NCERT Solutions for Miscellaneous Exercise Chapter 8 Class 12 - Application of Integrals

NCERT Solutions for Miscellaneous Exercise Chapter 8 Class 12 - Application of Integrals

Upcoming Event

CBSE Class 12th Exam Date:17 Feb' 26 - 17 Feb' 26

Komal MiglaniUpdated on 08 May 2025, 02:31 PM IST

Integrals are an inseparable part of calculus, which can solve real-world problems related to areas and volumes by summing up infinitely many small pieces to make a whole. The application of integrals delves into the aspect of how integrals can be used to solve problems related to real-life scenarios. The miscellaneous exercise of the chapter, Application of Integrals, combines all the key concepts covered in the chapter, so that the students can enhance their understanding by a comprehensive review of the entire chapter and get better at problem-solving. This article on the NCERT Solutions for Miscellaneous Exercise of Class 12, Chapter 8 - Application of Integrals, offers detailed and easy-to-understand solutions for the exercise problems, so that students can strengthen their understanding of the application of integrals. For syllabus, notes, exemplar solutions and PDF, refer to this link: NCERT.

This Story also Contains

  1. Application of Integrals Class 12 Chapter 8 Miscellaneous: Exercise
  2. Topics covered in Chapter 8, Application of Integrals: Miscellaneous Exercise
  3. NCERT Solutions Subject Wise
  4. NCERT Exemplar Solutions Subject Wise

Application of Integrals Class 12 Chapter 8 Miscellaneous: Exercise

Question 1: Find the area under the given curves and given lines:

(i) $\small y=x^2,x=1,x=2$ and $\small x$ -axis

Answer:

The area bounded by the curve $\small y=x^2,x=1,x=2$ and $\small x$ -axis
1594728126741
The area of the required region = area of ABCD
$\\=\int_{1}^{2}ydx\\ =\int_{1}^{2}x^2dx\\ =[\frac{x^3}{3}]_1^2\\ =\frac{7}{3}$
Hence the area of shaded region is 7/3 units

Question 1: Find the area under the given curves and given lines:

(ii) $\small y=x^4,x=1,x=5$ and $\small x$ -axis

Answer:

The area bounded by the curev $\small y=x^4,x=1,x=5$ and $\small x$ -axis

1594728286834
The area of the required region = area of ABCD
$\\=\int_{1}^{5}ydx\\ =\int_{1}^{2}x^4dx\\ =[\frac{x^5}{5}]_1^2\\ =625-\frac{1}{5}\\ =624.8$
Hence the area of the shaded region is 624.8 units


Question 2: Sketch the graph of $\small y=|x+3|$ and evaluate $\small \int_{-6}^{0}|x+3|dx.$

Answer:

y=|x+3|

the given modulus function can be written as

x+3>0

x>-3

for x>-3

y=|x+3|=x+3

x+3<0

x<-3

For x<-3

y=|x+3|=-(x+3)

1654760706138

Integral to be evaluated is

$\\\int_{-6}^{0}|x+3|dx\\ =\int_{-6}^{-3}(-x-3)dx+\int_{-3}^{0}(x+3)dx\\ =[-\frac{x^{2}}{2}-3x]_{-6}^{-3}+[\frac{x^{2}}{2}+3x]_{-3}^{0}\\ =(-\frac{9}{2}+9)-(-18+18)+0-(\frac{9}{2}-9)\\ =9$

Question 3: Find the area bounded by the curve $\small y=\sin x$ between $\small x=0$ and $\small x=2\pi$ .

Answer:

The graph of y=sinx is as follows

1654760755958

We need to find the area of the shaded region

ar(OAB)+ar(BCD)

=2ar(OAB)

$\\=2\times \int_{0}^{\pi }sinxdx\\ =2\times [-cosx]_{0}^{\pi }\\ =2\times [-(-1)-(-1)]\\ =4$

The bounded area is 4 units.




Question 4: Choose the correct answer.

Area bounded by the curve $\small y=x^3$ , the $\small x$ -axis and the ordinates $\small x=-2$ and $\small x=1$ is

(A) $\small -9$ (B) $\small \frac{-15}{4}$ (C) $\small \frac{15}{4}$ (D) $\small \frac{17}{4}$

Answer:

1654765098486

Hence the required area

$=\int_{-2}^1 ydx$

$=\int_{-2}^1 x^3dx = \left [ \frac{x^4}{4} \right ]_{-2}^1$

$= \left [ \frac{x^4}{4} \right ]^0_{-2} + \left [ \frac{x^4}{4} \right ]^1_{0}$

$= \left [ 0-\frac{(-2)^4}{4} \right ] + \left [ \frac{1}{4} - 0 \right ]$

$= -4+\frac{1}{4} = \frac{-15}{4}$

Therefore the correct answer is B.

Question 5: Choose the correct answer.

T he area bounded by the curve $\small y=x|x|$ , $\small x$ -axis and the ordinates $\small x=-1$ and $\small x=1$ is given by

(A) $\small 0$ (B) $\small \frac{1}{3}$ (C) $\small \frac{2}{3}$ (D) $\small \frac{4}{3}$

[ Hint : $y=x^2$ if $x> 0$ and $y=-x^2$ if $x<0$ . ]

Answer:

The required area is

$\\2\int_{0}^{1}x^{2}dx\\ =2\left [ \frac{x^{3}}{3} \right ]_{0}^{1}\\ =\frac{2}{3}\ units$


Also Read,

Topics covered in Chapter 8, Application of Integrals: Miscellaneous Exercise

The main topics covered in class 12 maths chapter 8 of Application of Integrals, Miscellaneous Exercise are:

  • Area under curves: In this topic, we will calculate the area between a curve and the coordinate axes in a specific interval. For example, the area under the curve $y=f(x)$, between two points on the X axis, as $x=a$ and $x=b$, can be found using definite integrals as: $A=\int_a^b f(x) d x$.
  • Area between two curves: This topic deals with the area between two curves. Let $f(x)$ and $g(x)$ be two curves in the interval $[a,b]$, then the area can be found using the formula, Area $=\int_a^b[f(x)-g(x)] d x$.

Also Read,

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook

Frequently Asked Questions (FAQs)

Q: How many questions are there in Miscellaneous exercise Chapter 8 ?
A:

There are 19 questions total in Miscellaneous exercise Chapter 8.

Q: Can we find an area without using integrals ?
A:

Simple figures like triangle, circle etc. can be tackled without integration but not the complex ones. 

Q: Are questions repeated in the examination from this Chapter ?
A:

Yes, in the Board exam the questions are repeated every year. 

Q: What is the level of questions asked from this Chapter ?
A:

Moderate level questions are asked from this Chapter. 

Q: Can one skip Miscellaneous exercise ?
A:

No, as it has some good questions, miscellaneous exercise must be done. 

Q: What is the time it will take to complete for the first time ?
A:

It will take around 5-6 hours to complete for the first time.

Articles
|
Upcoming School Exams
Ongoing Dates
Maharashtra SSC Board Application Date

15 Sep'25 - 10 Nov'25 (Online)

Certifications By Top Providers
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Hello,

Since you have passed 10th and 12th from Delhi and your residency is Delhi, but your domicile is UP, here’s how NEET counselling works:

1. Counselling Eligibility: For UP NEET counselling, your UP domicile makes you eligible, regardless of where your schooling was. You can participate in UP state counselling according to your NEET rank.

2. Delhi Counselling: For Delhi state quota, usually 10th/12th + residency matters. Since your school and residency are in Delhi, you might also be eligible for Delhi state quota, but it depends on specific state rules.

So, having a Delhi Aadhaar will not automatically reject you in UP counselling as long as you have a UP domicile certificate.

Hope you understand.

Hello,

You can access Free CBSE Mock tests from Careers360 app or website. You can get the mock test from this link : CBSE Class 12th Free Mock Tests

Hope it helps !

Yes, it is possible for a student who has done their 12th grade already to take upto 4 exams of their requirement. This is possible through the NIOS, NATIONAL INSTITUTE OF OPEN SCHOOLING. Get more info about the exam and the board through the following link.

https://school.careers360.com/exams/nios-class-12

For CBSE the PREVIOUS YEARS PAPERS can be accessed through the following link for the Concerned subjec by careers360.

https://school.careers360.com/boards/cbse/cbse-class-12-physics-last-5-years-question-papers-free-pdf-download

Consequently Careers360 does also have a chapter wise scheme of PYQs, you can access the STUDY MATERIAL (PYQs.) from the following link -

https://school.careers360.com/boards/cbse/cbse-question-bank

Thankyou.


Hello,

Sorry, but JoSAA does not accept marks from two different boards for the same qualification during counselling. However, you can use your NIOS marks to meet the JEE Main/Advanced eligibility criteria if they are better than your CBSE marks. You can use your NIOS marks for the eligibility check, but when presenting your documents, you may be required to present both marksheets and the one with the higher marks for each subject will be considered.

I hope it will clear your query!!