CBSE Class 12th Exam Date:17 Feb' 26 - 17 Feb' 26
NCERT Solutions for Exercise 8.2 Class 12 Maths Chapter 8 Application of Integrals are discussed here. These NCERT solutions are created by subject matter expert at Careers360 considering the latest syllabus and pattern of CBSE 2023-24. NCERT solutions for Class 12 Maths chapter 8 exercise 8.2 is similar to the exercise 8.1. Also it has linkages with the previous chapter. Exercise 8.2 Class 12 Maths consists of questions related to areas bounded by two different curves. NCERT solutions for Class 12 Maths chapter 8 exercise 8.2 can be solved easily if the concept is understood from initial few questions. All other questions have the same concept used. Similar questions which are in this exercise are asked in Physics also, hence this exercise becomes more important.
12th class Maths exercise 8.2 answers are designed as per the students demand covering comprehensive, step by step solutions of every problem. Practice these questions and answers to command the concepts, boost confidence and in depth understanding of concepts. Students can find all exercise together using the link provided below.
Question: 1 Find the area of the circle $\small 4x^2+4y^2=9$ which is interior to the parabola $\small x^2=4y$ .
Answer:
The area bounded by the circle $\small 4x^2+4y^2=9$ and the parabola $\small x^2=4y$ .
By solving the equation we get the intersecting point $D(-\sqrt{2},\frac{1}{2})$ and $B(\sqrt{2},\frac{1}{2})$
So, the required area (OBCDO)=2 times the area of (OBCO)
Draw a normal on the x-axis (M = $\sqrt{2},0$ )
Thus the area of OBCO = Area of OMBCO - Area of OMBO
$\\\int_{0}^{\sqrt{2}}\sqrt{\frac{(9-4x^2)}{4}}dx-\int_{0}^{\sqrt{2}}{\frac{x^2}{4}}dx\\ =\frac{1}{2}\int_{0}^{\sqrt{2}}\sqrt{9-4x^2}-\frac{1}{4}\int_{0}^{\sqrt{2}}x^2dx\\ =\frac{1}{4}[x\sqrt{9-4x^2}+\frac{9}{2}\sin^{-1}\frac{2x}{3}]_0^{\sqrt{2}}-\frac{1}{4}[\frac{x^3}{3}]_0^{\sqrt{2}}\\ =\frac{1}{4}[\sqrt{2}+\frac{9}{8}\sin^{-1}\frac{2\sqrt{2}}{3}]-\frac{1}{12}(\sqrt{2})^3\\ =\frac{\sqrt{2}}{12}+\frac{9}{8}\sin^{-1}\frac{2\sqrt{2}}{3}\\ =\frac{1}{2}(\frac{\sqrt{2}}{6}+\frac{9}{4}\sin^{-1}\frac{2\sqrt{2}}{3})$
S0, total area =
$\\=2\times \frac{1}{2}(\frac{\sqrt{2}}{6}+\frac{9}{4}\sin^{-1}\frac{2\sqrt{2}}{3})\\ =\frac{\sqrt{2}}{6}+\frac{9}{4}\sin^{-1}\frac{2\sqrt{2}}{3}$
Question:2 Find the area bounded by curves $\small (x-1)^2+y^2=1$ and $\small x^2+y^2=1$ .
Answer:
Given curves are $\small (x-1)^2+y^2=1$ and $\small x^2+y^2=1$
Point of intersection of these two curves are
$A = \left ( \frac{1}{2},\frac{\sqrt3}{2} \right )$ and $B = \left ( \frac{1}{2},-\frac{\sqrt3}{2} \right )$
We can clearly see that the required area is symmetrical about the x-axis
Therefore,
Area of OBCAO = 2 $\times$ Area of OCAO
Now, join AB such that it intersects the x-axis at M and AM is perpendicular to OC
Coordinates of M = $\left ( \frac{1}{2},0 \right )$
Now,
Area OCAO = Area OMAO + Area CMAC
$=\left [ \int_{0}^{\frac{1}{2}}\sqrt{1-(x-1)^2}dx +\int_{\frac{1}{2}}^{1}\sqrt{1-x^2}dx \right ]$
$=\left [ \frac{x-1}{2}\sqrt{1-(x-1)^2}+\frac{1}{2}\sin^{-1}(x-1) \right ]_{0}^{\frac{1}{2}}+\left [ \frac{x}{2}+\frac{1}{2}\sin^{-1}x \right ]_{\frac{1}{2}}^{1}$
$=\left [- \frac{1}{4}\sqrt{1-(-\frac{1}{2})^2}+\frac{1}{2}\sin^{-1}(\frac{1}{2}-1)-0-\frac{1}{2}\sin^{-1}(-1) \right ]+\left [ 0+\frac{1}{2}\sin^{-1}(1)- \frac{1}{4}\sqrt{1-\left ( \frac{1}{2} \right )^2}-\frac{1}{2}\sin^{-1}\left ( \frac{1}{2} \right )\right ]$
$=\left [ -\frac{\sqrt3}{8}+\frac{1}{2}\left ( -\frac{\pi}{6} \right )-\frac{1}{2}\left ( -\frac{\pi}{2} \right ) \right ]+\left [ \frac{1}{2}\left ( \frac{\pi}{2} \right ) -\frac{\sqrt3}{8}-\frac{1}{2}\left ( \frac{\pi}{6} \right )\right ]$
$= \left [ -\frac{\sqrt3}{8}+\frac{\pi}{6} \right ]+\left [ \frac{\pi}{6}-\frac{\sqrt3}{8} \right ]$
$=2 \left [ -\frac{\sqrt3}{8}+\frac{\pi}{6} \right ]$
Now,
Area of OBCAO = 2 $\times$ Area of OCAO
$=2\times 2 \left [ -\frac{\sqrt3}{8}+\frac{\pi}{6} \right ]$
$=\frac{2\pi}{3}-\frac{\sqrt3}{2}$
Therefore, the answer is $\frac{2\pi}{3}-\frac{\sqrt3}{2}$
Question: 3 Find the area of the region bounded by the curves $\small y=x^2+2,y=x,x=0$ and $\small x=3$ .
Answer:
The area of the region bounded by the curves,
$\small y=x^2+2,y=x,x=0$ and $\small x=3$ is represented by the shaded area OCBAO as
Then, Area OCBAO will be = Area of ODBAO - Area of ODCO
which is equal to
$\int_0^3(x^2+2)dx - \int_0^3x dx$
$= \left ( \frac{x^3}{3}+2x \right )_0^3 -\left ( \frac{x^3}{2} \right )_0^3$
$= \left [ 9+6 \right ] - \left [ \frac{9}{2} \right ] = 15-\frac{9}{2} = \frac{21}{2}units.$
Answer:
So, we draw BL and CM perpendicular to x-axis.
Then it can be observed in the following figure that,
$Area(\triangle ACB) = Area (ALBA)+Area(BLMCB) - Area (AMCA)$
We have the graph as follows:
Equation of the line segment AB is:
$y-0 = \frac{3-0}{1+1}(x+1)$ or $y = \frac{3}{2}(x+1)$
Therefore we have Area of $ALBA$
$=\int_{-1}^1 \frac{3}{2}(x+1)dx =\frac{3}{2}\left [ \frac{x^2}{2}+x \right ]_{-1}^1$
$=\frac{3}{2}\left [ \frac{1}{2}+1-\frac{1}{2}+1 \right ] =3units.$
So, the equation of line segment BC is
$y-3 = \frac{2-3}{3-1}(x-1)$ or $y= \frac{1}{2}(-x+7)$
Therefore the area of BLMCB will be,
$=\int_1^3 \frac{1}{2}(-x+7)dx =\frac{1}{2}\left [ -\frac{x^2}{2}+7x \right ]_1^3$
$= \frac{1}{2}\left [ -\frac{9}{2}+21+\frac{1}{2}-7 \right ] =5units.$
Equation of the line segment AC is,
$y-0 = \frac{2-0}{3+1}(x+1)$ or $y = \frac{1}{2}(x+1)$
Therefore the area of AMCA will be,
$=\frac{1}{2}\int_{-1}^3 (x+1)dx =\frac{1}{2}\left [ \frac{x^2}{2}+x \right ]_{-1}^3$
$=\frac{1}{2}\left ( \frac{9}{2}+3-\frac{1}{2}+1 \right ) = 4units.$
Therefore, from equations (1), we get
The area of the triangle $\triangle ABC =3+5-4 =4units.$
Answer:
The equations of sides of the triangle are $y=2x+1, y =3x+1,\ and\ x=4$ .
ON solving these equations, we will get the vertices of the triangle as $A(0,1),B(4,13),\ and\ C(4,9)$
Thus it can be seen that,
$Area (\triangle ACB) = Area (OLBAO) -Area (OLCAO)$
$= \int_0^4 (3x+1)dx -\int_0^4(2x+1)dx$
$= \left [ \frac{3x^2}{2}+x \right ]_0^4 - \left [ \frac{2x^2}{2}+x \right ]_0^4$
$=(24+4) - (16+4) = 28-20 =8units.$
Question:6 Choose the correct answer.
Smaller area enclosed by the circle $\small x^2+y^2=4$ and the line $\small x+y=2$ is
(A) $\small 2(\pi -2)$ (B) $\small \pi -2$ (C) $\small 2\pi -1$ (D) $\small 2(\pi +2)$
Answer:
So, the smaller area enclosed by the circle, $x^2+y^2 =4$ , and the line, $x+y =2$ , is represented by the shaded area ACBA as
Thus it can be observed that,
Area of ACBA = Area OACBO - Area of $(\triangle OAB)$
$=\int_0^2 \sqrt{4-x^2} dx -\int_0^2 (2-x)dx$
$= \left ( \frac{x}{2}\sqrt{4-x^2}+\frac{4}{2}\sin^{-1}{\frac{x}{2}} \right )_0^2 - \left ( 2x -\frac{x^2}{2} \right )_0^2$
$= \left [ 2.\frac{\pi}{2} \right ] -[4-2]$
$= (\pi -2) units.$
Thus, the correct answer is B.
Question:7 Choose the correct answer.
Area lying between the curves $\small y^2=4x$ and $\small y=2x$ is
(A) $\small \frac{2}{3}$ (B) $\small \frac{1}{3}$ (C) $\small \frac{1}{4}$ (D) $\small \frac{3}{4}$
Answer:
The area lying between the curve, $\small y^2=4x$ and $\small y=2x$ is represented by the shaded area OBAO as
The points of intersection of these curves are $O(0,0)$ and $A (1,2)$ .
So, we draw AC perpendicular to x-axis such that the coordinates of C are (1,0).
Therefore the Area OBAO = $Area(\triangle OCA) -Area (OCABO)$
$=2\left [ \frac{x^2}{2} \right ]_0^1 - 2\left [ \frac{x^{\frac{3}{2}}}{\frac{3}{2}} \right ]_0^1$
$=\left | 1-\frac{4}{3} \right | = \left | -\frac{1}{3} \right | = \frac{1}{3} units.$
Thus the correct answer is B.
The NCERT Class 12 Maths chapter application of Integrals mainly deals with the finding out of an area bounded by two curves. Exercise 8.2 Class 12 Maths is an extension of last exercise only. Hence before doing NCERT solutions for Class 12 Maths chapter 8 exercise 8.2 one should complete the exercise 8.1.
Happy learning!!!
Frequently Asked Questions (FAQs)
Total of 7 questions are there in exercise 8.2 Class 12 Maths.
Area under two curves are discussed in this chapter mainly.
Yes, this chapter holds good weightage so it is important to cover comprehensively.
Moderate to difficult level of questions are asked from this exercise.
Maily area and at higher level volume etc. are discussed in this.
3 exercises are there in this chapter including miscellaneous exercise.
On Question asked by student community
Hello,
The date of 12 exam is depends on which board you belongs to . You should check the exact date of your exam by visiting the official website of your respective board.
Hope this information is useful to you.
Hello,
Class 12 biology questions papers 2023-2025 are available on cbseacademic.nic.in , and other educational website. You can download PDFs of questions papers with solution for practice. For state boards, visit the official board site or trusted education portal.
Hope this information is useful to you.
Hello Pruthvi,
Taking a drop year to reappear for the Karnataka Common Entrance Test (KCET) is a well-defined process. As a repeater, you are fully eligible to take the exam again to improve your score and secure a better rank for admissions.
The main procedure involves submitting a new application for the KCET through the official Karnataka Examinations Authority (KEA) website when registrations open for the next academic session. You must pay the required application fee and complete all formalities just like any other candidate. A significant advantage for you is that you do not need to retake your 12th board exams. Your previously secured board marks in the qualifying subjects will be used again. Your new KCET rank will be calculated by combining these existing board marks with your new score from the KCET exam. Therefore, your entire focus during this year should be on preparing thoroughly for the KCET to achieve a higher score.
For more details about the KCET Exam preparation,
CLICK HERE.
I hope this answer helps you. If you have more queries, feel free to share your questions with us, and we will be happy to assist you.
Thank you, and I wish you all the best in your bright future.
Yes, you can switch from Science in Karnataka State Board to Commerce in CBSE for 12th. You will need a Transfer Certificate from your current school and meet the CBSE school’s admission requirements. Since you haven’t studied Commerce subjects like Accountancy, Economics, and Business Studies, you may need to catch up before or during 12th. Not all CBSE schools accept direct admission to 12th from another board, so some may ask you to join Class 11 first. Make sure to check the school’s rules and plan your subject preparation.
Hello
For the 12th CBSE Hindi Medium board exam, important questions usually come from core chapters like “Madhushala”, “Jhansi ki Rani”, and “Bharat ki Khoj”.
Questions often include essay writing, letter writing, and comprehension passages. Grammar topics like Tenses, Voice Change, and Direct-Indirect Speech are frequently asked.
Students should practice poetry questions on themes and meanings. Important questions also cover summary writing and translation from Hindi to English or vice versa.
Previous years’ question papers help identify commonly asked questions.
Focus on writing practice to improve handwriting and presentation. Time management during exams is key to answering all questions effectively.
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters