RD Sharma Class 12 Exercise 19.3 Definite Integrals Solutions Maths - Download PDF Free Online
RD Sharma Class 12 Exercise 19.3 Definite Integrals Solutions Maths - Download PDF Free Online
Updated on 24 Jan 2022, 02:22 PM IST
The class 12 students require a proper guide other than their teachers and tutors to help them clarify their doubts. The RD Sharma books are one of the best solution materials recommended by many CBSE schools to their students. However, most of the Class 12 students find it challenging to solve the mathematics, chapter 19 sums. In such cases, the RD Sharma Class 12th Exercise 19.3 is essential.
Answer:$37$ Hint: Break the range of integration and then solve it. Given: $\int_{1}^{4} f(x) d x \text { where } f(x)=\left\{\begin{array}{ll} 4 x+3, & \text { if } 1 \leq x \leq 2 \\ 3 x+5, & \text { if } 2 \leq x \leq 4 \end{array}\right\}$ Solution: $\int_{1}^{4} f(x) d x$ Now break the limit = $\int_{1}^{2} f(x) d x+\int_{2}^{4} f(x) d x=\int_{1}^{2}(4 x+3) d x+\int_{2}^{4}(3 x+5) d x$ $=\left[\frac{4 x^{2}}{2}+3 x\right]_{1}^{2}+\left[\frac{3 x^{2}}{2}+5 x\right]_{2}^{4}$$\quad\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right]$ $\begin{aligned} &=\left(2 x^{2}+3 x\right)_{1}^{2}+\left(\frac{3 x^{2}}{2}+5 x\right)_{2}^{4} \\ & \end{aligned}$ $=2(4-1)+3(2-1)+\frac{3}{2}(16-4)+5(4-2) \\$ $=6+3+18+10 \\$ $=37$
Answer:$3-\frac{\pi}{2}+e^{6}$ Hint: Break the range of integration from $0 \: to \: \frac{\pi}{2},\: \frac{\pi}{2} \: to\: 3,$ and then $3\: to \: 9$ Given: $\int_{0}^{9} f(x) d x \text { where } f(x)=\left\{\begin{array}{ll} \sin x, & \text { if } 0 \leq x \leq \frac{\pi}{2} \\\\ 1, & \text { if } \frac{\pi}{2} \leq x \leq 3 \\\\ e^{x-3}, & \text { if } 3 \leq x \leq 9 \end{array}\right\}$ Solution: $\int_{0}^{9} f(x) d x$ $\begin{aligned} &=\int_{0}^{\frac{\pi}{2}} f(x) d x+\int_{\frac{\pi}{2}}^{3} f(x) d x+\int_{3}^{9} f(x) d x \\ & \end{aligned}$ $=\int_{0}^{\frac{\pi}{2}} \sin x d x+\int_{\frac{\pi}{2}}^{3} 1 d x+\int_{3}^{9} e^{x-3} d x \\$ $=[-\cos x]_{0}^{\frac{\pi}{2}}+[x]_{\frac{\pi}{2}}^{3}+\left[\frac{e^{x}}{e^{3}}\right]_{3}^{9}$ $\begin{aligned} &=-\cos \frac{\pi}{2}+\cos 0+3-\frac{\pi}{2}+\frac{e^{9}-e^{3}}{e^{3}} \\ & \end{aligned}$ $=0+1+3-\frac{\pi}{2}+\frac{e^{3}\left(e^{6}-1\right)}{e^{3}} \\$ $=4-\frac{\pi}{2}+e^{6}-1 \\$ $=3-\frac{\pi}{2}+e^{6}$
Answer:$62$ Hint: Break the range of integration and then solve the integration. Given:$\int_{1}^{4} f(x) d x \text { where } f(x)$ $=\left\{\begin{array}{ll} 7 x+3, & \text { if } 1 \leq x \leq 3 \\ 8 x, & \text { if } 3 \leq x \leq 4 \end{array}\right\}$ Solution: $\int_{1}^{4} f(x) d x$ $\begin{aligned} &=\int_{1}^{3} f(x) d x+\int_{3}^{4} f(x) d x \\ & \end{aligned}$ $=\int_{1}^{3}(7 x+3) d x+\int_{3}^{4} 8 x d x$$\quad\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right]$ $\begin{aligned} &=\left[\frac{7 x^{2}}{2}+3 x\right]_{1}^{3}+\left[\frac{8 x^{2}}{2}\right]_{3}^{4} \\ & \end{aligned}$ $=\left[7 \frac{(9-1)}{2}+3(3-1)\right]+4(16-9) \\$ $=7(4)+3(2)+4(7) \\$ $=28+6+28 \\$ $=62$
Answer:$10$ Hint: Break the range of integration like this $\int_{-3}^{-1} f(x) \& \int_{-1}^{3} f(x)$ Given:$\int_{-3}^{3}|x+1| d x$ Solution: $\begin{aligned} &I=\int_{-3}^{3}|x+1| d x \\ & \end{aligned}$ $f(x)=|x+1|=\left\{\begin{array}{ll} -(x+1), & \text { if }-3 \leq x \leq-1 \\ (x+1), & \text { if }-1 \leq x \leq 3 \end{array}\right\}$ $\begin{aligned} &I=\int_{-3}^{-1} f(x) d x+\int_{-1}^{3} f(x) d x \\ & \end{aligned}$ $I=\int_{-3}^{-1}-(x+1) d x+\int_{-1}^{3}(x+1) d x$ $\begin{aligned} &I=\left[-\left(\frac{x^{2}}{2}+x\right)\right]_{-3}^{-1}+\left[\frac{x^{2}}{2}+x\right]_{-1}^{3} \\ & \end{aligned}$$\quad\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right]$ $y=-\left[\frac{(1-9)}{2}+(-1+3)\right]+\frac{(9-1)}{2}+3+1$ $\begin{aligned} &=-(-4+2)+(4+4) \\ & \end{aligned}$ $=-(-2)+8 \\$ $=2+8 \\$ $=10$
Answer:$\frac{5}{2}$ Hint: Break the range of integration and then integrate. Given:$\int_{-1}^{1}|2 x+1| d x$ Solution: $f(x)=2 x+1=\left\{\begin{array}{ll} -(2 x+1), & \text { if }-1 \leq x \leq \frac{-1}{2} \\ (2 x+1), & \text { if } \frac{-1}{2} \leq x \leq 1 \end{array}\right\}$ $\begin{aligned} &I=\int_{-1}^{\frac{-1}{2}} f(x) d x+\int_{\frac{-1}{2}}^{1} f(x) d x \\ & \end{aligned}$ $I=\int_{-1}^{\frac{-1}{2}}-(2 x+1) d x+\int_{\frac{-1}{2}}^{1}(2 x+1) d x$ Using the formula: $\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right]$ $\begin{aligned} &I=\left[-\left(\frac{2 x^{2}}{2}+x\right)\right]_{-1}^{-\frac{1}{2}}+\left[\frac{2 x^{2}}{2}+x\right]_{\frac{-1}{2}}^{1} \\ & \end{aligned}$ $I=-\left[\left(x^{2}+x\right)\right]_{-1}^{\frac{-1}{2}}+\left[x^{2}+x\right]_{\frac{-1}{2}}^{1}$ $\begin{aligned} &=-\left(\left(\frac{-1}{2}\right)^{2}+\left(\frac{-1}{2}\right)-1+1\right)+\left(1+1-\frac{1}{4}+\frac{1}{2}\right) \\ & \end{aligned}$ $=\frac{-1}{4}+\frac{1}{2}+2-\frac{1}{4}+\frac{1}{2} \\$ $=\frac{-2}{4}+\frac{2}{2}+2 \\$ $=\frac{5}{2}$
Answer:$\frac{25}{2}$ Hint: Break the range of integration and then solve the integration. Given:$\int_{-2}^{2}|2 x+3| d x$ Solution: $f(x)=|2 x+3|$ $f(x)=\left\{\begin{array}{ll} -(2 x+3), & \text { if }-2 \leq x \leq \frac{-3}{2} \\ (2 x+3), & \text { if } \frac{-3}{2} \leq x \leq 2 \end{array}\right\}$$\quad\left(\begin{array}{c} 2 x+3=0 \\ x=\frac{-3}{2} \end{array}\right)$ $\begin{aligned} &I=\int_{-2}^{\frac{-3}{2}} f(x) d x+\int_{\frac{-3}{2}}^{2} f(x) d x \\ & \end{aligned}$ $I=\int_{-2}^{\frac{-3}{2}}-(2 x+3) d x+\int_{\frac{-3}{2}}^{2}(2 x+3) d x$ Use the formula: $\left[\int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right]$ $\begin{aligned} I &=\left[-\left(x^{2}+3 x\right)\right]_{-2}^{-\frac{3}{2}}+\left[x^{2}+3 x\right]_{\frac{-3}{2}}^{2} \\ \end{aligned}$ $=-\left[\left(\frac{-3}{2}\right)^{2}-(-2)^{2}\right]-3\left(\frac{-3}{2}+2\right)+\left[(2)^{2}-\left(-\frac{3}{2}\right)^{2}+3\left(2+\frac{3}{2}\right)\right] \\$ $=-\left(\frac{9}{4}-4-\frac{9}{2}+6\right)+\left(4-\frac{9}{4}+6+\frac{9}{2}\right) \\$ $= \frac{25}{2}$
Answer:$1$ Hint: Use distribution method to find the value of x. Given:$\int_{0}^{2}\left|x^{2}-3 x+2\right| d x$ Solution: $\int_{0}^{2}\left|x^{2}-3 x+2\right| d x$$\left[\left(x^{2}+3 x+2\right)=(x-2)(x-1)\right]$ Also we know that: $|x|=\left\{\begin{array}{l} x, x \geq 0 \\ -x, x \leq 0 \end{array}\right\}$ $\int_{0}^{1}\left(x^{2}-3 x+2\right) d x-\int_{1}^{2}\left(x^{2}-3 x+2\right) d x$ $\begin{aligned} &=\left[\frac{x^{3}}{3}-\frac{3 x^{2}}{2}+2 x\right]_{0}^{1}-\left[\frac{x^{3}}{3}-\frac{3 x^{2}}{2}+2 x\right]_{1}^{2} \\ \end{aligned}$ $=\frac{1}{3}-\frac{3}{2}+2-\left[\frac{8}{3}-6+4-\frac{1}{3}+\frac{3}{2}-2\right] \\$ $=\frac{1}{3}-\frac{3}{2}+2-\frac{8}{3}+6-2+\frac{1}{3}-\frac{3}{2} \\$ $=1$
Answer:$40$ Hint: Break the range of integration and then solve. Given:$\begin{aligned} &\int_{-6}^{6}|x+2| d x \\ & \end{aligned}$ $x+2=0, x=-2$ Solution: $\begin{aligned} \int_{-6}^{6}|x+2| d x & \\ \end{aligned}$ $\left\{\begin{array}{ll} -(x+2), & -6 \leq x \leq-2 \\ (x+2), & -2 \leq x \leq-6 \end{array}\right\}$ $\begin{aligned} &=\int_{-6}^{-2}-(x+2) d x+\int_{-2}^{6}(x+2) d x \\ & \end{aligned}$ $=\left[-\left(\frac{x^{2}}{2}+2 x\right)\right]_{-6}^{-2}+\left(\frac{x^{2}}{2}+2 x\right)_{-2}^{6} \\$ $=-2+4+18-12+18+12-2+4=40$
Answer:$5$ Hint: You must know the rules of solving definite integral. Given: $\begin{aligned} &\int_{-2}^{2}|x+1| d x \\ \end{aligned}$ $x+1=0 \\$ $x=-1$ Solution: $\begin{aligned} &\int_{-2}^{2}|x+1| d x \\ \end{aligned}$ $\left\{\begin{array}{c} -(x+1),-2 \leq x \leq-1 \\ x+1, \quad-1 \leq x \leq 2 \end{array}\right\}$ $\begin{aligned} &=\int_{-2}^{-1}-(x+1) d x+\int_{-1}^{2}(x+1) d x \\ & \end{aligned}$ $=\left[-\left(\frac{x^{2}}{2}+x\right)\right]_{-2}^{-1}+\left[\frac{x^{2}}{2}+x\right]_{-1}^{2}$ $\begin{aligned} &=\frac{-1}{2}+1+2-2+2+2-\frac{1}{2}+1 \\ & \end{aligned}$ $=5$
Answer: Hint: You must know the rules of solving definite integral. Given:$\begin{aligned} &\int_{1}^{2}|x-3| d x \\ & \end{aligned}$ $x-3=0 \\$ $x=3$ Solution: $\begin{aligned} \mathrm{I} &=\int_{1}^{2}|x-3| d x \\ & \end{aligned}$ $=\int_{1}^{2}-(x-3) d x \\$ $=\left[-\left(\frac{x^{2}}{2}-3 x\right)\right]_{1}^{2}$ $\begin{aligned} &l=-\left(\frac{4}{2}-6-\frac{1}{2}+3\right) \\ & \end{aligned}$ $I=-\left(\frac{4}{2}-6-\frac{1}{2}+3\right) \\$ $I=-\left(\frac{3}{2}-3\right)$ $\begin{aligned} I &=-\frac{3}{2}+\frac{3}{1} \\ \end{aligned}$ $=\frac{-3+6}{2} \\$ $=\frac{3}{2}$
Answer: $0$ Hint: You must know the rules of solving definite integral. Given:$\int_{0}^{\frac{\pi}{2}}|\cos 2 x| d x$ Solution: $\int_{0}^{\frac{\pi}{2}}|\cos 2 x| d x$ We know that $|\cos 2 x|=\left\{\begin{array}{ll} -\cos 2 x & \frac{\pi}{4} \leq x \leq \frac{\pi}{2} \\\\ \cos 2 x & 0<x \leq \frac{\pi}{4} \end{array}\right\}$ $\begin{aligned} &\therefore I=\int_{0}^{\frac{\pi}{2}}|\cos 2 x| d x \\ & \end{aligned}$ $\Rightarrow I=\int_{0}^{\frac{\pi}{4}} \cos 2 x d x-\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos 2 x d x$ $\begin{aligned} &\Rightarrow I=\left[\frac{\sin 2 x}{2}\right]_{0}^{\frac{\pi}{4}}-\left[\frac{\sin 2 x}{2}\right]_{\frac{\pi}{4}}^{\frac{\pi}{2}} \\ & \end{aligned}$ $\Rightarrow I=\frac{1}{2}-0-0+\frac{1}{2} \\$ $\Rightarrow I=1$
Answer:$4$ Hint: You must know the rules of solving definite integral. Given:$\int_{0}^{2 \pi}|\sin x| d x$ Solution: $\begin{aligned} &I=\int_{0}^{2 \pi}|\sin x| d x=\int_{0}^{\pi} \sin x d x-\int_{\pi}^{2 \pi} \sin x d x \\ & \end{aligned}$ $I=\int_{0}^{\pi} \sin x d x-\int_{\pi}^{2 \pi} \sin x d x \\$ $I=(-\cos x)_{0}^{\pi}-(-\cos x)_{\pi}^{2 \pi} \\$ $I=(1+1)-(-1-1) \\$ $I=2-(-2) \\$ $I=4$
Answer: $2-\sqrt{2}$ Hint: You must know about the rules of solving definite integral. Given:$\int_{\frac{-\pi}{4}}^{\frac{\pi}{4}}|\sin x| d x$ Solution: $\mathrm{I}=\int_{\frac{-\pi}{4}}^{\frac{\pi}{4}}|\sin x| d x$ $\begin{gathered} I=\int_{\frac{-\pi}{4}}^{0}(-\sin x) d x-\int_{0}^{\frac{\pi}{4}} \sin x d x \\ \end{gathered}$ $\begin{gathered} \left\{\begin{array}{l} \sin x>0,\left[0, \frac{\pi}{4}\right] \\\\ \sin x<0\left[-\frac{\pi}{4}, 0\right] \end{array}\right\} \end{gathered}$
Answer:$4$ Hint: We will use the concept of even function to solve the integral. Given: $\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}}\{\sin |x|+\cos |x|\} d x$ Solution: $\begin{aligned} &I=\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}}\{\sin |x|+\cos |x|\} d x \\ & \end{aligned}$ $f(-x)=\sin |-x|+\cos |-x|=\sin |x|+\cos |x|=f(x)$ $\begin{aligned} &f(x) \text { is a even function }\\ & \end{aligned}$ $I=2 \int_{0}^{\frac{\pi}{2}}(\sin x+\cos x) d x$ $\begin{aligned} &{\left[\text { for even function } \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} x d x=2 \int_{0}^{\frac{\pi}{2}} x d x\right]} \\ & \end{aligned}$ $I=2[-\cos x+\sin x]_{0}^{\frac{\pi}{2}} \\$ $I=2[(0+1)-(-1-0)] \\$ $I=2(2)=4$
Answer:$5$ Hint: You must know the rules of solving definite integral. Given: $\int_{0}^{4}|x-1| d x$ Solution: $\begin{aligned} &\mathrm{I}=\int_{0}^{4}|x-1| d x \\ & \end{aligned}$ $|x-1|=\left\{\begin{array}{l} -(x-1), 0 \leq x \leq 1 \\ x-1, \quad 1 \leq x \leq 4 \end{array}\right\}$ $\begin{aligned} I &=\int_{0}^{1}-(x-1) d x+\int_{1}^{4}(x-1) d x \\ & \end{aligned}$ $=\left[-\left(\frac{x^{2}}{2}-x\right)\right]_{0}^{1}+\left[\frac{x^{2}}{2}-x\right]_{1}^{4} \\$ $=\frac{1}{2}+8-4+\frac{1}{2}=4+1 \\$ $I =5$
Answer:$\frac{23}{2}$ Hint: You must know about the rules of solving definite integral. Given:$\int_{1}^{4}\{|x-1|+|x-2|+|x-4|\} d x$ Solution: $\begin{aligned} &I=\int_{1}^{4}\{|x-1|+|x-2|+|x-4|\} d x \\ \end{aligned}$ $\mathrm{I}=\int_{1}^{4}|x-1| d x+\int_{1}^{4}|x-2| d x+\int_{1}^{4}|x-4| d x$ We know that, $\begin{aligned} &|x-1|=\left\{\begin{array}{l} -(x-1), x \leq 1 \\ x-1,1<x \leq 4 \end{array}\right\} \\ \end{aligned}$ $|x-2|=\left\{\begin{array}{l} -(x-2), 1 \leq x \leq 2 \\ x-2,2 \leq x \leq 4 \end{array}\right\} \\$ $|x-3|=\left\{\begin{array}{l} -(x-4), 1 \leq x \leq 4 \\ x-4, x>4 \end{array}\right\}$ $\int_{1}^{4}(x-1)+\int_{1}^{2}-(x-2) d x+\int_{2}^{4}(x-2) d x+\int_{1}^{4}-(x-4) d x$
Answer: $\frac{63}{2}$ Hint: You must know the rules of solving definite integral. Given:$\int_{-5}^{0} f(x) d x \text { where } f(x)=|x|+|x+2|+|x+5|$ Solution: For the first integrand: $\begin{aligned} &x<0 \\ & \end{aligned}$ $|x|=-x$ $\begin{aligned} \int_{-5}^{0}|x| d x & \\ & \end{aligned}$ $=\int_{-5}^{0}-x d x \\$ $=-\left[\frac{x^{2}}{2}\right]_{-5}^{0} \\$ $=\frac{25}{2}$ For the second integrand: $\begin{gathered} (x+2)=\left\{\begin{array}{l} x+2, \text { where } x \geq-2 \\\\ -(x+2), \text { wherex } \leq-2 \end{array}\right\} \\ \end{gathered}$ $\int_{-5}^{0}|x+2| d x=\int_{-5}^{-2}-(x+2) d x+\int_{-2}^{0}(x+2) d x$ For the third integrand: $\begin{array}{r} |x+5|=x+5, \text { if } x \geq-5 \\ \end{array}$ $\int_{-5}^{0}|x+5| d x=\int_{-5}^{0}(x+5) d x$ $\begin{aligned} &=\left(\frac{x^{2}}{2}+5 x\right)_{-5}^{0} \\ & \end{aligned}$ $=0-\frac{25}{2}+25 \\$ $=\frac{25}{2}$ Hence the total integration will be $\begin{aligned} \int_{-5}^{0} f(x) d x &=\int_{-5}^{0}|x| d x+\int_{-5}^{0}|x+2| d x+\int_{-5}^{0}|x+5| d x \\ & \end{aligned}$ $=\frac{25}{2}+\frac{13}{2}+\frac{25}{2} \\\\$ $=\frac{63}{2}$
Answer: $\frac{19}{2}$ Hint: You must know the rules of solving definite integral. Given:$\int_{-1}^{2}|x+1|+|x|+|x-1| d x$ Solution: $\begin{aligned} &f(x)=|x+1|+|x|+|x-1| \\ & \end{aligned}$ $f(x)=x+1-x-x+1=-x+2 \\$ $f(x)=x+1+x-x+1 \rightarrow 0 \leq x \leq 1=2+x$ $\begin{aligned} &f(x)=x+1+x+x-1 \rightarrow x \geq 1=3 x \\ & \end{aligned}$ $f(x)=-x-1-x-x+13-3 x=0$ $\begin{aligned} &=\int_{-1}^{0}(2-x) d x+\int_{0}^{1}(x+2) d x+\int_{1}^{2} 3 x d x \\ & \end{aligned}$ $=\left[2 x-\frac{x^{2}}{2}\right]_{-1}^{0}+\left(\frac{x^{2}}{2}+2 x\right)_{0}^{1}+\left(\frac{3 x^{2}}{2}\right)_{1}^{2}$ $\begin{aligned} &=2+\frac{1}{2}+\frac{1}{2}+2+6-\frac{3}{2} \\ & \end{aligned}$ $=\frac{19}{2}$
Answer:$\frac{\pi}{8}+\frac{1}{4}$ Hint: You must know the rules of solving definite integral. Given:$\int_{\frac{-\pi}{4}}^{\frac{\pi}{2}} \sin x|\sin x| d x$ Solution: $\begin{aligned} &\mathrm{I}=\int_{\frac{-\pi}{4}}^{\frac{\pi}{2}} \sin x|\sin x| d x \\ & \end{aligned}$ $I=-\int_{\frac{-\pi}{4}}^{0} \sin ^{2} x d x+\int_{0}^{\frac{\pi}{2}} \sin ^{2} x d x$ We will use the formula So, $\begin{aligned} &x=\frac{1-\cos 2 x}{2} \\ & \end{aligned}$ $=-\int_{\frac{-\pi}{4}}^{0} \frac{1-\cos 2 x}{2} d x+\int_{0}^{\frac{\pi}{2}}\left(\frac{1-\cos 2 x}{2}\right) d x$ $\begin{aligned} &=-\frac{1}{2}\left(x-\frac{\sin 2 x}{2}\right)_{\frac{-\pi}{4}}^{0}+\frac{1}{2}\left(x-\frac{\sin 2 x}{2}\right)_{0}^{\frac{\pi}{2}} \\ \end{aligned}$ $=-\frac{1}{2}\left(0-\left(-\frac{\pi}{4}+\frac{1}{2}\right)+\frac{1}{2}\left(\frac{\pi}{2}-0\right)\right. \\$ $=-\frac{\pi}{8}+\frac{1}{4}+\frac{\pi}{4} \\$ $=\frac{\pi}{8}+\frac{1}{4}$
Answer:$0$ Hint: We will use the property of definite integrals. Given:$\int_{0}^{\pi} \cos x|\cos x| d x$ Solution: $I=\int_{0}^{\pi} \cos x|\cos x| d x$ … (i) Consider, $f(x)=\cos x|\cos x|$ Now, use the property: $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$ $I=\int_{0}^{\pi} \cos (\pi-x)|\cos (\pi-x)| d x \\$ $=\int_{0}^{\pi}-\cos (x)|\cos (x)| d x \\$ $\begin{aligned} & &I=\int_{0}^{\pi}-\cos (x)|\cos (x)| d x \end{aligned}$ … (ii) Adding (i) and (ii) , we get $\begin{aligned} &2 I=0 \\ & \end{aligned}$ $I=0$
Answer:$6$ Hint: We will check for the nature of function ( even or odd) then will use the property of definition $\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}}(2 \sin |x|+\cos |x|) d x$ Given: $\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}}(2 \sin |x|+\cos |x|) d x$ Solution: $\begin{aligned} &\mathrm{I}=\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}}(2 \sin |\mathrm{x}|+\cos |\mathrm{x}|) \mathrm{d} x \\ \end{aligned}$ $\mathrm{f}(\mathrm{x})=2 \sin |\mathrm{x}|+\cos |\mathrm{x}| \\$ $\begin{aligned} \mathrm{f}(-\mathrm{x})=2 \sin |-\mathrm{x}|+\cos |-\mathrm{x}| \\ \end{aligned}$ $=2 \sin |\mathrm{x}|+\cos |\mathrm{x}|=\mathrm{f}(\mathrm{x})$ This shows that f(x) is an even function. So we use the property : $\begin{aligned} &\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x \\ & \end{aligned}$ $\text { if } f(-x)=f(x)$ $\begin{aligned} &I=2 \int_{0}^{\frac{\pi}{2}}(2 \sin |x|+\cos |x|) d x \\ \end{aligned}$ $I=2 \int_{0}^{\frac{\pi}{2}}(2 \sin x+\cos x) d x$ $\begin{aligned} &=-2(\cos x \times 2)_{0}^{\frac{\pi}{2}}+2(\sin x)_{0}^{\frac{\pi}{2}} \\ & \end{aligned}$ $=-4(0-1)+2(1-0)=(4+2)=6$
Answer:$\pi^{2}$ Hint: You must know about the rules of solving definite integral. Given: $\int_{0}^{2 \pi} \cos ^{-1}(\cos x) d x$ Solution: $\cos ^{-1}(\cos x)=\left\{\begin{array}{c} x, 0 \leq x \leq \pi \\ 2 \pi-x, \pi \leq x \leq 2 \pi \end{array}\right\}$ $\begin{aligned} &=\int_{0}^{\pi} x d x+\int_{\pi}^{2 \pi}(2 \pi-x) d x \\ & \end{aligned}$ $=\left(\frac{x^{2}}{2}\right)_{0}^{\pi}+\left(2 \pi x-\frac{x^{2}}{2}\right)_{\pi}^{2 \pi}$ $\begin{aligned} &=\frac{\pi^{2}}{2}+4 \pi^{2}-2 \pi^{2}-2 \pi^{2}+\frac{\pi^{2}}{2} \\ & \end{aligned}$ $=\frac{\pi^{2}}{2}+\frac{\pi^{2}}{2}=\pi^{2}$
Class 12, Mathematics, chapter 19, Definite Integrals, is a part where the students take a lot of time to understand the complex concepts. The third exercise, ex 19.3, consists of 31 questions, including its subparts to be solved by the students. These questions are divided into levels 1 and 2 according to their difficulty standards. Students can find solutions for all these questions in a single RD Sharma Class 12 Chapter 19 Exercise 19.3 book whenever they have doubts.
A group of staff members who are experts in their respective domains has created solutions for these questions. They have provided solutions in every way possible for a single sum. As it follows the NCERT patterns, CBSE school students can use the RD Sharma books to clarify their doubts. This RD Sharma Class 12th Exercise 19.13 solution book also consists of various practice questions that help the students work out and gain confidence to face the challenging questions in the exams.
Definite Integrals would no more be a complex concept once practiced well. The students can use this resource material, Class 12 RD Sharma Chapter 19 Exercise 19.3 Solution, to do their homework and assignment. They can also use it to prepare for their tests and examinations. With a copy of RD Sharma Class 12th Exercise 19.3 solution book, the students need not have a teacher or tutor by their side always. RD Sharma's book offers excellent guidance in solving students' doubts.
The most significant advantage of using RD Sharma books is that they can be accessed for free of cost at the Career360 website. The option to download the RD Sharma Class 12th Exercise 19.3 material is also available. Lots of students have already benefitted by scoring high marks using RD Sharma books for their exam preparation.
There are chances that questions for the public exams will be picked from the RD Sharma books. Hence, for the students preparing for their exams, using the RD Sharma Class 12 Solutions Chapter 19 Ex 19.3 book from day one will help them score better.