NCERT Solutions for Class 11 Maths Chapter 1 Exercise 1.2 - Sets

NCERT Solutions for Class 11 Maths Chapter 1 Exercise 1.2 - Sets

Komal MiglaniUpdated on 05 May 2025, 03:37 PM IST

Sets are a well-defined collection of different elements. Exercise 1.2 introduces students to different kinds of sets like empty sets means a set that does not consists any element, finite set means a set that consists of definite number of elements, infinite set means a set that consists of indefinite number of elements, equal sets means two or more sets with identical elements regardless of order. Classification of sets helps students to differentiate between sets with no elements, countable elements, uncountable elements, and sets containing the same elements.

This Story also Contains

  1. Class 11 Maths Chapter 1 Exercise 1.2 Solutions - Download PDF
  2. NCERT Solutions Class 11 Maths Chapter 1: Exercise 1.2
  3. Topics covered in Chapter 1, Exercise 1.2
  4. NCERT Solutions of Class 11 Subject Wise
  5. Subject-Wise NCERT Exampler Solutions

Solutions of Exercise 1.2 of the NCERT are designed by subject experts in a very comprehensive and systematic manner. Understanding the classification of sets helps students in advanced mathematics. The NCERT solutions follow the CBSE pattern so that the students learn the correct way to answer questions, which in turn helps them in the CBSE boards and competitive exams. Check here for NCERT Solutions.

Class 11 Maths Chapter 1 Exercise 1.2 Solutions - Download PDF

Download PDF

NCERT Solutions Class 11 Maths Chapter 1: Exercise 1.2

Question:1(i) Which of the following are examples of the null set :

Set of odd natural numbers divisible by 2

Answer:

No odd number is divisible by 2.

Hence, this is a null set.

Question:1(ii) Which of the following are examples of the null set :

Set of even prime numbers.

Answer:

Even prime number = 2.

Hence, it is not a null set.

Question:1(iii) Which of the following are examples of the null set:

{ x : x is a natural numbers, x<5 and x>7 }

Answer:

No number exists which is less than 5 and more than 7.

Hence, this is a null set.

Question:1(iv) Which of the following are examples of the null set :

{ y : y is a point common to any two parallel lines}

Answer:

Parallel lines do not intersect so they do not have any common point.

Hence, it is a null set.

Question:2 Which of the following sets are finite or infinite:

(i) The set of months of a year

(ii) {1, 2, 3, . . .}

(iii) {1, 2, 3, . . .99, 100}

(iv) ) The set of positive integers greater than 100.

(v) The set of prime numbers less than 99

Answer:

(i) Number of months in a year are 12 and finite.

Hence,this set is finite.

(ii) {1,2,3,4.......} and so on ,this does not have any limit.

Hence, this is infinite set.

(iii) {1,2,3,4,5......100} has finite numbers.

Hence ,this is finite set.

(iv) Positive integers greater than 100 has no limit.

Hence,it is infinite set.

(v) Prime numbers less than 99 are finite ,known numbers.

Hence,it is finite set.

Question:3 State whether each of the following set is finite or infinite:

(i) The set of lines which are parallel to the x-axis

(ii) The set of letters in the English alphabet

(iii) The set of numbers which are multiple of 5

(iv) The set of animals living on the earth

(v) The set of circles passing through the origin (0,0)

Answer:

(i) Lines parallel to the x-axis are infinite.

Hence, it is an infinite set.

(ii) Letters in English alphabets are 26 letters which are finite.

Hence, it is a finite set.

(iii) Numbers which are multiple of 5 has no limit, they are infinite.

Hence, it is an infinite set.

(iv) Animals living on earth are finite though the number is very high.

Hence, it is a finite set.

(v) There is an infinite number of circles which pass through the origin.

Hence, it is an infinite set.

Question:4(i) In the following, state whether A = B or not:

A = { a, b, c, d } B = { d, c, b, a }

Answer:

Given
A = {a,b,c,d}

B = {d,c,b,a}
Comparing the elements of set A and set B, we conclude that all the elements of A and all the elements of B are equal.
Hence, A = B.

Question:4(ii) In the following, state whether A = B or not:

A = { 4, 8, 12, 16 } B = { 8, 4, 16, 18}

Answer:

12 belongs A but 12 does not belong to B

12 A but 12 B.

Hence, A B.

Question:4(iii) In the following, state whether A = B or not:

A = {2, 4, 6, 8, 10} B = { x : x is positive even integer and x≤10}

Answer:

Positive even integers less than or equal to 10 are : 2,4,6,8,10.

So, B = { 2,4,6,8,10 } which is equal to A = {2,4,6,8,10}

Hence, A = B.

Question:4(iv) In the following, state whether A = B or not:

A = { x : x is a multiple of 10}, B = { 10, 15, 20, 25, 30, . . . }

Answer:

Multiples of 10 are : 10,20,30,40,........ till infinite.

SO, A = {10,20,30,40,.........}

B = {10,15,20,25,30........}

Comparing elements of A and B,we conclude that elements of A and B are not equal.

Hence, A B.

Question:5(i) Are the following pair of sets equal ? Give reasons.

A = {2, 3}, B = {x : x is solution of x2+ 5x + 6 = 0}

Answer:

As given,

A = {2,3}

And,

x2+5x+6=0

x(x+3)+2(x+3)=0

(x+2)(x+3)=0

x = -2 and -3

B = {-2,-3}

Comparing elements of A and B,we conclude elements of A and B are not equal.

Hence,AB.

Question:5(ii) Are the following pair of sets equal ? Give reasons.

A = { x : x is a letter in the word FOLLOW}

B = { y : y is a letter in the word WOLF}

Answer:

Letters of word FOLLOW are F,OL,W.

SO, A = {F,O,L,W}

Letters of word WOLF are W,O,L,F.

So, B = {W,O,L,F}

Comparing A and B ,we conclude that elements of A are equal to elements of B.

Hence, A=B.

Question:6 From the sets given below, select equal sets :

A = { 2, 4, 8, 12}, B = { 1, 2, 3, 4}, C = { 4, 8, 12, 14}, D = { 3, 1, 4, 2}

E = {–1, 1}, F = { 0, a}, G = {1, –1}, H = { 0, 1}

Answer:

Compare the elements of A,B,C,D,E,F,G,H.

8 A but 8∉B,8∈C,8∉D,8∉E,8∉F,8∉G,8∉H

Now, 2 A but 2C.

Hence, AB,AC,AD,AE,AF,AG,AH.

3 B,3D but 3C,3 E,3F,3G,3H.

Hence,BC,BE,BF,BG,BH.

Similarly, comparing other elements of all sets, we conclude that elements of B and elements of D are equal ,also elements of E and G are equal.

Hence, B=D and E = G.


Also Read

Topics covered in Chapter 1, Exercise 1.2

Exercise 1.2 covers various topics related to types of sets. In this, students will find problems and exercises that primarily revolve around the following topics:

1) Empty Sets: A set that does not contain any elements is called an empty set. These types of sets are also called null sets or void sets.

2) Finite Sets: A set that consists of a definite number of elements is called a finite set.

3) Infinite Sets: A set that consists of an indefinite number of elements is called an infinite set.

4) Equal Sets: Two or more sets are said to be equal if they have exactly the same elements, and if elements are different, then they are said to be unequal sets

Also Read

NCERT Solutions for Class 11 Maths Chapter 1

NCERT Exemplar Solutions Class 11 Maths Chapter 1


NCERT Solutions of Class 11 Subject Wise

Students can also follow the links below to solve the NCERT textbook questions for all the subjects


Subject-Wise NCERT Exampler Solutions

Check out the exemplar solutions for all the subjects and intensify your exam preparations

Frequently Asked Questions (FAQs)

Q: What is the definition of empty set ?
A:

The set which doesn't contain any element is called an empty set.

Q: Write an example of empty set ?
A:

Set A = { x : 1<x<2 , x is a natural number  }

Q: What is the definition of finite set ?
A:

The set which contains the definitive number of elements is called a finite set.

Q: Write an example of finite set ?
A:

Set A = { 1,2,3,4,5,6,7,8} is an example of finite set.

Q: What is the definition of infinite set ?
A:

The set which contains the indefinite number of elements is called an infinite set.

Q: Write an example of infinite set ?
A:

Set A  = { n: n is natural number } is an example of infinite set.

Q: What is the definition of equal set ?
A:

Two sets A and B are said to be equal sets if every element of A is present in set B and every element of set B is present in set A.

Q: Write an example of equal set ?
A:

A = { 1,2,3,4,5,6}

B = {2,1,3,4,6,5}

Set A and Set B are equal.

Articles
Upcoming School Exams
Ongoing Dates
UP Board 12th Others

11 Aug'25 - 6 Sep'25 (Online)

Ongoing Dates
UP Board 10th Others

11 Aug'25 - 6 Sep'25 (Online)