CBSE Class 12th Exam Date:17 Feb' 26 - 17 Feb' 26
Ever tried to push a door and seen how it opens easily when you push in the right direction? That's dot product in real life. In Class 12 Maths Chapter 10 Exercise 10.3, you will find out how the angle between the vectors determines the outcome a useful concept in physics, maths, and even basic motion.
Class 12 Maths chapter 10 Exercise 10.3 solutions of NCERT are simplified and easy to understand, with step-by-step explanations for every question. Practising these will help you grasp the dot product more clearly and give you confidence during exams. You can find all NCERT solution for Class 12 chapter 10 exercises combined from the link below for easy revision.
This Story also Contains
Get simple and clear NCERT solutions for Class 12 Maths Chapter 10 Exercise 10.3 to understand dot product of vectors in an easy way.
Answer:
Given
$\left | \vec a \right |=\sqrt{3}$
$\left | \vec b \right |=2$
$\vec a . \vec b = \sqrt 6$
As we know
$\vec a . \vec b = \left | \vec a \right |\left | \vec b \right |cos\theta$
where $\theta$ is the angle between two vectors
So,
$cos\theta =\frac{\vec a.\vec b}{\left | \vec a \right |\left | \vec b \right |}=\frac{\sqrt{6}}{\sqrt{3}*2}=\frac{1}{\sqrt{2}}$
$\theta=\frac{\pi}{4}$
Hence the angle between the vectors is $\frac{\pi}{4}$ .
Answer:
Given two vectors
$\vec a=\hat i - 2 \hat j + 3 \hat k \: \:and \: \: \vec b=3 \hat i - 2 \hat j + \hat k$
Now As we know,
The angle between two vectors $\vec a$ and $\vec b$ is given by
$\theta=cos^{-1}\left ( \frac{\vec a.\vec b}{\left | \vec a \right |\left | \vec b \right |}\right )$
Hence the angle between $\vec a=\hat i - 2 \hat j + 3 \hat k \: \:and \: \: \vec b=3 \hat i - 2 \hat j + \hat k$
$\theta=cos^{-1}\left ( \frac{(\hat i-2\hat j+3\hat k).(3\hat i-2\hat j+\hat k)}{\left | \hat i-2\hat j+3\hat k \right |\left |3\hat i-2\hat j+\hat k \right |}\right )$
$\theta=cos^{-1}\left ( \frac{3+4+3}{\sqrt{1^2+(-2)^2+3^3}\sqrt{3^2+(-2)^2+1^2}} \right )$
$\theta=cos^{-1}\frac{10}{14}$
$\theta=cos^{-1}\frac{5}{7}$
Question 3: Find the projection of the vector $\hat i - \hat j$ on the vector $\hat i + \hat j$
Answer:
Let
$\vec a=\hat i - \hat j$
$\vec b=\hat i + \hat j$
Projection of vector $\vec a$ on $\vec b$
$\frac{\vec a.\vec b}{\left | \vec b \right |}=\frac{(\hat i-\hat j)(\hat i+\hat j)}{\left |\hat i+\hat j \right |}=\frac{1-1}{\sqrt{2}}=0$
Hence, Projection of vector $\vec a$ on $\vec b$ is 0.
Question 4: Find the projection of the vector $\hat i + 3 \hat j + 7 \hat k$ on the vector $7\hat i - \hat j + 8 \hat k$
Answer:
Let
$\vec a =\hat i + 3 \hat j + 7 \hat k$
$\vec b=7\hat i - \hat j + 8 \hat k$
The projection of $\vec a$ on $\vec b$ is
$\frac{\vec a.\vec b}{\left | \vec b \right |}=\frac{(\hat i+3\hat j+7\hat k)(7\hat i-\hat j+8\hat k)}{\left | 7\hat i-\hat j+8\hat k \right |}=\frac{7-3+56}{\sqrt{7^2+(-1)^2+8^2}}=\frac{60}{\sqrt{114}}$
Hence, projection of vector $\vec a$ on $\vec b$ is
$\frac{60}{\sqrt{114}}$
Answer:
Given
$\\\vec a=\frac{1}{7}( 2 \hat i + 3 \hat j + 6 \hat k ), \\\ \vec b =\frac{1}{7}( 3 \hat i- 6 \hat j + 2 \hat k ),\\\vec c = \frac{1}{7}( 6\hat i + 2 \hat j -3\hat k )$
Now magnitude of $\vec a,\vec b \:and\: \vec c$
$\left | \vec a \right |=\frac{1}{7} \sqrt{2^2+3^2+6^2}=\frac{\sqrt{49}}{7}=1$
$\left | \vec b \right |=\frac{1}{7} \sqrt{3^2+(-6)^2+2^2}=\frac{\sqrt{49}}{7}=1$
$\left | \vec c \right |=\frac{1}{7} \sqrt{6^2+2^2+(-3)^2}=\frac{\sqrt{49}}{7}=1$
Hence, they all are unit vectors.
Now,
$\vec a.\vec b=\frac{1}{7}(2\hat i+3\hat j+6\hat k)\frac{1}{7}(3\hat i-6\hat j+2\hat k)=\frac{1}{49}(6-18+12)=0$
$\vec b.\vec c=\frac{1}{7}(3\hat i-6\hat j+2\hat k)\frac{1}{7}(6\hat i+2\hat j-3\hat k)=\frac{1}{49}(18-12-6)=0$
$\vec c.\vec a=\frac{1}{7}(6\hat i+2\hat j-3\hat k)\frac{1}{7}(2\hat i+3\hat j-6\hat k)=\frac{1}{49}(12+6-18)=0$
Hence all three are mutually perpendicular to each other.
Answer:
Given in the question
$( \vec a + \vec b ). ( \vec a - \vec b )=8$
$\left | \vec a \right |^2-\left | \vec b \right |^2=8$
Since $|\vec a |\: \:= 8 \: \:|\vec b |$
$\left | \vec {8b} \right |^2-\left | \vec b \right |^2=8$
$\left | \vec {63b} \right |^2=8$
$\left | \vec {b} \right |^2=\frac{8}{63}$
$\left | \vec {b} \right |=\sqrt{\frac{8}{63}}$
So, answer of the question is
$\left | \vec {a} \right |=8\left | \vec {b} \right |=8\sqrt{\frac{8}{63}}$
Question 7: Evaluate the product $( 3\vec a - 5 \vec b ). ( 2 \vec a + 7 \vec b )$ .
Answer:
To evaluate the product $( 3\vec a - 5 \vec b ). ( 2 \vec a + 7 \vec b )$
$( 3\vec a - 5 \vec b ). ( 2 \vec a + 7 \vec b )=6\vec a.\vec a+21\vec a.\vec b-10\vec b.\vec a-35\vec b.\vec b$
$=6\vec a.^2+11\vec a.\vec b-35\vec b^2$
$=6\left | \vec a \right |^2+11\vec a.\vec b-35\left | \vec b \right |^2$
Answer:
Given two vectors $\vec a \: \: and \: \: \vec b$
$\left | \vec a \right |=\left | \vec b\right |$
$\vec a.\vec b=\frac{1}{2}$
Now Angle between $\vec a \: \: and \: \: \vec b$
$\theta=60^0$
Now As we know that
$\vec a.\vec b=\left | \vec a \right |\left | \vec b \right |cos\theta$
$\frac{1}{2}=\left | \vec a \right |\left | \vec a \right |cos60^0$
$\left | a \right |^2=1$
Hence, the magnitude of two vectors $\vec a \: \: and \: \: \vec b$
$\left | a \right |=\left | b \right |=1$
Question 9: Find $|\vec x |$ , if for a unit vector $\vec a , ( \vec x -\vec a ) . ( \vec x + \vec a ) = 12$
Answer:
Given in the question that
$( \vec x -\vec a ) . ( \vec x + \vec a ) = 12$
And we need to find $\left | \vec x \right |$
$\left | \vec x \right |^2-\left | \vec a \right |^2 = 12$
$\left | \vec x \right |^2-1 = 12$
$\left | \vec x \right |^2 = 13$
$\left | \vec x \right | = \sqrt{13}$
So the value of $\left | \vec x \right |$ is $\sqrt{13}$
Answer:
Given in the question is
$\vec a = 2 \hat i + 2 \hat j + 3 \hat k , \vec b = - \hat i + 2 \hat j + \hat k \: \: and \: \: \vec c = 3 \hat i + \hat j$
and $\vec a + \lambda \vec b$ is perpendicular to $\vec c$
and we need to find the value of $\lambda$ ,
so the value of $\vec a + \lambda \vec b$ -
$\vec a + \lambda \vec b=2\hat i +2\hat j +3\hat k+\lambda (-\hat i+2\hat j+\hat k)$
$\vec a + \lambda \vec b=(2-\lambda)\hat i +(2+2\lambda)\hat j +(3+\lambda)\hat k$
As $\vec a + \lambda \vec b$ is perpendicular to $\vec c$
$(\vec a + \lambda \vec b).\vec c=0$
$((2-\lambda)\hat i +(2+2\lambda)\hat j +(3+\lambda)\hat k)(3\hat i+\hat j)=0$
$3(2-\lambda)+2+2\lambda=0$
$6-3\lambda+2+2\lambda=0$
$\lambda=8$
the value of $\lambda=8$ ,
Answer:
Given in the question that -
$\vec a \: \: \: and \: \: \vec b$ are two non-zero vectors
According to the question
$\left ( |\vec a | \vec b + |\vec b | \vec a\right )\left (|\vec a | \vec b - |\vec b | \vec a \right )$
$=|\vec a |^2 |\vec b|^2 - |\vec b |^2 |\vec a|^2+|\vec b||\vec a|\vec a.\vec b-|\vec a||\vec b|\vec b.\vec a=0$
Hence $|\vec a | \vec b + |\vec b | \vec a$ is perpendicular to $|\vec a | \vec b - |\vec b | \vec a$ .
Question 12: If $\vec a . \vec a = 0 \: \: and \: \: \vec a . \vec b = 0$ , then what can be concluded about the vector $\vec b$ ?
Answer:
Given in the question
$\\\vec a . \vec a = 0 \\|\vec a|^2=0$
$\\|\vec a|=0$
Therefore $\vec a$ is a zero vector. Hence any vector $\vec b$ will satisfy $\vec a . \vec b = 0$
Answer:
Given in the question
$\vec a , \vec b , \vec c$ are unit vectors $\Rightarrow |\vec a|=|\vec b|=|\vec c|=1$
and $\vec a + \vec b + \vec c = \vec 0$
and we need to find the value of $\vec a . \vec b + \vec b. \vec c + \vec c . \vec a$
$(\vec a + \vec b + \vec c)^2 = \vec 0$
$\vec a^2 + \vec b^2 + \vec c ^2+2(\vec a . \vec b + \vec b. \vec c + \vec c . \vec a)=0$
$|\vec a|^2 + |\vec b|^2 + |\vec c |^2+2(\vec a . \vec b + \vec b. \vec c + \vec c . \vec a)=0$
$1+1+1+2(\vec a . \vec b + \vec b. \vec c + \vec c . \vec a)=0$
$\vec a . \vec b + \vec b. \vec c + \vec c . \vec a=\frac{-3}{2}$
Answer- the value of $\vec a . \vec b + \vec b. \vec c + \vec c . \vec a$ is $\frac{-3}{2}$
Answer:
Let
$\vec a=\hat i-2\hat j +3\hat k$
$\vec b=5\hat i+4\hat j +1\hat k$
we see that
$\vec a.\vec b=(\hat i-2\hat j +3\hat k)(5\hat i+4\hat j +1\hat k)=5-8+3=0$
we now observe that
$|\vec a|=\sqrt{1^2+(-2)^2+3^2}=\sqrt{14}$
$|\vec b|=\sqrt{5^2+4^2+1^2}=\sqrt{42}$
Hence here converse of the given statement is not true.
Answer:
Given points,
A=(1, 2, 3),
B=(–1, 0, 0),
C=(0, 1, 2),
As need to find Angle between $\overline{BA}\: \: and\: \: \overline{BC} ]$
$\vec {BA}=(1-(-1))\hat i+(2-0)\hat j+(3-0)\hat k=2\hat i+2\hat j+3\hat k$
$\vec {BC}=(0-(-1))\hat i+(1-0)\hat j+(2-0)\hat k=\hat i+\hat j+2\hat k$
Hence angle between them ;
$\theta=cos^{-1}(\frac{\vec {BA}.\vec {BC}}{\left | \vec {BA} \right |\left | \vec {BC} \right |})$
$\theta=cos^{-1}\frac{2+2+6}{\sqrt{17}\sqrt{6}}$
$\theta=cos^{-1}\frac{10}{\sqrt{102}}$
Answer - Angle between the vectors $\overline{BA}\: \: and\: \: \overline{BC}$ is $\theta=cos^{-1}\frac{10}{\sqrt{102}}$
Question 16: Show that the points A(1, 2, 7), B(2, 6, 3) and C(3, 10, –1) are collinear.
Answer:
Given in the question
A=(1, 2, 7), B=(2, 6, 3) and C(3, 10, –1)
To show that the points A(1, 2, 7), B(2, 6, 3) and C(3, 10, –1) are collinear
$\vec {AB}=(2-1)\hat i+(6-2)\hat j+(3-7)\hat k$
$\vec {AB}=\hat i+4\hat j-4\hat k$
$\vec {BC}=(3-2)\hat i+(10-6)\hat j+(-1-3)\hat k$
$\vec {BC}=\hat i+4\hat j-4\hat k$
$\vec {AC}=(3-1)\hat i+(10-2)\hat j+(-1-7)\hat k$
$\vec {AC}=2\hat i+8\hat j-8\hat k$
$|\vec {AB}|=\sqrt{1^2+4^2+(-4)^2}=\sqrt{33}$
$|\vec {BC}|=\sqrt{1^2+4^2+(-4)^2}=\sqrt{33}$
$|\vec {AC}|=\sqrt{2^2+8^2+(-8)^2}=2\sqrt{33}$
As we see that
$|\vec {AC}|=|\vec {AB}|+|\vec {BC}|$
Hence point A, B , and C are colinear.
Answer:
Given the position vector of A, B , and C are
$2 \hat i - \hat j + \hat k , \hat i - 3 \hat j - 5 \hat k \: \: and \: \: 3 \hat i - 4 \hat j - 4 \hat k$
To show that the vectors $2 \hat i - \hat j + \hat k , \hat i - 3 \hat j - 5 \hat k \: \: and \: \: 3 \hat i - 4 \hat j - 4 \hat k$ form the vertices of a right angled triangle
$\vec {AB}=(1-2)\hat i + (-3-(-1))\hat j+(-5-1)\hat k=-1\hat i -2\hat j-6\hat k$
$\vec {BC}=(3-1)\hat i + (-4-(-3))\hat j+(-4-(-5))\hat k=-2\hat i -\hat j+\hat k$
$\vec {AC}=(3-2)\hat i + (-4-(-1))\hat j+(-4-(1))\hat k=\hat i -3\hat j-5\hat k$
$|\vec {AB}|=\sqrt{(-1)^2+(-2)^2+(-6)^2}=\sqrt{41}$
$|\vec {BC}|=\sqrt{(-2)^2+(-1)^2+(1)^2}=\sqrt{6}$
$|\vec {AC}|=\sqrt{(1)^2+(-3)^2+(-5)^2}=\sqrt{35}$
Here we see that
$|\vec {AC}|^2+|\vec {BC}|^2=|\vec {AB}|^2$
Hence A,B, and C are the vertices of a right angle triangle.
$\\A ) \lambda = 1 \\\\ B ) \lambda = -1 \\\\ C ) a = |\lambda | \\\\ D ) a = 1 / |\lambda |$
Answer:
Given $\vec a$ is a nonzero vector of magnitude ‘a’ and $\lambda$ a nonzero scalar
$\lambda \vec a$ is a unit vector when
$|\lambda \vec a|=1$
$|\lambda|| \vec a|=1$
$| \vec a|=\frac{1}{|\lambda|}$
Hence the correct option is D.
Product of Two Vectors
Also Read-
Also see-
Frequently Asked Questions (FAQs)
The main three topics are the addition of vectors, the dot product of vectors and the cross product of vectors.
The work done is the dot product of force and displacement. The dot product of two vectors is a scalar (real number).
The dot product of force and velocity gives power.
i.k=0 as the angle between them is 90 degrees
Yes, the dot product of two vectors can be either positive, negative or zero based on the angle between them.
There are a total of 5 exercises including miscellaneous.
Yes. For two perpendicular vectors, the dot product is zero.
On Question asked by student community
Hello,
Since you have passed 10th and 12th from Delhi and your residency is Delhi, but your domicile is UP, here’s how NEET counselling works:
1. Counselling Eligibility: For UP NEET counselling, your UP domicile makes you eligible, regardless of where your schooling was. You can participate in UP state counselling according to your NEET rank.
2. Delhi Counselling: For Delhi state quota, usually 10th/12th + residency matters. Since your school and residency are in Delhi, you might also be eligible for Delhi state quota, but it depends on specific state rules.
So, having a Delhi Aadhaar will not automatically reject you in UP counselling as long as you have a UP domicile certificate.
Hope you understand.
Hello,
You can access Free CBSE Mock tests from Careers360 app or website. You can get the mock test from this link : CBSE Class 12th Free Mock Tests
Hope it helps !
Yes, it is possible for a student who has done their 12th grade already to take upto 4 exams of their requirement. This is possible through the NIOS, NATIONAL INSTITUTE OF OPEN SCHOOLING. Get more info about the exam and the board through the following link.
For CBSE the PREVIOUS YEARS PAPERS can be accessed through the following link for the Concerned subjec by careers360.
Consequently Careers360 does also have a chapter wise scheme of PYQs, you can access the STUDY MATERIAL (PYQs.) from the following link -
https://school.careers360.com/boards/cbse/cbse-question-bank
Thankyou.
Hello,
Sorry, but JoSAA does not accept marks from two different boards for the same qualification during counselling. However, you can use your NIOS marks to meet the JEE Main/Advanced eligibility criteria if they are better than your CBSE marks. You can use your NIOS marks for the eligibility check, but when presenting your documents, you may be required to present both marksheets and the one with the higher marks for each subject will be considered.
I hope it will clear your query!!
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters