Aakash Repeater Courses
Take Aakash iACST and get instant scholarship on coaching programs.
Class 12 Maths Chapter 10 Exercise 10.4 is about learning the cross product of vectors a method to determine a new vector perpendicular to two vectors. It comes in handy when studying Physics concepts such as torque and rotational motion. These NCERT solutions break down each question step by step, making it simpler for students to grasp and apply the concept. Perfect for board preparation and learning real-life vector applications.
Class 12 Maths Exercise 10.4 solutions of NCERT is all about the cross product of vectors. Think about opening a jar lid using your fingers: the turn you get is a physical manifestation of cross product at play (torque). NCERT solution for Class 12 here explains each step by step so you get the reasoning. Doing these is not only helpful in maths, but also in physics and everyday life with force and direction.
This Story also Contains
Explore the NCERT Solutions for Class 12 Maths Chapter 10 Exercise 10.4 and master cross product concepts with clear, step-by-step solution.
Answer:
Given in the question,
$\\ \vec a = \hat i - 7 \hat j + 7 \hat k \: \: and \: \: \\\vec b = 3 \hat i - 2 \hat j + 2 \hat k$
and we need to find $|\vec a \times \vec b |$
Now,
$|\vec a \times \vec b | =\begin{vmatrix} \hat i &\hat j &\hat k \\ 1 &-7 &7 \\ 3& -2 &2 \end{vmatrix}$
$|\vec a \times \vec b | =\hat i(-14+14)-\hat j(2-21)+\hat k(-2+21)$
$|\vec a \times \vec b | =19\hat j+19\hat k$
So the value of $|\vec a \times \vec b |$ is $19\hat j+19\hat k$
Answer:
Given in the question
$\vec a = 3 \hat i + 2 \hat j + 2 \hat k \: \:and \: \: \vec b = \hat i + 2 \hat j - 2 \hat k$
$\vec a + \vec b =3\hat i +2\hat j+2\hat k+\hat i +2\hat j-2\hat k=4\hat i +4\hat j$
$\vec a - \vec b =3\hat i +2\hat j+2\hat k-\hat i -2\hat j+2\hat k=2\hat i +4\hat k$
Now , A vector which perpendicular to both $\vec a + \vec b \: \: and\: \: \vec a - \vec b$ is $(\vec a + \vec b) \times (\vec a - \vec b)$
$(\vec a + \vec b) \times (\vec a - \vec b)=\begin{vmatrix} \hat i &\hat j &\hat k \\ 4&4 &0 \\ 2& 0& 4 \end{vmatrix}$
$(\vec a + \vec b) \times (\vec a - \vec b)= \hat i (16-0)-\hat j(16-0)+\hat k(0-8)$
$(\vec a + \vec b) \times (\vec a - \vec b)= 16\hat i -16\hat j-8\hat k$
And a unit vector in this direction :
$\vec u =\frac{16\hat i-16\hat j-8\hat k}{|16\hat i-16\hat j-8\hat k|}=\frac{16\hat i-16\hat j-8\hat k}{\sqrt{16^2+(-16)^2+(-8)^2}}$
$\vec u =\frac{16\hat i-16\hat j-8\hat k}{24}=\frac{2}{3}\hat i-\frac{2}{3}\hat j-\frac{1}{3}\hat k$
Hence Unit vector perpendicular to each of the vector $\vec a + \vec b \: \: and\: \: \vec a - \vec b$ is $\frac{2}{3}\hat i-\frac{2}{3}\hat j-\frac{1}{3}\hat k$ .
Answer:
Given in the question,
angle between $\vec a$ and $\hat i$ :
$\alpha =\frac{\pi}{3}$
angle between $\vec a$ and $\hat j$
$\beta =\frac{\pi}{4}$
angle with $\vec a$ and $\hat k$ :
$\gamma =\theta$
Now, As we know,
$cos^2\alpha+cos^2\beta+cos^2\gamma=1$
$cos^2\frac{\pi}{3}+cos^2\frac{\pi }{4}+cos^2\theta=1$
$\left ( \frac{1}{2} \right )^2+\left ( \frac{1}{\sqrt{2}} \right )^2+cos^2\theta=1$
$cos^2\theta=\frac{1}{4}$
$cos\theta=\frac{1}{2}$
$\theta=\frac{\pi}{3}$
Now components of $\vec a$ are:
$\left ( cos\frac{\pi}{3},cos\frac{\pi}{2},cos\frac{\pi}{3} \right )=\left ( \frac{1}{2},\frac{1}{\sqrt{2}},\frac{1}{2} \right )$
Question 4: Show that $( \vec a - \vec b ) \times (\vec a + \vec b ) = 2 ( \vec a \times \vec b )$
Answer:
To show that $( \vec a - \vec b ) \times (\vec a + \vec b ) = 2 ( \vec a \times \vec b )$
LHS=
$\\( \vec a - \vec b ) \times (\vec a + \vec b )=( \vec a - \vec b ) \times (\vec a)+( \vec a - \vec b ) \times (\vec b)$
$( \vec a - \vec b ) \times (\vec a + \vec b )= \vec a \times \vec a-\vec b \times\vec a+\vec a \times \vec b-\vec b \times \vec b$
As product of a vector with itself is always Zero,
$( \vec a - \vec b ) \times (\vec a + \vec b )= 0-\vec b \times\vec a+\vec a \times \vec b-0$
As cross product of a and b is equal to negative of cross product of b and a.
$( \vec a - \vec b ) \times (\vec a + \vec b )= \vec a \times\vec b+\vec a \times \vec b$
$( \vec a - \vec b ) \times (\vec a + \vec b )= 2(\vec a \times\vec b)$ = RHS
LHS is equal to RHS, Hence Proved.
Answer:
Given in the question
$( 2 \hat i + 6 \hat j + 27 \hat k ) \times ( \hat i + \lambda j + \mu \hat k ) = \vec 0$
and we need to find values of $\lambda$ and $\mu$
$\begin{vmatrix} \hat i &\hat j & \hat k\\ 2& 6&27 \\ 1& \lambda &\mu \end{vmatrix}=0$
$\hat i (6\mu-27\lambda)-\hat j(2\mu-27)+\hat k(2\lambda-6)=0$
From Here we get,
$6\mu-27\lambda=0$
$2\mu-27=0$
$2\lambda -6=0$
From here, the value of $\lambda$ and $\mu$ is
$\lambda = 3 , \: and \: \mu=\frac{27}{2}$
Answer:
Given in the question
$\vec a . \vec b = 0$ and $\vec a \times \vec b = 0$
When $\vec a . \vec b = 0$ , either $|\vec a| =0,\:or\: |\vec b|=0,\vec a\: and \:\vec b$ are perpendicular to each other
When $\vec a \times \vec b = 0$ either $|\vec a| =0,\:or\: |\vec b|=0,\vec a\: and \:\vec b$ are parallel to each other
Since two vectors can never be both parallel and perpendicular at same time,we conclude that
$|\vec a| =0\:or\: |\vec b|=0$
Answer:
Given in the question
$\\\vec a=\vec a_1 \hat i + \vec a_2 \hat j + \vec a_3 \hat k , \\\vec b=\vec b_ 1 \hat i + \vec b_ 2 \hat j + \vec b_3 \hat k , \\\vec c=\vec c_ 1 \hat i + \vec c_ 2 \hat j + \vec c_ 3 \hat k$
We need to show that $\vec a \times ( \vec b + \vec c ) = \vec a \times \vec b + \vec a \times \vec c$
Now,
$\vec a \times ( \vec b + \vec c ) =(\vec a_1 \hat i + \vec a_2 \hat j + \vec a_3 \hat k)\times(\vec b_ 1 \hat i + \vec b_ 2 \hat j + \vec b_3 \hat k +\vec c_ 1 \hat i + \vec c_ 2 \hat j + \vec c_ 3 \hat k)$
$=(\vec a_1 \hat i + \vec a_2 \hat j + \vec a_3 \hat k)\times((\vec b_ 1+\vec c_1) \hat i + (\vec b_ 2+\vec c_2) \hat j +( \vec b_3 +\vec c_3)\hat k)$
$=\begin{vmatrix} \hat i &\hat j &\hat k \\ a_1&a_2 &a_3 \\ (b_1+c_1)&(b_2+c_2) &(b_3+c_3) \end{vmatrix}$
$\\=\hat i(a_2(b_3+c_3)-a_3(b_2+c_2))-\hat j(a_1(b_3+c_3)- a_3(b_1+c_1))+\hat k (a_1(b_2+c_2)-a_2(a_1(b_2+c_3)))$
$\\=\hat i(a_2(b_3+c_3)-a_3(b_2+c_2))-\hat j(a_1(b_3+c_3)-a_3(b_1+c_1))+\hat k (a_1(b_2+c_2)-a_2(a_1(b_2+c_3)))$
Now
$\vec a \times \vec b + \vec a \times \vec c=\begin{vmatrix} \hat i &\hat j & \hat k\\ a_1&a_2 &a_3 \\ b_1&b_2 &b_3 \end{vmatrix}+\begin{vmatrix} \hat i &\hat j & \hat k\\ a_1&a_2 &a_3 \\ c_1&c_2 &c_3 \end{vmatrix}$
$\vec a \times \vec b + \vec a \times \vec c=\hat i(a_2b_3-a_3b_2)-\hat j (a_1b_3-a_3b_1)+\hat k(a_1b_2-b_1a_2)+\hat i(a_2c_3-a_3c_2)-\hat j (a_1c_3-a_3c_1)+\hat k(a_1c_2-c_1a_2)$
$\\=\hat i(a_2(b_3+c_3)-a_3(b_2+c_2))-\hat j(a_1(b_3+c_3)-a_3(b_1+c_1))+\hat k (a_1(b_2+c_2)-a_2(a_1(b_2+c_3)))$
Hence they are equal.
Answer:
No, the converse of the statement is not true, as there can be two non zero vectors, the cross product of whose are zero. they are colinear vectors.
Consider an example
$\vec a=\hat i +\hat j + \hat k$
$\vec b =2\hat i +2\hat j + 2\hat k$
Here $|\vec a| =\sqrt{1^2+1^2+1^2}=\sqrt{3}$
$|\vec b| =\sqrt{2^2+2^2+2^2}=2\sqrt{3}$
$\vec a \times \vec b=\begin{vmatrix} \hat i &\hat j &\hat k \\ 1&1 &1 \\ 2&2 &2 \end{vmatrix}=\hat i(2-2)-\hat j(2-2)+\hat k(2-2)=0$
Hence converse of the given statement is not true.
Question 9: Find the area of the triangle with vertices A(1, 1, 2), B(2, 3, 5) and C(1, 5, 5).
Answer:
Given in the question
vertices A=(1, 1, 2), B=(2, 3, 5) and C=(1, 5, 5). and we need to find the area of the triangle
$AB=(2-1)\hat i+(3-1)\hat j+(5-2)\hat k=\hat i+2\hat j+3\hat k$
$BC=(1-2)\hat i+(5-3)\hat j+(5-5)\hat k=-\hat i+2\hat j$
Now as we know
Area of triangle
$A=\frac{1}{2}|\vec {AB}\times\vec {BC}|=\frac{1}{2}|(\hat i+2\hat j +3\hat k)\times(-\hat i+2\hat j)|$
$\\A=\frac{1}{2}\begin{vmatrix} \hat i &\hat j &\hat k \\ 1 &2 &3 \\ -1 &2 &0 \end{vmatrix}=\frac{1}{2}|\hat i(0-6)-\hat j(0-(-3))+\hat k(2-(-2))| \\A=\frac{1}{2}|-6\hat i-3\hat j+4\hat k|$
$A=\frac{1}{2}*\sqrt{(-6)^2+(-3)^2+(4)^2}=\frac{\sqrt{61}}{2}$
The area of the triangle is $\frac{\sqrt{61}}{2}$ square units
Answer:
Given in the question
$\vec a = \hat i - \hat j + 3 \hat k$
$\vec b = 2\hat i -7 \hat j + \hat k$
Area of parallelogram with adjescent side $\vec a$ and $\vec b$ ,
$A=|\vec a\times\vec b|=|(\vec i-\vec j+3\vec k)\times (2\hat i-7\hat j+\hat k)|$
$A=\begin{vmatrix} \hat i& \hat j & \hat k\\ 1&-1 &3 \\ 2&-7 &1 \end{vmatrix}=|\hat i(-1+21)-\hat j (1-6)+\hat k (-7+2)|$
$A=|\hat i(20)-\hat j (-5)+\hat k (-5)|=\sqrt{20^2+5^2+(-5)^2}$
$A=\sqrt{450}=15\sqrt{2}$
The area of the parallelogram whose adjacent sides are determined by the vectors $\vec a = \hat i - \hat j + 3 \hat k$ and $\vec b = 2\hat i -7 \hat j + \hat k$ is $A=\sqrt{450}=15\sqrt{2}$
$\\A ) \pi /6 \\\\ B ) \pi / 4 \\\\ C ) \pi / 3 \\\\ D ) \pi /2$
Answer:
Given in the question,
$|\vec a| = 3 \: \: and\: \: |\vec b | = \frac{\sqrt 2 }{3}$
As given $\vec a \times \vec b$ is a unit vector, which means,
$|\vec a \times \vec b|=1$
$|\vec a| | \vec b|sin\theta=1$
$3*\frac{\sqrt{2}}{3}sin\theta=1$
$sin\theta=\frac{1}{\sqrt{2}}$
$\theta=\frac{\pi}{4}$
Hence the angle between two vectors is $\frac{\pi}{4}$ . Correct option is B.
Question 12: Area of a rectangle having vertices A, B, C and D with position vectors
(A)1/2
(B) 1
(C) 2
(D) 4
Answer:
Given 4 vertices of rectangle are
$\\\vec a=- \hat i + \frac{1}{2} \hat j + 4 \hat k , \\\vec b=\hat i + \frac{1}{2} \hat j + 4 \hat k , \\\vec c= \hat i - \frac{1}{2}\hat j + 4 \hat k \: \: and \: \: \\\vec d= - \hat i - \frac{1}{2} \hat j + 4 \hat k$
$\vec {AB}=\vec b-\vec a=(1+1)\hat i+(\frac{1}{2}-\frac{1}{2})\hat j+(4-4)\hat k=2\hat i$
$\vec {BC}=\vec c-\vec b=(1-1)\hat i+(-\frac{1}{2}-\frac{1}{2})\hat j+(4-4)\hat k=-\hat j$
Now,
Area of the Rectangle
$A=|\vec {AB}\times\vec {BC}|=|2\hat i \times (-\hat j)|=2$
Hence option C is correct.
The vector (or cross) product of two vectors
The vector (or cross) product of two vectors $\mathbf{A} \times \mathbf{B}$ gives a third vector that's perpendicular to both $\mathbf{A}$ and $B$ - like if you stretch your right hand in direction $A$ and curl fingers towards $B$, your thumb points in the direction of $A \times B$.
Formula:
$A \times B=|A||B| \sin (\theta) \mathbf{n}$
$|\mathrm{A}|$ and $|\mathrm{B}|$ are magnitudes of the vectors
$\theta$ is the angle between them
$\mathbf{n}$ is a unit vector perpendicular to both $A$ and $B$
Also Read,
Also See,
Take Aakash iACST and get instant scholarship on coaching programs.
Frequently Asked Questions (FAQs)
The quantity that has magnitude and also direction is called a vector quantity.
A scalar quantity has magnitude only whereas a vector quantity has both magnitude and directions.
The value will be zero since the angle between them is zero. The cross product of two vectors a and b is absin(angle between them). For parallel vectors angle between them is zero. So sin(0)=0.
The direction of a cross b is opposite to the direction of b cross a. That is (a cross b)=-(b cross a)
No, stress is neither a vector nor a scalar. Stress is known as a tensor quantity.
It is a vector with magnitude=1
No, equal vectors may have different initial points, but the magnitude and directions of equal vectors will be the same.
The negative of a given vector is the vector with the same magnitude but opposite in direction.
Two or three questions from vector algebra can be expected for the CBSE Class 12 Maths board exam.
Vector algebra is used in almost all branches of engineering. If we consider electrical engineering, vector algebra is used to solve certain electromagnetic, power systems, electrical machines and power electronics problems.
On Question asked by student community
Hello
Yes, if you’re not satisfied with your marks even after the improvement exam, many education boards allow you to reappear as a private candidate next year to improve your scores. This means you can register independently, study at your own pace, and take the exams without attending regular classes. It’s a good option to improve your results and open up more opportunities for higher studies or careers. Just make sure to check the specific rules and deadlines of your education board so you don’t miss the registration window. Keep your focus, and you will do better next time.
Hello Aspirant,
Yes, in the case that you appeared for the 2025 improvement exam and your roll number is different from what was on the previous year’s marksheet, the board will usually release a new migration certificate. This is because the migration certificate will reflect the most recent exam details, roll number and passing year. You can apply to get it from your board using the process prescribed by them either online or through your school/college.
Yes, if you miss the 1st CBSE exam due to valid reasons, then you can appear for the 2nd CBSE compartment exam.
From the academic year 2026, the board will conduct the CBSE 10th exam twice a year, while the CBSE 12th exam will be held once, as per usual. For class 10th, the second phase exam will act as the supplementary exam. Check out information on w hen the CBSE first exam 2026 will be conducted and changes in 2026 CBSE Board exam by clicking on the link .
If you want to change your stream to humanities after getting a compartment in one subject in the CBSE 12th Board Exam , you actually have limited options to qualify for your board exams. You can prepare effectively and appear in the compartment examination for mathematics again. If you do not wish to continue with the current stream, you can take readmission in the Humanities stream and start from Class 11th again, and continue studying for two more years to qualify for the 12th examination.
The GUJCET Merit List is prepared based on the Class 12th marks and GUJCET marks received by the students. CBSE students who are not from the Gujarat board can definitely compete with GSEB students, as their eligibility is decided based on the combined marks scored by them in GUJCET and the 12th board. The weightage of the GUJCET score is 40% and the weightage of the class 12 scores is 60%.
Take Aakash iACST and get instant scholarship on coaching programs.
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE