NCERT Solutions for Class 12 Maths Chapter 10 Exercise 10.3 - Vector Algebra

NCERT Solutions for Class 12 Maths Chapter 10 Exercise 10.3 - Vector Algebra

Komal MiglaniUpdated on 07 May 2025, 05:30 PM IST

Ever tried to push a door and seen how it opens easily when you push in the right direction? That's dot product in real life. In Class 12 Maths Chapter 10 Exercise 10.3, you will find out how the angle between the vectors determines the outcome a useful concept in physics, maths, and even basic motion.

Class 12 Maths chapter 10 Exercise 10.3 solutions of NCERT are simplified and easy to understand, with step-by-step explanations for every question. Practising these will help you grasp the dot product more clearly and give you confidence during exams. You can find all NCERT solution for Class 12 chapter 10 exercises combined from the link below for easy revision.

LiveGATE 2026 Admit Card Date LIVE: IIT Guwhati to issue MTech exam hall ticket soon; paper schedule, collegesJan 11, 2026 | 4:03 PM IST

After the GATE 2026 examination concludes, candidates will be able to access and download their response sheets from their GOAPS account.

Read More

This Story also Contains

  1. Class 12 Maths Chapter 10 Exercise 10.3 Solutions: Download PDF
  2. NCERT Solutions Class 12 Maths Chapter 10: Exercise 10.3
  3. Topics Covered in Chapter 10 Vector Algebra: Exercise 10.3
  4. NCERT Solutions Subject Wise
  5. Subject Wise NCERT Exemplar Solutions

Class 12 Maths Chapter 10 Exercise 10.3 Solutions: Download PDF

Get simple and clear NCERT solutions for Class 12 Maths Chapter 10 Exercise 10.3 to understand dot product of vectors in an easy way.

Download PDF

NCERT Solutions Class 12 Maths Chapter 10: Exercise 10.3

Question 1: Find the angle between two vectors $\vec a \: \:and \: \: \vec b$ with magnitudes $\sqrt 3 \: \:and \: \: 2$ , respectively having . $\vec a . \vec b = \sqrt 6$

Answer:

Given

$\left | \vec a \right |=\sqrt{3}$

$\left | \vec b \right |=2$

$\vec a . \vec b = \sqrt 6$

As we know

$\vec a . \vec b = \left | \vec a \right |\left | \vec b \right |cos\theta$

where $\theta$ is the angle between two vectors

So,

$cos\theta =\frac{\vec a.\vec b}{\left | \vec a \right |\left | \vec b \right |}=\frac{\sqrt{6}}{\sqrt{3}*2}=\frac{1}{\sqrt{2}}$

$\theta=\frac{\pi}{4}$

Hence the angle between the vectors is $\frac{\pi}{4}$ .

Question 2: Find the angle between the vectors $\hat i - 2 \hat j + 3 \hat k \: \:and \: \: 3 \hat i - 2 \hat j + \hat k$

Answer:

Given two vectors

$\vec a=\hat i - 2 \hat j + 3 \hat k \: \:and \: \: \vec b=3 \hat i - 2 \hat j + \hat k$

Now As we know,

The angle between two vectors $\vec a$ and $\vec b$ is given by

$\theta=cos^{-1}\left ( \frac{\vec a.\vec b}{\left | \vec a \right |\left | \vec b \right |}\right )$

Hence the angle between $\vec a=\hat i - 2 \hat j + 3 \hat k \: \:and \: \: \vec b=3 \hat i - 2 \hat j + \hat k$

$\theta=cos^{-1}\left ( \frac{(\hat i-2\hat j+3\hat k).(3\hat i-2\hat j+\hat k)}{\left | \hat i-2\hat j+3\hat k \right |\left |3\hat i-2\hat j+\hat k \right |}\right )$

$\theta=cos^{-1}\left ( \frac{3+4+3}{\sqrt{1^2+(-2)^2+3^3}\sqrt{3^2+(-2)^2+1^2}} \right )$

$\theta=cos^{-1}\frac{10}{14}$

$\theta=cos^{-1}\frac{5}{7}$

Question 3: Find the projection of the vector $\hat i - \hat j$ on the vector $\hat i + \hat j$

Answer:

Let

$\vec a=\hat i - \hat j$

$\vec b=\hat i + \hat j$

Projection of vector $\vec a$ on $\vec b$

$\frac{\vec a.\vec b}{\left | \vec b \right |}=\frac{(\hat i-\hat j)(\hat i+\hat j)}{\left |\hat i+\hat j \right |}=\frac{1-1}{\sqrt{2}}=0$

Hence, Projection of vector $\vec a$ on $\vec b$ is 0.


Question 4: Find the projection of the vector $\hat i + 3 \hat j + 7 \hat k$ on the vector $7\hat i - \hat j + 8 \hat k$

Answer:

Let

$\vec a =\hat i + 3 \hat j + 7 \hat k$

$\vec b=7\hat i - \hat j + 8 \hat k$

The projection of $\vec a$ on $\vec b$ is

$\frac{\vec a.\vec b}{\left | \vec b \right |}=\frac{(\hat i+3\hat j+7\hat k)(7\hat i-\hat j+8\hat k)}{\left | 7\hat i-\hat j+8\hat k \right |}=\frac{7-3+56}{\sqrt{7^2+(-1)^2+8^2}}=\frac{60}{\sqrt{114}}$

Hence, projection of vector $\vec a$ on $\vec b$ is

$\frac{60}{\sqrt{114}}$

Question 5: Show that each of the given three vectors is a unit vector: $\frac{1}{7}( 2 \hat i + 3 \hat j + 6 \hat k ), \frac{1}{7}( 3 \hat i- 6 \hat j + 2 \hat k ), \frac{1}{7}( 6\hat i + 2 \hat j -3\hat k )$ Also, show that they are mutually perpendicular to each other.

Answer:

Given

$\\\vec a=\frac{1}{7}( 2 \hat i + 3 \hat j + 6 \hat k ), \\\ \vec b =\frac{1}{7}( 3 \hat i- 6 \hat j + 2 \hat k ),\\\vec c = \frac{1}{7}( 6\hat i + 2 \hat j -3\hat k )$

Now magnitude of $\vec a,\vec b \:and\: \vec c$

$\left | \vec a \right |=\frac{1}{7} \sqrt{2^2+3^2+6^2}=\frac{\sqrt{49}}{7}=1$

$\left | \vec b \right |=\frac{1}{7} \sqrt{3^2+(-6)^2+2^2}=\frac{\sqrt{49}}{7}=1$

$\left | \vec c \right |=\frac{1}{7} \sqrt{6^2+2^2+(-3)^2}=\frac{\sqrt{49}}{7}=1$

Hence, they all are unit vectors.

Now,

$\vec a.\vec b=\frac{1}{7}(2\hat i+3\hat j+6\hat k)\frac{1}{7}(3\hat i-6\hat j+2\hat k)=\frac{1}{49}(6-18+12)=0$

$\vec b.\vec c=\frac{1}{7}(3\hat i-6\hat j+2\hat k)\frac{1}{7}(6\hat i+2\hat j-3\hat k)=\frac{1}{49}(18-12-6)=0$

$\vec c.\vec a=\frac{1}{7}(6\hat i+2\hat j-3\hat k)\frac{1}{7}(2\hat i+3\hat j-6\hat k)=\frac{1}{49}(12+6-18)=0$

Hence all three are mutually perpendicular to each other.

Question 6: Find $|\vec a| \: \: and\: \:| \vec b |$ , if $( \vec a + \vec b ). ( \vec a - \vec b )=8 \: \:and \: \: |\vec a |\: \:= 8 \: \:|\vec b |$ .

Answer:

Given in the question

$( \vec a + \vec b ). ( \vec a - \vec b )=8$

$\left | \vec a \right |^2-\left | \vec b \right |^2=8$

Since $|\vec a |\: \:= 8 \: \:|\vec b |$

$\left | \vec {8b} \right |^2-\left | \vec b \right |^2=8$

$\left | \vec {63b} \right |^2=8$

$\left | \vec {b} \right |^2=\frac{8}{63}$

$\left | \vec {b} \right |=\sqrt{\frac{8}{63}}$

So, answer of the question is

$\left | \vec {a} \right |=8\left | \vec {b} \right |=8\sqrt{\frac{8}{63}}$

Question 7: Evaluate the product $( 3\vec a - 5 \vec b ). ( 2 \vec a + 7 \vec b )$ .

Answer:

To evaluate the product $( 3\vec a - 5 \vec b ). ( 2 \vec a + 7 \vec b )$

$( 3\vec a - 5 \vec b ). ( 2 \vec a + 7 \vec b )=6\vec a.\vec a+21\vec a.\vec b-10\vec b.\vec a-35\vec b.\vec b$

$=6\vec a.^2+11\vec a.\vec b-35\vec b^2$

$=6\left | \vec a \right |^2+11\vec a.\vec b-35\left | \vec b \right |^2$

Question 8: Find the magnitude of two vectors $\vec a \: \: and \: \: \vec b$ , having the same magnitude and such that the angle between them is $60 ^\circ$ and their scalar product is 1/2

Answer:

Given two vectors $\vec a \: \: and \: \: \vec b$

$\left | \vec a \right |=\left | \vec b\right |$

$\vec a.\vec b=\frac{1}{2}$

Now Angle between $\vec a \: \: and \: \: \vec b$

$\theta=60^0$

Now As we know that

$\vec a.\vec b=\left | \vec a \right |\left | \vec b \right |cos\theta$

$\frac{1}{2}=\left | \vec a \right |\left | \vec a \right |cos60^0$

$\left | a \right |^2=1$

Hence, the magnitude of two vectors $\vec a \: \: and \: \: \vec b$

$\left | a \right |=\left | b \right |=1$

Question 9: Find $|\vec x |$ , if for a unit vector $\vec a , ( \vec x -\vec a ) . ( \vec x + \vec a ) = 12$

Answer:

Given in the question that

$( \vec x -\vec a ) . ( \vec x + \vec a ) = 12$

And we need to find $\left | \vec x \right |$

$\left | \vec x \right |^2-\left | \vec a \right |^2 = 12$

$\left | \vec x \right |^2-1 = 12$

$\left | \vec x \right |^2 = 13$

$\left | \vec x \right | = \sqrt{13}$

So the value of $\left | \vec x \right |$ is $\sqrt{13}$

Question 10: If $\vec a = 2 \hat i + 2 \hat j + 3 \hat k , \vec b = - \hat i + 2 \hat j + \hat k \: \: and \: \: \vec c = 3 \hat i + \hat j$ are such that $\vec a + \lambda \vec b$ is perpendicular to $\vec c$ , then find the value of $\lambda$

Answer:

Given in the question is

$\vec a = 2 \hat i + 2 \hat j + 3 \hat k , \vec b = - \hat i + 2 \hat j + \hat k \: \: and \: \: \vec c = 3 \hat i + \hat j$

and $\vec a + \lambda \vec b$ is perpendicular to $\vec c$

and we need to find the value of $\lambda$ ,

so the value of $\vec a + \lambda \vec b$ -

$\vec a + \lambda \vec b=2\hat i +2\hat j +3\hat k+\lambda (-\hat i+2\hat j+\hat k)$

$\vec a + \lambda \vec b=(2-\lambda)\hat i +(2+2\lambda)\hat j +(3+\lambda)\hat k$

As $\vec a + \lambda \vec b$ is perpendicular to $\vec c$

$(\vec a + \lambda \vec b).\vec c=0$

$((2-\lambda)\hat i +(2+2\lambda)\hat j +(3+\lambda)\hat k)(3\hat i+\hat j)=0$

$3(2-\lambda)+2+2\lambda=0$

$6-3\lambda+2+2\lambda=0$

$\lambda=8$

the value of $\lambda=8$ ,

Question 11: Show that $|\vec a | \vec b + |\vec b | \vec a$ is perpendicular to $|\vec a | \vec b - |\vec b | \vec a$ , for any two nonzero vectors $\vec a \: \: \: and \: \: \vec b$ .

Answer:

Given in the question that -

$\vec a \: \: \: and \: \: \vec b$ are two non-zero vectors

According to the question

$\left ( |\vec a | \vec b + |\vec b | \vec a\right )\left (|\vec a | \vec b - |\vec b | \vec a \right )$

$=|\vec a |^2 |\vec b|^2 - |\vec b |^2 |\vec a|^2+|\vec b||\vec a|\vec a.\vec b-|\vec a||\vec b|\vec b.\vec a=0$

Hence $|\vec a | \vec b + |\vec b | \vec a$ is perpendicular to $|\vec a | \vec b - |\vec b | \vec a$ .

Question 12: If $\vec a . \vec a = 0 \: \: and \: \: \vec a . \vec b = 0$ , then what can be concluded about the vector $\vec b$ ?

Answer:

Given in the question

$\\\vec a . \vec a = 0 \\|\vec a|^2=0$

$\\|\vec a|=0$

Therefore $\vec a$ is a zero vector. Hence any vector $\vec b$ will satisfy $\vec a . \vec b = 0$

Question 13: If $\vec a , \vec b , \vec c$ are unit vectors such that $\vec a + \vec b + \vec c = \vec 0$ , find the value of $\vec a . \vec b + \vec b. \vec c + \vec c . \vec a$

Answer:

Given in the question

$\vec a , \vec b , \vec c$ are unit vectors $\Rightarrow |\vec a|=|\vec b|=|\vec c|=1$

and $\vec a + \vec b + \vec c = \vec 0$

and we need to find the value of $\vec a . \vec b + \vec b. \vec c + \vec c . \vec a$

$(\vec a + \vec b + \vec c)^2 = \vec 0$

$\vec a^2 + \vec b^2 + \vec c ^2+2(\vec a . \vec b + \vec b. \vec c + \vec c . \vec a)=0$

$|\vec a|^2 + |\vec b|^2 + |\vec c |^2+2(\vec a . \vec b + \vec b. \vec c + \vec c . \vec a)=0$

$1+1+1+2(\vec a . \vec b + \vec b. \vec c + \vec c . \vec a)=0$

$\vec a . \vec b + \vec b. \vec c + \vec c . \vec a=\frac{-3}{2}$

Answer- the value of $\vec a . \vec b + \vec b. \vec c + \vec c . \vec a$ is $\frac{-3}{2}$

Question 14: If either vector $\vec a = 0 \: \: or \: \: \vec b = 0 \: \: then \: \: \vec a . \vec b = 0$ . But the converse need not be true. Justify your answer with an example

Answer:

Let

$\vec a=\hat i-2\hat j +3\hat k$

$\vec b=5\hat i+4\hat j +1\hat k$

we see that

$\vec a.\vec b=(\hat i-2\hat j +3\hat k)(5\hat i+4\hat j +1\hat k)=5-8+3=0$

we now observe that

$|\vec a|=\sqrt{1^2+(-2)^2+3^2}=\sqrt{14}$

$|\vec b|=\sqrt{5^2+4^2+1^2}=\sqrt{42}$

Hence here converse of the given statement is not true.

Question 15: If the vertices A, B, C of a triangle ABC are (1, 2, 3), (–1, 0, 0), (0, 1, 2), respectively, then find $\angle ABC , [\angle ABC$ is the angle between the vectors $\overline{BA}\: \: and\: \: \overline{BC} ]$ .

Answer:

Given points,

A=(1, 2, 3),

B=(–1, 0, 0),

C=(0, 1, 2),

As need to find Angle between $\overline{BA}\: \: and\: \: \overline{BC} ]$

$\vec {BA}=(1-(-1))\hat i+(2-0)\hat j+(3-0)\hat k=2\hat i+2\hat j+3\hat k$

$\vec {BC}=(0-(-1))\hat i+(1-0)\hat j+(2-0)\hat k=\hat i+\hat j+2\hat k$

Hence angle between them ;

$\theta=cos^{-1}(\frac{\vec {BA}.\vec {BC}}{\left | \vec {BA} \right |\left | \vec {BC} \right |})$

$\theta=cos^{-1}\frac{2+2+6}{\sqrt{17}\sqrt{6}}$

$\theta=cos^{-1}\frac{10}{\sqrt{102}}$

Answer - Angle between the vectors $\overline{BA}\: \: and\: \: \overline{BC}$ is $\theta=cos^{-1}\frac{10}{\sqrt{102}}$

Question 16: Show that the points A(1, 2, 7), B(2, 6, 3) and C(3, 10, –1) are collinear.

Answer:

Given in the question

A=(1, 2, 7), B=(2, 6, 3) and C(3, 10, –1)

To show that the points A(1, 2, 7), B(2, 6, 3) and C(3, 10, –1) are collinear

$\vec {AB}=(2-1)\hat i+(6-2)\hat j+(3-7)\hat k$

$\vec {AB}=\hat i+4\hat j-4\hat k$

$\vec {BC}=(3-2)\hat i+(10-6)\hat j+(-1-3)\hat k$

$\vec {BC}=\hat i+4\hat j-4\hat k$

$\vec {AC}=(3-1)\hat i+(10-2)\hat j+(-1-7)\hat k$

$\vec {AC}=2\hat i+8\hat j-8\hat k$

$|\vec {AB}|=\sqrt{1^2+4^2+(-4)^2}=\sqrt{33}$

$|\vec {BC}|=\sqrt{1^2+4^2+(-4)^2}=\sqrt{33}$

$|\vec {AC}|=\sqrt{2^2+8^2+(-8)^2}=2\sqrt{33}$

As we see that

$|\vec {AC}|=|\vec {AB}|+|\vec {BC}|$

Hence point A, B , and C are colinear.

Question 17: Show that the vectors $2 \hat i - \hat j + \hat k , \hat i - 3 \hat j - 5 \hat k \: \: and \: \: 3 \hat i - 4 \hat j - 4 \hat k$ form the vertices of a right angled triangle.

Answer:

Given the position vector of A, B , and C are

$2 \hat i - \hat j + \hat k , \hat i - 3 \hat j - 5 \hat k \: \: and \: \: 3 \hat i - 4 \hat j - 4 \hat k$

To show that the vectors $2 \hat i - \hat j + \hat k , \hat i - 3 \hat j - 5 \hat k \: \: and \: \: 3 \hat i - 4 \hat j - 4 \hat k$ form the vertices of a right angled triangle

$\vec {AB}=(1-2)\hat i + (-3-(-1))\hat j+(-5-1)\hat k=-1\hat i -2\hat j-6\hat k$

$\vec {BC}=(3-1)\hat i + (-4-(-3))\hat j+(-4-(-5))\hat k=-2\hat i -\hat j+\hat k$

$\vec {AC}=(3-2)\hat i + (-4-(-1))\hat j+(-4-(1))\hat k=\hat i -3\hat j-5\hat k$

$|\vec {AB}|=\sqrt{(-1)^2+(-2)^2+(-6)^2}=\sqrt{41}$

$|\vec {BC}|=\sqrt{(-2)^2+(-1)^2+(1)^2}=\sqrt{6}$

$|\vec {AC}|=\sqrt{(1)^2+(-3)^2+(-5)^2}=\sqrt{35}$

Here we see that

$|\vec {AC}|^2+|\vec {BC}|^2=|\vec {AB}|^2$

Hence A,B, and C are the vertices of a right angle triangle.

Question 18: If $\vec a$ is a nonzero vector of magnitude ‘a’ and $\lambda$ a nonzero scalar, then $\lambda \vec a$ is unit vector if

$\\A ) \lambda = 1 \\\\ B ) \lambda = -1 \\\\ C ) a = |\lambda | \\\\ D ) a = 1 / |\lambda |$

Answer:

Given $\vec a$ is a nonzero vector of magnitude ‘a’ and $\lambda$ a nonzero scalar

$\lambda \vec a$ is a unit vector when

$|\lambda \vec a|=1$

$|\lambda|| \vec a|=1$

$| \vec a|=\frac{1}{|\lambda|}$

Hence the correct option is D.

Topics Covered in Chapter 10 Vector Algebra: Exercise 10.3

Product of Two Vectors

  • Dot Product (Scalar Product): When two vectors are multiplied and the result is a scalar (just a number).
    Example: $\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta$
  • Cross Product (Vector Product): When two vectors are multiplied and the result is another vector.
    Example: $\mathbf{a} \times \mathbf{b}=|\mathbf{a}||\mathbf{b}| \sin \theta \mathbf{n}$, where $\mathbf{n}$ is a unit vector perpendicular to both $\mathbf{a}$ and $\mathbf{b}$.

Also Read-

Also see-

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook

NCERT Solutions Subject Wise

CBSE Class 12th Syllabus: Subjects & Chapters
Select your preferred subject to view the chapters

Frequently Asked Questions (FAQs)

Q: What are the main topics covered in the chapter vector algebra?
A:

The main three topics are the addition of vectors, the dot product of vectors and the cross product of vectors. 

Q: Why work is a scalar quantity even though force and displacement are vectors?
A:

The work done is the dot product of force and displacement. The dot product of two vectors is a scalar (real number). 

Q: What is the quantity obtained from the dot product of force and velocity?
A:

The dot product of force and velocity gives power. 

Q: Why i.k=0?
A:

i.k=0 as the angle between them is 90 degrees

Q: Can dot product be a negative number?
A:

Yes, the dot product of two vectors can be either positive, negative or zero based on the angle between them.

Q: How many exercises are solved in NCERT Class 12 chapter vector algebra?
A:

There are a total of 5 exercises including miscellaneous. 

Q: Is it possible to have two vectors whose magnitude is non zero but their dot product is zero?
A:

Yes. For two perpendicular vectors, the dot product is zero.

Articles
|
Upcoming School Exams
Ongoing Dates
CGSOS 12th Application Date

1 Dec'25 - 15 Jan'26 (Online)

Ongoing Dates
CGSOS 10th Application Date

1 Dec'25 - 15 Jan'26 (Online)

Ongoing Dates
Manipur Board HSLC Application Date

10 Dec'25 - 15 Jan'26 (Online)

Certifications By Top Providers
Economic Evaluation for Health Technology Assessment
Via Postgraduate Institute of Medical Education and Research Chandigarh
Aspen Plus Simulation Software a Basic Course for Beginners
Via Indian Institute of Technology Guwahati
Yoga Practices 1
Via Swami Vivekananda Yoga Anusandhana Samsthana, Bangalore
Introduction to Biomedical Imaging
Via The University of Queensland, Brisbane
Brand Management
Via Indian Institute of Management Bangalore
Edx
 1071 courses
Coursera
 816 courses
Udemy
 394 courses
Futurelearn
 264 courses
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Hello,

Yes, it's completely fine to skip this year's 12th board exams and give them next year as a reporter or private candidate, allowing you to prepare better; the process involves contacting your current school or board to register as a private candidate or for improvement exams during the specified

HELLO,

Yes i am giving you the link below through which you will be able to download the Class 12th Maths Book PDF

Here is the link :- https://school.careers360.com/ncert/ncert-book-for-class-12-maths

Hope this will help you!

Failing in pre-board or selection tests does NOT automatically stop you from sitting in the CBSE Class 12 board exams. Pre-boards are conducted by schools only to check preparation and push students to improve; CBSE itself does not consider pre-board marks. What actually matters is whether your school issues your

The CBSE Sahodaya Class 12 Pre-Board Chemistry Question Paper for the 2025-2026 session is available for download on the provided page, along with its corresponding answer key.

The Sahodaya Pre-Board exams, conducted in two rounds (Round 1 typically in December 2025 and Round 2 in January 2026), are modeled precisely

Hello,

You can get the Class 11 English Syllabus 2025-26 from the Careers360 website. This resource also provides details about exam dates, previous year papers, exam paper analysis, exam patterns, preparation tips and many more. you search in this site or you can ask question we will provide you the