NCERT Solutions for Exercise 8.3 Class 10 Maths Chapter 8 - Introduction to Trigonometry

# NCERT Solutions for Exercise 8.3 Class 10 Maths Chapter 8 - Introduction to Trigonometry

Edited By Ramraj Saini | Updated on Nov 27, 2023 09:11 AM IST | #CBSE Class 10th

## NCERT Solutions For Class 10 Maths Chapter 8 Exercise 8.3

NCERT Solutions for Exercise 8.3 Class 10 Maths Chapter 8 Introduction to Trigonometry are discussed here. These NCERT solutions are created by subject matter expert at Careers360 considering the latest syllabus and pattern of CBSE 2023-24. Class 10 maths ex 8.3 gives a brief overview of the trigonometric ratios of complementary angles and is explained in trigonometry. If the sum of two angles equals 90°, they are said to be complementary. According to the angle sum property, one angle in a right-angled triangle measures 90°, and the sum of the other two angles also measures 90°. This is the concept from which the formulas for this exercise are derived or the formula of complementary angle. The majority of these questions require proof. As a result, students must carefully study the theory in order to provide detailed answers to these sums.

10th class Maths exercise 8.3 answers are designed as per the students demand covering comprehensive, step by step solutions of every problem. Practice these questions and answers to command the concepts, boost confidence and in depth understanding of concepts. Students can find all exercise together using the link provided below.

Apply to Aakash iACST Scholarship Test 2024

##### Aakash iACST Scholarship Test 2024

Get up to 90% scholarship on NEET, JEE & Foundation courses

## Assess NCERT Solutions for Class 10 Maths chapter 8 exercise 8.3

Introduction to Trigonometry class 10 chapter 8 Exercise: 8.3

$(i)$$\frac{\sin 18^{o}}{\cos 72^{o}}$

$\frac{\sin 18^{o}}{\cos 72^{o}}$
We can write the above equation as;
$=\frac{\sin (90^0-72^0)}{\cos 72^0}$
By using the identity of $\sin (90^o-\theta) = \cos \theta$
Therefore, $\frac{\cos 72^0}{\cos 72^0} = 1$

$(ii) \frac{\tan 26^{o}}{\cot 64^{o}}$

$\frac{\tan 26^{o}}{\cot 64^{o}}$
The above equation can be written as ;

$\tan (90^o-64^o)/\cot 64^o$ .........(i)
It is known that, $\tan (90^o-\theta) = \cot \theta$
Therefore, equation (i) becomes,
$\cot64^o/\cot 64^o = 1$

$(iii) \cos 48^{o}-\sin 42^{o}$

$\cos 48^{o}-\sin 42^{o}$
The above equation can be written as ;
$\cos (90^o-42^{o})-\sin 42^{o}$ ....................(i)
It is known that $\cos (90^o-\theta) = \sin \theta$
Therefore, equation (i) becomes,
$\sin42^{o}-\sin 42^{o} = 0$

$(iv) cosec \: 31^{o}-\sec 59^{o}$

$cosec \: 31^{o}-\sec 59^{o}$

This equation can be written as;
$cosec 31^o - \sec(90^o-31^o)$ .................(i)
We know that $\sec(90^o-\theta) = cosec \theta$

Therefore, equation (i) becomes;
$cosec 31^o - cosec\ 31^o$ = 0

$(i) \tan 48^{o}\tan 23^{o}\tan 42^{o}\tan 67^{o}= 1$

$\tan 48^{o}\tan 23^{o}\tan 42^{o}\tan 67^{o}= 1$
Taking Left Hand Side (LHS)
= $\tan 48^{o}\tan 23^{o}\tan 42^{o}\tan 67^{o}$
$\Rightarrow \tan 48^{o}\tan 23^{o}\tan (90^o-48^{o})\tan (90^o-23^{o})$
$\Rightarrow \tan 48^{o}\tan 23^{o}\cot 48^{o}\cot23^{o}$ [it is known that $\tan (90^0-\theta = \cot\theta)$ and $\cot\theta\times \tan \theta =1$
$=1$

Hence proved.

$(ii) \cos 38^{o}\cos 52^{o}-\sin 38^{o}\sin 52^{o}= 0$

$\cos 38^{o}\cos 52^{o}-\sin 38^{o}\sin 52^{o}= 0$

Taking Left Hand Side (LHS)
= $\cos 38^{o}\cos 52^{o}-\sin 38^{o}\sin 52^{o}$
= $\cos 38^{o}\cos (90^o-38^{o})-\sin 38^{o}\sin (90^o-38^{o})$
= $\cos 38^{o}\sin38^{o}-\sin 38^{o}\cos 38^{o}$ [it is known that $\sin(90^0-\theta) =\cos \theta$ and $\cos(90^0-\theta) =\sin \theta$ ]
= 0

We have,
$\tan$ 2A = $\cot$ (A - $\18^{0}$ )
we know that, $\\\cot (90^0-\theta) = \tan\theta$
$\\\Rightarrow \cot (90^0-2A) = \cot (A-18^0)\\\Rightarrow 90^0-2A = A - 18^0\\\Rightarrow 3A = 108\\\Rightarrow A = 108/3 = 36^0$

We have,
$\tan A= \cot B$
and we know that $\tan (90^0 - \theta)= \cot \theta$
therefore,
$\tan A= \tan(90^0- B)$
A = 90 - B
A + B = 90
Hence proved.

We have,
$\sec 4A= cosec (A-20^{o})$ , Here 4A is an acute angle
According to question,
We know that $cosec(90^0-\theta)= \sec \theta$
$cosec(90^0-4A)= cosec (A-20^{o})$

$\\\Rightarrow 90 - 4A = A - 20\\\\ \Rightarrow 5A=110\\\\ \Rightarrow A=\frac{110}{5}\\\:\\ \Rightarrow A=22^o$

$\sin (\frac{B+C}{2})= \cos \frac{A}{2}$

Given that,
A, B and C are interior angles of $\Delta ABC$
To prove - $\sin (\frac{B+C}{2})= \cos \frac{A}{2}$

Now,
In triangle $\Delta ABC$ ,
A + B + C = $180^0$
$\Rightarrow B + C = 180 - A$
$\Rightarrow B + C/2 = 90^0 - A/2$
$\sin \frac{B+C}{2}=\sin (90^0-A/2)$
$\sin \frac{B+C}{2}=\cos A/2$
Hence proved.

By using the identity of $\sin\theta$ and $\cos\theta$
$sin 67^{o}+\cos 75^{o}$
We know that,
$\sin(90-\theta) =\cos \theta$ and $\cos(90-\theta) =\sin \theta$
the above equation can be written as;
$=\sin (90^0-23^0)+\cos(90^0-15^0)$
$=\sin (15^0)+\cos(23^0)$

## More About NCERT Solutions for Class 10 Maths Exercise 8.3

NCERT solutions for Class 10 Maths exercise 8.3- We can find the value of these complementary angles but in the examination, we have very little time. So, we should try to remember these formulas NCERT solutions for Class 10 Maths chapter 8 exercise 8.3 as these can break a large complex trigonometric equation into simpler ones that can be called easily by the other associated terms present in the function.

The formulas are:

sin (90 - A) = cos A

cos (90 - A) = sin A

tan (90 - A) = cot A

cot (90 - A) = tan A

sec (90 - A) = cosec A

cosec (90 - A) = sec A

for all values of angle, A lying between 0° and 90°.

We should always be careful about

tan (0) = 0 = cot (90)

sec (0) = 1 cosec (90) and sec (90), cosec(0), tan(90) and cot (0) are not defined. Students can use these Introduction to Trigonometry Class 10 notes to quick revision of the important concepts discussed in this chapter.

## Benefits of NCERT Solutions for Class 10 Maths Exercise 8.3

• Exercise 8.3 Class 10 Maths, is based on the main concept of Trigonometric Ratios of Complementary Angles.
• Class 10 Maths chapter 8 exercise 8.3 helps in solving and revising all questions of the previous exercises. It shows us two different aspects of solving the same problem by using complementary angels.
• Mastering the complementary angle formulas of Class 10 Maths chapter 8 exercise 8.3 can help in simplifying complex trigonometric questions into simpler ones.

Also see-

##### JEE Main high scoring chapters and topics

As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE

##### JEE Main Important Mathematics Formulas

As per latest 2024 syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters

## Upcoming School Exams

#### National Institute of Open Schooling 12th Examination

Application Date:07 June,2024 - 06 July,2024

#### National Institute of Open Schooling 10th examination

Application Date:07 June,2024 - 06 July,2024

#### Nagaland Board of Secondary Education 12th Examination

Exam Date:11 June,2024 - 21 June,2024

#### Odisha Council of Higher Secondary Education 12th Examination

Others:11 June,2024 - 21 June,2024

#### Nagaland Board High School Leaving Certificate Examination

Exam Date:11 June,2024 - 21 June,2024

Edx
1111 courses
Coursera
792 courses
Udemy
327 courses
Futurelearn
142 courses
IBM
85 courses

## Explore Top Universities Across Globe

University of Essex, Colchester
Wivenhoe Park Colchester CO4 3SQ
University College London, London
Gower Street, London, WC1E 6BT
The University of Edinburgh, Edinburgh
Old College, South Bridge, Edinburgh, Post Code EH8 9YL
University of Bristol, Bristol
Beacon House, Queens Road, Bristol, BS8 1QU
University of Nottingham, Nottingham
University Park, Nottingham NG7 2RD
Lancaster University, Lancaster
Bailrigg, Lancaster LA1 4YW

### Questions related to CBSE Class 10th

Have a question related to CBSE Class 10th ?

Here are some options you can explore to get admission in a good school even though admissions might be closed for many:

• Waitlist: Many schools maintain waitlists after their initial application rounds close.  If a student who secured a seat decides not to join, the school might reach out to students on the waitlist.  So, even if the application deadline has passed,  it might be worth inquiring with schools you're interested in if they have a waitlist and if they would consider adding you to it.

• Schools with ongoing admissions: Some schools, due to transfers or other reasons, might still have seats available even after the main admission rush.  Reach out to the schools directly to see if they have any open seats in 10th grade.

• Consider other good schools: There might be other schools in your area that have a good reputation but weren't on your initial list. Research these schools and see if they have any seats available.

• Focus on excelling in your current school: If you can't find a new school this year, focus on doing well in your current school. Maintain good grades and get involved in extracurricular activities. This will strengthen your application for next year if you decide to try transferring again.

Dear aspirant !

Hope you are doing well ! The class 10 Hindi mp board sample paper can be found on the given link below . Set your time and give your best in the sample paper it will lead to great results ,many students are already doing so .

Hope you get it !

Thanking you

Hello aspirant,

The dates of the CBSE Class 10th and Class 12 exams are February 15–March 13, 2024 and February 15–April 2, 2024, respectively. You may obtain the CBSE exam date sheet 2024 PDF from the official CBSE website, cbse.gov.in.

To get the complete datesheet, you can visit our website by clicking on the link given below.

Thank you

Hope this information helps you.

Hello aspirant,

The paper of class 7th is not issued by respective boards so I can not find it on the board's website. You should definitely try to search for it from the website of your school and can also take advise of your seniors for the same.

You don't need to worry. The class 7th paper will be simple and made by your own school teachers.

Thank you

Hope it helps you.

The eligibility age criteria for class 10th CBSE is 14 years of age. Since your son will be 15 years of age in 2024, he will be eligible to give the exam.

A block of mass 0.50 kg is moving with a speed of 2.00 ms-1 on a smooth surface. It strikes another mass of 1.00 kg and then they move together as a single body. The energy loss during the collision is

 Option 1) Option 2) Option 3) Option 4)

A person trying to lose weight by burning fat lifts a mass of 10 kg upto a height of 1 m 1000 times.  Assume that the potential energy lost each time he lowers the mass is dissipated.  How much fat will he use up considering the work done only when the weight is lifted up ?  Fat supplies 3.8×107 J of energy per kg which is converted to mechanical energy with a 20% efficiency rate.  Take g = 9.8 ms−2 :

 Option 1) 2.45×10−3 kg Option 2)  6.45×10−3 kg Option 3)  9.89×10−3 kg Option 4) 12.89×10−3 kg

An athlete in the olympic games covers a distance of 100 m in 10 s. His kinetic energy can be estimated to be in the range

 Option 1) Option 2) Option 3) Option 4)

A particle is projected at 600   to the horizontal with a kinetic energy . The kinetic energy at the highest point

 Option 1) Option 2) Option 3) Option 4)

In the reaction,

 Option 1)   at STP  is produced for every mole   consumed Option 2)   is consumed for ever      produced Option 3) is produced regardless of temperature and pressure for every mole Al that reacts Option 4) at STP is produced for every mole Al that reacts .

How many moles of magnesium phosphate, will contain 0.25 mole of oxygen atoms?

 Option 1) 0.02 Option 2) 3.125 × 10-2 Option 3) 1.25 × 10-2 Option 4) 2.5 × 10-2

If we consider that 1/6, in place of 1/12, mass of carbon atom is taken to be the relative atomic mass unit, the mass of one mole of a substance will

 Option 1) decrease twice Option 2) increase two fold Option 3) remain unchanged Option 4) be a function of the molecular mass of the substance.

With increase of temperature, which of these changes?

 Option 1) Molality Option 2) Weight fraction of solute Option 3) Fraction of solute present in water Option 4) Mole fraction.

Number of atoms in 558.5 gram Fe (at. wt.of Fe = 55.85 g mol-1) is

 Option 1) twice that in 60 g carbon Option 2) 6.023 × 1022 Option 3) half that in 8 g He Option 4) 558.5 × 6.023 × 1023

A pulley of radius 2 m is rotated about its axis by a force F = (20t - 5t2) newton (where t is measured in seconds) applied tangentially. If the moment of inertia of the pulley about its axis of rotation is 10 kg m2 , the number of rotations made by the pulley before its direction of motion if reversed, is

 Option 1) less than 3 Option 2) more than 3 but less than 6 Option 3) more than 6 but less than 9 Option 4) more than 9