NCERT Solutions for Exercise 3.6 Class 10 Maths Chapter 3 - Pair of Linear Equations in two variables

NCERT Solutions for Exercise 3.6 Class 10 Maths Chapter 3 - Pair of Linear Equations in two variables

Updated on 13 Nov 2023, 03:23 PM IST

NCERT Solutions For Class 10 Maths Chapter 3 Exercise 3.6

NCERT Solutions for class 10 maths ex 3.6 Pair of Linear Equations in two variables is discussed here. These NCERT solutions are created by subject matter expert at Careers360 considering the latest syllabus and pattern of CBSE 2023-24. This ex 3.6 class 10 consists of two questions, each with subparts. The first is straightforward, requiring only direct substitutions of the mathematical formula, whereas the second involves word problems. In this exercise, the majority of the variables are in fractional form, meaning that they are nonlinear, since the variables are now infraction, we can’t take the value of the denominator as zero because it will be against the definition of the fraction.

These class 10 maths ex 3.6 solutions are designed as per the students demand covering comprehensive, step by step solutions of every problem. Practice these questions and answers to command the concepts, boost confidence and in depth understanding of concepts. Students can find all exercise together using the link provided below.

Aakash Repeater Courses

Take Aakash iACST and get instant scholarship on coaching programs.

Download Free Pdf of NCERT Solutions for Class 10 Maths chapter 3 exercise 3.6

Download PDF

Assess NCERT Solutions for Class 10 Maths chapter 3 exercise 3.6

Pair of Linear Equations in Two Variables Class 10 Chapter 3 Excercise: 3.6

Q1(i) Solve the following pairs of equations by reducing them to a pair of linear equations:

$\\\frac{1}{2x} +\frac{1}{3y} = 2\\ \frac{1}{3x} + \frac{1}{2y} = \frac{13}{6}$

Answer:

Given Equations,

$\\\frac{1}{2x} +\frac{1}{3y} = 2\\ \frac{1}{3x} + \frac{1}{2y} = \frac{13}{6}$

Let,

$\frac{1}{x}=p\:and\:\frac{1}{y}=q$

Now, our equation becomes

$\frac{p}{2}+\frac{q}{3}=2$

$\Rightarrow 3p+2q=12........(1)$

And

$\frac{p}{3}+\frac{q}{2}=\frac{13}{6}$

$\Rightarrow 2p+3q=13..........(2)$

By Cross Multiplication method,

$\frac{p}{b_1c_2-b_2c_1}=\frac{q}{c_1a_2-c_2a_1}=\frac{1}{a_1b_2-a_2b_1}$

$\frac{p}{(2)(-13)-(3)(-12)}=\frac{q}{(-12)(2)-(-13)(3)}=\frac{1}{(3)(3)-(2)(2)}$

$\frac{p}{-26+36}=\frac{q}{-24+39}=\frac{1}{9-4}$

$\frac{p}{10}=\frac{q}{15}=\frac{1}{5}$

$p=2,\:and\:q=3$

And Hence,

$x=\frac{1}{2}\:and\:y=\frac{1}{3}.$

Q1(ii) Solve the following pairs of equations by reducing them to a pair of linear equations:

$\\ \frac{2}{\sqrt x} + \frac{3}{\sqrt y} = 2\\ \frac{4}{\sqrt x} - \frac{9}{\sqrt y} = -1$

Answer:

Given Equations,

$\\ \frac{2}{\sqrt x} + \frac{3}{\sqrt y} = 2\\ \frac{4}{\sqrt x} - \frac{9}{\sqrt y} = -1$

Let,

$\frac{1}{\sqrt{x}}=p\:and\:\frac{1}{\sqrt{y}}=q$

Now, our equation becomes

$2p+3q=2........(1)$

And

$4p-9q=-1..........(2)$

By Cross Multiplication method,

$\frac{p}{b_1c_2-b_2c_1}=\frac{q}{c_1a_2-c_2a_1}=\frac{1}{a_1b_2-a_2b_1}$

$\frac{p}{(3)(1)-(-9)(-2)}=\frac{q}{(-2)(4)-(1)(2)}=\frac{1}{(2)(-9)-(4)(3)}$

$\frac{p}{3-18}=\frac{q}{-8-2}=\frac{1}{-18-12}$

$\frac{p}{-15}=\frac{q}{-10}=\frac{1}{-30}$

$p=\frac{1}{2},\:and\:q=\frac{1}{3}$

So,

$p=\frac{1}{2}=\frac{1}{\sqrt{x}}\Rightarrow x=4$

$q=\frac{1}{3}=\frac{1}{\sqrt{y}}\Rightarrow y=9$ .

And hence

$x=4\:and\:y=9.$

Q1(iii) Solve the following pairs of equations by reducing them to a pair of linear equations:

$\\\frac{4}{x} + 3y = 14\\ \frac{3}{x} - 4y = 23$

Answer:

Given Equations,

$\\\frac{4}{x} + 3y = 14\\ \frac{3}{x} - 4y = 23$

Let,

$\frac{1}{x}=p\:and\:y=q$

Now, our equation becomes

$\Rightarrow 4p+3q=14........(1)$

And

$\Rightarrow 3p-4q=23..........(2)$

By Cross Multiplication method,

$\frac{p}{b_1c_2-b_2c_1}=\frac{q}{c_1a_2-c_2a_1}=\frac{1}{a_1b_2-a_2b_1}$

$\frac{p}{(3)(-23)-(-4)(-14)}=\frac{q}{(-14)(3)-(-23)(4)}=\frac{1}{(4)(-4)-(3)(3)}$

$\frac{p}{-69-56}=\frac{q}{-42+92}=\frac{1}{-16-9}$

$\frac{p}{-125}=\frac{q}{50}=-\frac{1}{25}$

$p=5,\:and\:q=-2$

And Hence,

$x=\frac{1}{5}\:and\:y=-2.$

Q1(iv) Solve the following pairs of equations by reducing them to a pair of linear equations:

$\\\frac{5}{x - 1} + \frac{1}{y -2} = 2\\ \frac{6}{x-1} - \frac{3}{y -2} =1$

Answer:

Given Equations,

$\\\frac{5}{x - 1} + \frac{1}{y -2} = 2\\ \frac{6}{x-1} - \frac{3}{y -2} =1$

Let,

$\frac{1}{x-1}=p\:and\:\frac{1}{y-2}=q$

Now, our equation becomes

$5p+q=2........(1)$

And

$6p-3q=1..........(2)$

Multiplying (1) by 3 we get

$15p+3q=6..........(3)$

Now, adding (2) and (3) we get

$21p=7$

$\Rightarrow p=\frac{1}{3}$

Putting this in (2)

$6\left ( \frac{1}{3} \right )-3q=1$

$\Rightarrow 3q=1$

$\Rightarrow q=\frac{1}{3}$

Now,

$p=\frac{1}{3}=\frac{1}{x-1}\Rightarrow x-1=3\Rightarrow x=4$

$q=\frac{1}{3}=\frac{1}{y-2}\Rightarrow y-2=3\Rightarrow x=5$

Hence,

$x=4,\:and\:y=5.$

Q1(v) Solve the following pairs of equations by reducing them to a pair of linear equations:

$\\\frac{7x - 2y}{xy} = 5\\ \frac{8x + 7y}{xy} = 15$

Answer:

Given Equations,

$\\\frac{7x - 2y}{xy} = 5\\\\\Rightarrow\frac{7}{y} -\frac{2}{x}=5\\ \frac{8x + 7y}{xy} = 15\\\Rightarrow \frac{8}{y}+\frac{7}{x}=15$

Let,

$\frac{1}{x}=p\:and\:\frac{1}{y}=q$

Now, our equation becomes

$7q-2p=5........(1)$

And

$8q+7p=15..........(2)$

By Cross Multiplication method,

$\frac{q}{b_1c_2-b_2c_1}=\frac{p}{c_1a_2-c_2a_1}=\frac{1}{a_1b_2-a_2b_1}$

$\frac{q}{(-2)(-15)-(7)(-5)}=\frac{p}{(-5)(8)-(-15)(7)}=\frac{1}{(7)(7)-(8)(-2)}$

$\frac{q}{30+35}=\frac{p}{-40+105}=\frac{1}{49 +16}$

$\frac{q}{65}=\frac{p}{65}=\frac{1}{65}$

$p=1,\:and\:q=1$

And Hence,

$x=1\:and\:y=1.$

Q1(vi) Solve the following pairs of equations by reducing them to a pair of linear equations:

$\\6x + 3y = 6xy\\ 2x + 4y = 5 xy$

Answer:

Given Equations,

$\\6x + 3y = 6xy\\\Rightarrow \frac{6x}{xy}+\frac{3y}{xy}=6\\\\\Rightarrow \frac{6}{y}+\frac{3}{x}=6\\and\\\ 2x + 4y = 5 xy\\\Rightarrow \frac{2x}{xy}+\frac{4y}{xy}=5\\\Rightarrow \frac{2}{y}+\frac{4}{x}=5$

Let,

$\frac{1}{x}=p\:and\:\frac{1}{y}=q$

Now, our equation becomes

$6q+3p=6........(1)$

And

$2q+4p=5..........(2)$

By Cross Multiplication method,

$\frac{q}{b_1c_2-b_2c_1}=\frac{p}{c_1a_2-c_2a_1}=\frac{1}{a_1b_2-a_2b_1}$

$\frac{q}{(3)(-5)-(-6)(4)}=\frac{p}{(6)(2)-(6)(-5)}=\frac{1}{(6)(4)-(3)(2)}$

$\frac{q}{-15+24}=\frac{p}{-12+30}=\frac{1}{24 -6}$

$\frac{q}{9}=\frac{p}{18}=\frac{1}{18}$

$q=\frac{1}{2}\:and\:p=1$

And Hence,

$x=1\:and\:y=2.$

Q1(vii) Solve the following pairs of equations by reducing them to a pair of linear equations:
$\\\frac{10}{x + y} + \frac{2}{x - y}= 4\\ \frac{15}{x+y} - \frac{5}{x - y} = -2$


Answer:

Given Equations,

$\\\frac{10}{x + y} + \frac{2}{x - y}= 4\\ \frac{15}{x+y} - \frac{5}{x - y} = -2$

Let,

$\frac{1}{x+y}=p\:and\:\frac{1}{x-y}=q$

Now, our equation becomes

$10p+2q=4........(1)$

And

$15p-5q=-2..........(2)$

By Cross Multiplication method,

$\frac{p}{b_1c_2-b_2c_1}=\frac{q}{c_1a_2-c_2a_1}=\frac{1}{a_1b_2-a_2b_1}$

$\frac{p}{(2)(2)-(-5)(-4)}=\frac{q}{(-4)(15)-(2)(10)}=\frac{1}{(10)(-5)-(15)(2)}$

$\frac{p}{4-20}=\frac{q}{-60-20}=\frac{1}{-50-30}$

$\frac{p}{-16}=\frac{q}{-80}=\frac{1}{-80}$

$p=\frac{1}{5},\:and\:q=1$

Now,

$p=\frac{1}{5}=\frac{1}{x+y}$

$\Rightarrow x+y=5........(3)$

And,

$q=1=\frac{1}{x-y}$

$\Rightarrow x-y=1...........(4)$

Adding (3) and (4) we get,

$\Rightarrow 2x=6$

$\Rightarrow x=3$

Putting this value in (3) we get,

$3+y=5$

$\Rightarrow y=2$

And Hence,

$x=3\:and\:y=2.$

Q1(viii) Solve the following pairs of equations by reducing them to a pair of linear equations:

$\\\frac{1}{3x + y} + \frac{1}{3x -y} = \frac{3}{4}\\ \frac{1}{2(3x+y)} - \frac{1}{2(3x -y)} = \frac{-1}{8}$


Answer:

Given Equations,

$\\\frac{1}{3x + y} + \frac{1}{3x -y} = \frac{3}{4}\\ \frac{1}{2(3x+y)} - \frac{1}{2(3x -y)} = \frac{-1}{8}$

Let,

$\frac{1}{3x+y}=p\:and\:\frac{1}{3x-y}=q$

Now, our equation becomes

$p+q=\frac{3}{4}.........(1)$

And

$\\\frac{p}{2}-\frac{q}{2}=\frac{-1}{8}\\\\p-q=\frac{-1}{4}..........(2)$

Now, Adding (1) and (2), we get

$2p=\frac{3}{4}-\frac{1}{4}$

$\Rightarrow 2p=\frac{2}{4}$

$\Rightarrow p=\frac{1}{4}$

Putting this value in (1)

$\frac{1}{4}+q=\frac{3}{4}$

$\Rightarrow q=\frac{3}{4}-\frac{1}{4}$

$\Rightarrow q=\frac{2}{4}$

$\Rightarrow q=\frac{1}{2}$

Now,

$p=\frac{1}{4}=\frac{1}{3x+y}$

$\Rightarrow 3x+y=4...........(3)$

And

$q=\frac{1}{2}=\frac{1}{3x-y}$

$\Rightarrow 3x-y=2............(4)$

Now, Adding (3) and (4), we get

$6x=4+2$

$\Rightarrow 6x=6$

$\Rightarrow x=1$

Putting this value in (3),

$3(1)+y=4$

$\Rightarrow y=4-3$

$\Rightarrow y=1$

Hence,

$x=1,\:and\:y=1$

Q2(i) Formulate the following problems as a pair of equations and hence find their solutions: Ritu can row downstream 20 km in 2 hours, and upstream 4 km in 2 hours. Find her speed of rowing in still water and the speed of the current.

Answer:

Let the speed of Ritu in still water be x and speed of current be y,

Let's solve this problem by using relative motion concept,

the relative speed when they are going in the same direction (downstream)= x +y

the relative speed when they are going in the opposite direction (upstream)= x - y

Now, As we know,

Relative distance = Relative speed * time .

So, According to the question,

$x+y=\frac{20}{2}$

$\Rightarrow x+y=10.........(1)$

And,

$x-y=\frac{4}{2}$

$\Rightarrow x-y=2...........(2)$

Now, Adding (1) and (2), we get

$2x=10+2$

$\Rightarrow 2x=12$

$\Rightarrow x=6$

Putting this in (2)

$6-y=2$

$\Rightarrow y=6-2$

$\Rightarrow y=4$

Hence,

$x=6\:and\:y=4.$

Hence Speed of Ritu in still water is 6 km/hour and the speed of the current is 4 km/hour

Q2(ii) Formulate the following problems as a pair of equations and hence find their solutions: 2 women and 5 men can together finish an embroidery work in 4 days, while 3 women and 6 men can finish it in 3 days. Find the time taken by 1 woman alone to finish the work, and also that taken by 1 man alone.

Answer:

Let the number of days taken by woman and man be x and y respectively,

The proportion of Work done by a woman in a single day

$=\frac{1}{x }$

The proportion of Work done by a man in a single day

$=\frac{1}{y }$

Now, According to the question,

$4\left ( \frac{2}{x}+\frac{5}{y} \right )=1$

$\Rightarrow \left ( \frac{2}{x}+\frac{5}{y} \right )=\frac{1}{4}$

Also,

$3\left ( \frac{3}{x}+\frac{6}{y} \right )=1$

$\Rightarrow \left ( \frac{3}{x}+\frac{6}{y} \right )=\frac{1}{3}$

Let,

$\frac{1}{x}=p\:and\:\frac{1}{y}=q$

Now, our equation becomes

$2p+5q=\frac{1}{4}$

$8p+20q=1........(1)$

And

$3p+6p=\frac{1}{3}$

$\Rightarrow 9p+18p=1.............(2)$

By Cross Multiplication method,

$\frac{p}{b_1c_2-b_2c_1}=\frac{q}{c_1a_2-c_2a_1}=\frac{1}{a_1b_2-a_2b_1}$

$\frac{p}{(20)(-1)-(18)(-1)}=\frac{q}{(-1)(9)-(8)(-1)}=\frac{1}{(8)(18)-(20)(9)}$

$\frac{p}{-20+18}=\frac{q}{-9+8}=\frac{1}{146 -60}$

$\frac{p}{-2}=\frac{q}{-1}=\frac{1}{-36}$

$p=\frac{1}{18},\:and\:q=\frac{1}{36}$

So,

$x=18\:and\:y=36.$

Q2(iii) Formulate the following problems as a pair of equations and hence find their solutions: Roohi travels 300 km to her home partly by train and partly by bus. She takes 4 hours if she travels 60 km by train and the remaining by bus. If she travels 100 km by train and the remaining by bus, she takes 10 minutes longer. Find the speed of the train and the bus separately.

Answer:

Let the speed of the train and bus be u and v respectively

Now According to the question,

$\frac{60}{u}+\frac{240}{v}=4$

And

$\frac{100}{u}+\frac{200}{v}=4+\frac{1}{6}$

$\Rightarrow \frac{100}{u}+\frac{200}{v}=\frac{25}{6}$

Let,

$\frac{1}{u}=p\:and\:\frac{1}{v}=q$

Now, our equation becomes

$60p+140q=4$

$\Rightarrow 15p+60q=1.........(1)$

And

$100p+200q=\frac{25}{6}$

$\Rightarrow 4p+8q=\frac{1}{6}$

$\Rightarrow 24p+48q=1..........(2)$

By Cross Multiplication method,

$\frac{p}{b_1c_2-b_2c_1}=\frac{q}{c_1a_2-c_2a_1}=\frac{1}{a_1b_2-a_2b_1}$

$\frac{q}{(60)(-1)-(48)(-1)}=\frac{p}{(-1)(24)-(-1)(15)}=\frac{1}{(15)(48)-(60)(24)}$

$\frac{p}{-60+48}=\frac{q}{-24+15}=\frac{1}{720-1440}$

$\frac{p}{-12}=\frac{q}{-9}=\frac{1}{-720}$

$p=\frac{12}{720}=\frac{1}{60},\:and\:q=\frac{9}{720}=\frac{1}{80}$

And Hence,

$x=60\:and\:y=80$

Hence the speed of the train and bus are 60 km/hour and 80 km/hour respectively.

More About Ncert Solutions For Class 10 Maths Exercise 3.6

NCERT solutions for Class 10 Maths exercise 3.6- consists of two extremely important questions. In order to answer the first question, you must reduce the pair of equations to a pair of linear equations. Students must express problems as a pair of equations in order to determine their answers to the second question. Furthermore, exercise 3.6 is a more advanced chapter exercise. Above all, this task is an excellent technique to assess a student's ability to solve linear equations in two variables. Also students can get access of Pair of linear equations in two variables notes to revise all the concepts discussed in this chapter.

Benefits of NCERT Solutions for Class 10 Maths Exercise 3.6

  • NCERT book Exercise 3.6 Class 10 Maths, is based on the basic idea of solving a pair of equations with fractional variables.
  • NCERT solutions for Class 10 Maths chapter 3 exercise 3.6 helps to solve complex non-linear equations by simplifying it to simple linear equations.
  • If you go through the NCERT solution for Class 10 Maths chapter 3 exercise 3.6, we can see that we will have to use the previous solving methods like substitution and elimination. Thus, this part helps us to clear our previous concepts too.

Also see-

Frequently Asked Questions (FAQs)

Q: What are the methods used for solving linear equation in two variables?
A:

We use substitution method, graphical and elimination method etc.

Q: Which one of the methods is easier compared to the other between Graphical and Elimination Method?
A:

Because it is time-efficient and does not take a long time to complete. Hence, the elimination method is preferred.

Q: What is the basic concept behind NCERT solutions for Class 10 Maths 3 exercise 3.4?
A:

In this exercise, the majority of the variables are in fractional form, meaning that they are nonlinear, since the variables are now infractions, we can’t take the value of the denominator as zero because it will be against the definition of the fraction.

Q: How do we solve the majority of the variables which are in fractional form?
A:

We substitute the fraction variable as another new variable; thus, we get two new linear equations that we can solve easily.

Q: Is there a role for substitution in the elimination method?
A:

Yes, we can get the value of the second equation by substituting the value of the first variable into any of the equations.

Q: Do we need any kind of substitution in order to get the final answer?
A:

Yes, we need substitution in order to get the final answer.

Articles
|
Next
Upcoming School Exams
Ongoing Dates
UP Board 12th Others

11 Aug'25 - 6 Sep'25 (Online)

Ongoing Dates
UP Board 10th Others

11 Aug'25 - 6 Sep'25 (Online)

Certifications By Top Providers
Explore Top Universities Across Globe

Questions related to CBSE Class 10th

On Question asked by student community

Have a question related to CBSE Class 10th ?

Hello,

Yes, you can give the CBSE board exam in 2027.

If your date of birth is 25.05.2013, then in 2027 you will be around 14 years old, which is the right age for Class 10 as per CBSE rules. So, there is no problem.

Hope it helps !

Hello! If you selected “None” while creating your APAAR ID and forgot to mention CBSE as your institution, it may cause issues later when linking your academic records or applying for exams and scholarships that require school details. It’s important that your APAAR ID correctly reflects your institution to avoid verification problems. You should log in to the portal and update your profile to select CBSE as your school. If the system doesn’t allow editing, contact your school’s administration or the APAAR support team immediately so they can correct it for you.

Hello Aspirant,

Here's how you can find it:

  • School ID Card: Your registration number is often printed on your school ID card.

  • Admit Card (Hall Ticket): If you've received your board exam admit card, the registration number will be prominently displayed on it. This is the most reliable place to find it for board exams.

  • School Records/Office: The easiest and most reliable way is to contact your school office or your class teacher. They have access to all your official records and can provide you with your registration number.

  • Previous Mark Sheets/Certificates: If you have any previous official documents from your school or board (like a Class 9 report card that might have a student ID or registration number that carries over), you can check those.

Your school is the best place to get this information.

Hello,

It appears you are asking if you can fill out a form after passing your 10th grade examination in the 2024-2025 academic session.

The answer depends on what form you are referring to. Some forms might be for courses or examinations where passing 10th grade is a prerequisite or an eligibility criteria, such as applying for further education or specific entrance exams. Other forms might be related to other purposes, like applying for a job, which may also have age and educational requirements.

For example, if you are looking to apply for JEE Main 2025 (a competitive exam in India), having passed class 12 or appearing for it in 2025 are mentioned as eligibility criteria.

Let me know if you need imformation about any exam eligibility criteria.

good wishes for your future!!

Hello Aspirant,

"Real papers" for CBSE board exams are the previous year's question papers . You can find these, along with sample papers and their marking schemes , on the official CBSE Academic website (cbseacademic.nic.in).

For notes , refer to NCERT textbooks as they are the primary source for CBSE exams. Many educational websites also provide chapter-wise revision notes and study material that align with the NCERT syllabus. Focus on practicing previous papers and understanding concepts thoroughly.