NCERT Solutions for Exercise 2.4 Class 9 Maths Chapter 2 - Polynomials

NCERT Solutions for Exercise 2.4 Class 9 Maths Chapter 2 - Polynomials

Edited By Vishal kumar | Updated on Oct 04, 2023 10:40 AM IST

NCERT Solutions for Class 9 Maths Chapter 2: Polynomials Exercise 2.4- Download Free PDF

NCERT Solutions for Class 9 Maths Chapter 2: Polynomials Exercise 2.4- Download Free PDF- NCERT Solutions for exercise 2.4 Class 9 Maths Chapter 2 Polynomials Exercise 2.4 is the part of NCERT solutions for Class 9 Maths. A polynomial expression is an equation made up of variables (or indeterminate variables), terms, exponents, and constants. If we talk about exercise 2.4 Class 9 Maths is an exercise of the chapter introduced and followed by exercise 2.3 that includes some numerical problems. Here in this exercise 2.4, we will be studying the factorisation of Polynomials.

The Class 9 Maths chapter 2 exercise 2.4 lists some basic level practice problems on the polynomials chapter that consist of factorization of higher degree Polynomials. The Class 9 Maths chapter 2 exercise 2.4 covers the topics like factorization theorem enclosed with examples. NCERT solutions for Class 9 Maths chapter 2 exercise 2.4 gives an end-to-end idea of the whole chapter.

The 9th class maths exercise 2.4 answers have been expertly crafted by subject experts, and presented in detail and easy-to-understand language. This exercise comprises a total of five questions, each with multiple parts. Students can conveniently access these class 9 maths chapter 2 exercise 2.4 solutions in PDF format, allowing offline usage without the need for an internet connection, and they are provided free of charge. Along with Class 9 Maths chapter 2 exercise 2.4, the following exercises are also present. Along with Class 9 Maths chapter 1 exercise 2.4 the following exercises are also present.

NCERT Solutions for Class 9 Maths Chapter 2 – Polynomials Exercise 2.4

Download PDF


Access Polynomials Class 9 Chapter 2 Exercise: 2.4

Q1 (i) Determine which of the following polynomials has (x + 1) a factor : x^3 + x^2 +x + 1

Answer:

Zero of polynomial (x + 1) is -1.

If (x + 1) is a factor of polynomial p(x)=x^3 + x^2 +x + 1

Then, p(-1) must be equal to zero

Now,

\Rightarrow p(-1)=(-1)^3+(-1)^2-1+1

\Rightarrow p(-1)=-1+1-1+1 = 0

Therefore, (x + 1) is a factor of polynomial p(x)=x^3 + x^2 +x + 1

Q1 (ii) Determine which of the following polynomials has (x + 1) a factor : x^4 + x^3 + x^2 +x + 1

Answer:

Zero of polynomial (x + 1) is -1.

If (x + 1) is a factor of polynomial p(x)=x^4 + x^3 + x^2 +x + 1

Then, p(-1) must be equal to zero

Now,

\Rightarrow p(-1)=(-1)^4+(-1)^3+(-1)^2-1+1

\Rightarrow p(-1)=1-1+1-1+1 = 1\neq 0

Therefore, (x + 1) is not a factor of polynomial p(x)=x^4 + x^3 + x^2 +x + 1

Q1 (iii) Determine which of the following polynomials has (x + 1) a factor : x^4 + 3x^3 + 3x^2 +x + 1

Answer:

Zero of polynomial (x + 1) is -1.

If (x + 1) is a factor of polynomial p(x)=x^4 + 3x^3 + 3x^2 +x + 1

Then, p(-1) must be equal to zero

Now,

\Rightarrow p(-1)=(-1)^4+3(-1)^3+3(-1)^2-1+1

\Rightarrow p(-1)=1-3+3-1+1 = 1\neq 0

Therefore, (x + 1) is not a factor of polynomial p(x)=x^4 + 3x^3 + 3x^2 +x + 1

Q1 (iv) Determine which of the following polynomials has (x + 1) a factor : x^3 - x^2 -(2 + \sqrt2)x + \sqrt2

Answer:

Zero of polynomial (x + 1) is -1.

If (x + 1) is a factor of polynomial p(x)=x^3 - x^2 -(2 + \sqrt2)x + \sqrt2

Then, p(-1) must be equal to zero

Now,

\Rightarrow p(-1)=(-1)^3-(-1)^2-(2+\sqrt2)(-1)+\sqrt2

\Rightarrow p(-1)=-1-1+2+\sqrt2+\sqrt2 = 2\sqrt2\neq 0

Therefore, (x + 1) is not a factor of polynomial p(x)=x^3 - x^2 -(2 + \sqrt2)x + \sqrt2

Q2 (i) Use the Factor Theorem to determine whether g(x) is a factor of p(x) in the following case: p(x) = 2x^3 + x^2 - 2x - 1,\ g(x) = x + 1

Answer:

Zero of polynomial g(x)=x+1 is -1

If g(x)=x+1 is factor of polynomial p(x) = 2x^3 + x^2 - 2x - 1

Then, p(-1) must be equal to zero

Now,

\Rightarrow p(-1)= 2(-1)^3+(-1)^2-2(-1)-1

\Rightarrow p(-1)= -2+1+2-1 = 0

Therefore, g(x)=x+1 is factor of polynomial p(x) = 2x^3 + x^2 - 2x - 1

Q2 (ii) Use the Factor Theorem to determine whether g(x) is a factor of p(x) in the following case: p(x) = x^3 + 3x^2 + 3x + 1, \ g(x) = x + 2

Answer:

Zero of polynomial g(x)=x+2 is -2

If g(x)=x+2 is factor of polynomial p(x) = x^3 + 3x^2 + 3x + 1

Then, p(-2) must be equal to zero

Now,

\Rightarrow p(-2) = (-2)^3 + 3(-2)^2 + 3(-2) + 1

\Rightarrow p(-2)= -8+12-6+1 = -1\neq 0

Therefore, g(x)=x+2 is not a factor of polynomial p(x) = x^3 + 3x^2 + 3x + 1

Q2 (iii) Use the Factor Theorem to determine whether g(x) is a factor of p(x) in the following case: p(x) = x^3 - 4x^2 + x + 6, \ g(x) = x - 3

Answer:

Zero of polynomial g(x)=x-3 is 3

If g(x)=x-3 is factor of polynomial p(x) = x^3 - 4x^2 + x + 6

Then, p(3) must be equal to zero

Now,

\Rightarrow p(3) = (3)^3 - 4(3)^2 + 3 + 6

\Rightarrow p(3) = 27-36+3+6=0

Therefore, g(x)=x-3 is a factor of polynomial p(x) = x^3 - 4x^2 + x + 6

Q3 (i) Find the value of k , if x - 1 is a factor of p(x) in the following case: p(x) = x^2 + x + k

Answer:

Zero of polynomial x - 1 is 1

If x - 1 is factor of polynomial p(x) = x^2 + x + k

Then, p(1) must be equal to zero

Now,

\Rightarrow p(1) = (1)^2 + 1 + k

\Rightarrow p(1) =0

\Rightarrow 2+k = 0

\Rightarrow k = -2

Therefore, value of k is -2

Q3 (ii) Find the value of k , if x - 1 is a factor of p(x) in the following case: p(x) = 2x^2 + kx + \sqrt2

Answer:

Zero of the polynomial x - 1 is 1

If x - 1 is factor of polynomial p(x) = 2x^2 + kx + \sqrt2

Then, p(1) must be equal to zero

Now,

\Rightarrow p(1) = 2(1)^2 + k(1) + \sqrt2

\Rightarrow p(1) =0

\Rightarrow 2+k +\sqrt2= 0

\Rightarrow k = -(2+\sqrt2)

Therefore, value of k is -(2+\sqrt2)

Q3 (iii) Find the value of k , if x - 1 is a factor of p(x) in the following case: p(x) = kx^2-\sqrt2 x + 1

Answer:

Zero of polynomial x - 1 is 1

If x - 1 is factor of polynomial p(x) = kx^2-\sqrt2 x + 1

Then, p(1) must be equal to zero

Now,

\Rightarrow p(1) = k(1)^2 -\sqrt2(1) + 1

\Rightarrow p(1) =0

\Rightarrow k -\sqrt2 +1= 0

\Rightarrow k = -1+\sqrt2

Therefore, value of k is -1+\sqrt2

Q3 (iv) the value of k , if x - 1 is a factor of p(x) in the following case: p(x) = kx^2 -3 x + k

Answer:

Zero of polynomial x - 1 is 1

If x - 1 is factor of polynomial p(x) = kx^2 -3 x + k

Then, p(1) must be equal to zero

Now,

\Rightarrow p(1) = k(1)^2 -3(1) + k

\Rightarrow p(1) =0

\Rightarrow k -3+k= 0

\Rightarrow k = \frac{3}{2}
Therefore, value of k is \frac{3}{2}

Q4 (i) Factorise : 12x^2 - 7x + 1

Answer:

Given polynomial is 12x^2 - 7x + 1

We need to factorise the middle term into two terms such that their product is equal to 12 \times 1 = 12 and their sum is equal to -7

We can solve it as

\Rightarrow 12x^2 - 7x + 1

\Rightarrow 12x^2-3x-4x+1 (\because -3 \times -4 = 12 \ \ and \ \ -3+(-4) = -7)

\Rightarrow 3x(4x-1)-1(4x-1)

\Rightarrow (3x-1)(4x-1)

Q4 (ii) Factorise : 2x^2 + 7x + 3

Answer:

Given polynomial is 2x^2 + 7x + 3

We need to factorise the middle term into two terms such that their product is equal to 2 \times 3 = 6 and their sum is equal to 7

We can solve it as

\Rightarrow 12x^2 - 7x + 1

\Rightarrow 2x^2+6x+x+3 (\because 6 \times 1 = 6 \ \ and \ \ 6+1 = 7)

\Rightarrow 2x(x+3)+1(x+3)

\Rightarrow (2x+1)(x+3)

Q4 (iii) Factorise : 6x^2 +5x - 6

Answer:

Given polynomial is 6x^2 +5x - 6

We need to factorise the middle term into two terms such that their product is equal to 6 \times -6 =-3 6 and their sum is equal to 5

We can solve it as

\Rightarrow 6x^2 +5x - 6

\Rightarrow 6x^2 +9x -4x - 6 (\because 9 \times -4 = -36 \ \ and \ \ 9+(-4) = 5)

\Rightarrow 3x(2x+3)-2(2x+3)

\Rightarrow (2x+3)(3x-2)

Q4 (iv) Factorise : 3x^2 - x - 4

Answer:

Given polynomial is 3x^2 - x - 4

We need to factorise the middle term into two terms such that their product is equal to 3 \times -4 =-12 and their sum is equal to -1

We can solve it as

\Rightarrow 3x^2 - x - 4

\Rightarrow 3x^2 -4 x+3x - 4 (\because 3 \times -4 = -12 \ \ and \ \ 3+(-4) = -1)

\Rightarrow x(3x-4)+1(3x-4)

\Rightarrow (x+1)(3x-4)

Q5 (i) Factorise : x^3 - 2x^2 - x +2

Answer:

Given polynomial is x^3 - 2x^2 - x +2

Now, by hit and trial method we observed that (x+1) is one of the factors of the given polynomial.

By long division method, we will get

1639996302612 We know that Dividend = (Divisor \times Quotient) + Remainder

x^3 - 2x^2 - x +2 = (x+1)(x^2-3x+2)+0

= (x+1)(x^2-2x-x+2)

= (x+1)(x-2)(x-1)

Therefore, on factorization of x^3 - 2x^2 - x +2 we will get (x+1)(x-2)(x-1)

Q5 (ii) Factorise : x^3 - 3x^2 -9x -5

Answer:

Given polynomial is x^3 - 3x^2 -9x -5

Now, by hit and trial method we observed that (x+1) is one of the factors of the given polynomial.

By long division method, we will get

1639996323635 We know that Dividend = (Divisor \times Quotient) + Remainder

x^3 - 3x^2 -9x -5=(x+1)(x^2-4x-5)

= (x+1)(x^2-5x+x-5)

= (x+1)(x-5)(x+1)

Therefore, on factorization of x^3 - 3x^2 -9x -5 we will get (x+1)(x-5)(x+1)

Q5 (iii) Factorise : x^3 + 13x^2 + 32x + 20

Answer:

Given polynomial is x^3 + 13x^2 + 32x + 20

Now, by hit and trial method we observed that (x+1) is one of the factore of given polynomial.

By long division method, we will get

1639996347806 We know that Dividend = (Divisor \times Quotient) + Remainder

x^3 + 13x^2 + 32x + 20=(x+1)(x^2+12x+20)

= (x+1)(x^2+10x+2x+20)

= (x+1)(x+10)(x+2)

Therefore, on factorization of x^3 + 13x^2 + 32x + 20 we will get (x+1)(x+10)(x+2)

Q5 (iv) Factorise : 2y^3 + y^2 - 2y - 1

Answer:

Given polynomial is 2y^3 + y^2 - 2y - 1

Now, by hit and trial method we observed that (y-1) is one of the factors of the given polynomial.

By long division method, we will get

1639996378575 We know that Dividend = (Divisor \times Quotient) + Remainder

2y^3 + y^2 - 2y - 1= (y-1)(2y^2+3y+1)

= (y-1)(2y^2+2y+y+1)

= (y-1)(2y+1)(y+1)

Therefore, on factorization of 2y^3 + y^2 - 2y - 1 we will get (y-1)(2y+1)(y+1)

More About NCERT Solutions For Class 9 Maths Chapter 2 Exercise 2.4

The problems from the concepts of factorization of polynomials are covered in exercise 2.4 Class 9 Maths. The Initial questions of NCERT solutions for Class 9 Maths chapter 2 exercise 2.4 is to determine the factor of given polynomial expression. And later on questions of Class 9 Maths chapter 2 exercise, 2.4 is to factorize the given polynomial expression using splitting the middle term, the concept of division of polynomials will also be discussed in Class 9 Maths chapter 2 exercise 2.4.

Key Features of Exercise 2.4 Class 9 Maths

  • Comprehensive Exercise: 9th class maths exercise 2.4 answers is a comprehensive exercise that covers various topics related to polynomials.
  • Conceptual Clarity: The primary objective of this class 9 maths chapter 2 exercise 2.4 is to help students develop a clear understanding of polynomial factorization and related theorems.
  • Diverse Problem Set: exercise 2.4 class 9 maths offers a variety of problems with different levels of complexity, allowing students to enhance their skills in polynomial factorization.
  • Expert-Created Solutions: class 9 maths ex 2.4 Solutions to the problems are typically provided in the exercise. These solutions are crafted by subject matter experts to ensure accuracy and clarity.
  • PDF Availability: Students can often download a PDF version of the ex 2.4 class 9 solutions, allowing them to access and use them offline. This resource is provided at no cost.

Also Read| Polynomials Class 9 Notes

Also see-

NCERT Solutions of Class 10 Subject Wise

Subject Wise NCERT Exemplar Solutions

Frequently Asked Questions (FAQs)

1. What is the middle term theorem?

Middle term theorem is used to find roots/zeros of equation ax² + bx + c= 0 that means we have to find that roots whose sum = -(b/a) and the product is equal to c/a  

2. What is the degree of Constant Polynomial expression?

The degree of the constant polynomial is 0. Taking example is, 2 is a constant polynomial that is equal to 2x^0, so its degree is 0.

3. How many types of questions are there in chapter 2 exercise 2.4?

There are a total of 5 types of questions in the exercise 2.4

4. What is the sum of roots of polynomial 3x² +6x + 9=0?

Comparing the above  polynomial with  ax² + bx + c= 0, a= 3, b = 6 and c= 9, hence sum of  roots = -(b/a) = -(6/3) = -2

5. What is the product of roots of the above polynomial?

 Product of roots = c/a = 9/3 = 3 

Articles

Upcoming School Exams

Application Date:07 October,2024 - 22 November,2024

Application Date:07 October,2024 - 22 November,2024

Application Correction Date:08 October,2024 - 27 November,2024

View All School Exams
Get answers from students and experts

A block of mass 0.50 kg is moving with a speed of 2.00 ms-1 on a smooth surface. It strikes another mass of 1.00 kg and then they move together as a single body. The energy loss during the collision is

Option 1)

0.34\; J

Option 2)

0.16\; J

Option 3)

1.00\; J

Option 4)

0.67\; J

A person trying to lose weight by burning fat lifts a mass of 10 kg upto a height of 1 m 1000 times.  Assume that the potential energy lost each time he lowers the mass is dissipated.  How much fat will he use up considering the work done only when the weight is lifted up ?  Fat supplies 3.8×107 J of energy per kg which is converted to mechanical energy with a 20% efficiency rate.  Take g = 9.8 ms−2 :

Option 1)

2.45×10−3 kg

Option 2)

 6.45×10−3 kg

Option 3)

 9.89×10−3 kg

Option 4)

12.89×10−3 kg

 

An athlete in the olympic games covers a distance of 100 m in 10 s. His kinetic energy can be estimated to be in the range

Option 1)

2,000 \; J - 5,000\; J

Option 2)

200 \, \, J - 500 \, \, J

Option 3)

2\times 10^{5}J-3\times 10^{5}J

Option 4)

20,000 \, \, J - 50,000 \, \, J

A particle is projected at 600   to the horizontal with a kinetic energy K. The kinetic energy at the highest point

Option 1)

K/2\,

Option 2)

\; K\;

Option 3)

zero\;

Option 4)

K/4

In the reaction,

2Al_{(s)}+6HCL_{(aq)}\rightarrow 2Al^{3+}\, _{(aq)}+6Cl^{-}\, _{(aq)}+3H_{2(g)}

Option 1)

11.2\, L\, H_{2(g)}  at STP  is produced for every mole HCL_{(aq)}  consumed

Option 2)

6L\, HCl_{(aq)}  is consumed for ever 3L\, H_{2(g)}      produced

Option 3)

33.6 L\, H_{2(g)} is produced regardless of temperature and pressure for every mole Al that reacts

Option 4)

67.2\, L\, H_{2(g)} at STP is produced for every mole Al that reacts .

How many moles of magnesium phosphate, Mg_{3}(PO_{4})_{2} will contain 0.25 mole of oxygen atoms?

Option 1)

0.02

Option 2)

3.125 × 10-2

Option 3)

1.25 × 10-2

Option 4)

2.5 × 10-2

If we consider that 1/6, in place of 1/12, mass of carbon atom is taken to be the relative atomic mass unit, the mass of one mole of a substance will

Option 1)

decrease twice

Option 2)

increase two fold

Option 3)

remain unchanged

Option 4)

be a function of the molecular mass of the substance.

With increase of temperature, which of these changes?

Option 1)

Molality

Option 2)

Weight fraction of solute

Option 3)

Fraction of solute present in water

Option 4)

Mole fraction.

Number of atoms in 558.5 gram Fe (at. wt.of Fe = 55.85 g mol-1) is

Option 1)

twice that in 60 g carbon

Option 2)

6.023 × 1022

Option 3)

half that in 8 g He

Option 4)

558.5 × 6.023 × 1023

A pulley of radius 2 m is rotated about its axis by a force F = (20t - 5t2) newton (where t is measured in seconds) applied tangentially. If the moment of inertia of the pulley about its axis of rotation is 10 kg m2 , the number of rotations made by the pulley before its direction of motion if reversed, is

Option 1)

less than 3

Option 2)

more than 3 but less than 6

Option 3)

more than 6 but less than 9

Option 4)

more than 9

Back to top