus by SSS congruence rule, we can conclude that :

\small \Delta ABM \cong \Delta PQN

(ii) Consider \Delta ABC and \Delta PQR :

(a) AB\ =\ PQ (Given)

(b) \angle ABC\ =\ \angle PQR (by c.p.c.t. from the above proof)

(c) BC\ =\ QR (Given)

Thus by SAS congruence rule,

\small \Delta ABC \cong \Delta PQR

Q4 BE and CF are two equal altitudes of a triangle ABC. Using RHS congruence rule, prove that the triangle ABC is isosceles.

Answer:

Using the given conditions, consider \Delta BEC and \Delta CFB ,

(i) \angle BEC\ =\ \angle CFB (Right angle)

(ii) BC\ =\ BC (Common in both the triangles)

(iii) BE\ =\ CF (Given that altitudes are of the same length. )

Thus by RHS axiom, we can say that : \Delta BEC\ \cong \Delta CFB

Hence by c.p.c.t., \angle B\ =\ \angle C

And thus AB\ =\ AC (sides opposite to equal angles are also equal). Thus ABC is an isosceles triangle.

Q5 ABC is an isosceles triangle with \small AB=AC . Draw \small AP\perp BC to show that \small \angle B=\angle C .

Answer:

Consider \Delta ABP and \Delta ACP ,

(i) \angle APB\ =\ \angle APC\ =\ 90^{\circ} (Since it is given that AP is altitude.)

(ii) AB\ =\ AC (Isosceles triangle)

(iii) AP\ =\ AP (Common in both triangles)

Thus by RHS axiom we can conclude that :

\Delta ABP\ \cong \Delta ACP

Now, by c.p.c.t.we can say that :

\angle B\ =\ \angle C

Class 9 maths chapter 7 NCERT solutions - Excercise: 7.4

Q1 Show that in a right-angled triangle, the hypotenuse is the longest side.

Answer:

Consider a right-angled triangle ABC with right angle at A.

We know that the sum of the interior angles of a triangle is 180.

So, \angle A\ +\ \angle B\ +\ \angle C\ =\ 180^{\circ}

or 90^{\circ}\ +\ \angle B\ +\ \angle C\ =\ 180^{\circ}

or \angle B\ +\ \angle C\ =\ 90^{\circ}

Hence \angle B and \angle C are less than \angle A ( 90^{\circ} ).

Also, the side opposite to the largest angle is also the largest.

Hence the side BC is largest is the hypotenuse of the \Delta ABC .

Hence it is proved that in a right-angled triangle, the hypotenuse is the longest side.

Q2 In Fig, sides AB and AC of \small \Delta ABC are extended to points P and Q respectively. Also, \small \angle PBC < \angle QCB . Show that \small AC> AB .

1640157763824

Answer:

We are given that,

\small \angle PBC < \angle QCB ......................(i)

Also, \angle ABC\ +\ \angle PBC\ =\ 180^{\circ} (Linear pair of angles) .....................(ii)

and \angle ACB\ +\ \angle QCB\ =\ 180^{\circ} (Linear pair of angles) .....................(iii)

From (i), (ii) and (iii) we can say that :

\angle ABC\ > \ \angle ACB

Thus AC\ > AB ( Sides opposite to the larger angle is larger.)

Q3 In Fig., \small \angle B <\angle A and \small \angle C <\angle D . Show that \small AD <BC .

1640157791848

Answer:

In this question, we will use the property that sides opposite to larger angle are larger.

We are given \small \angle B <\angle A and \small \angle C <\angle D .

Thus, BO\ > AO ..............(i)

and OC\ > OD ...............(ii)

Adding (i) and (ii), we get :

AO\ +\ OD\ <\ BO\ +\ OC

or AD\ <\ BC

Hence proved.

Q4 AB and CD are respectively the smallest and longest sides of a quadrilateral ABCD (see Fig.). Show that \small \angle A>\angle C and \small \angle B>\angle D .

1640157840642

Answer:

1640157864575

Consider \Delta ADC in the above figure :

AD\ <\ CD (Given)

Thus \angle CAD\ > \angle ACD (as angle opposite to smaller side is smaller)

Now consider \Delta ABC ,

We have : BC\ > AB

and \angle BAC\ > \angle ACB

Adding the above result we get,

\angle BAC\ +\ \angle CAD > \angle ACB\ +\ \angle ACD

or \small \angle A>\angle C

Similarly, consider \Delta ABD ,

we have AB\ <\ AD

Therefore \angle ABD\ > \angle ADB

and in \Delta BDC we have,

CD\ >\ BC

and \angle CBD\ >\ \angle CDB

from the above result we have,

\angle ABD\ +\ \angle CBD\ >\ \angle ADB\ +\ \angle CDB

or \small \angle B>\angle D

Hence proved.

Q5 In Fig , \small PR>PQ and PS bisects \small \angle QPR . Prove that \small \angle PSR>\angle PSQ .

1640165632055

Answer:

We are given that \small PR>PQ .

Thus \angle PQR\ =\ \angle PRQ

Also, PS bisects \small \angle QPR , thus :

\angle QPS\ =\ \angle RPS

Now, consider \Delta QPS ,

\angle PSR\ =\ \angle PQR\ +\ \angle QPS (Exterior angle)

Now, consider \Delta PSR ,

\angle PSQ\ =\ \angle PRQ\ +\ \angle RPS

Thus from the above the result we can conclude that :

\small \angle PSR>\angle PSQ

Q6 Show that of all line segments drawn from a given point not on it, the perpendicular line segment is the shortest.

Answer:

Consider a right-angled triangle ABC with right angle at B.

Then \angle B\ >\ \angle A\ or\ \angle C (Since \angle B\ =\ 90^{\circ} )

Thus the side opposite to largest angle is also largest. AC\ >\ BC\ or\ AB

Hence the given statement is proved that all line segments are drawn from a given point, not on it, the perpendicular line segment is the shortest.

Triangles class 9 NCERT solutions - Excercise: 7.5

Q1 ABC is a triangle. Locate a point in the interior of \small \Delta ABC which is equidistant from all the vertices of \small \Delta ABC .

Answer:

We know that circumcenter of a triangle is equidistant from all the vertices. Also, circumcenter is the point of intersection of the perpendicular bisectors of the sides of a triangle.

Thus, draw perpendicular bisectors of each side of the triangle ABC. And let them meet at a point, say O.

Hence O is the required point which is equidistant from all the vertices.

Q2 In a triangle locate a point in its interior which is equidistant from all the sides of the triangle.

Answer:

The required point is called in-centre of the triangle. This point is the intersection of the angle bisectors of the interior angles of a triangle.

Hence the point can be found out in this case just by drawing angle bisectors of all the angles of the triangle.

Q3 In a huge park, people are concentrated at three points (see Fig.):

A : where there are different slides and swings for children,

B : near which a man-made lake is situated,

C : which is near to a large parking and exit.

Where should an icecream parlour be set up so that maximum number of persons can approach it? ( Hint : The parlour should be equidistant from A, B and C)

1640157898864

Answer:

The three main points form a triangle ABC. Now we have to find a point which is equidistant from all the three points.

Thus we need to find the circumcenter of the \Delta ABC .

We know that circumcenter is defined as the point as the intersection point of the perpendicular bisectors of the sides of the triangle.

Hence the required point can be found out by drawing perpendicular bisectors of \Delta ABC .

Q4 Complete the hexagonal and star shaped Rangolies [see Fig. (i) and (ii)] by filling them with as many equilateral triangles of side \small 1 cm as you can. Count the number of triangles in each case. Which has more triangles?

1640157916528

Answer:

For finding the number of triangles we need to find the area of the figure.

Consider the hexagonal structure :

Area of hexagon = 6 \times Area of 1 equilateral

Thus area of the equilateral triangle :

=\ \frac{\sqrt{3}}{4}\times a^2

or =\ \frac{\sqrt{3}}{4}\times 5^2

or =\ \frac{25\sqrt{3}}{4}\ cm^2

So, the area of the hexagon is :

=\6\times \frac{25\sqrt{3}}{4}\ =\ \frac{75\sqrt{3}}{2}\ cm^2

And the area of an equilateral triangle having 1cm as its side is :

=\ \frac{\sqrt{3}}{4}\times 1^2

or =\ \frac{\sqrt{3}}{4}\ cm^2

Hence a number of equilateral triangles that can be filled in hexagon are :

=\ \frac{\frac{75\sqrt{3}}{2}}{\frac{\sqrt{3}}{4}}\ =\ 150

Similarly for star-shaped rangoli :

Area :

=\12\times \frac{\sqrt{3}}{4}\times 5^2 \ =\ 75\sqrt{3}\ cm^2

Thus the number of equilateral triangles are :

=\ \frac{75\sqrt{3}}{\frac{\sqrt{3}}{4}}\ =\ 300

Hence star-shaped rangoli has more equilateral triangles.

NCERT Triangles Class 9 Chapter 7 - Topics

  • Congruence of Triangles
  • Criteria for Congruence of Triangles
  • Some Properties of a Triangle
  • Some More Criteria for Congruence of Triangles
  • Inequalities in a Triangle

More About NCERT Solutions For Class 9 Maths Chapter 7 Triangles

In ch 7 maths class 9, there are a total of 5 exercises with 31 questions in them. NCERT solutions for class 9 maths chapter 7 Triangles is covering the entire chapter including the optional exercises. The chapter is full of properties and theorems that's why the examples and theorems are as important as the practice exercises. There is another aspect to look at the importance of this chapter, apart from school exams this is an essential part of competitive examinations like- CAT, SSC, NTSE, INO, etc.

Also practice class 9 maths ch 7 question answer using the exercise given below.

NCERT Solutions For Class 9 - Chapter Wise

Chapter No.
Chapter Name
Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Triangles
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15

NCERT Solutions For Class 9 - Subject Wise

How To Use NCERT Solutions For Class 9 Maths Chapter 7 Triangles

  • Learn some basic properties of triangles using some books of previous classes.
  • Go through all the theorems and examples given in the chapter.
  • Once you have memorized all the theorems and properties, then you can practice the questions from practice exercises
  • During the practice, you can use NCERT solutions for class 9 maths chapter 7 triangles as a helpmate.
  • After doing all the exercises you can do some questions from past papers.

NCERT Books and NCERT Syllabus

Keep Working Hard and Happy Learning!

Frequently Asked Questions (FAQs)

1. What are the important topics in chapter 7 maths class 9 ?

Congruence of triangles, Criteria for congruence of triangles, Properties of triangles, Inequalities of triangles are the important topics covered in this chapter. Students can practice NCERT solutions for class 9 maths to get command in these concepts that ultimately help during the exams.

2. In NCERT Solutions for class 9 chapter 7 maths, what does the concept of "congruence of triangles" signify?

NCERT Solutions for maths chapter 7 class 9 explain that "congruence of triangles" refers to the condition where two triangles are identical copies of each other and overlap perfectly when superimposed. In simpler terms, two triangles are considered congruent when the angles and sides of one triangle are equivalent to the corresponding angles and sides of the other triangle.

3. Where can I find the complete triangles class 9 solutions ?

Here you will get the detailed NCERT solutions for class 9 maths  by clicking on the link. you can practice these solutions to command the concepts.

4. In what ways can NCERT Solutions for Class 9 Maths Chapter 7 assist in preparing for CBSE exams?

NCERT Solutions for Class 9 Maths Chapter 7 can assist students in achieving a high score and excelling in the subject in their CBSE exams. These solutions are designed based on the latest CBSE syllabus and cover all the essential topics in the respective subject. By practicing these solutions, students can gain confidence and be better prepared to face the board exams. The topics covered in these solutions are fundamental and contribute significantly to obtaining top scores. Moreover, solving problems of varying difficulty levels helps students get accustomed to answering questions of all types. Thus, these solutions are highly recommended for students as a reference and for practice in preparation for their CBSE exams.

5. How many chapters are there in the CBSE class 9 maths ?

There are 15 chapters starting from the number system to probability in the CBSE class 9 maths.

Articles

Get answers from students and experts

A block of mass 0.50 kg is moving with a speed of 2.00 ms-1 on a smooth surface. It strikes another mass of 1.00 kg and then they move together as a single body. The energy loss during the collision is

Option 1)

0.34\; J

Option 2)

0.16\; J

Option 3)

1.00\; J

Option 4)

0.67\; J

A person trying to lose weight by burning fat lifts a mass of 10 kg upto a height of 1 m 1000 times.  Assume that the potential energy lost each time he lowers the mass is dissipated.  How much fat will he use up considering the work done only when the weight is lifted up ?  Fat supplies 3.8×107 J of energy per kg which is converted to mechanical energy with a 20% efficiency rate.  Take g = 9.8 ms−2 :

Option 1)

2.45×10−3 kg

Option 2)

 6.45×10−3 kg

Option 3)

 9.89×10−3 kg

Option 4)

12.89×10−3 kg

 

An athlete in the olympic games covers a distance of 100 m in 10 s. His kinetic energy can be estimated to be in the range

Option 1)

2,000 \; J - 5,000\; J

Option 2)

200 \, \, J - 500 \, \, J

Option 3)

2\times 10^{5}J-3\times 10^{5}J

Option 4)

20,000 \, \, J - 50,000 \, \, J

A particle is projected at 600   to the horizontal with a kinetic energy K. The kinetic energy at the highest point

Option 1)

K/2\,

Option 2)

\; K\;

Option 3)

zero\;

Option 4)

K/4

In the reaction,

2Al_{(s)}+6HCL_{(aq)}\rightarrow 2Al^{3+}\, _{(aq)}+6Cl^{-}\, _{(aq)}+3H_{2(g)}

Option 1)

11.2\, L\, H_{2(g)}  at STP  is produced for every mole HCL_{(aq)}  consumed

Option 2)

6L\, HCl_{(aq)}  is consumed for ever 3L\, H_{2(g)}      produced

Option 3)

33.6 L\, H_{2(g)} is produced regardless of temperature and pressure for every mole Al that reacts

Option 4)

67.2\, L\, H_{2(g)} at STP is produced for every mole Al that reacts .

How many moles of magnesium phosphate, Mg_{3}(PO_{4})_{2} will contain 0.25 mole of oxygen atoms?

Option 1)

0.02

Option 2)

3.125 × 10-2

Option 3)

1.25 × 10-2

Option 4)

2.5 × 10-2

If we consider that 1/6, in place of 1/12, mass of carbon atom is taken to be the relative atomic mass unit, the mass of one mole of a substance will

Option 1)

decrease twice

Option 2)

increase two fold

Option 3)

remain unchanged

Option 4)

be a function of the molecular mass of the substance.

With increase of temperature, which of these changes?

Option 1)

Molality

Option 2)

Weight fraction of solute

Option 3)

Fraction of solute present in water

Option 4)

Mole fraction.

Number of atoms in 558.5 gram Fe (at. wt.of Fe = 55.85 g mol-1) is

Option 1)

twice that in 60 g carbon

Option 2)

6.023 × 1022

Option 3)

half that in 8 g He

Option 4)

558.5 × 6.023 × 1023

A pulley of radius 2 m is rotated about its axis by a force F = (20t - 5t2) newton (where t is measured in seconds) applied tangentially. If the moment of inertia of the pulley about its axis of rotation is 10 kg m2 , the number of rotations made by the pulley before its direction of motion if reversed, is

Option 1)

less than 3

Option 2)

more than 3 but less than 6

Option 3)

more than 6 but less than 9

Option 4)

more than 9

Back to top