NCERT Solutions for Miscellaneous Exercise Chapter 8 Class 12 - Application of Integrals

NCERT Solutions for Miscellaneous Exercise Chapter 8 Class 12 - Application of Integrals

Komal MiglaniUpdated on 08 May 2025, 02:31 PM IST

Integrals are an inseparable part of calculus, which can solve real-world problems related to areas and volumes by summing up infinitely many small pieces to make a whole. The application of integrals delves into the aspect of how integrals can be used to solve problems related to real-life scenarios. The miscellaneous exercise of the chapter, Application of Integrals, combines all the key concepts covered in the chapter, so that the students can enhance their understanding by a comprehensive review of the entire chapter and get better at problem-solving. This article on the NCERT Solutions for Miscellaneous Exercise of Class 12, Chapter 8 - Application of Integrals, offers detailed and easy-to-understand solutions for the exercise problems, so that students can strengthen their understanding of the application of integrals. For syllabus, notes, exemplar solutions and PDF, refer to this link: NCERT.

This Story also Contains

  1. Application of Integrals Class 12 Chapter 8 Miscellaneous: Exercise
  2. Topics covered in Chapter 8, Application of Integrals: Miscellaneous Exercise
  3. NCERT Solutions Subject Wise
  4. NCERT Exemplar Solutions Subject Wise

Application of Integrals Class 12 Chapter 8 Miscellaneous: Exercise

Question 1: Find the area under the given curves and given lines:

(i) $\small y=x^2,x=1,x=2$ and $\small x$ -axis

Answer:

The area bounded by the curve $\small y=x^2,x=1,x=2$ and $\small x$ -axis
1594728126741
The area of the required region = area of ABCD
$\\=\int_{1}^{2}ydx\\ =\int_{1}^{2}x^2dx\\ =[\frac{x^3}{3}]_1^2\\ =\frac{7}{3}$
Hence the area of shaded region is 7/3 units

Question 1: Find the area under the given curves and given lines:

(ii) $\small y=x^4,x=1,x=5$ and $\small x$ -axis

Answer:

The area bounded by the curev $\small y=x^4,x=1,x=5$ and $\small x$ -axis

1594728286834
The area of the required region = area of ABCD
$\\=\int_{1}^{5}ydx\\ =\int_{1}^{2}x^4dx\\ =[\frac{x^5}{5}]_1^2\\ =625-\frac{1}{5}\\ =624.8$
Hence the area of the shaded region is 624.8 units


Question 2: Sketch the graph of $\small y=|x+3|$ and evaluate $\small \int_{-6}^{0}|x+3|dx.$

Answer:

y=|x+3|

the given modulus function can be written as

x+3>0

x>-3

for x>-3

y=|x+3|=x+3

x+3<0

x<-3

For x<-3

y=|x+3|=-(x+3)

1654760706138

Integral to be evaluated is

$\\\int_{-6}^{0}|x+3|dx\\ =\int_{-6}^{-3}(-x-3)dx+\int_{-3}^{0}(x+3)dx\\ =[-\frac{x^{2}}{2}-3x]_{-6}^{-3}+[\frac{x^{2}}{2}+3x]_{-3}^{0}\\ =(-\frac{9}{2}+9)-(-18+18)+0-(\frac{9}{2}-9)\\ =9$

Question 3: Find the area bounded by the curve $\small y=\sin x$ between $\small x=0$ and $\small x=2\pi$ .

Answer:

The graph of y=sinx is as follows

1654760755958

We need to find the area of the shaded region

ar(OAB)+ar(BCD)

=2ar(OAB)

$\\=2\times \int_{0}^{\pi }sinxdx\\ =2\times [-cosx]_{0}^{\pi }\\ =2\times [-(-1)-(-1)]\\ =4$

The bounded area is 4 units.




Question 4: Choose the correct answer.

Area bounded by the curve $\small y=x^3$ , the $\small x$ -axis and the ordinates $\small x=-2$ and $\small x=1$ is

(A) $\small -9$ (B) $\small \frac{-15}{4}$ (C) $\small \frac{15}{4}$ (D) $\small \frac{17}{4}$

Answer:

1654765098486

Hence the required area

$=\int_{-2}^1 ydx$

$=\int_{-2}^1 x^3dx = \left [ \frac{x^4}{4} \right ]_{-2}^1$

$= \left [ \frac{x^4}{4} \right ]^0_{-2} + \left [ \frac{x^4}{4} \right ]^1_{0}$

$= \left [ 0-\frac{(-2)^4}{4} \right ] + \left [ \frac{1}{4} - 0 \right ]$

$= -4+\frac{1}{4} = \frac{-15}{4}$

Therefore the correct answer is B.

Question 5: Choose the correct answer.

T he area bounded by the curve $\small y=x|x|$ , $\small x$ -axis and the ordinates $\small x=-1$ and $\small x=1$ is given by

(A) $\small 0$ (B) $\small \frac{1}{3}$ (C) $\small \frac{2}{3}$ (D) $\small \frac{4}{3}$

[ Hint : $y=x^2$ if $x> 0$ and $y=-x^2$ if $x<0$ . ]

Answer:

The required area is

$\\2\int_{0}^{1}x^{2}dx\\ =2\left [ \frac{x^{3}}{3} \right ]_{0}^{1}\\ =\frac{2}{3}\ units$


Also Read,

Topics covered in Chapter 8, Application of Integrals: Miscellaneous Exercise

The main topics covered in class 12 maths chapter 8 of Application of Integrals, Miscellaneous Exercise are:

  • Area under curves: In this topic, we will calculate the area between a curve and the coordinate axes in a specific interval. For example, the area under the curve $y=f(x)$, between two points on the X axis, as $x=a$ and $x=b$, can be found using definite integrals as: $A=\int_a^b f(x) d x$.
  • Area between two curves: This topic deals with the area between two curves. Let $f(x)$ and $g(x)$ be two curves in the interval $[a,b]$, then the area can be found using the formula, Area $=\int_a^b[f(x)-g(x)] d x$.
Aakash Repeater Courses

Take Aakash iACST and get instant scholarship on coaching programs.

Also Read,

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook

NCERT Exemplar Solutions Subject Wise

Here are some links to subject-wise solutions for the NCERT exemplar class 12.

Frequently Asked Questions (FAQs)

Q: How many questions are there in Miscellaneous exercise Chapter 8 ?
A:

There are 19 questions total in Miscellaneous exercise Chapter 8.

Q: Can we find an area without using integrals ?
A:

Simple figures like triangle, circle etc. can be tackled without integration but not the complex ones. 

Q: Are questions repeated in the examination from this Chapter ?
A:

Yes, in the Board exam the questions are repeated every year. 

Q: What is the level of questions asked from this Chapter ?
A:

Moderate level questions are asked from this Chapter. 

Q: Can one skip Miscellaneous exercise ?
A:

No, as it has some good questions, miscellaneous exercise must be done. 

Q: What is the time it will take to complete for the first time ?
A:

It will take around 5-6 hours to complete for the first time.

Articles
|
Next
Upcoming School Exams
Ongoing Dates
UP Board 12th Others

10 Aug'25 - 1 Sep'25 (Online)

Ongoing Dates
UP Board 10th Others

11 Aug'25 - 6 Sep'25 (Online)

Certifications By Top Providers
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Hello

Yes, if you’re not satisfied with your marks even after the improvement exam, many education boards allow you to reappear as a private candidate next year to improve your scores. This means you can register independently, study at your own pace, and take the exams without attending regular classes. It’s a good option to improve your results and open up more opportunities for higher studies or careers. Just make sure to check the specific rules and deadlines of your education board so you don’t miss the registration window. Keep your focus, and you will do better next time.

Hello Aspirant,

Yes, in the case that you appeared for the 2025 improvement exam and your roll number is different from what was on the previous year’s marksheet, the board will usually release a new migration certificate. This is because the migration certificate will reflect the most recent exam details, roll number and passing year. You can apply to get it from your board using the process prescribed by them either online or through your school/college.

Yes, if you miss the 1st CBSE exam due to valid reasons, then you can appear for the 2nd CBSE compartment exam.

From the academic year 2026, the board will conduct the CBSE 10th exam twice a year, while the CBSE 12th exam will be held once, as per usual. For class 10th, the second phase exam will act as the supplementary exam. Check out information on w hen the CBSE first exam 2026 will be conducted and changes in 2026 CBSE Board exam by clicking on the link .

If you want to change your stream to humanities after getting a compartment in one subject in the CBSE 12th Board Exam , you actually have limited options to qualify for your board exams. You can prepare effectively and appear in the compartment examination for mathematics again. If you do not wish to continue with the current stream, you can take readmission in the Humanities stream and start from Class 11th again, and continue studying for two more years to qualify for the 12th examination.

The GUJCET Merit List is prepared based on the Class 12th marks and GUJCET marks received by the students. CBSE students who are not from the Gujarat board can definitely compete with GSEB students, as their eligibility is decided based on the combined marks scored by them in GUJCET and the 12th board. The weightage of the GUJCET score is 40% and the weightage of the class 12 scores is 60%.