CBSE Class 10th Exam Date:17 Feb' 26 - 17 Feb' 26
There are various methods for solving the linear equation. In the previous exercises graphical method and one of the algebraic methods for solving the equation have been discussed. There are many algebraic methods for solving equations, like substitution and elimination methods. Similar to the substitution method elimination method is also used to solve the linear equation. In this method, multiply the equation by numbers to make the coefficient of the equation equal. This will help to eliminate the value and get the solution.
This Story also Contains
These class 10 maths exercise 3.3 solutions are designed as per the students' demand, covering comprehensive, step-by-step solutions of every problem. Practice is necessary for all these questions to command the concepts, boost confidence and in-depth understanding of concepts. In the exercise, all the NCERT solutions are covered according to the syllabus of the NCERT. These solutions help the students to understand the concept in depth. This exercise included all the questions given in the NCERT Books. In exercise 3.3 of the NCERT, the chapter solutions are explained in detail.
Q1(i) Solve the following pair of linear equations by the elimination method and the substitution method :
$x + y =5 \ \textup{and} \ 2x - 3y = 4$
Answer:
Elimination Method:
Given, equations
$\\x + y =5............(1) \ \textup{and} \\ \ 2x - 3y = 4........(2)$
Now, multiplying (1) by 3 we get
$\\3x +3 y =15............(3)$
Now, adding (2) and (3), we get
$\\2x-3y+3x +3 y =4+15$
$\Rightarrow 5x=19$
$\Rightarrow x=\frac{19}{5}$
Substituting this value in (1), we get
$\frac{19}{5}+y=5$
$\Rightarrow y=5-\frac{19}{5}$
$\Rightarrow y=\frac{6}{5}$
Hence,
$x=\frac{19}{5}\:and\:y=\frac{6}{5}$
Substitution method :
Given, equations
$\\x + y =5............(1) \ \textup{and} \\ \ 2x - 3y = 4........(2)$
Now, from (1) we have,
$y=5-x.......(3)$
Substituting this value in (2)
$2x-3(5-x)=4$
$\Rightarrow 2x-15+3x=4$
$\Rightarrow 5x=19$
$\Rightarrow x=\frac{19}{5}$
Substituting this value of x in (3)
$\Rightarrow y=5-x=5-\frac{19}{5}=\frac{6}{5}$
Hence,
$x=\frac{19}{5}\:and\:y=\frac{6}{5}$
Q1(ii) Solve the following pair of linear equations by the elimination method and the substitution method :
$3x + 4 y = 10 \ \textup{and} \ 2x - 2y = 2$
Answer:
Elimination Method:
Given, equations
$\\3x + 4 y = 10............(1) \ \textup{and}\\ \ 2x - 2y = 2..............(2)$
Now, multiplying (2) by 2 we get
$\\4x -4 y =4............(3)$
Now, adding (1) and (3), we get
$\\3x+4y+4x -4 y =10+4$
$\Rightarrow 7x=14$
$\Rightarrow x=2$
Putting this value in (2) we get
$2(2)-2y=2$
$\Rightarrow 2y=2$
$\Rightarrow y=1$
Hence,
$x=2\:and\:y=1$
Substitution method :
Given, equations
$\\3x + 4 y = 10............(1) \ \textup{and}\\ \ 2x - 2y = 2..............(2)$
Now, from (2) we have,
$y=\frac{2x-2}{2}=x-1.......(3)$
Substituting this value in (1)
$3x+4(x-1)=10$
$\Rightarrow 3x+4x-4=10$
$\Rightarrow 7x=14$
$\Rightarrow x=2$
Substituting this value of x in (3)
$\Rightarrow y=x-1=2-1=1$
Hence, $x=2\:and\:y=1$
Answer:
Elimination Method:
Given, equations
$\\3x - 5y -4 = 0..........(1)\ \textup{and}\ \\9x = 2y + 7$
$\\\Rightarrow 9x - 2y -7=0........(2)$
Now, multiplying (1) by 3 we get
$\\9x -15 y -12=0............(3)$
Now, subtracting (3) from (2), we get
$9x-2y-7-9x+15y+12=0$
$\Rightarrow 13y+5=0$
$\Rightarrow y=\frac{-5}{13}$
Putting this value in (1), we get
$3x-5(\frac{-5}{13})-4=0$
$\Rightarrow 3x=4-\frac{25}{13}$
$\Rightarrow 3x=\frac{27}{13}$
$\Rightarrow x=\frac{9}{13}$
Hence,
$x=\frac{9}{13}\:and\:y=-\frac{5}{13}$
Substitution method :
Given, equations
$\\3x - 5y -4 = 0..........(1)\ \textup{and}\ \\9x = 2y + 7$
$\\\Rightarrow 9x - 2y -7=0........(2)$
Now, from (2) we have,
$y=\frac{9x-7}{2}.......(3)$
Substituting this value in (1)
$3x-5\left(\frac{9x-7}{2} \right )-4=0$
$\Rightarrow 6x-45x+35-8=0$
$\Rightarrow -39x+27=0$
$\Rightarrow x=\frac{27}{39}=\frac{9}{13}$
Substituting this value of x in (3)
$\Rightarrow y=\frac{9(9/13)-7}{2}=\frac{81/13-7}{2}=\frac{-5}{13}$
Hence, $x=\frac{9}{13}\:and\:y=-\frac{5}{13}$
Answer:
Elimination Method:
Given, equations
$\\\frac{x}{2} + \frac{2y}{3} = -1........(1)\ \textup{and} \ \\ \\x - \frac{y}{3} = 3............(2)$
Now, multiplying (2) by 2, we get
$\\2x - \frac{2y}{3} =6............(3)$
Now, adding (1) and (3), we get
$\\\frac{x}{2}+\frac{2y}{3}+2x-\frac{2y}{3}=-1+6$
$\Rightarrow \frac{5x}{2}=5$
$\Rightarrow x=2$
Putting this value in (2), we get
$2-\frac{y}{3}=3$
$\Rightarrow \frac{y}{3}=-1$
$\Rightarrow y=-3$
Hence,
$x=2\:and\:y=-3$
Substitution method :
Given, equations
$\\\frac{x}{2} + \frac{2y}{3} = -1........(1)\ \textup{and} \ \\ \\x - \frac{y}{3} = 3............(2)$
Now, from (2) we have,
$y=3(x-3)......(3)$
Substituting this value in (1)
$\frac{x}{2}+\frac{2(3(x-3))}{3}=-1$
$\Rightarrow \frac{x}{2}+2x-6=-1$
$\Rightarrow \frac{5x}{2}=5$
$\Rightarrow x=2$
Substituting this value of x in (3)
$\Rightarrow y=3(x-3)=3(2-1)=-3$
Hence, $x=2\:and\:y=-3$
Answer:
Let the numerator of the fraction be x, and the denominator is y,
Now, according to the question,
$\frac{x+1}{y-1}=1$
$\Rightarrow x+1=y-1$
$\Rightarrow x-y=-2.........(1)$
Also,
$\frac{x}{y+1}=\frac{1}{2}$
$\Rightarrow 2x=y+1$
$\Rightarrow 2x-y=1..........(2)$
Now, subtracting (1) from (2), we get
$x=3$
Putting this value in (1)
$3-y=-2$
$\Rightarrow y=5$
Hence, $x=3\:and\:y=5$
And the fraction is: $\frac{3}{5}$
Answer:
Let the age of Nuri be x and the age of Sonu be y.
Now, according to the question
$x-5=3(y-5)$
$\Rightarrow x-5=3y-15$
$\Rightarrow x-3y=-10.........(1)$
Also,
$x+10=2 (y+10)$
$\Rightarrow x+10=2y+20$
$\Rightarrow x-2y=10........(2)$
Now, subtracting (1) from (2), we get
$y=20$
Putting this value in (2)
$x-2(20)=10$
$\Rightarrow x=50$
Hence, the age of Nuri is 50 and the age of Nuri is 20.
Answer:
Let the unit digit of the number be x and the 10's digit be y.
Now, according to the question,
$x+y=9.......(1)$
Also
$9(10y+x)=2(10x+y)$
$\Rightarrow 90y+9x=20x+2y$
$\Rightarrow 88y-11x=0$
$\Rightarrow 8y-x=0.........(2)$
Now adding (1) and (2), we get,
$\Rightarrow 9y=9$
$\Rightarrow y=1$
Now putting this value in (1)
$x+1=9$
$\Rightarrow x=8$
Hence, the number is 18.
Answer:
Let the number of Rs 50 notes be x and the number of Rs 100 notes be y.
Now, according to the question,
$x+y=25..........(1)$
And
$50x+100y=2000$
$\Rightarrow x+2y=40.............(2)$
Now, subtracting (1) from (2), we get
$y=15$
Putting this value in (1).
$x+15=25$
$\Rightarrow x=10$
Hence, Meena received 10, 50 Rs notes and 15, 100 Rs notes.
Answer:
Let the fixed charge be x, and per day charge is y.
Now, according to the question,
$x+4y=27...........(1)$
And
$x+2y=21...........(2)$
Now, Subtracting (2) from (1). We get,
$4y-2y=27-21$
$\Rightarrow 2y=6$
$\Rightarrow y=3$
Putting this in (1)
$x+4(3)=27$
$\Rightarrow x=27-12=15$
Hence, the fixed charge is 15 Rs and the per-day charge is 3 Rs.
Also Read:
Also see-
Students must check the NCERT solutions for class 10 of the Mathematics and Science Subjects.
Students must check the NCERT Exemplar solutions for class 10 of the Mathematics and Science Subjects.
Frequently Asked Questions (FAQs)
We multiply both the equations with some non-zero constant to eliminate one of the variables by adding both of the new equations.
Graphical Method
Elimination method
Elimination method as it is time-efficient and not lengthy.
In order to make the coefficient of one of the variables numerically equal but with opposite signs so that they get cancelled when we add them together.
Yes, once we find the value of the first variable, we substitute its value in any of the equation to get the value of the second equation.
It doesn’t provide us the desired point if the values are irrational.
On Question asked by student community
HELLO,
If you want admission to 9th grade under the CBSE board in Andhra Pradesh , visit nearby CBSE affiliated schools during the admission period that is generally from January to April or you can check the official websites of the schools in which you are interested for admission if they are accepting the admissions now .
After deciding the school and getting information about admission deadline from the school you can fill out the admission form with documents submission like your previous report card , transfer certificate and birth certificate , they make take entrance test or interview to confirm your admission
To know more visit :- https://school.careers360.com/schools/cbse-schools-in-andhra-pradesh
Hope this Helps!
Hello,
From the below website, you can get the CBSE Maths Sample paper of class 10.
https://school.careers360.com/boards/cbse/cbse-class-10-sample-papers-2025-26
Visit the below website to obtain the previous year question papers of class 10 CBSE.
https://school.careers360.com/boards/cbse/cbse-previous-year-question-papers-class-10
By solving both sample papers and previous year question papers, you can score well in your examination.
All the best.
Hello,
From the below website, you can get the sample papers of CBSE class 10 Hindi subject.
https://school.careers360.com/boards/cbse/cbse-class-10-sample-papers-2025-26
You'll also get sample papers of other subjects. Refer them to prepare well.
Hello,
If you're from Karnataka Board, then visit the below website to get the key answers of Social Science question paper of SA 1 of class 10.
https://school.careers360.com/boards/kseeb/karnataka-sslc-mid-term-exam-question-paper-2025-26
Let us know if you're from a different board.
Hello,
Since you applied over a month and a half ago and haven't received your 10th-grade certificate, the best course of action is to check the status of your application on the official website. If that doesn't yield results, you should contact your school and the relevant education board's regional office for an update.
I hope it will clear your query!!
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters