NCERT Solutions for Class 12 Maths Chapter 10 Exercise 10.3 - Vector Algebra

NCERT Solutions for Class 12 Maths Chapter 10 Exercise 10.3 - Vector Algebra

Upcoming Event

CBSE Class 12th Exam Date:01 Jan' 26 - 14 Feb' 26

Komal MiglaniUpdated on 07 May 2025, 05:30 PM IST

Ever tried to push a door and seen how it opens easily when you push in the right direction? That's dot product in real life. In Class 12 Maths Chapter 10 Exercise 10.3, you will find out how the angle between the vectors determines the outcome a useful concept in physics, maths, and even basic motion.

Class 12 Maths chapter 10 Exercise 10.3 solutions of NCERT are simplified and easy to understand, with step-by-step explanations for every question. Practising these will help you grasp the dot product more clearly and give you confidence during exams. You can find all NCERT solution for Class 12 chapter 10 exercises combined from the link below for easy revision.

This Story also Contains

  1. Class 12 Maths Chapter 10 Exercise 10.3 Solutions: Download PDF
  2. NCERT Solutions Class 12 Maths Chapter 10: Exercise 10.3
  3. Topics Covered in Chapter 10 Vector Algebra: Exercise 10.3
  4. NCERT Solutions Subject Wise
  5. Subject Wise NCERT Exemplar Solutions

Class 12 Maths Chapter 10 Exercise 10.3 Solutions: Download PDF

Get simple and clear NCERT solutions for Class 12 Maths Chapter 10 Exercise 10.3 to understand dot product of vectors in an easy way.

Download PDF

NCERT Solutions Class 12 Maths Chapter 10: Exercise 10.3

Question 1: Find the angle between two vectors $\vec a \: \:and \: \: \vec b$ with magnitudes $\sqrt 3 \: \:and \: \: 2$ , respectively having . $\vec a . \vec b = \sqrt 6$

Answer:

Given

$\left | \vec a \right |=\sqrt{3}$

$\left | \vec b \right |=2$

$\vec a . \vec b = \sqrt 6$

As we know

$\vec a . \vec b = \left | \vec a \right |\left | \vec b \right |cos\theta$

where $\theta$ is the angle between two vectors

So,

$cos\theta =\frac{\vec a.\vec b}{\left | \vec a \right |\left | \vec b \right |}=\frac{\sqrt{6}}{\sqrt{3}*2}=\frac{1}{\sqrt{2}}$

$\theta=\frac{\pi}{4}$

Hence the angle between the vectors is $\frac{\pi}{4}$ .

Question 2: Find the angle between the vectors $\hat i - 2 \hat j + 3 \hat k \: \:and \: \: 3 \hat i - 2 \hat j + \hat k$

Answer:

Given two vectors

$\vec a=\hat i - 2 \hat j + 3 \hat k \: \:and \: \: \vec b=3 \hat i - 2 \hat j + \hat k$

Now As we know,

The angle between two vectors $\vec a$ and $\vec b$ is given by

$\theta=cos^{-1}\left ( \frac{\vec a.\vec b}{\left | \vec a \right |\left | \vec b \right |}\right )$

Hence the angle between $\vec a=\hat i - 2 \hat j + 3 \hat k \: \:and \: \: \vec b=3 \hat i - 2 \hat j + \hat k$

$\theta=cos^{-1}\left ( \frac{(\hat i-2\hat j+3\hat k).(3\hat i-2\hat j+\hat k)}{\left | \hat i-2\hat j+3\hat k \right |\left |3\hat i-2\hat j+\hat k \right |}\right )$

$\theta=cos^{-1}\left ( \frac{3+4+3}{\sqrt{1^2+(-2)^2+3^3}\sqrt{3^2+(-2)^2+1^2}} \right )$

$\theta=cos^{-1}\frac{10}{14}$

$\theta=cos^{-1}\frac{5}{7}$

Question 3: Find the projection of the vector $\hat i - \hat j$ on the vector $\hat i + \hat j$

Answer:

Let

$\vec a=\hat i - \hat j$

$\vec b=\hat i + \hat j$

Projection of vector $\vec a$ on $\vec b$

$\frac{\vec a.\vec b}{\left | \vec b \right |}=\frac{(\hat i-\hat j)(\hat i+\hat j)}{\left |\hat i+\hat j \right |}=\frac{1-1}{\sqrt{2}}=0$

Hence, Projection of vector $\vec a$ on $\vec b$ is 0.


Question 4: Find the projection of the vector $\hat i + 3 \hat j + 7 \hat k$ on the vector $7\hat i - \hat j + 8 \hat k$

Answer:

Let

$\vec a =\hat i + 3 \hat j + 7 \hat k$

$\vec b=7\hat i - \hat j + 8 \hat k$

The projection of $\vec a$ on $\vec b$ is

$\frac{\vec a.\vec b}{\left | \vec b \right |}=\frac{(\hat i+3\hat j+7\hat k)(7\hat i-\hat j+8\hat k)}{\left | 7\hat i-\hat j+8\hat k \right |}=\frac{7-3+56}{\sqrt{7^2+(-1)^2+8^2}}=\frac{60}{\sqrt{114}}$

Hence, projection of vector $\vec a$ on $\vec b$ is

$\frac{60}{\sqrt{114}}$

Question 5: Show that each of the given three vectors is a unit vector: $\frac{1}{7}( 2 \hat i + 3 \hat j + 6 \hat k ), \frac{1}{7}( 3 \hat i- 6 \hat j + 2 \hat k ), \frac{1}{7}( 6\hat i + 2 \hat j -3\hat k )$ Also, show that they are mutually perpendicular to each other.

Answer:

Given

$\\\vec a=\frac{1}{7}( 2 \hat i + 3 \hat j + 6 \hat k ), \\\ \vec b =\frac{1}{7}( 3 \hat i- 6 \hat j + 2 \hat k ),\\\vec c = \frac{1}{7}( 6\hat i + 2 \hat j -3\hat k )$

Now magnitude of $\vec a,\vec b \:and\: \vec c$

$\left | \vec a \right |=\frac{1}{7} \sqrt{2^2+3^2+6^2}=\frac{\sqrt{49}}{7}=1$

$\left | \vec b \right |=\frac{1}{7} \sqrt{3^2+(-6)^2+2^2}=\frac{\sqrt{49}}{7}=1$

$\left | \vec c \right |=\frac{1}{7} \sqrt{6^2+2^2+(-3)^2}=\frac{\sqrt{49}}{7}=1$

Hence, they all are unit vectors.

Now,

$\vec a.\vec b=\frac{1}{7}(2\hat i+3\hat j+6\hat k)\frac{1}{7}(3\hat i-6\hat j+2\hat k)=\frac{1}{49}(6-18+12)=0$

$\vec b.\vec c=\frac{1}{7}(3\hat i-6\hat j+2\hat k)\frac{1}{7}(6\hat i+2\hat j-3\hat k)=\frac{1}{49}(18-12-6)=0$

$\vec c.\vec a=\frac{1}{7}(6\hat i+2\hat j-3\hat k)\frac{1}{7}(2\hat i+3\hat j-6\hat k)=\frac{1}{49}(12+6-18)=0$

Hence all three are mutually perpendicular to each other.

Question 6: Find $|\vec a| \: \: and\: \:| \vec b |$ , if $( \vec a + \vec b ). ( \vec a - \vec b )=8 \: \:and \: \: |\vec a |\: \:= 8 \: \:|\vec b |$ .

Answer:

Given in the question

$( \vec a + \vec b ). ( \vec a - \vec b )=8$

$\left | \vec a \right |^2-\left | \vec b \right |^2=8$

Since $|\vec a |\: \:= 8 \: \:|\vec b |$

$\left | \vec {8b} \right |^2-\left | \vec b \right |^2=8$

$\left | \vec {63b} \right |^2=8$

$\left | \vec {b} \right |^2=\frac{8}{63}$

$\left | \vec {b} \right |=\sqrt{\frac{8}{63}}$

So, answer of the question is

$\left | \vec {a} \right |=8\left | \vec {b} \right |=8\sqrt{\frac{8}{63}}$

Question 7: Evaluate the product $( 3\vec a - 5 \vec b ). ( 2 \vec a + 7 \vec b )$ .

Answer:

To evaluate the product $( 3\vec a - 5 \vec b ). ( 2 \vec a + 7 \vec b )$

$( 3\vec a - 5 \vec b ). ( 2 \vec a + 7 \vec b )=6\vec a.\vec a+21\vec a.\vec b-10\vec b.\vec a-35\vec b.\vec b$

$=6\vec a.^2+11\vec a.\vec b-35\vec b^2$

$=6\left | \vec a \right |^2+11\vec a.\vec b-35\left | \vec b \right |^2$

Question 8: Find the magnitude of two vectors $\vec a \: \: and \: \: \vec b$ , having the same magnitude and such that the angle between them is $60 ^\circ$ and their scalar product is 1/2

Answer:

Given two vectors $\vec a \: \: and \: \: \vec b$

$\left | \vec a \right |=\left | \vec b\right |$

$\vec a.\vec b=\frac{1}{2}$

Now Angle between $\vec a \: \: and \: \: \vec b$

$\theta=60^0$

Now As we know that

$\vec a.\vec b=\left | \vec a \right |\left | \vec b \right |cos\theta$

$\frac{1}{2}=\left | \vec a \right |\left | \vec a \right |cos60^0$

$\left | a \right |^2=1$

Hence, the magnitude of two vectors $\vec a \: \: and \: \: \vec b$

$\left | a \right |=\left | b \right |=1$

Question 9: Find $|\vec x |$ , if for a unit vector $\vec a , ( \vec x -\vec a ) . ( \vec x + \vec a ) = 12$

Answer:

Given in the question that

$( \vec x -\vec a ) . ( \vec x + \vec a ) = 12$

And we need to find $\left | \vec x \right |$

$\left | \vec x \right |^2-\left | \vec a \right |^2 = 12$

$\left | \vec x \right |^2-1 = 12$

$\left | \vec x \right |^2 = 13$

$\left | \vec x \right | = \sqrt{13}$

So the value of $\left | \vec x \right |$ is $\sqrt{13}$

Question 10: If $\vec a = 2 \hat i + 2 \hat j + 3 \hat k , \vec b = - \hat i + 2 \hat j + \hat k \: \: and \: \: \vec c = 3 \hat i + \hat j$ are such that $\vec a + \lambda \vec b$ is perpendicular to $\vec c$ , then find the value of $\lambda$

Answer:

Given in the question is

$\vec a = 2 \hat i + 2 \hat j + 3 \hat k , \vec b = - \hat i + 2 \hat j + \hat k \: \: and \: \: \vec c = 3 \hat i + \hat j$

and $\vec a + \lambda \vec b$ is perpendicular to $\vec c$

and we need to find the value of $\lambda$ ,

so the value of $\vec a + \lambda \vec b$ -

$\vec a + \lambda \vec b=2\hat i +2\hat j +3\hat k+\lambda (-\hat i+2\hat j+\hat k)$

$\vec a + \lambda \vec b=(2-\lambda)\hat i +(2+2\lambda)\hat j +(3+\lambda)\hat k$

As $\vec a + \lambda \vec b$ is perpendicular to $\vec c$

$(\vec a + \lambda \vec b).\vec c=0$

$((2-\lambda)\hat i +(2+2\lambda)\hat j +(3+\lambda)\hat k)(3\hat i+\hat j)=0$

$3(2-\lambda)+2+2\lambda=0$

$6-3\lambda+2+2\lambda=0$

$\lambda=8$

the value of $\lambda=8$ ,

Question 11: Show that $|\vec a | \vec b + |\vec b | \vec a$ is perpendicular to $|\vec a | \vec b - |\vec b | \vec a$ , for any two nonzero vectors $\vec a \: \: \: and \: \: \vec b$ .

Answer:

Given in the question that -

$\vec a \: \: \: and \: \: \vec b$ are two non-zero vectors

According to the question

$\left ( |\vec a | \vec b + |\vec b | \vec a\right )\left (|\vec a | \vec b - |\vec b | \vec a \right )$

$=|\vec a |^2 |\vec b|^2 - |\vec b |^2 |\vec a|^2+|\vec b||\vec a|\vec a.\vec b-|\vec a||\vec b|\vec b.\vec a=0$

Hence $|\vec a | \vec b + |\vec b | \vec a$ is perpendicular to $|\vec a | \vec b - |\vec b | \vec a$ .

Question 12: If $\vec a . \vec a = 0 \: \: and \: \: \vec a . \vec b = 0$ , then what can be concluded about the vector $\vec b$ ?

Answer:

Given in the question

$\\\vec a . \vec a = 0 \\|\vec a|^2=0$

$\\|\vec a|=0$

Therefore $\vec a$ is a zero vector. Hence any vector $\vec b$ will satisfy $\vec a . \vec b = 0$

Question 13: If $\vec a , \vec b , \vec c$ are unit vectors such that $\vec a + \vec b + \vec c = \vec 0$ , find the value of $\vec a . \vec b + \vec b. \vec c + \vec c . \vec a$

Answer:

Given in the question

$\vec a , \vec b , \vec c$ are unit vectors $\Rightarrow |\vec a|=|\vec b|=|\vec c|=1$

and $\vec a + \vec b + \vec c = \vec 0$

and we need to find the value of $\vec a . \vec b + \vec b. \vec c + \vec c . \vec a$

$(\vec a + \vec b + \vec c)^2 = \vec 0$

$\vec a^2 + \vec b^2 + \vec c ^2+2(\vec a . \vec b + \vec b. \vec c + \vec c . \vec a)=0$

$|\vec a|^2 + |\vec b|^2 + |\vec c |^2+2(\vec a . \vec b + \vec b. \vec c + \vec c . \vec a)=0$

$1+1+1+2(\vec a . \vec b + \vec b. \vec c + \vec c . \vec a)=0$

$\vec a . \vec b + \vec b. \vec c + \vec c . \vec a=\frac{-3}{2}$

Answer- the value of $\vec a . \vec b + \vec b. \vec c + \vec c . \vec a$ is $\frac{-3}{2}$

Question 14: If either vector $\vec a = 0 \: \: or \: \: \vec b = 0 \: \: then \: \: \vec a . \vec b = 0$ . But the converse need not be true. Justify your answer with an example

Answer:

Let

$\vec a=\hat i-2\hat j +3\hat k$

$\vec b=5\hat i+4\hat j +1\hat k$

we see that

$\vec a.\vec b=(\hat i-2\hat j +3\hat k)(5\hat i+4\hat j +1\hat k)=5-8+3=0$

we now observe that

$|\vec a|=\sqrt{1^2+(-2)^2+3^2}=\sqrt{14}$

$|\vec b|=\sqrt{5^2+4^2+1^2}=\sqrt{42}$

Hence here converse of the given statement is not true.

Question 15: If the vertices A, B, C of a triangle ABC are (1, 2, 3), (–1, 0, 0), (0, 1, 2), respectively, then find $\angle ABC , [\angle ABC$ is the angle between the vectors $\overline{BA}\: \: and\: \: \overline{BC} ]$ .

Answer:

Given points,

A=(1, 2, 3),

B=(–1, 0, 0),

C=(0, 1, 2),

As need to find Angle between $\overline{BA}\: \: and\: \: \overline{BC} ]$

$\vec {BA}=(1-(-1))\hat i+(2-0)\hat j+(3-0)\hat k=2\hat i+2\hat j+3\hat k$

$\vec {BC}=(0-(-1))\hat i+(1-0)\hat j+(2-0)\hat k=\hat i+\hat j+2\hat k$

Hence angle between them ;

$\theta=cos^{-1}(\frac{\vec {BA}.\vec {BC}}{\left | \vec {BA} \right |\left | \vec {BC} \right |})$

$\theta=cos^{-1}\frac{2+2+6}{\sqrt{17}\sqrt{6}}$

$\theta=cos^{-1}\frac{10}{\sqrt{102}}$

Answer - Angle between the vectors $\overline{BA}\: \: and\: \: \overline{BC}$ is $\theta=cos^{-1}\frac{10}{\sqrt{102}}$

Question 16: Show that the points A(1, 2, 7), B(2, 6, 3) and C(3, 10, –1) are collinear.

Answer:

Given in the question

A=(1, 2, 7), B=(2, 6, 3) and C(3, 10, –1)

To show that the points A(1, 2, 7), B(2, 6, 3) and C(3, 10, –1) are collinear

$\vec {AB}=(2-1)\hat i+(6-2)\hat j+(3-7)\hat k$

$\vec {AB}=\hat i+4\hat j-4\hat k$

$\vec {BC}=(3-2)\hat i+(10-6)\hat j+(-1-3)\hat k$

$\vec {BC}=\hat i+4\hat j-4\hat k$

$\vec {AC}=(3-1)\hat i+(10-2)\hat j+(-1-7)\hat k$

$\vec {AC}=2\hat i+8\hat j-8\hat k$

$|\vec {AB}|=\sqrt{1^2+4^2+(-4)^2}=\sqrt{33}$

$|\vec {BC}|=\sqrt{1^2+4^2+(-4)^2}=\sqrt{33}$

$|\vec {AC}|=\sqrt{2^2+8^2+(-8)^2}=2\sqrt{33}$

As we see that

$|\vec {AC}|=|\vec {AB}|+|\vec {BC}|$

Hence point A, B , and C are colinear.

Question 17: Show that the vectors $2 \hat i - \hat j + \hat k , \hat i - 3 \hat j - 5 \hat k \: \: and \: \: 3 \hat i - 4 \hat j - 4 \hat k$ form the vertices of a right angled triangle.

Answer:

Given the position vector of A, B , and C are

$2 \hat i - \hat j + \hat k , \hat i - 3 \hat j - 5 \hat k \: \: and \: \: 3 \hat i - 4 \hat j - 4 \hat k$

To show that the vectors $2 \hat i - \hat j + \hat k , \hat i - 3 \hat j - 5 \hat k \: \: and \: \: 3 \hat i - 4 \hat j - 4 \hat k$ form the vertices of a right angled triangle

$\vec {AB}=(1-2)\hat i + (-3-(-1))\hat j+(-5-1)\hat k=-1\hat i -2\hat j-6\hat k$

$\vec {BC}=(3-1)\hat i + (-4-(-3))\hat j+(-4-(-5))\hat k=-2\hat i -\hat j+\hat k$

$\vec {AC}=(3-2)\hat i + (-4-(-1))\hat j+(-4-(1))\hat k=\hat i -3\hat j-5\hat k$

$|\vec {AB}|=\sqrt{(-1)^2+(-2)^2+(-6)^2}=\sqrt{41}$

$|\vec {BC}|=\sqrt{(-2)^2+(-1)^2+(1)^2}=\sqrt{6}$

$|\vec {AC}|=\sqrt{(1)^2+(-3)^2+(-5)^2}=\sqrt{35}$

Here we see that

$|\vec {AC}|^2+|\vec {BC}|^2=|\vec {AB}|^2$

Hence A,B, and C are the vertices of a right angle triangle.

Question 18: If $\vec a$ is a nonzero vector of magnitude ‘a’ and $\lambda$ a nonzero scalar, then $\lambda \vec a$ is unit vector if

$\\A ) \lambda = 1 \\\\ B ) \lambda = -1 \\\\ C ) a = |\lambda | \\\\ D ) a = 1 / |\lambda |$

Answer:

Given $\vec a$ is a nonzero vector of magnitude ‘a’ and $\lambda$ a nonzero scalar

$\lambda \vec a$ is a unit vector when

$|\lambda \vec a|=1$

$|\lambda|| \vec a|=1$

$| \vec a|=\frac{1}{|\lambda|}$

Hence the correct option is D.

Topics Covered in Chapter 10 Vector Algebra: Exercise 10.3

Product of Two Vectors

  • Dot Product (Scalar Product): When two vectors are multiplied and the result is a scalar (just a number).
    Example: $\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta$
  • Cross Product (Vector Product): When two vectors are multiplied and the result is another vector.
    Example: $\mathbf{a} \times \mathbf{b}=|\mathbf{a}||\mathbf{b}| \sin \theta \mathbf{n}$, where $\mathbf{n}$ is a unit vector perpendicular to both $\mathbf{a}$ and $\mathbf{b}$.

Also Read-

Also see-

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook

Frequently Asked Questions (FAQs)

Q: What is the quantity obtained from the dot product of force and velocity?
A:

The dot product of force and velocity gives power. 

Q: Why i.k=0?
A:

i.k=0 as the angle between them is 90 degrees

Q: Can dot product be a negative number?
A:

Yes, the dot product of two vectors can be either positive, negative or zero based on the angle between them.

Q: How many exercises are solved in NCERT Class 12 chapter vector algebra?
A:

There are a total of 5 exercises including miscellaneous. 

Q: Is it possible to have two vectors whose magnitude is non zero but their dot product is zero?
A:

Yes. For two perpendicular vectors, the dot product is zero.

Q: What are the main topics covered in the chapter vector algebra?
A:

The main three topics are the addition of vectors, the dot product of vectors and the cross product of vectors. 

Q: Why work is a scalar quantity even though force and displacement are vectors?
A:

The work done is the dot product of force and displacement. The dot product of two vectors is a scalar (real number). 

Articles
|
Upcoming School Exams
Ongoing Dates
Goa Board HSSC Application Date

14 Oct'25 - 25 Nov'25 (Online)

Certifications By Top Providers
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Hello,

You can get the Class 11 English Syllabus 2025-26 from the Careers360 website. This resource also provides details about exam dates, previous year papers, exam paper analysis, exam patterns, preparation tips and many more. you search in this site or you can ask question we will provide you the direct link to your query.

LINK: https://school.careers360.com/boards/cbse/cbse-class-11-english-syllabus

Hello,

No, it’s not true that GSEB (Gujarat Board) students get first preference in college admissions.

Your daughter can continue with CBSE, as all recognized boards CBSE, ICSE, and State Boards (like GSEB) which are equally accepted for college admissions across India.

However, state quota seats in Gujarat colleges (like medical or engineering) may give slight preference to GSEB students for state-level counselling, not for all courses.

So, keep her in CBSE unless she plans to apply only under Gujarat state quota. For national-level exams like JEE or NEET, CBSE is equally valid and widely preferred.

Hope it helps.

Hello,

The Central Board of Secondary Education (CBSE) releases the previous year's question papers for Class 12.

You can download these CBSE Class 12 previous year question papers from this link : CBSE Class 12 previous year question papers (http://CBSE%20Class%2012%20previous%20year%20question%20papers)

Hope it helps !

Hi dear candidate,

On our official website, you can download the class 12th practice question paper for all the commerce subjects (accountancy, economics, business studies and English) in PDF format with solutions as well.

Kindly refer to the link attached below to download:

CBSE Class 12 Accountancy Question Paper 2025

CBSE Class 12 Economics Sample Paper 2025-26 Out! Download 12th Economics SQP and MS PDF

CBSE Class 12 Business Studies Question Paper 2025

CBSE Class 12 English Sample Papers 2025-26 Out – Download PDF, Marking Scheme

BEST REGARDS

Hello,

Since you have passed 10th and 12th from Delhi and your residency is Delhi, but your domicile is UP, here’s how NEET counselling works:

1. Counselling Eligibility: For UP NEET counselling, your UP domicile makes you eligible, regardless of where your schooling was. You can participate in UP state counselling according to your NEET rank.

2. Delhi Counselling: For Delhi state quota, usually 10th/12th + residency matters. Since your school and residency are in Delhi, you might also be eligible for Delhi state quota, but it depends on specific state rules.

So, having a Delhi Aadhaar will not automatically reject you in UP counselling as long as you have a UP domicile certificate.

Hope you understand.