CBSE Class 12th Exam Date:17 Feb' 26 - 17 Feb' 26
Class 12 Maths Chapter 10 Exercise 10.4 is about learning the cross product of vectors a method to determine a new vector perpendicular to two vectors. It comes in handy when studying Physics concepts such as torque and rotational motion. These NCERT solutions break down each question step by step, making it simpler for students to grasp and apply the concept. Perfect for board preparation and learning real-life vector applications.
Class 12 Maths Exercise 10.4 solutions of NCERT is all about the cross product of vectors. Think about opening a jar lid using your fingers: the turn you get is a physical manifestation of cross product at play (torque). NCERT solution for Class 12 here explains each step by step so you get the reasoning. Doing these is not only helpful in maths, but also in physics and everyday life with force and direction.
This Story also Contains
Explore the NCERT Solutions for Class 12 Maths Chapter 10 Exercise 10.4 and master cross product concepts with clear, step-by-step solution.
Answer:
Given in the question,
$\\ \vec a = \hat i - 7 \hat j + 7 \hat k \: \: and \: \: \\\vec b = 3 \hat i - 2 \hat j + 2 \hat k$
and we need to find $|\vec a \times \vec b |$
Now,
$|\vec a \times \vec b | =\begin{vmatrix} \hat i &\hat j &\hat k \\ 1 &-7 &7 \\ 3& -2 &2 \end{vmatrix}$
$|\vec a \times \vec b | =\hat i(-14+14)-\hat j(2-21)+\hat k(-2+21)$
$|\vec a \times \vec b | =19\hat j+19\hat k$
So the value of $|\vec a \times \vec b |$ is $19\hat j+19\hat k$
Answer:
Given in the question
$\vec a = 3 \hat i + 2 \hat j + 2 \hat k \: \:and \: \: \vec b = \hat i + 2 \hat j - 2 \hat k$
$\vec a + \vec b =3\hat i +2\hat j+2\hat k+\hat i +2\hat j-2\hat k=4\hat i +4\hat j$
$\vec a - \vec b =3\hat i +2\hat j+2\hat k-\hat i -2\hat j+2\hat k=2\hat i +4\hat k$
Now , A vector which perpendicular to both $\vec a + \vec b \: \: and\: \: \vec a - \vec b$ is $(\vec a + \vec b) \times (\vec a - \vec b)$
$(\vec a + \vec b) \times (\vec a - \vec b)=\begin{vmatrix} \hat i &\hat j &\hat k \\ 4&4 &0 \\ 2& 0& 4 \end{vmatrix}$
$(\vec a + \vec b) \times (\vec a - \vec b)= \hat i (16-0)-\hat j(16-0)+\hat k(0-8)$
$(\vec a + \vec b) \times (\vec a - \vec b)= 16\hat i -16\hat j-8\hat k$
And a unit vector in this direction :
$\vec u =\frac{16\hat i-16\hat j-8\hat k}{|16\hat i-16\hat j-8\hat k|}=\frac{16\hat i-16\hat j-8\hat k}{\sqrt{16^2+(-16)^2+(-8)^2}}$
$\vec u =\frac{16\hat i-16\hat j-8\hat k}{24}=\frac{2}{3}\hat i-\frac{2}{3}\hat j-\frac{1}{3}\hat k$
Hence Unit vector perpendicular to each of the vector $\vec a + \vec b \: \: and\: \: \vec a - \vec b$ is $\frac{2}{3}\hat i-\frac{2}{3}\hat j-\frac{1}{3}\hat k$ .
Answer:
Given in the question,
angle between $\vec a$ and $\hat i$ :
$\alpha =\frac{\pi}{3}$
angle between $\vec a$ and $\hat j$
$\beta =\frac{\pi}{4}$
angle with $\vec a$ and $\hat k$ :
$\gamma =\theta$
Now, As we know,
$cos^2\alpha+cos^2\beta+cos^2\gamma=1$
$cos^2\frac{\pi}{3}+cos^2\frac{\pi }{4}+cos^2\theta=1$
$\left ( \frac{1}{2} \right )^2+\left ( \frac{1}{\sqrt{2}} \right )^2+cos^2\theta=1$
$cos^2\theta=\frac{1}{4}$
$cos\theta=\frac{1}{2}$
$\theta=\frac{\pi}{3}$
Now components of $\vec a$ are:
$\left ( cos\frac{\pi}{3},cos\frac{\pi}{2},cos\frac{\pi}{3} \right )=\left ( \frac{1}{2},\frac{1}{\sqrt{2}},\frac{1}{2} \right )$
Question 4: Show that $( \vec a - \vec b ) \times (\vec a + \vec b ) = 2 ( \vec a \times \vec b )$
Answer:
To show that $( \vec a - \vec b ) \times (\vec a + \vec b ) = 2 ( \vec a \times \vec b )$
LHS=
$\\( \vec a - \vec b ) \times (\vec a + \vec b )=( \vec a - \vec b ) \times (\vec a)+( \vec a - \vec b ) \times (\vec b)$
$( \vec a - \vec b ) \times (\vec a + \vec b )= \vec a \times \vec a-\vec b \times\vec a+\vec a \times \vec b-\vec b \times \vec b$
As product of a vector with itself is always Zero,
$( \vec a - \vec b ) \times (\vec a + \vec b )= 0-\vec b \times\vec a+\vec a \times \vec b-0$
As cross product of a and b is equal to negative of cross product of b and a.
$( \vec a - \vec b ) \times (\vec a + \vec b )= \vec a \times\vec b+\vec a \times \vec b$
$( \vec a - \vec b ) \times (\vec a + \vec b )= 2(\vec a \times\vec b)$ = RHS
LHS is equal to RHS, Hence Proved.
Answer:
Given in the question
$( 2 \hat i + 6 \hat j + 27 \hat k ) \times ( \hat i + \lambda j + \mu \hat k ) = \vec 0$
and we need to find values of $\lambda$ and $\mu$
$\begin{vmatrix} \hat i &\hat j & \hat k\\ 2& 6&27 \\ 1& \lambda &\mu \end{vmatrix}=0$
$\hat i (6\mu-27\lambda)-\hat j(2\mu-27)+\hat k(2\lambda-6)=0$
From Here we get,
$6\mu-27\lambda=0$
$2\mu-27=0$
$2\lambda -6=0$
From here, the value of $\lambda$ and $\mu$ is
$\lambda = 3 , \: and \: \mu=\frac{27}{2}$
Answer:
Given in the question
$\vec a . \vec b = 0$ and $\vec a \times \vec b = 0$
When $\vec a . \vec b = 0$ , either $|\vec a| =0,\:or\: |\vec b|=0,\vec a\: and \:\vec b$ are perpendicular to each other
When $\vec a \times \vec b = 0$ either $|\vec a| =0,\:or\: |\vec b|=0,\vec a\: and \:\vec b$ are parallel to each other
Since two vectors can never be both parallel and perpendicular at same time,we conclude that
$|\vec a| =0\:or\: |\vec b|=0$
Answer:
Given in the question
$\\\vec a=\vec a_1 \hat i + \vec a_2 \hat j + \vec a_3 \hat k , \\\vec b=\vec b_ 1 \hat i + \vec b_ 2 \hat j + \vec b_3 \hat k , \\\vec c=\vec c_ 1 \hat i + \vec c_ 2 \hat j + \vec c_ 3 \hat k$
We need to show that $\vec a \times ( \vec b + \vec c ) = \vec a \times \vec b + \vec a \times \vec c$
Now,
$\vec a \times ( \vec b + \vec c ) =(\vec a_1 \hat i + \vec a_2 \hat j + \vec a_3 \hat k)\times(\vec b_ 1 \hat i + \vec b_ 2 \hat j + \vec b_3 \hat k +\vec c_ 1 \hat i + \vec c_ 2 \hat j + \vec c_ 3 \hat k)$
$=(\vec a_1 \hat i + \vec a_2 \hat j + \vec a_3 \hat k)\times((\vec b_ 1+\vec c_1) \hat i + (\vec b_ 2+\vec c_2) \hat j +( \vec b_3 +\vec c_3)\hat k)$
$=\begin{vmatrix} \hat i &\hat j &\hat k \\ a_1&a_2 &a_3 \\ (b_1+c_1)&(b_2+c_2) &(b_3+c_3) \end{vmatrix}$
$\\=\hat i(a_2(b_3+c_3)-a_3(b_2+c_2))-\hat j(a_1(b_3+c_3)- a_3(b_1+c_1))+\hat k (a_1(b_2+c_2)-a_2(a_1(b_2+c_3)))$
$\\=\hat i(a_2(b_3+c_3)-a_3(b_2+c_2))-\hat j(a_1(b_3+c_3)-a_3(b_1+c_1))+\hat k (a_1(b_2+c_2)-a_2(a_1(b_2+c_3)))$
Now
$\vec a \times \vec b + \vec a \times \vec c=\begin{vmatrix} \hat i &\hat j & \hat k\\ a_1&a_2 &a_3 \\ b_1&b_2 &b_3 \end{vmatrix}+\begin{vmatrix} \hat i &\hat j & \hat k\\ a_1&a_2 &a_3 \\ c_1&c_2 &c_3 \end{vmatrix}$
$\vec a \times \vec b + \vec a \times \vec c=\hat i(a_2b_3-a_3b_2)-\hat j (a_1b_3-a_3b_1)+\hat k(a_1b_2-b_1a_2)+\hat i(a_2c_3-a_3c_2)-\hat j (a_1c_3-a_3c_1)+\hat k(a_1c_2-c_1a_2)$
$\\=\hat i(a_2(b_3+c_3)-a_3(b_2+c_2))-\hat j(a_1(b_3+c_3)-a_3(b_1+c_1))+\hat k (a_1(b_2+c_2)-a_2(a_1(b_2+c_3)))$
Hence they are equal.
Answer:
No, the converse of the statement is not true, as there can be two non zero vectors, the cross product of whose are zero. they are colinear vectors.
Consider an example
$\vec a=\hat i +\hat j + \hat k$
$\vec b =2\hat i +2\hat j + 2\hat k$
Here $|\vec a| =\sqrt{1^2+1^2+1^2}=\sqrt{3}$
$|\vec b| =\sqrt{2^2+2^2+2^2}=2\sqrt{3}$
$\vec a \times \vec b=\begin{vmatrix} \hat i &\hat j &\hat k \\ 1&1 &1 \\ 2&2 &2 \end{vmatrix}=\hat i(2-2)-\hat j(2-2)+\hat k(2-2)=0$
Hence converse of the given statement is not true.
Question 9: Find the area of the triangle with vertices A(1, 1, 2), B(2, 3, 5) and C(1, 5, 5).
Answer:
Given in the question
vertices A=(1, 1, 2), B=(2, 3, 5) and C=(1, 5, 5). and we need to find the area of the triangle
$AB=(2-1)\hat i+(3-1)\hat j+(5-2)\hat k=\hat i+2\hat j+3\hat k$
$BC=(1-2)\hat i+(5-3)\hat j+(5-5)\hat k=-\hat i+2\hat j$
Now as we know
Area of triangle
$A=\frac{1}{2}|\vec {AB}\times\vec {BC}|=\frac{1}{2}|(\hat i+2\hat j +3\hat k)\times(-\hat i+2\hat j)|$
$\\A=\frac{1}{2}\begin{vmatrix} \hat i &\hat j &\hat k \\ 1 &2 &3 \\ -1 &2 &0 \end{vmatrix}=\frac{1}{2}|\hat i(0-6)-\hat j(0-(-3))+\hat k(2-(-2))| \\A=\frac{1}{2}|-6\hat i-3\hat j+4\hat k|$
$A=\frac{1}{2}*\sqrt{(-6)^2+(-3)^2+(4)^2}=\frac{\sqrt{61}}{2}$
The area of the triangle is $\frac{\sqrt{61}}{2}$ square units
Answer:
Given in the question
$\vec a = \hat i - \hat j + 3 \hat k$
$\vec b = 2\hat i -7 \hat j + \hat k$
Area of parallelogram with adjescent side $\vec a$ and $\vec b$ ,
$A=|\vec a\times\vec b|=|(\vec i-\vec j+3\vec k)\times (2\hat i-7\hat j+\hat k)|$
$A=\begin{vmatrix} \hat i& \hat j & \hat k\\ 1&-1 &3 \\ 2&-7 &1 \end{vmatrix}=|\hat i(-1+21)-\hat j (1-6)+\hat k (-7+2)|$
$A=|\hat i(20)-\hat j (-5)+\hat k (-5)|=\sqrt{20^2+5^2+(-5)^2}$
$A=\sqrt{450}=15\sqrt{2}$
The area of the parallelogram whose adjacent sides are determined by the vectors $\vec a = \hat i - \hat j + 3 \hat k$ and $\vec b = 2\hat i -7 \hat j + \hat k$ is $A=\sqrt{450}=15\sqrt{2}$
$\\A ) \pi /6 \\\\ B ) \pi / 4 \\\\ C ) \pi / 3 \\\\ D ) \pi /2$
Answer:
Given in the question,
$|\vec a| = 3 \: \: and\: \: |\vec b | = \frac{\sqrt 2 }{3}$
As given $\vec a \times \vec b$ is a unit vector, which means,
$|\vec a \times \vec b|=1$
$|\vec a| | \vec b|sin\theta=1$
$3*\frac{\sqrt{2}}{3}sin\theta=1$
$sin\theta=\frac{1}{\sqrt{2}}$
$\theta=\frac{\pi}{4}$
Hence the angle between two vectors is $\frac{\pi}{4}$ . Correct option is B.
Question 12: Area of a rectangle having vertices A, B, C and D with position vectors
(A)1/2
(B) 1
(C) 2
(D) 4
Answer:
Given 4 vertices of rectangle are
$\\\vec a=- \hat i + \frac{1}{2} \hat j + 4 \hat k , \\\vec b=\hat i + \frac{1}{2} \hat j + 4 \hat k , \\\vec c= \hat i - \frac{1}{2}\hat j + 4 \hat k \: \: and \: \: \\\vec d= - \hat i - \frac{1}{2} \hat j + 4 \hat k$
$\vec {AB}=\vec b-\vec a=(1+1)\hat i+(\frac{1}{2}-\frac{1}{2})\hat j+(4-4)\hat k=2\hat i$
$\vec {BC}=\vec c-\vec b=(1-1)\hat i+(-\frac{1}{2}-\frac{1}{2})\hat j+(4-4)\hat k=-\hat j$
Now,
Area of the Rectangle
$A=|\vec {AB}\times\vec {BC}|=|2\hat i \times (-\hat j)|=2$
Hence option C is correct.
The vector (or cross) product of two vectors
The vector (or cross) product of two vectors $\mathbf{A} \times \mathbf{B}$ gives a third vector that's perpendicular to both $\mathbf{A}$ and $B$ - like if you stretch your right hand in direction $A$ and curl fingers towards $B$, your thumb points in the direction of $A \times B$.
Formula:
$A \times B=|A||B| \sin (\theta) \mathbf{n}$
$|\mathrm{A}|$ and $|\mathrm{B}|$ are magnitudes of the vectors
$\theta$ is the angle between them
$\mathbf{n}$ is a unit vector perpendicular to both $A$ and $B$
Also Read,
Also See,
Frequently Asked Questions (FAQs)
The quantity that has magnitude and also direction is called a vector quantity.
A scalar quantity has magnitude only whereas a vector quantity has both magnitude and directions.
The value will be zero since the angle between them is zero. The cross product of two vectors a and b is absin(angle between them). For parallel vectors angle between them is zero. So sin(0)=0.
The direction of a cross b is opposite to the direction of b cross a. That is (a cross b)=-(b cross a)
No, stress is neither a vector nor a scalar. Stress is known as a tensor quantity.
It is a vector with magnitude=1
No, equal vectors may have different initial points, but the magnitude and directions of equal vectors will be the same.
The negative of a given vector is the vector with the same magnitude but opposite in direction.
Two or three questions from vector algebra can be expected for the CBSE Class 12 Maths board exam.
Vector algebra is used in almost all branches of engineering. If we consider electrical engineering, vector algebra is used to solve certain electromagnetic, power systems, electrical machines and power electronics problems.
On Question asked by student community
Hello,
Since you have passed 10th and 12th from Delhi and your residency is Delhi, but your domicile is UP, here’s how NEET counselling works:
1. Counselling Eligibility: For UP NEET counselling, your UP domicile makes you eligible, regardless of where your schooling was. You can participate in UP state counselling according to your NEET rank.
2. Delhi Counselling: For Delhi state quota, usually 10th/12th + residency matters. Since your school and residency are in Delhi, you might also be eligible for Delhi state quota, but it depends on specific state rules.
So, having a Delhi Aadhaar will not automatically reject you in UP counselling as long as you have a UP domicile certificate.
Hope you understand.
Hello,
You can access Free CBSE Mock tests from Careers360 app or website. You can get the mock test from this link : CBSE Class 12th Free Mock Tests
Hope it helps !
Yes, it is possible for a student who has done their 12th grade already to take upto 4 exams of their requirement. This is possible through the NIOS, NATIONAL INSTITUTE OF OPEN SCHOOLING. Get more info about the exam and the board through the following link.
For CBSE the PREVIOUS YEARS PAPERS can be accessed through the following link for the Concerned subjec by careers360.
Consequently Careers360 does also have a chapter wise scheme of PYQs, you can access the STUDY MATERIAL (PYQs.) from the following link -
https://school.careers360.com/boards/cbse/cbse-question-bank
Thankyou.
Hello,
Sorry, but JoSAA does not accept marks from two different boards for the same qualification during counselling. However, you can use your NIOS marks to meet the JEE Main/Advanced eligibility criteria if they are better than your CBSE marks. You can use your NIOS marks for the eligibility check, but when presenting your documents, you may be required to present both marksheets and the one with the higher marks for each subject will be considered.
I hope it will clear your query!!
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters