NCERT Solutions for Class 12 Maths Chapter 10 Exercise 10.4 - Vector Algebra

NCERT Solutions for Class 12 Maths Chapter 10 Exercise 10.4 - Vector Algebra

Komal MiglaniUpdated on 07 May 2025, 05:29 PM IST

Class 12 Maths Chapter 10 Exercise 10.4 is about learning the cross product of vectors a method to determine a new vector perpendicular to two vectors. It comes in handy when studying Physics concepts such as torque and rotational motion. These NCERT solutions break down each question step by step, making it simpler for students to grasp and apply the concept. Perfect for board preparation and learning real-life vector applications.

Class 12 Maths Exercise 10.4 solutions of NCERT is all about the cross product of vectors. Think about opening a jar lid using your fingers: the turn you get is a physical manifestation of cross product at play (torque). NCERT solution for Class 12 here explains each step by step so you get the reasoning. Doing these is not only helpful in maths, but also in physics and everyday life with force and direction.

LiveGATE Admit Card 2026 LIVE: IIT Guwahati will issue MTech exam hall ticket today? Test timings, guidelinesJan 12, 2026 | 6:10 PM IST

GATE best books 2026 by various authors for preparation are given in the table below.

Subjects and topics

Books/Author name

Computer Science Engineering (CSE)

Architecture

Hamacher

Operating System

Galvin

Algorithm

Cormen

Agricultural Engineering (AG)

Concept of Agricultural Engineering

Mohanty Das

Soil & Water Conservation

VVN Murty

Chemical Engineering (CH)

Essentials of Chemical Reaction Engineering

Fogler

Heat Transfer

JP Holman

Introduction to Chemical Engineering Thermodynamics

JM Smith

Principles of Mass Transfer and Separation Processes

BK Dutta

Unit Operations of Chemical Engineering

McCabe - FPM and MO

Civil Engineering (CE)

Environment 1 and 2

SK Garg

Open channel flow and engineering hydrology

K Subramanya

Geology and Geophysics (GG)

Complete Master Guide GATE

Amresh Singh

Geophysics

Telford

GATE Production and Industrial (PI)

Fluid Mechanics and Machinery

Modi & Seth

Material Science

Made Easy Class Notes & Swadesh Singh

Machine Design

VB Bhandari

GATE Syllabus 2026: Preparation tips, best books for MTech aspirants

Read More

This Story also Contains

  1. Class 12 Maths Chapter 10 Exercise 10.4 Solutions: Download PDF
  2. NCERT Solutions Class 12 Maths Chapter 10: Exercise 10.4
  3. Topics Covered in Chapter 10 Vector Algebra: Exercise 10.4
  4. NCERT Solutions Subject Wise
  5. Subject Wise NCERT Exemplar Solutions

Class 12 Maths Chapter 10 Exercise 10.4 Solutions: Download PDF

Explore the NCERT Solutions for Class 12 Maths Chapter 10 Exercise 10.4 and master cross product concepts with clear, step-by-step solution.

Download PDF

NCERT Solutions Class 12 Maths Chapter 10: Exercise 10.4

Question 1: Find $|\vec a \times \vec b |, if \vec a = \hat i - 7 \hat j + 7 \hat k \: \: and \: \: \vec b = 3 \hat i - 2 \hat j + 2 \hat k$

Answer:

Given in the question,

$\\ \vec a = \hat i - 7 \hat j + 7 \hat k \: \: and \: \: \\\vec b = 3 \hat i - 2 \hat j + 2 \hat k$

and we need to find $|\vec a \times \vec b |$

Now,

$|\vec a \times \vec b | =\begin{vmatrix} \hat i &\hat j &\hat k \\ 1 &-7 &7 \\ 3& -2 &2 \end{vmatrix}$

$|\vec a \times \vec b | =\hat i(-14+14)-\hat j(2-21)+\hat k(-2+21)$

$|\vec a \times \vec b | =19\hat j+19\hat k$

So the value of $|\vec a \times \vec b |$ is $19\hat j+19\hat k$

Question 2: Find a unit vector perpendicular to each of the vector $\vec a + \vec b \: \: and\: \: \vec a - \vec b$ , where $\vec a = 3 \hat i + 2 \hat j + 2 \hat k \: \:and \: \: \vec b = \hat i + 2 \hat j - 2 \hat k$

Answer:

Given in the question

$\vec a = 3 \hat i + 2 \hat j + 2 \hat k \: \:and \: \: \vec b = \hat i + 2 \hat j - 2 \hat k$

$\vec a + \vec b =3\hat i +2\hat j+2\hat k+\hat i +2\hat j-2\hat k=4\hat i +4\hat j$

$\vec a - \vec b =3\hat i +2\hat j+2\hat k-\hat i -2\hat j+2\hat k=2\hat i +4\hat k$

Now , A vector which perpendicular to both $\vec a + \vec b \: \: and\: \: \vec a - \vec b$ is $(\vec a + \vec b) \times (\vec a - \vec b)$

$(\vec a + \vec b) \times (\vec a - \vec b)=\begin{vmatrix} \hat i &\hat j &\hat k \\ 4&4 &0 \\ 2& 0& 4 \end{vmatrix}$

$(\vec a + \vec b) \times (\vec a - \vec b)= \hat i (16-0)-\hat j(16-0)+\hat k(0-8)$

$(\vec a + \vec b) \times (\vec a - \vec b)= 16\hat i -16\hat j-8\hat k$

And a unit vector in this direction :

$\vec u =\frac{16\hat i-16\hat j-8\hat k}{|16\hat i-16\hat j-8\hat k|}=\frac{16\hat i-16\hat j-8\hat k}{\sqrt{16^2+(-16)^2+(-8)^2}}$

$\vec u =\frac{16\hat i-16\hat j-8\hat k}{24}=\frac{2}{3}\hat i-\frac{2}{3}\hat j-\frac{1}{3}\hat k$

Hence Unit vector perpendicular to each of the vector $\vec a + \vec b \: \: and\: \: \vec a - \vec b$ is $\frac{2}{3}\hat i-\frac{2}{3}\hat j-\frac{1}{3}\hat k$ .

Question 3: If a unit vector $\vec a$ makes angles $\frac{\pi }{3}$ with $\hat i , \frac{\pi }{4}$ with $\hat j$ and an acute angle $\theta \: \:$ with $\hat k$ then find $\theta \: \:$ and hence, the components of $\vec a$ .

Answer:

Given in the question,

angle between $\vec a$ and $\hat i$ :

$\alpha =\frac{\pi}{3}$

angle between $\vec a$ and $\hat j$

$\beta =\frac{\pi}{4}$

angle with $\vec a$ and $\hat k$ :

$\gamma =\theta$

Now, As we know,

$cos^2\alpha+cos^2\beta+cos^2\gamma=1$

$cos^2\frac{\pi}{3}+cos^2\frac{\pi }{4}+cos^2\theta=1$

$\left ( \frac{1}{2} \right )^2+\left ( \frac{1}{\sqrt{2}} \right )^2+cos^2\theta=1$

$cos^2\theta=\frac{1}{4}$

$cos\theta=\frac{1}{2}$

$\theta=\frac{\pi}{3}$

Now components of $\vec a$ are:

$\left ( cos\frac{\pi}{3},cos\frac{\pi}{2},cos\frac{\pi}{3} \right )=\left ( \frac{1}{2},\frac{1}{\sqrt{2}},\frac{1}{2} \right )$

Question 4: Show that $( \vec a - \vec b ) \times (\vec a + \vec b ) = 2 ( \vec a \times \vec b )$

Answer:

To show that $( \vec a - \vec b ) \times (\vec a + \vec b ) = 2 ( \vec a \times \vec b )$

LHS=

$\\( \vec a - \vec b ) \times (\vec a + \vec b )=( \vec a - \vec b ) \times (\vec a)+( \vec a - \vec b ) \times (\vec b)$

$( \vec a - \vec b ) \times (\vec a + \vec b )= \vec a \times \vec a-\vec b \times\vec a+\vec a \times \vec b-\vec b \times \vec b$

As product of a vector with itself is always Zero,

$( \vec a - \vec b ) \times (\vec a + \vec b )= 0-\vec b \times\vec a+\vec a \times \vec b-0$

As cross product of a and b is equal to negative of cross product of b and a.

$( \vec a - \vec b ) \times (\vec a + \vec b )= \vec a \times\vec b+\vec a \times \vec b$

$( \vec a - \vec b ) \times (\vec a + \vec b )= 2(\vec a \times\vec b)$ = RHS

LHS is equal to RHS, Hence Proved.

Question 5: Find $\lambda$ and $\mu$ if $( 2 \hat i + 6 \hat j + 27 \hat k ) \times ( \hat i + \lambda j + \mu \hat k ) = \vec 0$

Answer:

Given in the question

$( 2 \hat i + 6 \hat j + 27 \hat k ) \times ( \hat i + \lambda j + \mu \hat k ) = \vec 0$

and we need to find values of $\lambda$ and $\mu$

$\begin{vmatrix} \hat i &\hat j & \hat k\\ 2& 6&27 \\ 1& \lambda &\mu \end{vmatrix}=0$

$\hat i (6\mu-27\lambda)-\hat j(2\mu-27)+\hat k(2\lambda-6)=0$

From Here we get,

$6\mu-27\lambda=0$

$2\mu-27=0$

$2\lambda -6=0$

From here, the value of $\lambda$ and $\mu$ is

$\lambda = 3 , \: and \: \mu=\frac{27}{2}$

Question 6: Given that $\vec a . \vec b = 0 \: \:and \: \: \vec a \times \vec b = 0$ and . What can you conclude about the vectors $\vec a \: \:and \: \: \vec b$ ?

Answer:

Given in the question

$\vec a . \vec b = 0$ and $\vec a \times \vec b = 0$

When $\vec a . \vec b = 0$ , either $|\vec a| =0,\:or\: |\vec b|=0,\vec a\: and \:\vec b$ are perpendicular to each other

When $\vec a \times \vec b = 0$ either $|\vec a| =0,\:or\: |\vec b|=0,\vec a\: and \:\vec b$ are parallel to each other

Since two vectors can never be both parallel and perpendicular at same time,we conclude that

$|\vec a| =0\:or\: |\vec b|=0$

Question 7: Let the vectors $\vec a , \vec b , \vec c$ be given as $\vec a_1 \hat i + \vec a_2 \hat j + \vec a_3 \hat k , \vec b_ 1 \hat i + \vec b_ 2 \hat j + \vec b_3 \hat k , \vec c_ 1 \hat i + \vec c_ 2 \hat j + \vec c_ 3 \hat k$ Then show that $\vec a \times ( \vec b + \vec c ) = \vec a \times \vec b + \vec a \times \vec c$

Answer:

Given in the question

$\\\vec a=\vec a_1 \hat i + \vec a_2 \hat j + \vec a_3 \hat k , \\\vec b=\vec b_ 1 \hat i + \vec b_ 2 \hat j + \vec b_3 \hat k , \\\vec c=\vec c_ 1 \hat i + \vec c_ 2 \hat j + \vec c_ 3 \hat k$

We need to show that $\vec a \times ( \vec b + \vec c ) = \vec a \times \vec b + \vec a \times \vec c$

Now,

$\vec a \times ( \vec b + \vec c ) =(\vec a_1 \hat i + \vec a_2 \hat j + \vec a_3 \hat k)\times(\vec b_ 1 \hat i + \vec b_ 2 \hat j + \vec b_3 \hat k +\vec c_ 1 \hat i + \vec c_ 2 \hat j + \vec c_ 3 \hat k)$

$=(\vec a_1 \hat i + \vec a_2 \hat j + \vec a_3 \hat k)\times((\vec b_ 1+\vec c_1) \hat i + (\vec b_ 2+\vec c_2) \hat j +( \vec b_3 +\vec c_3)\hat k)$

$=\begin{vmatrix} \hat i &\hat j &\hat k \\ a_1&a_2 &a_3 \\ (b_1+c_1)&(b_2+c_2) &(b_3+c_3) \end{vmatrix}$

$\\=\hat i(a_2(b_3+c_3)-a_3(b_2+c_2))-\hat j(a_1(b_3+c_3)- a_3(b_1+c_1))+\hat k (a_1(b_2+c_2)-a_2(a_1(b_2+c_3)))$

$\\=\hat i(a_2(b_3+c_3)-a_3(b_2+c_2))-\hat j(a_1(b_3+c_3)-a_3(b_1+c_1))+\hat k (a_1(b_2+c_2)-a_2(a_1(b_2+c_3)))$

Now

$\vec a \times \vec b + \vec a \times \vec c=\begin{vmatrix} \hat i &\hat j & \hat k\\ a_1&a_2 &a_3 \\ b_1&b_2 &b_3 \end{vmatrix}+\begin{vmatrix} \hat i &\hat j & \hat k\\ a_1&a_2 &a_3 \\ c_1&c_2 &c_3 \end{vmatrix}$

$\vec a \times \vec b + \vec a \times \vec c=\hat i(a_2b_3-a_3b_2)-\hat j (a_1b_3-a_3b_1)+\hat k(a_1b_2-b_1a_2)+\hat i(a_2c_3-a_3c_2)-\hat j (a_1c_3-a_3c_1)+\hat k(a_1c_2-c_1a_2)$

$\\=\hat i(a_2(b_3+c_3)-a_3(b_2+c_2))-\hat j(a_1(b_3+c_3)-a_3(b_1+c_1))+\hat k (a_1(b_2+c_2)-a_2(a_1(b_2+c_3)))$

Hence they are equal.

Question 8: If either $\vec a = \vec 0 \: \: or \: \: \vec b = \vec 0$ then $\vec a \times \vec b = \vec 0$ . Is the converse true? Justify your answer with an example.

Answer:

No, the converse of the statement is not true, as there can be two non zero vectors, the cross product of whose are zero. they are colinear vectors.

Consider an example

$\vec a=\hat i +\hat j + \hat k$

$\vec b =2\hat i +2\hat j + 2\hat k$

Here $|\vec a| =\sqrt{1^2+1^2+1^2}=\sqrt{3}$

$|\vec b| =\sqrt{2^2+2^2+2^2}=2\sqrt{3}$

$\vec a \times \vec b=\begin{vmatrix} \hat i &\hat j &\hat k \\ 1&1 &1 \\ 2&2 &2 \end{vmatrix}=\hat i(2-2)-\hat j(2-2)+\hat k(2-2)=0$

Hence converse of the given statement is not true.

Question 9: Find the area of the triangle with vertices A(1, 1, 2), B(2, 3, 5) and C(1, 5, 5).

Answer:

Given in the question

vertices A=(1, 1, 2), B=(2, 3, 5) and C=(1, 5, 5). and we need to find the area of the triangle

$AB=(2-1)\hat i+(3-1)\hat j+(5-2)\hat k=\hat i+2\hat j+3\hat k$

$BC=(1-2)\hat i+(5-3)\hat j+(5-5)\hat k=-\hat i+2\hat j$

Now as we know

Area of triangle

$A=\frac{1}{2}|\vec {AB}\times\vec {BC}|=\frac{1}{2}|(\hat i+2\hat j +3\hat k)\times(-\hat i+2\hat j)|$

$\\A=\frac{1}{2}\begin{vmatrix} \hat i &\hat j &\hat k \\ 1 &2 &3 \\ -1 &2 &0 \end{vmatrix}=\frac{1}{2}|\hat i(0-6)-\hat j(0-(-3))+\hat k(2-(-2))| \\A=\frac{1}{2}|-6\hat i-3\hat j+4\hat k|$

$A=\frac{1}{2}*\sqrt{(-6)^2+(-3)^2+(4)^2}=\frac{\sqrt{61}}{2}$

The area of the triangle is $\frac{\sqrt{61}}{2}$ square units

Question 10: Find the area of the parallelogram whose adjacent sides are determined by the vectors $\vec a = \hat i - \hat j + 3 \hat k$ and $\vec b = 2\hat i -7 \hat j + \hat k$ .

Answer:

Given in the question

$\vec a = \hat i - \hat j + 3 \hat k$

$\vec b = 2\hat i -7 \hat j + \hat k$

Area of parallelogram with adjescent side $\vec a$ and $\vec b$ ,

$A=|\vec a\times\vec b|=|(\vec i-\vec j+3\vec k)\times (2\hat i-7\hat j+\hat k)|$

$A=\begin{vmatrix} \hat i& \hat j & \hat k\\ 1&-1 &3 \\ 2&-7 &1 \end{vmatrix}=|\hat i(-1+21)-\hat j (1-6)+\hat k (-7+2)|$

$A=|\hat i(20)-\hat j (-5)+\hat k (-5)|=\sqrt{20^2+5^2+(-5)^2}$

$A=\sqrt{450}=15\sqrt{2}$

The area of the parallelogram whose adjacent sides are determined by the vectors $\vec a = \hat i - \hat j + 3 \hat k$ and $\vec b = 2\hat i -7 \hat j + \hat k$ is $A=\sqrt{450}=15\sqrt{2}$

Question 11: Let the vectors $\vec a \: \: and\: \: \vec b$ be such that $|\vec a| = 3 \: \: and\: \: |\vec b | = \frac{\sqrt 2 }{3}$ , then $\vec a \times \vec b$ is a unit vector, if the angle between is $\vec a \: \:and \: \: \vec b$

$\\A ) \pi /6 \\\\ B ) \pi / 4 \\\\ C ) \pi / 3 \\\\ D ) \pi /2$

Answer:

Given in the question,

$|\vec a| = 3 \: \: and\: \: |\vec b | = \frac{\sqrt 2 }{3}$

As given $\vec a \times \vec b$ is a unit vector, which means,

$|\vec a \times \vec b|=1$

$|\vec a| | \vec b|sin\theta=1$

$3*\frac{\sqrt{2}}{3}sin\theta=1$

$sin\theta=\frac{1}{\sqrt{2}}$

$\theta=\frac{\pi}{4}$

Hence the angle between two vectors is $\frac{\pi}{4}$ . Correct option is B.

Question 12: Area of a rectangle having vertices A, B, C and D with position vectors

$- \hat i + \frac{1}{2} \hat j + 4 \hat k , \hat i + \frac{1}{2} \hat j + 4 \hat k , \hat i - \frac{1}{2}\hat j + 4 \hat k \: \: and \: \: - \hat i - \frac{1}{2} \hat j + 4 \hat k$

(A)1/2

(B) 1

(C) 2

(D) 4

Answer:

Given 4 vertices of rectangle are

$\\\vec a=- \hat i + \frac{1}{2} \hat j + 4 \hat k , \\\vec b=\hat i + \frac{1}{2} \hat j + 4 \hat k , \\\vec c= \hat i - \frac{1}{2}\hat j + 4 \hat k \: \: and \: \: \\\vec d= - \hat i - \frac{1}{2} \hat j + 4 \hat k$

$\vec {AB}=\vec b-\vec a=(1+1)\hat i+(\frac{1}{2}-\frac{1}{2})\hat j+(4-4)\hat k=2\hat i$

$\vec {BC}=\vec c-\vec b=(1-1)\hat i+(-\frac{1}{2}-\frac{1}{2})\hat j+(4-4)\hat k=-\hat j$

Now,

Area of the Rectangle

$A=|\vec {AB}\times\vec {BC}|=|2\hat i \times (-\hat j)|=2$

Hence option C is correct.

Topics Covered in Chapter 10 Vector Algebra: Exercise 10.4

The vector (or cross) product of two vectors

The vector (or cross) product of two vectors $\mathbf{A} \times \mathbf{B}$ gives a third vector that's perpendicular to both $\mathbf{A}$ and $B$ - like if you stretch your right hand in direction $A$ and curl fingers towards $B$, your thumb points in the direction of $A \times B$.

Formula:

$A \times B=|A||B| \sin (\theta) \mathbf{n}$
$|\mathrm{A}|$ and $|\mathrm{B}|$ are magnitudes of the vectors
$\theta$ is the angle between them
$\mathbf{n}$ is a unit vector perpendicular to both $A$ and $B$

Also Read,

Also See,

NCERT Solutions Subject Wise

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook
CBSE Class 12th Syllabus: Subjects & Chapters
Select your preferred subject to view the chapters

Frequently Asked Questions (FAQs)

Q: What are vector quantities?
A:

The quantity that has magnitude and also direction is called a vector quantity.

Q: What is the difference between a vector quantity and a scalar quantity?
A:

A scalar quantity has magnitude only whereas a vector quantity has both magnitude and directions.

Q: The value of cross products of two parallel vectors is?
A:

The value will be zero since the angle between them is zero. The cross product of two vectors a and b is absin(angle between them). For parallel vectors angle between them is zero. So sin(0)=0.

Q: What is the difference between a cross b and b cross a?
A:

The direction of a cross b is opposite to the direction of b cross a. That is (a cross b)=-(b cross a)

Q: Is stress a vector quantity?
A:

No, stress is neither a vector nor a scalar. Stress is known as a tensor quantity.

Q: What do you mean by a unit vector?
A:

It is a vector with magnitude=1

Q: Is the statement” the position of the initial point of equal vectors must be same” true?
A:

No, equal vectors may have different initial points, but the magnitude and directions of equal vectors will be the same. 

Q: What is understood from the term “negative of a given vector”?
A:

The negative of a given vector is the vector with the same magnitude but opposite in direction. 

Q: How many questions can be expected from vector algebra for the board exam?
A:

Two or three questions from vector algebra can be expected for the CBSE Class 12 Maths board exam.

Q: How important is vector algebra for Engineering studies?
A:

Vector algebra is used in almost all branches of engineering. If we consider electrical engineering, vector algebra is used to solve certain electromagnetic, power systems, electrical machines and power electronics problems.

Articles
|
Upcoming School Exams
Ongoing Dates
CGSOS 12th Application Date

1 Dec'25 - 15 Jan'26 (Online)

Ongoing Dates
CGSOS 10th Application Date

1 Dec'25 - 15 Jan'26 (Online)

Ongoing Dates
Manipur Board HSLC Application Date

10 Dec'25 - 15 Jan'26 (Online)

Certifications By Top Providers
Economic Evaluation for Health Technology Assessment
Via Postgraduate Institute of Medical Education and Research Chandigarh
Aspen Plus Simulation Software a Basic Course for Beginners
Via Indian Institute of Technology Guwahati
Yoga Practices 1
Via Swami Vivekananda Yoga Anusandhana Samsthana, Bangalore
Introduction to Biomedical Imaging
Via The University of Queensland, Brisbane
Brand Management
Via Indian Institute of Management Bangalore
Edx
 1071 courses
Coursera
 816 courses
Udemy
 394 courses
Futurelearn
 264 courses
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Hello,

Yes, it's completely fine to skip this year's 12th board exams and give them next year as a reporter or private candidate, allowing you to prepare better; the process involves contacting your current school or board to register as a private candidate or for improvement exams during the specified

HELLO,

Yes i am giving you the link below through which you will be able to download the Class 12th Maths Book PDF

Here is the link :- https://school.careers360.com/ncert/ncert-book-for-class-12-maths

Hope this will help you!

Failing in pre-board or selection tests does NOT automatically stop you from sitting in the CBSE Class 12 board exams. Pre-boards are conducted by schools only to check preparation and push students to improve; CBSE itself does not consider pre-board marks. What actually matters is whether your school issues your

The CBSE Sahodaya Class 12 Pre-Board Chemistry Question Paper for the 2025-2026 session is available for download on the provided page, along with its corresponding answer key.

The Sahodaya Pre-Board exams, conducted in two rounds (Round 1 typically in December 2025 and Round 2 in January 2026), are modeled precisely

Hello,

You can get the Class 11 English Syllabus 2025-26 from the Careers360 website. This resource also provides details about exam dates, previous year papers, exam paper analysis, exam patterns, preparation tips and many more. you search in this site or you can ask question we will provide you the