NCERT Solutions Class 10 Maths Chapter 4 for Exercise 4.2 - Quadratic Equations

NCERT Solutions Class 10 Maths Chapter 4 for Exercise 4.2 - Quadratic Equations

Updated on 02 Jun 2025, 02:04 PM IST

Quadratic equations are a polynomial equation which have the highest degree 2. Quadratic equations are used to model many scenarios, such as calculating the time or distance of a flight, optimising project cost or profit, etc. These scenarios or word problems are converted into quadratic equations. For solving these quadratic equations, there are three main methods: Factorising, Completing the square, and the Quadratic Formula. The factorising method is one of the above mentioned methods, and in this method, the middle term is split to determine the roots of the equation.

This Story also Contains

  1. Download Free PDF of NCERT Solutions for Class 10 Maths Chapter 4 Exercise 4.2
  2. Assess NCERT Solutions for Class 10 Maths Chapter 4 Exercise 4.2
  3. Topics Covered in Chapter 4, Quadratic Equation: Exercise 4.2
  4. NCERT Solutions Subject Wise
  5. Subject-Wise NCERT Exemplar Solutions
NCERT Solutions Class 10 Maths Chapter 4 for Exercise 4.2 - Quadratic Equations
NCERT Solutions for Exercise 4.2 Class 10 Maths Chapter 4 - Quadratic Equations

Class 10 NCERT Book maths exercise 4.2 comprises 6 straightforward questions with sub-questions. All these questions are based on the factorising method. This exercise 4.2 of class 10th also helps to determine the relation between roots of the equation and the nature of the equation. The NCERT solutions to these questions give a better understanding of solving the quadratic equation using the factorising method.

Download Free PDF of NCERT Solutions for Class 10 Maths Chapter 4 Exercise 4.2

Assess NCERT Solutions for Class 10 Maths Chapter 4 Exercise 4.2

Q1 (i) Find the roots of the following quadratic equations by factorisation: $x^2 - 3x - 10 =0$

Answer:

Given the quadratic equation: $x^2 - 3x - 10 =0$

Factorization gives, $x^2 - 5x+2x - 10 =0$

$\Rightarrow x^2 - 5x+2x - 10 =0$

$\Rightarrow x(x-5) +2(x-5) =0$

$\Rightarrow (x-5)(x+2) =0$

$\Rightarrow x= 5\ or\ -2$

Hence, the roots of the given quadratic equation are $5\ and\ -2$.

Q1 (ii) Find the roots of the following quadratic equations by factorisation: $2x^2 + x - 6 = 0$

Answer:

Given the quadratic equation: $2x^2 + x - 6 = 0$

Factorisation gives, $2x^2 +4x-3x - 6 = 0$

$\Rightarrow 2x(x+2) -3(x+2) =0$

$\Rightarrow (x+2)(2x-3) = 0$

$\Rightarrow x= -2\ or\ \frac{3}{2}$

Hence, the roots of the given quadratic equation are

$-2\ and\ \frac{3}{2}$

Q1 (iii) Find the roots of the following quadratic equations by factorisation:$\sqrt2x^2 + 7x + 5\sqrt2 = 0$

Answer:

Given the quadratic equation: $\sqrt2x^2 + 7x + 5\sqrt2 = 0$

Factorization gives, $\sqrt2x^2 + 5x+2x + 5\sqrt2 = 0$

$\Rightarrow x(\sqrt2 x +5) +\sqrt2 (\sqrt 2 x +5)= 0$

$\Rightarrow (\sqrt2 x +5)(x+\sqrt{2}) = 0$

$\Rightarrow x=\frac{-5}{\sqrt 2 }\ or\ -\sqrt 2$

Hence, the roots of the given quadratic equation are

$\frac{-5}{\sqrt 2 }\ and\ -\sqrt 2$

Q1 (iv) Find the roots of the following quadratic equations by factorisation:$2x^2 -x + \frac{1}{8} = 0$

Answer:

Given the quadratic equation: $2x^2 -x + \frac{1}{8} = 0$

Solving the quadratic equations, we get

$16x^2-8x+1 = 0$

Factorization gives, $\Rightarrow 16x^2-4x-4x+1 = 0$

$\Rightarrow 4x(4x-1)-1(4x-1) = 0$

$\Rightarrow (4x-1)(4x-1) = 0$

$\Rightarrow x=\frac{1}{4}\ or\ \frac{1}{4}$

Hence, the roots of the given quadratic equation are

$\frac{1}{4}\ and\ \frac{1}{4}$

Q1 (v) Find the roots of the following quadratic equations by factorisation: $100x^2 -20x +1 = 0$

Answer:

Given the quadratic equation: $100x^2 -20x +1 = 0$

Factorization gives, $100x^2 -10x-10x +1 = 0$

$\Rightarrow 10x(10x-1)-10(10x-1) = 0$

$\Rightarrow (10x-1)(10x-1) = 0$

$\Rightarrow x=\frac{1}{10}\ or\ \frac{1}{10}$

Hence, the roots of the given quadratic equation are

$\frac{1}{10}\ and\ \frac{1}{10}$ .

Q2 Solve the problems given in Example 1. (i) $x^2-45x+324 = 0$ (ii) $x^2-55x+750 = 0$

Answer:

From Example 1, we get:

Equations:

(i) $x^2-45x+324 = 0$

Solving by the factorisation method:

Given the quadratic equation: $x^2-45x+324 = 0$

Factorization gives, $x^2-36x-9x+324 = 0$

$\Rightarrow x(x-36) - 9(x-36) = 0$

$\Rightarrow (x-9)(x-36) = 0$

$\Rightarrow x=9\ or\ 36$

Hence, the roots of the given quadratic equation are $x=9\ and \ 36$.

Therefore, John and Jivanti have 36 and 9 marbles, respectively, in the beginning.

(ii) $x^2-55x+750 = 0$

Solving by the factorisation method:

Given the quadratic equation: $x^2-55x+750 = 0$

Factorization gives, $x^2-30x-25x+750 = 0$

$\Rightarrow x(x-30) -25(x-30) = 0$

$\Rightarrow (x-25)(x-30) = 0$

$\Rightarrow x=25\ or\ 30$

Hence, the roots of the given quadratic equation are $x=25\ and \ 30$.

Therefore, the number of toys on that day was $30\ or\ 25.$

Q3 Find two numbers whose sum is 27 and the product is 182.

Answer:

Let two numbers be x and y .

Then, their sum will be equal to 27, and the product equals 182.

$x+y = 27$ ..........(1)

$xy =182$ ...........(2)

From equation (2) we have:

$y = \frac{182}{x}$

Then, putting the value of y in equation (1), we get

$x+\frac{182}{x} = 27$

Solving this equation:

$\Rightarrow x^2-27x+182 = 0$

$\Rightarrow x^2-13x-14x+182 = 0$

$\Rightarrow x(x-13)-14(x-13) = 0$

$\Rightarrow (x-14)(x-13) = 0$

$\Rightarrow x = 13\ or\ 14$

Hence, the two required numbers are $13\ and \ 14$.

Q4 Find two consecutive positive integers, the sum of whose squares is 365.

Answer:

Let the two consecutive integers be $'x'\ and\ 'x+1'.$

Then the sum of the squares is 365.

. $x^2+ (x+1)^2 = 365$

$\Rightarrow x^2+x^2+1+2x = 365$

$\Rightarrow x^2+x-182 = 0$

$\Rightarrow x^2 - 13x+14x+182 = 0$

$\Rightarrow x(x-13)+14(x-13) = 0$

$\Rightarrow (x-13)(x-14) = 0$

$\Rightarrow x =13\ or\ 14$

Hence, the two consecutive integers are $13\ and\ 14$.

Q5 The altitude of a right triangle is 7 cm less than its base. If the hypotenuse is 13 cm, find the other two sides.

Answer:

Let the length of the base of the triangle be $b\ cm$.

Then, the altitude length will be: $b-7\ cm$.

Given if hypotenuse is $13\ cm$ .

Applying the Pythagoras theorem, we get

$Hypotenuse^2 = Perpendicular^2 + Base^2$

So, $(13)^2 = (b-7)^2 +b^2$

$\Rightarrow 169 = 2b^2+49-14b$

$\Rightarrow 2b^2-14b-120 = 0$ Or $b^2-7b-60 = 0$

$\Rightarrow b^2-12b+5b-60 = 0$

$\Rightarrow b(b-12) + 5(b-12) = 0$

$\Rightarrow (b-12)(b+5) = 0$

$\Rightarrow b= 12\ or\ -5$

But the length of the base cannot be negative.

Hence, the base length will be $12\ cm$.

Therefore, we have

Altitude length $= 12cm -7cm = 5cm$ and Base length $= 12\ cm$

Q6 A cottage industry produces a certain number of pottery articles in a day. It was observed on a particular day that the cost of production of each article (in rupees) was 3 more than twice the number of articles produced on that day. If the total cost of production on that day was Rs 90, find the number of articles produced and the cost of each article.

Answer:

Let the number of articles produced in a day $= x$

The cost of production of each article will be $=2x+3$

Given that the total production on that day was $Rs.90$.

Hence, we have the equation;

$x(2x+3) = 90$

$2x^2+3x-90 = 0$

$\Rightarrow 2x^2+15x-12x-90 = 0$

$\Rightarrow x(2x+15) - 6(2x+15) = 0$

$\Rightarrow (2x+15)(x-6) = 0$

$\Rightarrow x =-\frac{15}{2}\ or\ 6$

But, x cannot be negative as it is the number of articles.

Therefore, $x=6$ and the cost of each article $= 2x+3 = 2(6)+3 = 15$

Hence, the number of articles is 6 and the cost of each article is Rs 15.

Also Read-

Aakash Repeater Courses

Take Aakash iACST and get instant scholarship on coaching programs.

Topics Covered in Chapter 4, Quadratic Equation: Exercise 4.2

  1. Factorisation: In this method, the quadratic equation is broken down into the product of two linear factors by splitting the middle term of the quadratic equation.
  2. Roots and Zeros: This exercise defines the relation between the roots of the quadratic equation and with zeros of the corresponding polynomial.
  3. Standard Form of a Quadratic Equation: The standard form of a quadratic equation, which is ax² + bx + c = 0, where 'a is not equal to 0, and this exercise deals with the standard form of the quadratic equation.
  4. Problem Solving: In this exercise, the word problem is converted into a quadratic equation, and the equation is solved by applying the factorisation method.

Also see-

NCERT Solutions Subject Wise

Students must check the NCERT solutions for Class 10 Maths and Science given below:

Subject-Wise NCERT Exemplar Solutions

Students must check the NCERT exemplar solutions for Class 10 Maths and Science given below:

Frequently Asked Questions (FAQs)

Q: What is the general form of the quadratic equation?
A:

The common shape of the quadratic condition is ax62+bx+c=0 where a, b, c are real numbers. 

Q: Whether the roots of the condition and the zeroes of the condition are the same ?
A:

Yes, the roots of the equation and the zeroes of the equation are the same. 

Q: Factorize the polynomial a^2-10a+24 .
A:

a^2-10a+24=a2-4a-6a+24 

=a(a-4)-6(a-4) 

=(a-4)(a-6)  

Q: What is the vital condition for understanding the quadratic conditions by utilizing the strategy of factorization?
A:

In the strategy of factorization, the product of 1st and final terms of a given condition must be broken even with the product of 2nd and 3rd terms of the same given condition. 

Q: What is the splitting of the middle term?
A:

Splitting of the middle term is nothing but we have to rewrite the middle term of the quadratic expression as the sum or difference of the two terms, that is we have to split the middle term into two parts in terms of sum or difference of the terms. 

Q: What is the sum product form according to NCERT solutions for Class 10 Maths chapter 4 exercise 4.2 ?
A:

The sum-product form is nothing but in the equation ax^2+bx+c=0 , the product of the middle term after splitting must be equal to a×c and the sum must be equal to b.

Q: How numerous questions and what sort of questions are secured inside the NCERT solutions for Class 10 Maths chapter 4 exercise 4.2 ?
A:

NCERT solutions for Class 10 Maths chapter 4 exercise 4.2 comprises of six questions which are based on the factorization strategy.

Articles
|
Upcoming School Exams
Ongoing Dates
Assam HSLC Application Date

1 Sep'25 - 4 Oct'25 (Online)

Ongoing Dates
UP Board 12th Others

7 Sep'25 - 11 Sep'25 (Online)

Certifications By Top Providers
Explore Top Universities Across Globe

Questions related to CBSE Class 10th

On Question asked by student community

Have a question related to CBSE Class 10th ?

Hello,

If you want to get your 10th marksheet online, you just need to visit an official website like https://www.cbse.gov.in/ or https://results.cbse.nic.in/ for the CBSE board, and for the state board, you can check their website and provide your roll number, security PIN provided by the school, and school code to download the result.

I hope it will clear your query!!

Hello, if you are searching for Class 10 books for exam preparation, the right study material can make a big difference. Standard textbooks recommended by the board should be your first priority as they cover the syllabus completely. Along with that, reference books and guides can help in practicing extra questions and understanding concepts in detail. You can check the recommended books for exam preparation from the link I am sharing here.
https://school.careers360.com/ncert/ncert-books-for-class-10
https://school.careers360.com/boards/cbse/cbse-best-reference-books-for-cbse-class-10-exam

Hello Dinesh !

As per CBSE board guidelines for internal assessment for class 10th you will have to give a 80 marks board exam and 20 marks internal assessment. The internal assessment will be at the end of your year.

For knowing the definite structure of the internal assessment you will have to ask your teachers or your seniors in the school as CBSE has provided flexibility in choosing the methods of internal assessment to schools. For more details related to assessment scheme for class 10 given by CBSE you can visit: Assessment scheme (http://cbseacademic.nic.in/web_material/CurriculumMain2Sec/Curriculum_Sec_2021- 22.pdf)

I Hope you have understood it!

Hello

You asked about Class 10 sample paper board exam and most important questions. Practicing sample papers and previous year questions is one of the best ways to prepare for the board exam because it gives a clear idea of the exam pattern and types of questions asked. Schools and teachers usually recommend students to solve at least the last five years question papers along with model papers released by the board.

For Class 10 board exams, the most important areas are Mathematics, Science, Social Science, English, and Hindi or regional language. In Mathematics, questions from Algebra, Linear Equations, Geometry, Trigonometry, Statistics, and Probability are repeatedly seen. For Science, the key chapters are Chemical Reactions, Acids Bases and Salts, Metals and Non metals, Life Processes, Heredity, Light and Electricity. In Social Science, priority should be given to Nationalism, Resources and Development, Agriculture, Power Sharing, Democratic Politics, and Economics related topics. In English, focus on unseen passages, grammar exercises, and important writing tasks like letter writing and essays.

CBSE Sample Papers 2026: How to Download

Follow these steps to access the SQPs and marking schemes:

Step 1: Visit https://cbseacademic.nic.in/

Step 2: Click on the link titled “CBSE Sample Papers 2026”

Step 3: A PDF will open with links to Class 10 and 12 sample papers

Step 4: Select your class (Class 10 or Class 12)

Step 5: Choose your subject

Step 6: Download both the sample paper and its marking scheme





If you are looking for Class 10 previous year question papers for 2026 preparation, you can easily access them through the links I’ll be attaching. These papers are very helpful because they give you a clear idea about the exam pattern, marking scheme, and the type of questions usually asked in board exams. Practicing these will not only improve your time management but also help you identify important chapters and commonly repeated questions.
https://school.careers360.com/boards/cbse/cbse-previous-year-question-papers-class-10
https://school.careers360.com/boards/cbse/cbse-previous-year-question-papers