Careers360 Logo
RD Sharma Class 12 Exercise 19.2 Definite Integrals Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise 19.2 Definite Integrals Solutions Maths - Download PDF Free Online

Updated on Jan 24, 2022 02:22 PM IST

The RD Sharma books have gained popularity and are widely used by class 12 students for their reference purposes. However, chapter 19, the Definite Integrals portion, is always a challenging one for the students when it comes to mathematics. Therefore, to save the students’ time solving and rechecking the sums in the second exercise, Ex 19.2, the RD Sharma Class 12th Exercise 19.2 book will lend a helping hand.

This Story also Contains
  1. RD Sharma Class 12 Solutions Chapter19 Definite Integrals - Other Exercise
  2. Definite Integrals Excercise:19.2
  3. RD Sharma Chapter-wise Solutions

RD Sharma Class 12 Solutions Chapter19 Definite Integrals - Other Exercise

Definite Integrals Excercise:19.2

Definite integrals exercise 19.2 question 2

Answer:

log2log2e
Hint: We use indefinite integral formula then put limits to solve this integral.
Given:121x(1+logx)2dx
Solution:121x(1+logx)2dx
Put 1+logx=t
1xdx=dt
dx=xdt
When x=1 then t=1 and when x=2 then t=1+log2
$=121x(1+logx)2dx=11+log21xt2xdt=11+log21t2dt=11+log2t2dt=[t2+12+1]11+log2[xndx=xn+1n+1]$
$=[t11]11+log2=[1t]11+log2=[11+log21]=[11log21+log2]=[log21+log2]=log21+log2[1=loge]$
$=log2loge+log2=log2log2e$

Definite integrals exercise 19.2 question 3

Answer:

16log(358)
Hint: We use indefinite integral formula then put limits to solve this integral.
Given: 123x9x21dx
Solution: 123x9x21dx
Putting 9x21=t
18xdx=dt
dx=dt18x
When x=1 then t=9-1=8 and when x=2 then t=36-1=35
$=123x9x21dx=8353xtdt18x=168351tdt=16[log|t|]835=16[log35log8][logalogb=logab]$
=16log(358)

Definite integrals exercise 19.2 question 4

Answer:

I=134[tan153428]
Hint: We use indefinite formula then put limits to solve this integral.
Given: 0π215cosx+3sinxdx
Solution:0π215cosx+3sinxdx
Putting sinx=2tanx21+tan2x2
$cosx=1tan2x21+tan2x20π215(1tan2x2)1+tan2x2+3(2tanx2)1+tan2x2dx$
=0π2155tan2x2+6tanx21+tan2x2dx
=0π21+tan2x25+6tanx25tan22dx[sec2x=1+tan2x]
I=0π2sec2x25+6tanx25tan22dx
Lettanx2=t
12sec2x2dx=dt
sec2x2dx=dt
When x=0 then t=tan0=0 and whenx=π2 then t=tanπ4=1
I=0π2sec2x25+6tanx25tan22dx
$=0115+6t5t22dt=250111+65tt2dt=25011(t265t1)dt=25011[t22t35+(35)2(35)21]dt$
$=25011[(t35)29251]dt=25011[(t35)2(9+2525)]dt=25011[(t35)2(3425)]dt$
$=25011(345)2+(t35)2dt=25011(345)2+(t35)2dt=25[1345tan1(t35)(345)]01[1a2+x2dx=1atan1xa]$
$=25534[tan1(135)(345)tan1(035)(345)]=134[tan1(2)(34)tan1(3)(34)]$
=134[tan1((2)(34)(3)(34))1+(2)(34)(3)(34)]
$=134[tan1((2+3)(34))34634]=134tan15(34)2834$
I=134[tan153428]

Definite integrals exercise 19.2 question 5

Answer:

a(21)
Hint: We use indefinite integral formula then put limits to solve this integral.
Given: 0axa2+x2dx
Solution:0axa2+x2dx
Putting a2+x2=t2
2xdx=2tdt
xdx=tdt
When x=0 then t=a and when x=a then t=2a
$=a2a1t2tdt=a2a1ttdt=a2a1dt=a2at0dt=[t0+10+1]a2a$
=[t]a2a
=[2aa]
=a[21]

Definite integrals exercise 19.2 question 6

Answer:

tan1eπ4
Hint: We use indefinite formula then put limits to solve this integral.
Given: 01ex1+e2xdx
Solution:01ex1+e2xdx
Put ex=t
exdx=dt
When x=0 then t=1 and when x=1 then t=e
$I=1e11+t2dt=[tan1t]1e=tan1etan11[tan11=π4]$
=tan1eπ4

Definite integrals exercise 19.2 question 7

Answer:

12(e1)
Hint: We use indefinite integral formula then put limits to solve this integral.
Given: 01xex2dx
Solution:I=01xex2dx
Put x2=t
2xdx=dt
dx=dt2x
When x=0 then t=0 and when x=1 then t=1
$I=01xetdt2x=1201etdt$
=12[et]01 [etdt=et+c]
=12[e1e0]
=12(e1)

Definite integrals exercise 19.2 question 8

Answer:

sin(log3)
Hint: We use indefinite integral formula then put limits to solve this integral.
Given:13cos(logx)xdx
Solution:13cos(logx)xdx
Put logx=t
1xdx=dt
dx=xdt
When x=1 then t=log1=0 and when x=3 then t=log3
$=0log3costxxdt=1log3costdt[cosxdx=sinx+c]$
$=[sint]0log3=[sin(log3)sin0]=sin(log3)$

Definite Integrals exercise 19.2 question 9.

Answer:

π4
Hint: We use indefinite integral formula then put limits to solve this integral.
Given: 012x1+x4dx
Solution:I=012x1+x4dx
Put x2=t
2xdx=dt
When x=0 then t=0 and
when x=1 then t=1
I=011t2+1dt [11+x2dx=tan1xa]
$=[tan1(t1)]01=[tan11tan10]=π40=π4$


Definite Integrals exercise 19.2 question 10.

Answer:

Answer: πa24
Hint: We use indefinite integral formula then put limits to solve this integral.
Given:0aa2x2dx
Solution: 0aa2x2dx
Put x=asinθ
dx=acosθdθ
When x=0 then θ=0 and
when x=a then θ=π2
$=0π2a2a2sin2θacosθdθ=0π2a2(1sin2θ)acosθdθ[1sin2x=cos2x]$
$=0π2acos2θacosθdθ=0π2acosθacosθdθ=0π2a2cos2θdθ[cos2θ=1+cos2θ2]$
$=0π2a2(1+cos2θ2)dθ=0π2a22(1+cos2θ)dθ=a220π2(1+cos2θ)dθ$
$=a22(0π21dθ+0π2cos2θdθ)=a22[θ]0π2+a22[sin2θ2]0π2=a22[π20]+a24[sin2π2sin0]$
$=a22π2+a24[sinπsin0]=a2π4+a24[00][sinπ=sin0=0]$
=πa24

Definite Integrals exercise 19.2 question 11.

Answer:

Answer: 64231
Hint: We use indefinite integral formula then put limits to solve this integral.
Given:0π2sinϕcos5ϕdϕ
Solution:0π2sinϕcos5ϕdϕ
Put sinϕ=t
cosϕdϕ=dt
dϕ=dtcosϕ
When ϕ=0 then t=0 and when ϕ=π2 then t=1
$=01tcos5ϕdtcosϕ=01tcos4ϕdt=01t12(cos2ϕ)2dt$
$=01t12(1sin2ϕ)2dt=01t12(1t2)2dt=01t12(1+t42t2)dt$
$=01(t12+t4+122t2+12)dt=01t12dt+01t92dt201t52dt$
$=[t12+112+1+t92+192+12t52+152+1]01=[t323]01+[t112112]012[t7272]01$
$=23[t32]01+211[t112]012×27[t72]01=23[132032]+211[11120112]47[172072]=23[10]+211[10]47[10]$
=23+21147
=154+42132231
=196132231
=64231

Definite Integrals exercise 19.2 question 12.

Answer:

π4
Hint: We use indefinite integral formula then put limits to solve this integral.
Given:0π2cosx1+sin2xdx
Solution: 0π2cosx1+sin2xdx
Put sinx=t
cosxdx=dt
dx=dtcosx
When x=0 then t=0 and when x=π2 then t=1
=0111+t2dt[1a2+x2dx=1atan1xa]
=[tan1(t)]01
=[tan11tan10]
=[π40]
=π4

Definite Integrals exercise 19.2 question 13.

Answer:

Answer: 2(21)
Hint: We use indefinite integral formula then put limits to solve this integral.
Given:0π2sinθ1+cosθdθ
Solution: I=0π2sinθ1+cosθdθ
Put 1+cosθ=t2
sinθdθ=2tdt
When θ=0 then t=2 and
When θ=π2 then t=1
$I=212tdtt2dt=212ttdt=2211dt=2[t]21=2[12]=2(21)$

Definite Integrals exercise 19.2 question 14.

Answer:

Answer: 14log(3+233)
Hint: We use indefinite integral formula then put limits to solve this integral.
Given:0π3cosx3+4sinxdx
Solution:I=0π3cosx3+4sinxdx
Put 3+4sinx=t
4cosxdx=dt
cosxdx=dt4
When x=0 then t=3 and
when x=π3 then t=3+23
$I=33+231tdt4I=1433+231tdt=14[log|t|]33+23=14[log(3+23)log3]=14log(3+233)$


Definite Integrals exercise 19.2 question 15.

Answer: ππ12
Hint: We use indefinite formula then put limits to solve this integral.
Given: 01tan1x1+x2dx
Solution: I=01tan1x1+x2dx
Put tan1x=t
11+x2dx=dt
dx=(1+x2)dt
When x=0 then t=0 and
when x=1 then t=π4
$I=0π4t1+x2(1+x2)dt=0π4tdt$
$=0π4t12dt=[t12+112+1]0π4=[t323]0π4=23[t32]0π4=23[(π4)320]$
$=23[π3222×32]=23[ππ23]=2ππ3×8=ππ12$

Definite Integrals exercise 19.2 question 16.

Answer: 162(2+1)15
Hint: We use indefinite integral formula then put limits to solve this integral.
Given:02xx+2dx
Solution:I=02xx+2dx
Put x+2=t2
dx=2tdt
When x=0 then t=2 and
when x=2 then t=2
$I=22(t22)t22tdt=22(t22)t2tdt$
$=22(t22)2t2dt=222(t42t2)dt=222t4dt2×222t2dt=2[t4+14+1]224[t2+12+1]22$
$=25[t5]2243[t3]22=25[25(2)5]43[23(2)3]=25[322×2×2]43[822]=2[325425]4×83+823$
$=2[(325425)163+423]=2[3(3242)5(1642)15]=2[9612280+20215]=2[16+8215]=2×815[2+2]=16215(2+1)$

Definite Integrals exercise 19.2 question 17.

Answer:

Answer:π2log2
Hint: We use indefinite integral formula then put limits to solve this integral.
Given:01tan1(2x1x2)dx
Solution:I=01tan1(2x1x2)dx
Put x=tanθ
dx=sec2θdθ
When x=0 then θ=0 and
when x=1 then θ=π4
$I=0π4tan1(2tanθ1tan2θ)sec2θdθ[tan2θ=2tanθ1tan2θ]=0π4tan1(tan2θ)sec2θdθ=0π42θsec2θdθ=20π4θsec2θdθ$
Applying integration by parts method, then
$=2{[θsec2θdθ]0π40π4[d(θ)dθsec2θdθ]dθ}=2{[θtanθ]0π40π41tanθdθ}[sec2xdx=tanx,d(xn)dx=nxn1]=2{[π4tanπ40×tan0]0π4tanθdθ}[tanxdx=log|cosx|,tanπ4=1,tan0=0]$
$=2{[π410][log|cosθ|]0π4}=2π4+2[log12log1][cosπ4=12,cos0=1]=π2+2[log120][log1=0]$
$=π2+2log(2)12=π2+(12)×2log2[logam=mloga]=π2log2$

Definite Integrals exercise 19.2 question 18.

Answer:π8
Hint: We use indefinite integral formula then put limits to solve this integral.
Given: 0π2sinxcosx1+sin4xdx
Solution:I=0π2sinxcosx1+sin4xdx
Put sin2x=t
2sinxcosx=dt
sinxcosxdx=dt2
When x=0 then t=0 and when x=π2 then t=1
$I=0111+t2dt2=120111+t2dt=12[tan1(t)]01[1a2+x2dx=1atan1xa]$
$=12[tan11tan10][tan11=π4,tan10=0]=12[π40]=12π4=π8$

Definite Integrals exercise 19.2 question 20.

Answer:23tan1(113)
Hint: We use indefinite integral formula then put limits to solve this integral.
Given: 0π215+4sinxdx
Solution:I=0π215+4sinxdx
Put sinx=2tanx21+tan2x2

I=0π215+4sinxdx
$=0π215+4(2tanx2)1+tan2x2dx=0π215+5tan2x2+8tanx21+tan2x2dx=0π21+tan2x25+5tan2x2+8tanx2dx$
=0π2sec2x25+5tan2x2+8tanx2dx[1+tan2x=sec2x]
Put tanx2=t
sec2x2.12dx=dt
sec2x2dx=2t
When x=0 then t=0 and when x=π2 then t=1
$l=0π2sec2x25+5tan2x2+8tanx2dx=0115+5t2+8t2dt=0115(1+t2+8t5)2dt=250111+t2+8t5dt$
$=25011t2+2t45+(45)2(45)2+1dt=25011(t+45)21625+1dt=25011(t+45)2+251625dt=25011(t+45)2+925dt$
$=25011(t+45)2+(35)2dt=25[135tan1(t+4535)][1a2+x2dx=1atan1xa]=25×53[tan1(5t+4535)]01$
$=23[tan1(5×1+43)tan1(5×0+43)]=23[tan1(93)tan1(43)]=23[tan1(3)tan1(43)]$
$=23[tan1(93)tan1(43)]=23[tan1(3)tan1(43)]=23[tan1(3431+3×43)][tan1Atan1B=tan1(AB1+AB)]$
$=23[tan1(9431+4)]=23[tan1(53×5)]=23[tan1(13)]$

Definite Integrals exercise 19.2 question 21.

Answer:π2
Hint: We use indefinite integral formula then put limits to solve this integral.
Given: 0π2sinxsinx+cosxdx
Solution:0π2sinxsinx+cosxdx
$ Put sinx=k(sinx+cosx)+Lddx(sinx+cosx)[ddxsinx=cosx,ddxcosx=sinx]sinx=ksinx+kcosx+L(cosxsinx)sinx=ksinx+kcosx+LcosxLsinx$
sinx(kL)sinx+(k+L)cosx
Equating coefficient of sinx and cosx respectively, we get
kL=1............(i)
k+L=1............(ii)
Solving equation (i) and (ii)
k-L=1
k+L=0
2k=1
k=12
ii=k+L=0
12+L=0
L=-12
$sinx=12(sinx+cosx)12(cosxsinx)I=0πsinxsinx+cosxdx=0π12(sinx+cosx)12(cosxsinx)sinx+cosxdx=0π12(sinx+cosx)12(cosxsinx)sinx+cosxdx=120π[(sinx+cosx)(sinx+cosx)(cosxsinx)(sinx+cosx)]dx=120π1dx120π(cosxsinx)(sinx+cosx)dx$
Put sinx+cosx=t
$(cosxsinx)dx=dtI=0π12dx120πdtt=12[x0+10+1]0π12[log|t|]0π=12[x]0π12[log|sinx+cosx|]0π$
$=12[π0]12[log|sinπ+cosπ|log|sin0+cos0|]=12π12[log|0+(1)|log|0+1|][cosπ=1,cos0=1,sinπ=sin0=0]$
$=12π12[log|1|log|1|]=12π12[log|1|log|1|][log1=0]=12π0=π2$

Definite Integrals exercise 19.2 question 22.

Answer: π4
Hint: We use indefinite integral formula then put limits to solve this integral.
Given:0π13+2sinx+cosxdx
Solution:I=0π13+2sinx+cosxdx
Put sinx=2tanx21+tan2x2,cosx=1tan2x21+tan2x2

I=0π13+2sinx+cosxdx
=0π13+22tanx21+tan2x2+1tan2x21+tan2x2dx
=0π13(1+tan2x2)+4tanx2+1tan2x21+tan2x2dx
$=0π1+tan2x23+3tan2x2+4tanx2+1tan2x2dx=0πsec2x24+2tan2x2+4tanx2dx[sec2x=1+tan2x]$
Put tanx2=t
sec2x2.12dx=dt
sec2x2dx=2dt
When x=0 then t=0 and when x=π then t=
$I=014+2t2+4t2dt=2×12012+t2+2tdt=01t2+2t+1+1dt=01(t2+2t+1)+1dt=01(t+1)2+12dt$
$=11[tan1(t+1)]0=tan1(+1)tan1(0+1)=tan1tan11=π2π4[tan1=π2,tan11=π4]=2ππ4=π4$

Definite Integrals exercise 19.2 question 23.

Answer:π412log2
Hint: We use indefinite integral formula then put limits to solve this integral.
Given:01tan1xdx
Solution:I=01tan1xdx
Applying integration by parts method we get
I=01tan1xdx
$=[tan1x1dx]0101[ddx(tan1x)1dx]dx=[tan1xx]010111+x2xdx[ddxtan1x=11+x2]$
Put 1+x2=t

2xdx=dt
xdx=dt2
Then
$I=[tan1xx]01011dt2=[1tan110tan10]12[log|t|]01[1xdx=log|x|]=[π40]12[log|1+x2|]01$
$=π412[log|1+12|log|1+02|]=π412[log(1+1)log1]=π412[log2log1]$
=π412[log20] [log1=0]
=π412[log2]

Definite Integrals exercise 19.2 question 24.

Answer:12312π
Hint: We use indefinite integral formula then put limits to solve this integral.
Given:I=012xsin1x1x2dx
Solution:I=012xsin1x1x2dx
Applying integration by parts method we get
=[sin1x012x1x2dx]012012(ddxsin1xx1x2dx)dx
In x1x2dx put 1x2=t2
$2xdx=2tdtxdx=tdtx1x2dx=1t2tdt=1ttdt=1dt$
=t0dt [xndx=xn+1n+1+c]
=[t0+10+1]
=t
$x1x2dx=t=1x2(i)[t2=1x2]I=[sin1x1x2]012012(11x2(1x2))dx [using (i)][ddxsin1x=11x2]$
$=[1x2sin1x]012+0121dx=[1(12)2sin112102sin10]+[x]012[1dx=x]$
$=[114sin1120]+[120][sin10=0]=[414π6]+[12][sin112=π6]$
$=32π6+12=123π12$

Definite Integrals exercise 19.2 question 25

Answer:π2
Hint: We use indefinite integral formula then put limits to solve this integral.
Given: 0π4(tanx+cotx)dx
Solution:I=0π4(tanx+cotx)dx
$=0π4(sinxcosx+coxxsinx)dx=0π4sinx+cosxsinxcosxdx=20π4sinx+cosx2sinxcosxdx$
$=20π4sinx+cosx11+2sinxcosxdx=20π4sinx+cosx1(sin2x+cos2x)+2sinxcosxdx$
$=20π4sinx+cosx1(sin2x+cos2x2sinxcosx)dx=20π4sinx+cosx1(sinxcosx)2dx$

Put sinxcosx=t
[cosx(sinx)]dx=dt
(cosx+sinx)dx=dt
When x=0 then t=-1 and when x=π4 then t=0
$I=21011t2dt=2[sin1t]10[1a2x2dx=sin1xa]$
$=2[sin10sin1(1)]=2[0sin1(1)][sin10=0]=2[(π2)][sin1(1)=π2]=2[π2]=π2$

Definite Integrals exercise 19.2 question 26

Answer: 18
Hint: We use indefinite integral formula then put limits to solve this integral.
Given: 0π4tan3x1+cos22xdx
Solution: I=0π4tan3x1+cos22xdx
=0π4tan3x2cos2xdx [1+cos2θ=2cos2θ]
$=120π4tan3xcos2xdxI=120π4tan3xsec2xdx$
Put tanx=t
sec2xdx=dt
When x=0 then t=0 and when x=π4 then t=1

$I=1201t3dt=12[t3+13+1]01=1214[t4]01=18[1404]=18[1]=18$

Definite Integrals exercise 19.2 question 27

Answer: π4
Hint: We use indefinite integral formula then put limits to solve this integral.
Given:0π15+3cosxdx
Solution:I=0π15+3cosxdx
Put cosx=1tan2x21+tan2x2dx
I=0π15+3cosxdx
$I=0π15+31tan2x21+tan2x2dx=0π15(1+tan2x2)+3(1tan2x2)1+tan2x2dx=0π1+tan2x25+5tan2x2+33tan2x2dx$
$=0πsec2x28+2tan2x2dx[sec2x=1+tan2x]=0π12sec2x24+tan2x2dx=120πsec2x222+tan2x2dx$
Put tanx2=t
sec2x2.12dx=dtsec2x2dx=2dt

When x=0 then t=0 and x=π thent=

$I=120122+t22dt=2×120122+t2dt=[12tan1(t2)]0[1a2+x2dx=1atan1xa]$

$=12[tan1tan10]=12[π20][tanπ2=,tan1=π2,tan10=0]=π4$

Definite Integrals exercise 19.2 question 28

Answer: π2ab
Hint: We use indefinite integral formula then put limits to solve this integral.
Given:0π21a2sin2x+b2cos2xdx
Solution:
I=0π21a2sin2x+b2cos2xdx
Dividing numerator and denominator by cos2x , we get
$=0π21cos2xa2sin2x+b2cos2xcos2xdx=0π2sec2xa2sin2xcos2x+b2cos2xcos2xdx[1cosx=secx]=0π2sec2xa2tan2x+b2dx[sinxcosx=tanx]$
Put tanx=t
sec2xdx=dt
When x=0 then t=0 and when x=π2 then t=
$I=01a2t2+b2dt=1a201t2+b2a2dt=1a201t2+(ba)2dt$
$=1a2[1btan1(atb)]0[1a2+x2dx=1atan1(xa)]=1a2ab[tan1(atb)]0=1ab[tan1tan10]=1ab[π20][tan1=π2,tan10=0]$
=1abπ2
=π2ab

Definite Integrals exercise 19.2 question 29

Answer:π2
Hint: We use indefinite integral formula then put limits to solve this integral.
Given: 0π2x+2sinx2cosx22cos2x2dx
Solution:I=0π2x+2sinx2cosx22cos2x2dx
$=0π2x+2sinx2cosx22cos2x2dx[1+cos2x=2cos2x,sin2x=2sinxcosx]=0π2(x2cos2x2+2sinx2cosx22cos2x2)dx[cosx=1secx]=0π2(xsec2x22+sinx2cosx2)dx$
$=0π2(xsec2x22+sinx2cosx2)dx=120π2xsec2x2dx+0π2sinx2cosx2dx=120π2xsec2x2dx+0π2tanx2dx[sinxcosx=tanx]$

Applying integration by parts method to first part of integral then,
$=12{[xsec2x2dx]0π20π2(ddx(x)sec2x2dx)dx}+0π2tanx2dx=12{[xtanx212]0π20π21tanx212dx}+0π2tanx2dx$
$=12{2[xtanx2]0π220π2tanx2dx}+0π2tanx2dxsec2xadx=tanxa1a,d(x)dx=1]=[xtanx2]0π20π2tanx2dx+0π2tanx2dx=[π2tanπ2×20×tan02]0$
$=[π2tanπ40]=π2×1[tanπ4=1,tan0=0]=π2$

Definite Integrals exercise 19.2 question 30

Answer:π232
Hint: We use indefinite integral formula then put limits to solve this integral.
Given:01tan1x1+x2dx
Solution:I=01tan1x1+x2dx
Put tan1x=t
11+x2dx=dt
dx=(1+x)2dt
When x=0 then t=0 and when x=1 and t=π4

$I=0π4t1+x2(1+x2)dt=0π4tdt=[t1+11+1]0π4=[t22]0π4[xndx=xn+1n+1+c]$
$=12[t2]0π4=12[(π4)202]=12(π216)=π232$

Definite Integrals exercise 19.2 question 31

Answer:14log3
Hint: We use indefinite formula then put limits to solve this integral.
Given: 0π/4sinx+cosx3+sin2xdx
Solution:0π/4sinx+cosx3+sin2xdx=0π/4sinx+cosx3+sin2x+11dx
$=0π/4sinx+cosx3+1(sin2x+cos2x)+sin2xdx[1=sin2x+cos2x]=0π/4sinx+cosx3+1(sin2x+cos2x2sinxcosx)dx[sin2x=2sinxcosx]$
$=0π/4(sinx+cosx4(cosxsinx)2)dx[a2+b22ab=(a+b)2]=0π/4(sinx+cosx2)2(cosxsinx)2)dx$
Put cosxsinx=t
  • (sinxcosx)dx=dt
  • (sinx+cosx)dx=dt
  • (sinx+cosx)dx=dt
  • if x =0 then t = 1 & ifx=π4 then t = 0
Then,
$0π/4sinx+cosx3+sin2xdx=0π4(sinx+cosx(2)2(cosxsinx)2)dx=101(2)2(t)2(dt)=101(2)2(t)2dt=011(2)2(t)2dt[abf(x)dx=baf(x)dx$
$=12×2[log|2+t2t|]01=14[log|2+121|log|2+020|]=14[log31log22]=14log3log1]=14[log30]=14log3[log1=0]$

Definite Integrals exercise 19.2 question 32

Answer:π412
Hint: We use indefinite formula then put limits to solve this integral.
Given: 01xtan1xdx
Solution: 01xtan1xdx
Applying integration by parts, then,
01xtan1xdx
$=[tan1xxdx]0101{ddx(tan1x)xdx}dx=[tan1xx1+11+1]010111+x2x22dx[xndx=xn+1n+1+c]=[tan1xx22]011201x21+x2dx=[tan1xx22]011201(x2+111+x2)dx$
$=[tan1xx22]011201(1+x21+x211+x2)dx=[tan1xx22]0112011dx+1211+x2dx=[tan11122022tan10]12[x]01+12[tan1x]01$
$=[12tan110]12[10]+12[tan11tan10]=12π4121+12[π40][tan11=π4,tan10=0]=12π412+12,π4=π4(12+12)12=π412$

Definite Integrals exercise 19.2 question 33

Answer: (log3)
Hint: We use indefinite integral formula and the limits to solve this integral.
Given: 011x2x4+x2+1dx
Solution: 011x2x4+x2+1dx=01x21x4+x2+1dx
Dividing the num. and denom. by x2 than
$011x2x4+x2+1dx=01x21x2+x2+1x2dx=0111x2x2+1+1x2dx=0111x2x2+1x2+1+11dx=0111x2x2+1x2+21dx=0111x2x2+2x1x+(1x)21dx$
$=0111x2x2+2x1x+(1x)21dx=0111x2(x+1x)2(1)2dx=0111x2(x+1x)212dx$
put x+1x=t then, (11x2)dx=dt
$011x2x4+x2+1dx=0111x2(x+1x)212dx=011t21dt=12×1[log|t1t+1|]01[1x2a2dx=12log|xax+a|+c]$
$=12[log|x+1x1x+1x+1|]01[t=x+1x]=12[log|x2+1xxx2+1+xx|]01=12[log|x2x+1x2+x+1|]01=12[log|121+112+1+1|log|020+102+0+1|]=12[log31log11]$
$=12[log31log1]=12[log310][log1=0]=12log313=12log31=log31(12)$
=log312
=log3

Definite Integrals exercise 19.2 question 34

Answer: 1
Hint: Use indefinite integral formula and the given limits to solve this integral.
Given: 0124x2(1+x2)4dx
Solution:0124x2(1+x2)4dx
put (1+x2)=t than, 2xdx=dt
when x=0 then t=1 & when x=1 then t=2 ,
$0124x3(1+x2)4dx=1212(t1)(t)4dt=1212(t(t)41(t)4)dt=1212(1(t)31(t)4)dt=1212(t)3dt1212(t)4dt$
$=12[t3+13+1]1212[t4+14+1]12[xndx=xn+1n+1+c]=12[t22]1212[t33]12=122[1t2]1212(3)[1t3]12$
$=6[1221]+4[123113]=6[141]+4[181]=6[144]+4[188]=6[34]+4[78]=9272=972=22=1$

Definite integrals exercise 19.2 question 35

Answer: 7207
Hint: Use indefinite integral formula and the given limits to solve this integral.
Given: 212x(x4)14dx
Solution: 212x(x4)14dx
Put x4=t3dx=3t2dt
When x = 4 then t =0 & when x =12 then t = 2
$412x(x4)1/3dx=02(t3+4)(t3)1/33t2dt[x4=t3t3+4=x]=02(t3+4)t3t2dt=02(t3+4)3t3dt$
$=302(t3+3+4t3)dt=302(t6+4t3)dt=302t6dt+1202t3dt=3[t6+16+1]02+12[t3+13+1]02 [xndx=xn+1n+1]=37[t7]02+124[t4]02$
$=37[2707]+3[2404]=37[1280]+3[160]=3[1287+16]=3[128+1127]=3×2407=7207$

Definite integrals exercise 19.2 question 36

Answer: π2
Hint: use indefinite integral formula and the limits to solve this integral.
Given: 0π2x2sinxdx
Solution: 0π2x2sinxdx
Applying integration by parts method, then,
$=0π2x2sinx dx=[x2sinx dx]0π20π2{d(x2)dxsinxdx}dx=[x2(cosx)]0π20π22x(cosx)dx(d(xn)dx=nxn1,sinaxdx=cosaxa)=[x2cosx]0π2+20π2xcosxdx$
On applying integration by parts method
$=[(π2)2cosπ202cos0]+2[{xcosxdx}0π20π2{d(x)dxcosxdx}dx]=π2400+2{[xsinx]0π20π21sinxdx}[ddx(xn)=nxn1cosxdx=sinx]=2[π2sinπ20sin0]2[cosx]0π2=π.1+2[cosπ2cos0]=π+2[01]=π2 \quad\left[cosπ2=0sinπ2=1]\right.$


Definite integrals exercise 19.2 question 37

Answer : π21
Hint : use indefinite integral formula and the limits to solve this integral
Given :011x1+xdx
Solution : 011x1+xdx
put x=cos2θdx=2sin2θdθ
when x=0thenθ=π4 and whenx=1thenθ=0
therefore ,
$011x1+xdx=π401cos2θ1+cos2θ(2sin2θ)dθ=0π42sin2θ2cos2θ2sin2θdθ=0π4(sinθcosθ)22sin2θdθ=20π4sinθcosθ2sinθcosθdθ$
$=40π4sin2θdθ=40π4(1cos2θ2)dθ=20π4(1cos2θ)dθ=20π41dθ20π4cos2θdθ=2[θ0+10+1]0π42[sin2θ2]0π4=2[π40][sin2π4sin2×0]=2π4[sinπ2sin0]=π2[sinπ20]=π21$

Definite integrals exercise 19.2 question 38

Answer : 12
Hint : use indefinite integral formula and the limits to solve this integral
Given : 011x2(1+x2)2dx
Solution :011x2(1+x2)2dx
=01x2(11x2)x2(1x+x)2dx=0111x2(x+1x)2dx
put x+1x=t⇒1-1x2dx=dt
when x=0 then t= ∞ ,when x=1 then t=2


Therefore ,
$011x2(1+x2)2dx=21t2dt=2t2dt=[t2+12+1]2=[t11]2$
=[1t]2=[112]=[012]=12

Definite integrals exercise 19.2 question 39

Answer : 423
Hint :use indefinite integral formula and the limits to solve this integral
Given : 115x4x5+1dx
Solution :-115x4x5+1dx
put x5+1=t5x4dx=dt
when x= -1 then t=0 and when x=1 then t=2
therefore,
$115x4x5+1dx=02tdt=02t12dt=[t12+112+1]02=[t3232]02=23[t32]02=23[2320]=23(2)2×32=23(2)3=2×223=423$

Definite integrals exercise 19.2 question 40

Answer : π6
Hint : use indefinite integral formula and the limits to solve this integral
Given : 0π2cos2x1+3sin2x
Solution : 0π2cos2x1+3sin2x
on multiplying and dividing by sec4x , we get
$=0π2(cos2xsec4xsec4x(1+3sin2x))dx=0π2cos2x1cos2xsec2xsec2x1cos2x(1+3sin2x)dx=0π2sec2xsec2x(1cos2x+3sin2xcos2x)dx$
$=0π2sec2xsec2x(sec2x+3tan2x)dx=0π2sec2x(1+tan2x)(1+tan2x+3tan2x)dx=0π2sec2x(1+tan2x)(1+4tan2x)dx$
put tanx=tsec2xdx=dt
when x=0 then t=0 , when x=π2 then t=
therefore ,
$=0π2sec2x(1+tan2x)(1+4tan2x)dx=01(1+t2)(1+4t2)dt$
To solve this integral, first we need to find its partial fraction then integrate it using indefinite integral formula then put the limits to get required answer.
therefore ,
$1(1+t2)(1+4t2)=At+B(1+t2)+ct+D1+4t21=(At+B)(1+t2)(1+4t2)(1+t2)+(Ct+D)(1+t2)(1+4t2)(1+4t2)1=(At+B)(1+4t2)+(Ct+D)(1+t2)1=At+4At3+B+4Bt2+Ct+Ct3+D+Dt21=(4A+C)t3+(4B+D)t2+(A+C)t+(B+D)$
Equating the coefficient of t3,t2,t and constant term respectively then
0=4A+C … a
0=4B+D … b
0=A+C … c
1=B+D …(d)
-4A=C
-4B=D

Since A= -C=0
Substracting (d) by (b), we get
4B+D=0
B+D =13B= -1
B=-13
1= -13+D ? 1+13=D?3+13=D

Therefore A=C=0,B=13,D=43
Therefore 1(1+t2)(1+4t2)=0.t131+t2+0.t+431+4t2=13(1+t2)+43(1+4t2)
Now (i)?
$01(1+t2)(1+4t2)dt=0{131(1+t2)+43(1+4t2)}dt=13011+t2dt+43011+4t2dt=13011+t2dt+43011+(2t)2dt$
put 2t=u ⇒2dt=du ⇒ dt=du2 in second integral, then
$0π2cos2x1+3sin2xdx=13[tan1t]0+43011+u2du2=13[tan1tan10]+23[tan1u]0=13[π20]+23[tan1(2t)]0=1372+23[tan1tan12×0]=π6+23[tan1tan10]$
$=π6+23[π20]=π6+23π2=π6+π3=π+2Π6=π6$

Definite integrals exercise 19.2 question 41

Answer : 18
Hint : use indefinite formula and the limit to solve this integral
Given : 0π2sin22t.cos2tdt
Solution : 0π2sin22t.cos2tdt
$ Put sin2t=u2cos2tdt=ducos2tdt=du2 When t=π4 then u=1 when t=0 then u=0$
$0π4sin32tcos2tdt=01u3du2=1201u3du=12[u3+13+1]01=12[u44]01=18[u4]01=18[1404]=18$

Definite Integrals exercise 19.2 question 42.

Answer : 931
Hint : use indefinite formula and the limit to solve this integral
Given 0π5(54cosθ)14sinθdθ
Solution : 0π5(54cosθ)14sinθdθ
Put (54cosθ)=t4(sinθ)dθ=dt
sinθdθ=dt4
when θ=0 then t=1 and when θ=π then t=9
Therefore
0π5(54cosθ)14sinθdθ
=195t14dt4=5419t14dt
$=54[t14+114+1]19=54[t5454]19=54×45[954154]=32x451=3521=931$

Definite Integrals exercise 19.2 question 43.

Answer : 34
Hint : use indefinite formula and the limit to solve this integral
Given : 0π6cos32θsin2θdθ
Solution : I=0π6cos32θsin2θdθ
$I==0π61cos32θsin2θdθ=0π6sin2θcos2θ1cos22θdθI=0π6tan2θsec22θdθ$
put tan2θ=tsec22θ.2dθ=dtsec22θdθ=dt2
when θ=0 then t=0 and when θ=π6 then t=3
Therefore ,
$I=03tdt2=1203tdt=12[t1+11+1]03$
$=1212[t2]03=14[3202]I=14×3I=34$

Definite Integrals exercise 19.2 question 44.

Answer :π3
Hint : use indefinite formula and the limit to solve this integral
Given : 0(Π)23xcos2x32dx
Solution :0(Π)23xcos2x32dx
put x32=t32x321dx=dt32x12dx=dtdx=23xdt
when x=0 then t=0 when x=(Π)23 then t=Π
Therefore

0(Π)23xcos2x32dx
$=0πxcos2t23xdt=230πcos2tdt=230π(1+cos2t2)dt=130π(1+cos2t)dt=13[0π1dt]+13[0πcos2tdt]=13[t]0π+13[sin2t2]0π=13Π0+16[sin2πsin2×0]$
=13Π+16(00)
=Π3

Definite Integrals exercise 19.2 question 45.

Answer : log21+log2
Hint : use indefinite formula and the limit to solve this integral
Given : 121x(1+logx)2dx
Solution : 121x(1+logx)2dx
put 1+logx=t1xdx=dtdx=xdt
when x=1 then t=1 when x=2 then t=1+log2

$121x(1+logx)2dx=11+log21xt2xdt=11+log21t2dt=11+log2t2dt$
$=[t2+12+1]11+log2=[t11]11+log2=[1t]11+log2=[11+log211]=111+log2=1+log211+log2=log21+log2$

Definite Integrals exercise 19.2 question 46.

Answer :815
Hint: Use indefinite formula and the given limits to solve this integral
Given:
0π2cos5xdx
Solution:
$0π/2cos5xdx=0π/2cos4xcosxdx=0π/2(cos2x)2cosxdx=01/2(1sin2x)2cosxdx[1=sin2θ+cos2θ]$
Put sinx=tcosxdx=dt

when x=0 then t=0
whenx=π2 then t=1
$Missing \end{aligned} \end{aligned}$
$=[t1+10+1]01+[t4+14+1]012[t2+12+1]01xndx=xn+1x+1+c=[t]01+15[t5]0123[t3]01=[10]+15[1505]23[1303]=1+1523=15+31015$

Definite Integrals exercise 19.2 question 47

Answer : 1999
Hint: Use in definite formula and the given limits to solve this integral
Given:
49x[30x32]2dx
Solution:
49x[30x32]2dx
Put (30x32)=t
$32x(321)dx=dt32x12dx=dt23xdt=dx$

when x=4 then t=22
when x=9 then t=3 then
$49x(30x3/2)2dx=223xt22dt3x=23223t2dt=23[t2+12+1]223$
$=23[t11]223[xndx=xn+1n+1]=23[1t]223=23[13122]=23[22366]=231966=1999$

Definite Integrals exercise 19.2 question 48.

Answer : 83
Hint: Use indefinite formula and the given limits to solve this integral
Given:
0πsin3x(1+2cosx)(1+cosx)2dx
Solution:
0πsin3x(1+2cosx)(1+cosx)2dx
put (cosx)=t
sinxdx=dt
dx=dtsinx
When x=0 then t=1
when x=π then t=-1
$0πsin3x(1+2cosx)(1+cosx)2dx=11sin3x(1+2t)(1+t)2dtsinx=+11sin2x(1+2t)(1+t2+2t)dt[(a+b)2=a2+b2+2αb]$
$=+11(1cos2x)(1+t2+2t+2t+2t3+4t2)dt[1=sin2θ+cos2θ]=+11(1t2)(1+5t2+4t+2t3)dt=+11(t21)(1+5t2+4t+2t3)dt=+11(t2+5t4+4t3+2t515t24t2t3)dt=+11(2t5+2t3+5t44t24t1)dt$
$=211t5dt+211t3dt+511t4dt4.11t2dt411tdt11dt=2[t5+15+1|11+2[t3+13+1]11+5[t4+14+1|114[t2+12+1|114[t1+11+1]11[t|11=26[t6]11+24[t4]11+55[t5]1143[t3]114[t22]11[t]11[xndx=xn+1n+1]$
$=26[(1)616]+24[(1)414]+[(1)515]43[(1)31]42[(1)21][11]=13[11]+12[11]+[11]43[11]2[11](2)=0+0+(2)43(2)2×0+2=83$

Definite Integrals exercise 19.2 question 49.

Answer : π21
Hint: Use indefinite formula and the given limits to solve this integral
Given:
0π2sinx.cosxtan1(sinx)dx
Solution:
0π2sinx.cosxtan1(sinx)dx
Put t=sinxcosxdx=dt
when x=0 then t=0 and
when x=π2 , then t=1
0π/22sinxcosxtan1(sinx)dx=012ttan1(t)dt
Applying integration by parts, method then
$=2{[tan1tt dt]0101[ddt(tan1t)tdt]dt}=2{[tan1tt22]0101[11+t2t22dt]}[ddx(tan1x)=11+x2,xndx=xn+1n+1]=22[t2tan1t]0101t21+t2dt$
$=22[t2tan1t]0101t21+t2dt=[12tan1(1)0×tan10]01t2+111+t2dt=[1π40]01(1+t21+t211+t2)dt=π401[111+t2]dt$
$=π4011dt+0111+t2dt[tan1=π4,tan10=0]=π4[t]01+[tan1t]01[x0dx=x0+10+1,11+x2,dx=tan1x]=π4[10]+[tan11tan10]=π41+π40=2π41=π21$

Definite Integrals exercise 19.2 question 50.

Answer : π21
Hint: Use indefinite formula and the given limits to solve this integral
Given:
0π2sin2xtan1(sinx)dx
Solution:
0π2sin2xtan1(sinx)dx=0π22sinx.cosxtan1(sinx)dx
put sinx=tcosxdx=dt
when x=0 then t=0 &
when x=π2 then t=1
0π2sin2xtan1(sinx)dx=0π22tan1(t)dt
Applying by parts, then
$=2{[tan1ttdt]0101[ddttan1ttdt]dt}=2{[tan1tt22]0101[11+t2t22dt]}[ddx(tan1x)=11+x2,xndx=xn+1n+1]=22[t2tan1t]0101t21+t2dt=[12tan1(1)0×tan10]01t2+111+t2dt$
$=[12tan110×tan10]01(1+t21+t211+t2)dt=[1π40]01(111+t2)dt=π4011dt+0111+t2dt$
$=π4[t]01+[tan1t]01 [1dx=x,11+x2dx=tan1x]=π4[10]+[tan11tan10]  [tan11=π4,tan10=0]=π41+[π40]=2π41=π21$


Definite Integrals exercise 19.2 question 51.

Answer : π2
Hint: Use indefinite formula and the given limits to solve this integral
Given:
01(cos1x)2dx
Solution:
01(cos1x)2dx
Applying integration by parts, then
$=[(cos1x)21dx]0101{ddx(cos1x)21dx}dx=[(cos1x)2x]01012cos1x11x2xdx.........(i).012cos1x(11x2x)dx put cos1x=t11x2dx=dt$
When x=0 then t=π2
and when x=1 then t=0
therefore,
$012cos1xx1x2dx=π/202tcostdt=20π/2tcostdt[abf(x)dx=baf(x)dx]$
$=2{[tcostdt]0π/20π/2[dtdtcostdt]dt}[d(x)dx=1cosxdx=sinx]=2{[π2sinπ20sin0][cost]0π/2}=2{[π210]+[cosπ2cos0]}[sinπ2=1,sin0=0]=π2×2+(01)2=π2$

Definite Integrals exercise 19.2 question 52.

Answer :a[π21]
Hint: Use indefinite formula and the given limits to solve this integral
Given:
a0sin1xa+xdx
Solution:
a0sin1xa+xdx
Putting x=atan2θ
dx=2atanθsec2θdθ
When x=0θ=0 and
x=aθ=π4
$0asin1xa+xdx=0π/4sin1atan2θa+atan2θ2atanθsec2θdθ=0π/4sin1atan2θa(1+tan2θ)2atanθsec2θdθ=0π/4sin1an2θsec2θ2atanθsec2θdθ[1+tan2θ=sec2θ]$
$=0π/4sin1(tanθsecθ)2atanθsec2θdθ=0π/4sin1(sinθcosθ1cosθ)2atanθsec2θdθ[sinAcosA=tanA1cosA=secA]=0π/4θ2atanθsec2θdθsin1(sinA)=A$
Again putting tanθ=u
sec2θdθ=du
When θ=0 then u=0
and θ=π4 then u=1
$0asin1xa+xdx=2a01tan1uudu[tanθ=uθ=tan1u]=2a01utan1udu$
Applying integration by parts, method then
$=2a{[tan1uudu]0101[ddu(tan1u)udu]du}=2a{[tan1uu22]0101[11+u2u22]du}[d(tan1x)dx=11+x2&xdx=x2+1x+1x22]$
$=2a{[u22tan1u]011201u2+111+u2du}=2a{[12tan1(1)02tan10]1201(1+u21+u211+u2)du}=2a{[12π40]1201(111+u2)du}[tan11=π4tan10=0]$
$=2a12π4a011du+a0111+u2du=aπ4a[u0+10+1]01+a[tan1u]01[1dx=x&1a2+x2dx=1atan1xa]=πa4a[u]01+a[tan1(1)tan10]$
$=πa4a[10]+a[π40][tann1=π4,tan1θ=0]=πa4a+πa4=2πa4a=a(π21)$

Definite Integrals exercise 19.2 question 53.

Answer: 1
Hint: Use indefinite integral formula and the limits to solve this integral
Given:x3π31+cosx(1cosx)32dx
Solution:
$π3π21+cosx(1cosx)32dx=π3π22cos2x2(2sin2x2)32dx=π3π22cosx2232(sin3x2)dx=π3π22cosx222(sinx2)1(sin2x2)dx=12π3π2cotx2cosec2x2dx[cosθsinθ=cotθ,1sinθ=cosecθ]$
$ Put cotx2=tcosec2x212dx=dtcosec2x2dx=2dt When x=π3 then t=3& when x=π2 then t=1π3π21+cosx(1cosx)32dx=1231t(2)dt$
$=31tdt=[t1+11+1]31[xndx=xn+1n+1]=12[t2]31=12[12(3)2]=12[13]=12[2]=22=1$

Definite Integrals exercise 19.2 question 54.

Answer:a2[π412]
Hint: Use indefinite formula and the limits to solve this integral
Given:0axa2x2a2+x2dx
Solution:
0axa2x2a2+x2dx
Put x2=a2cos2θ2xdx=a2sin2θ.2dθ
dx=a2sin2θxdθ
When x=0 then θ=π4 & when x=a then θ=0
$0axa2x2a2+x2dx=π40a2(1cos2θ)a2(1+cos2θ)(a2sin2θ)dx=a2π40a22sin2θa22cos2θ(sin2θ)dx=a2π40sinθcosθ(2sinθcosθ)dθ$$=a2π40(2sin2θ)dθ=a2π40(1cos2θ)dθ=a2π401dθ+a2π40(cos2θ)dθ=a2[θ]π40+a2[sin2θ2]π40=a2[0π4]+a22[sin2(0)sin2×π4]=a2π4a221=a2[π412]$



Definite Integrals exercise 19.2 question 55.

Answer: πa
Hint: Use indefinite formula and the limits to solve this integral
Given: aaaxa+xdx
Solution:
aaaxa+xdx
Put x=acos2θdx=2asin2θdθ
When x=-a then θ=π2 & when x=a then θ=0
$aaaxa+xdx=π20aacos2θa+acos2θ(2asin2θ)dθ=2aπ202sin2θ2cos2θ2sinθcosθdx=2aπ20sinθcosθ(2sinθcosθ)dθ=2aπ20(2sin2θ)dθ$
$=2aπ20(1cos2θ)dθ=2aπ201dθ+2aπ20(cos2θ)dθ=2a[θ]π20+2a[sin2θ2]π20=2a[0π2]+a[sin2×(0)sin2×π2]=2a(π2)+a[sin0sinπ]=πa+a(00)=πa$



Definite Integrals exercise 19.2 question 56

Answer: log98
Hint: Use indefinite integral formula and the limits to solve this integral
Given:0π2sinx.cosxcos2x+3cosx+2dx
Solution:
0π2sinx.cosxcos2x+3cosx+2dx
$ Put cosx=tsinxdx=dtsinxdx=dt Now x=0 then t=1& when x=π2 then t=00π2sinxcosxcos2x+3cosx+2dx=10tt2+3t+2(dt)=10tt2+3t+2dt=10t(t+1)(t+2)dt=01t(t+1)(t+2)dt$
To solve this integral, first we need to find it’s partial fraction then integrate it by using indefinite formula.
t(t+1)(t+2)=A(t+1)+B(t+2)
$t=A(t+1)(t+2)(t+1)+B(t+1)(t+2)(t+2)t=A(t+2)+B(t+1)t=At+2A+Bt+B=(A+B)t+(2A+B)$
Equating coefficient of t and constant resp. , then
1=A+B ...a
0=2A+B⇒B=-2A ...b
Put the value of B in a
1=A+-2A=A-2A=-A
A=-1
From a⇒A+B=1⇒-1+B=1⇒B=1+1=2
∴A=-1,B=2
$t(t+1)(t+2)=1(t+1)+2(t+2)0π2sinxcosxcos2x+3cosx+2dx=011t+1dt+012t+2dt..........(i)$
$=[log(t+1)]01+2[log(t+2)]01=[log2log1]+2[log3log2]=log2+0+2log32log2=2log33log2=log32log23=log9log8=log98$


Definite Integrals exercise 19.2 question 57

Answer :(logmm21)
Hint: Use indefinite integral formula and the limits to solve this integral
Given: 0π2tanx1+m2tan2xdx
Solution: 0π2tanx1+m2tan2xdx
=0π2sinxcosx1+m2sin2xcos2xdx
$=0π2sinxcosxcos2x+m2sin2xcos2xdx=0π2(sinxcosxcos2xcos2x+m2sin2x)dx=0π2sinxcosxcos2x+m2sin2xdx$
put sin2x=t2sinxcosxdx=dtsinxcosx=dt2
when x=0 then t=0 and x=π2 then t=1
Therefore ,
$0π2tanx1+m2tan2xdx=011(1sin2x)+m2tdt2=12011(1t)+m2tdt=12011(m21)t+1dt put u=(m21)t+1du=(m21)dtdt=1m21du$
$=12011u1(m21)du=12(m21)011udu=12(m21)[log|u|]01=12(m21)[log|(m21)t+1|]01=12(m21)[log|(m21)1+1|log|(m21)0+1|]$
$=12(m21)[log|(m21)1+1|log|(m21)0+1|]=12(m21)[log(m21+1)log1]=12(m21)[logm20]=12(m21)logm2=2logm2(m21)=logm(m21)$

Definite Integrals exercise 19.2 question 58

Answer : 12(tan123)
Hint: Use indefinite integral formula and the limits to solve this integral
Given:0121(1+x2)1x2dx
Solution:0121(1+x2)1x2dx
put x=sinudx=cosudu
where x=0 then u=0 and when x=12 then u=π6

Therefore,
$0121(1+x2)1x2dx=0π61(1+sin2u)1sin2ucosudu=0π61(1+sin2u)cos2ucosudu=0π61(1+sin2u)cosucosudu$
$=0π611+sin2udu=0π61cos2u1+sin2ucos2udu=0π6sec2u1cos2u+sin2ucos2udu=0π6sec2usec2u+tan2udu=0π6sec2u1+2tan2udu$
again , put tanu=tsec2udu=dt
when u=0 then t=0 and when u=π6 then t=13
Therefore ,
$0121(1+x2)1x2dx=0π6sec2u1+2tan2udu=01311+2t2dt=01312(12+t2)dt=120131(12)2+t2dt$
$=12[112tan1(t12)]013=12[2][tan1(2t)]013=12[tan12×13tan12×0]=12[tan123tan10]=12[tan1230]=12tan123$

Definite Integrals exercise 19.2 question 59

Answer : 6
Hint: Use indefinite integral formula and the limits to solve this integral
Given: 131(xx3)13x4dx
Solution:
$131(xx3)13x4dx=131x(1x21)13x4dx=131(1x21)13x3dx $
Put 1x21=t2x3dx=dtdx=x32dt
When x=13 then t=8 and when x=1 then t=0


$131(xx3)13x4dx=131(1x21)13x3dx=80t132dt=1280t13dt=12[t13+113+1]80=12[t4343]80=12×34[t43]80=38[043843]=38[024]=38(16)=2×3=6$

Definite Integrals exercise 19.2 question 60

Answer : 16
Hint: Use indefinite integral formula and the limits to solve this integral
Given:0π4sin2x.cos2x(sin3x+cos3x)dx
Solution:0π4sin2x.cos2x(sin3x+cos3x)dx
Dividing numerator and denominator by cos6x

0π4sin2xcos2xcos6x(sin3x+cos3x)2cos6xdx=0π4sin2xcos2xcos2xcos4x(sin3x+cos3xcos3x)2dx=0π4tan2x1cos2x(sin3x+cos3xcos3x)2dx
$=0π4tan2xsec2x(sin3xcos3x+cos3xcos3x)2dx=0π4tan2xsec2x(tan3x+1)2dx=0π4tan2xsec2xtan6x+1+2tan3xdx$
Put tanx=tsec2xdx=dt
Now x=0 then t=0 & when x=π4 then t=1
$0π4sin2xcos2x(sin3x+cos3x)2dx=0π4tan2xsec2xtan6x+1+2tan3xdx=01t21+t6+2t3dt=01t21+(t3)2+2t3dt=01t2(1+t3)2dt$

Again putting 1+t3=u3t2dt=dut2dt=du3
then
$=01t2(1+t3)2dt=011u2du3=13011u2du=1301u2du=13[u2+12+1]01=13[u11]01=13[1u]01=13[11+t3]01=13[11+111+0]=13[121]=13[122]=16$

Definite Integrals exercise 19.2 question 61

Answer :821
Hint: Use indefinite integral formula and the limits to solve this integral
Given:0π2cosxcos2x(sec2x1)cos2xdx
Solution:
0π2cosxcos2x(sec2x1)cos2xdx
$=0π2cosx(1cos2x)(sec2x1)cos2xdx=0π2cosxsin2x(tan2x)cos2xdx=0π2cosxsinx(sin2xcos2x)cos2xdx=0π2cosxsin3xdx$

Put cosx=tsinxdx=dtsinxdx=dt
Now x=0 then t=1 & when x=π2 then t=0
$0π2cosxcos3x(sec2x1)cos2xdx=0π2cosxsin3xdx=10tsin2x(dt)=10t(1cos2x)dt$
$=10t(1t2)dt=10(tt2t)dt=10(t12t2+12)dt=10(t12t52)dt=10t12dt+10t52dt=[t12+112+1]10+[t52+152+1]10$
$=[t3232]10+[t727]10=23[o32132]+27[o72172]=23[01]+27[01]=2327=14621=821$

Definite Integrals exercise 19.2 question 62

Answer : 22n[21n21]
Hint: Use indefinite formula and the given limits to solve this integral
Given:0π/2cosx(cosx2+sinx2)ndx
Solution: 0π/2cosx(cosx2+sinx2)ndx
$=0π/2cos2x2sin2x2(cosx2+sinx2)ndx[cos2θ=cos2θsin2θ]=0π/2(cos2xsinx2)(cosx2sinx2)(cosx2+sinx2)ndx[(\boldsymbola2b2)=(a+b)(ab)]$
=0π/2(cosx2sinx2)(cosx2+sinx2)n1dx

Put cosx2+sinx2=t(sinx212+cosx212)dx=dt
$12[cosx2sinx2]dx=dt[cosx2sinx2]dx=2dt$
when x=π2t=2
$0π/2(cosx2sinx2)(cosx2+sinx2)n1dx=121tn12dt=212t(n1)dt=212tn+1dt$
$=2[tn+1+1n+1+1]12[xndx=xn+1n+1]=2[tn+2n+2]12=2(2n)[1tn2]12=2(2n)[1(2)n211n2]$
$=22n[12(n22)1]=22n[12(n21)1]=22n[21n21]$


Class 12, mathematics, chapter 19, Definite Integrals, is a challenging portion where the students get frequent confusion and lose marks. Exercise 19.2 consists of the concept of evaluating the Definite Integrals. There are 62 questions to be solved in this exercise. This set of questions is divided into 49 questions in Level 1 and the remaining 13 questions in Level 2. The students can refer to the RD Sharma Class 12 Chapter 19 Exercise 19.2 material to gain ideas and solve the sums without confusion.

Experts from the educational sector and people with in-depth knowledge in the respective domain have contributed to preparing the solutions in RD Sharma books. It follows the NCERT pattern; this is why it is recommended by most of the CBSE board schools to their students. The solutions in the RD Sharma Class 12th Exercise 19.2 consist of problems solve in every possible method. This gives the freedom for the students to select the way that they feel is easy to adapt.

Definite Integrals is not a chapter that can never be solved; all required is proper practice with a good set of reference materials. For example, the Class 12 RD Sharma Chapter 19 Exercise 19.2 Solution book, consists of various practice questions, excluding the solutions given in the textbook. Once a student works on these additional questions, they tend to get familiarised with the concept.

It is a boon that the RD Sharma Class 12 Solutions Definite Integrals Ex 19.2 are available for students for free of cost at the Career 360 website. They need not spend money to purchase other solution books. The RD Sharma books will serve all the needs. Moreover, the RD Sharma Class 12th Exercise 19.2 books can also be downloaded from the same Career 360 website without monetary payment.

The previous batch students have benefitted a lot by using the RD Sharma Solutions Chapter 19 ex 19.2 to prepare this portion for their exams. As there are high chances of sums being asked from the RD Sharma book, it is wise to prepare with these books from the first day of exam preparation.

RD Sharma Chapter-wise Solutions

NEET Highest Scoring Chapters & Topics
This ebook serves as a valuable study guide for NEET exams, specifically designed to assist students in light of recent changes and the removal of certain topics from the NEET exam.
Download E-book

Frequently Asked Questions (FAQs)

1. Where can I find the RD Sharma books for Class 12 Mathematics, chapter 19?

The RD Sharma Class 12th Exercise 19.2 solution is available at the Career 360 website for free of cost. Anyone can access this set of solution books for various classes and subjects.

2. What are the advantages for the students who use the RD Sharma solution books for reference?
  • The solutions given in this book are prepared by experts.

  • The solutions are given in various methods.

  • Numerous practice questions are given.

3. Are the solutions provided in the RD Sharma books verified?

The solutions given in the RD Sharma books are provided by the experts and verified for accuracy. Therefore, the students need not have any hesitation regarding it.

4. Do the RD Sharma books contain solutions for Level and Level 2 questions for chapter 19, mathematics?

The RD Sharma Class 12th Exercise 19.2 solution book consists of answers for the Level 1 and Level 2 questions given in the textbook.

5. Can I download the RD Sharma books?

Yes, the option to download the RD Sharma solution books is given on the Career 360 website.

Articles

Upcoming School Exams

View All School Exams
Back to top