NCERT Solutions for Exercise 7.3 Class 10 Maths Chapter 7 - Coordinate Geometry

NCERT Solutions for Exercise 7.3 Class 10 Maths Chapter 7 - Coordinate Geometry

Upcoming Event

CBSE Class 10th Exam Date:01 Jan' 26 - 14 Feb' 26

Updated on 30 Apr 2025, 03:17 PM IST

NCERT Solutions for Class 10 Maths exercise 7.3 deals with the concept of the area of the triangle. A triangle is nothing but a polygon with three edges and three vertices. In a two-dimensional plane, the area of a triangle is the space that it covers, and its area is equal to half the product of its base and height. Coordinate geometry is the study of geometry using coordinate points. In coordinate geometry, the area of the triangle can be calculated by the three vertices of the triangle which are given in the coordinate plane. In exercise 7.3 Class 10 Maths.

This Story also Contains

  1. Coordinate Geometry Class 10 Chapter 7 Exercise: 7.1
  2. More About NCERT Solutions for Class 10 Maths Exercise 7.3
  3. Benefits of NCERT Solutions for Class 10 Maths Exercise 7.3
  4. NCERT Solutions Subject Wise
  5. Subject Wise NCERT Exemplar Solutions

Actually, the area of the triangle formula is calculated using heron's formula. We can also calculate the area of a triangle using the determinant method. Also as the area of the triangle can never be negative, we must take the absolute value. NCERT solutions for Class 10 Maths chapter 7 exercise 7.3 consists of 5 questions in which three are easy and two are moderate and all the questions are based on calculating the area of a triangle. The concepts associated with the answer of coordinate geometry are well explained in NCERT book Class 10 Maths chapter 7 exercise 7.3. Alongside NCERT syllabus Class 10 Maths chapter 7 exercise 7.3 the subsequent exercises also are present.

Coordinate Geometry Class 10 Chapter 7 Exercise: 7.1

Q 1 (i) Find the area of the triangle whose vertices are : (2, 3), (–1, 0), (2, – 4)

Answer:

As we know, the area of a triangle with vertices (x1,x2) ,(y1, y2) and (z1 z2 ) is given by :

$A= \frac{1}{2}(x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2))$

So Area of a triangle whose vertices are(2, 3), (–1, 0)and (2, – 4) is

$A= \frac{1}{2}[2(0-(-4))+(-1)(-4-3)+2(3-0)]$

$A= \frac{1}{2}[8+7+6]$

$A= \frac{1}{2}[21]$

$A= \frac{21}{2}$

$A= 10.5\:unit^2$

Hence, the area of the triangle is 10.5 per unit square.

Q1 (ii) Find the area of the triangle whose vertices are (–5, –1), (3, –5), (5, 2)

Answer:

From the figure:

1638427297678

Area of the triangle is given by:

$Area = \frac{1}{2}\left [ x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1})+x_{3}(y_{1}-y_{2}) \right ]$

Substituting the values in the above equation, we obtain

$Area = \frac{1}{2}\left [ (-5)((-5)-(-2))+3(2-(1))+5(-1-(-5)) \right ]$

$= \frac{1}{2}\left [ 35+9+20 \right ] = 32 \ square\ units.$

Q2 (i) In each of the following find the value of ‘k’, for which the points are collinear. (7, –2), (5, 1), (3, k)

Answer:

The points (7, –2), (5, 1), (3, k) are collinear if the area of the triangle formed by the points will be zero.

Area of the triangle is given by:

$Area = \frac{1}{2}\left [ x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1})+x_{3}(y_{1}-y_{2}) \right ] = 0$

Substituting the values in the above equation, we obtain

$\frac{1}{2}\left [ 7(1-k)+5(k-(-2))+3(-2-1) \right ] = 0$

$\left [ 7-7k+5k+10-9 \right ] = 0$

$\Rightarrow -2k+8 = 0$

$\Rightarrow k = 4$

Hence, the points are collinear for k=4 .

Q2 (ii) In each of the following find the value of ‘k’, for which the points are collinear. (8, 1), (k, – 4), (2, –5)

Answer:

The points (8,1), (k, -4), (2,-5) are collinear if the area of the triangle formed by these points will be zero.

Area of the triangle is given by:

$Area = \frac{1}{2}\left [ x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1})+x_{3}(y_{1}-y_{2}) \right ] = 0$

Substituting the values in the above equation, we obtain

$\frac{1}{2}\left [ 8(-4-(-5))+k((-5)-1)+2(1-(-4)) \right ] = 0$

$\Rightarrow 8-6k+10 = 0$

$\Rightarrow 6k = 18$

$\Rightarrow k = 3$

Hence, the points are collinear for k = 3 .

Q3 Find the area of the triangle formed by joining the mid-points of the sides of the triangle whose vertices are (0, –1), (2, 1) and (0, 3). Find the ratio of this area to the area of the given triangle.

Answer:

From the figure:

1638427329430

The coordinates of the point P, Q, and R are:

Point P is the midpoint of side AB, hence the coordinates of P are :

$P(x_{1},y_{1}) = \left (\frac{0+2}{2}, \frac{3+1}{2} \right ) = \left (1, 2 \right )$

Point Q is the midpoint of side AC, hence the coordinates of Q are :

$Q(x_{2},y_{2}) = \left (\frac{2+0}{2}, \frac{1-1}{2} \right ) = \left (1, 0 \right )$

Point R is the midpoint of side BC, hence the coordinates of R are :

$R(x_{3},y_{3}) = \left (\frac{0+0}{2}, \frac{-1+3}{2} \right ) = \left (0, 1 \right )$

Hence, the area of the triangle formed by the midpoints PQR will be,

$Area_{(PQR)} = \frac{1}{2}\left [ x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1})+x_{3}(y_{1}-y_{2}) \right ]$

$= \frac{1}{2}\left [ (2-1)+1(1-0)+0(0-2) \right ]$

$=\frac{1}{2}(1+1) = 1\ square\ units.$

And the area formed by the triangle ABC will be:

$Area_{(ABC)} = \frac{1}{2}\left [ 0(1-3)+2(3-(-1))+0(-1-1) \right ]$

$= \frac{1}{2}\left [ 8 \right ] = 4\ square\ units.$

Thus, the ratio of Area of $\triangle PQR$ to the Area of $\triangle ABC$ will be $1:4$ .

Q4 Find the area of the quadrilateral whose vertices, taken in order, are (– 4, – 2), (– 3, – 5), (3, – 2) and (2, 3).

Answer:

From the figure:

1638427363305

The coordinates are $A(-4,-2),\ B(-3,-5),\ C(3,-2)\ and\ D(2,3)$

Divide the quadrilateral into 2 parts of triangles.

Then the area will be, $ABC + ADC$

Area of the triangle formed by ABC will be,

$Area_{(ABC)} = \frac{1}{2}\left [ (-4)((-5)-(-2))+(-3)((-2)-(-2))+3((-2)-(-2)) \right ]$ $= \frac{1}{2}\left [ 12+0+9 \right ] = \frac{21}{2}\ Square\ units.$

Area of the triangle formed by ADC will be,

$Area_{(ADC)} = \frac{1}{2}\left [ (-4)((-2)-(-3))+3(3-(-2))+2((-2)-(-2)) \right ]$ $= \frac{1}{2}\left [ 20+15+0 \right ] = \frac{35}{2}\ Square\ units.$

Therefore, the area of the quadrilateral will be:

$= \frac{21}{2}+\frac{35}{2} = 28\ square\ units.$

Alternatively,

The points A and C are in the same ordinates.

Hence, the length of base AC will be $(3-(-4)) = 7\ units.$

Therefore,

Area of triangle ABC:

$= \frac{1}{2} \times (Base) \times (Height) = \frac{1}{2}\times(7)(3)$

Area of triangle ADC:

$= \frac{1}{2} \times (Base) \times (Height) = \frac{1}{2}\times(7)(5)$

Therefore, the area will be, $\frac{1}{2}\times(7)\times(5+3) =28\ square\ units.$

Q5 You have studied in Class IX, (Chapter 9, Example 3), that a median of a triangle divides it into two triangles of equal areas. Verify this result for D ABC whose vertices are A(4, – 6), B(3, –2) and C(5, 2).

Answer:

From the figure:

1638427386798

The coordinates of midpoint M of side BC is:

$M = \left ( \frac{3+5}{2}, \frac{-2+2}{2} \right ) = \left ( 4,0 \right )$

Now, calculating the areas of the triangle ABM and ACM :

Area of triangle, ABM:

$Area_{(ABM)} = \frac{1}{2}\left [ 4((-2)-0)+3(0-(-6))+4((-6)-(-2)) \right ]$

$= \frac{1}{2}\left [ -8+18-16 \right ] = 3\ Square\ units.$

Area of triangle, ACM:

$Area_{(ACM)} = \frac{1}{2}\left [ 4(0-(-2))+4(2-(-6))+5((-6)-0) \right ]$

$= \frac{1}{2}\left [ -8+32-30 \right ] = -3\ Square\ units.$

However, the area cannot be negative, Therefore, area of $\triangle ACM$ is 3 square units.

Clearly, the median AM divided the $\triangle ABC$ in two equal areas.

More About NCERT Solutions for Class 10 Maths Exercise 7.3

The NCERT Solutions for Class 10 Maths exercise 7.3 also focused on the collinearity and area of the quadrilateral. Exercise 7.3 Class 10 Maths consists of a question based on calculating the area of a triangle and collinearity of three points. Geometrically, two or more points are said to be collinear, if they lie on the same line. Three points are said to be collinear if the area of the triangle is zero. We can also find the area of the quadrilateral by using the area of the triangle formula. Quadrilaterals can be divided into triangular regions which have no common area. Then by using the area of the triangle formula, we can find the area of the two triangles. Then by adding both, we get the area of the quadrilateral. Also, the area of the quadrilateral is never negative as the area of the quadrilateral is positive. Usage of midpoint formula also covered in exercise 7.3 Class 10 Maths.

Also Read| Coordinate Geometry Class 10 Notes

Benefits of NCERT Solutions for Class 10 Maths Exercise 7.3

• NCERT solutions for Class 10 Maths exercise 7.3 is one of the most scoring exercises, as the questions are simple to solve using the given formula.

• Exercise 7.3 Class 10 Maths will encourage us to use real-life references to understand concepts of the area of triangle and collinearity of points.

• By fathoming the NCERT solution for Class 10 Maths chapter 7 exercise 7.3 , understudies can achieve a great score in term exams as well as in competitive examinations like the Joint Entrance Exam Main (JEE Main).

Also, see-

Frequently Asked Questions (FAQs)

Q: Three points are said to be col linear if the area of the triangle is
A:

Three points are said to be collinear if the area of the triangle is zero.

Q: What are non linear points?
A:

Non-linear points are the points that are not possible to draw a straight line through three or more points. 

Q: What are the col linear points according to NCERT solutions for Class 10 Maths chapter 7 exercise 7.3 ?
A:

Two or more points are considered to be collinear if they lie on the same line, according to NCERT solutions for Class 10 Maths chapter 7 exercise 7.3.

Q: How many questions and what variety of questions are there within the NCERT solutions for Class 10 Maths chapter 7 exercise 7.3 ?
A:

In NCERT solutions for Class 10 Maths chapter 7 exercise 7.3  , are 5 problems, all of which are centred on calculating the area of a triangle.

Q: A Triangle is a polygon with _____ edges and vertices.
A:

A Triangle is a polygon with three edges and vertices.

Q: State true/false : The area of the triangle is always negative.
A:

The statement is false because the area of the triangle is never negative.

Q: What is coordinate geometry?
A:

The study of geometry using coordinate points is known as coordinate geometry.

Articles
|
Upcoming School Exams
Ongoing Dates
Goa Board HSSC Application Date

14 Oct'25 - 25 Nov'25 (Online)

Certifications By Top Providers
Explore Top Universities Across Globe

Questions related to CBSE Class 10th

On Question asked by student community

Have a question related to CBSE Class 10th ?

Hi! If you’re looking for the Class 11 English half yearly question paper for 2025-26 (CBSE board), you’ll find the right resource once you check the link provided from Careers360. Solving previous or sample papers is a smart way to prepare, as it helps you understand the question types, marking scheme, and important topics. This practice will boost your confidence and help you manage your time well in the actual exam.
https://school.careers360.com/boards/cbse/cbse-class-11-half-yearly-sample-papers-2025-26

Hi dear candidate,

Could you please specify us the board of education for which you need the half yearly question papers of class X so that we can help you further.

Below are few links which may help you and it has all the subjects with English as well:

CBSE Class 10 Half Yearly Exam Question Paper 2025-26 with Answer Key & Analysis

ICSE Class 10 Half Yearly Sample Papers 2025-26 PDF (All Subjects)

BEST REGARDS

Hi dear candidate,

Can you please specify the board of education or state for which you need to know the exam pattern and syllabus so that we can guide you accordingly.

Since, most of the boards uses NCERT as base syllabus, you can refer to the link below:

NCERT Syllabus for Class 10 – All Subjects PDF Download 2025-26

Exam pattern:

CBSE 10th New Exam Pattern 2026- Marking Scheme, Subject-Wise Exam Pattern

BEST REGARDS

The CBSE Class 10th Board Exams for the 2026 session will follow the revised curriculum, emphasizing competency-based questions.

  • Conducting Body: Central Board of Secondary Education (CBSE).

  • Exam Period: The main theory exams are typically held between February and April 2026.

  • Grading: Based on marks in five main subjects plus internal assessment marks (often 20 marks per subject) provided by the school.

  • Passing Criteria: You must achieve at least 33% overall in each subject (theory + practical/internal assessment combined) to be declared pass.

Key Preparation Strategy

The most crucial element of your preparation is understanding the exam structure:

  • Syllabus: Strictly adhere to the rationalized syllabus released by CBSE for the 2025-26 academic year.

  • Practice: Your primary resource should be the latest sample papers and previous year question papers. These accurately reflect the format and types of competency questions being asked.

For the most comprehensive and official announcements, including the detailed time table and access to crucial practice materials, always check the official board updates, as tracked by Careers360: https://school.careers360.com/exams/cbse-class-10th .

HELLO,

If you want admission to 9th grade under the CBSE board in Andhra Pradesh , visit nearby CBSE affiliated schools during the admission period that is generally from January  to April or you can check the official websites of the schools in which you are interested for admission if they are accepting the admissions now .

After deciding the school and getting information about admission deadline from the school you can fill out the admission form with documents submission like your previous report card , transfer certificate and birth certificate , they make take entrance test or interview to confirm your admission

To know more visit :- https://school.careers360.com/schools/cbse-schools-in-andhra-pradesh

Hope this Helps!