Careers360 Logo
RD Sharma Class 12 Exercise 19.1 Definite Integrals Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise 19.1 Definite Integrals Solutions Maths - Download PDF Free Online

Updated on Jan 24, 2022 02:21 PM IST

Many CBSE board students widely use the RD Sharma books to clarify their doubts. Following the chapter Indefinite Integrals, the Definite Integrals is also a challenging portion. Students need to be taught this concept and work it out without confusing the previous chapter. And as the first exercise needs help, the RD Sharma Class 12th Exercise 19.1 solution book is essential.

RD Sharma Class 12 Solutions Chapter19 Definite Integrals - Other Exercise

Definite Integrals Excercise:19.1

Definite Integrals Exercise 19.1 Question 1

Answer: 2
Hint:Use indefinite formula to solve the integral and then put the value of limit to get the required answer.
Given: 491xdx
Solution:
491xdx=49x12dx=[x12+112+1]49[xn+1dx=xn+1n+1]=[x1212]49=2[x12]49=2[912412]=2[32×1222×12]=2[32]=2

Definite Integrals Exercise 19.1 Question 2

Answer: log 2
Hint:Use indefinite formula to solve the integral and then put the value of limit to get the required answer.
Given: 231x+7dx
Solution:231x+7dx
Putting x+7=tdx=dt
And when x=2 then t=2+7=5
x=3 then t=3+7=10
Then,231x+7dx=5101tdt=[log|t|]510 [1xdxlog|x|]
=[log|10|log|5|] [logalogb=logab]
=log10log5
=log105

=log2

Definite Integrals Exercise 19.1 Question 3

Answer: π6
Hint:: Use indefinite formula to solve the integral and then put the value of limit to get the required answer
Given: 01211x2dx
Solution:
01211x2dx=[sin1x]012 [11x2dx=sin1x]
=sin1(12)sin1(0)[sin(π6)=12sin1(12)=π6,sin0=0sin1(0)=0]
=[π60]=π6

Definite Integrals Exercise 19.1 Question 4

Answer: π4
Hint: Use indefinite formula to solve the integral and then put the value of limit to get the required answer
Given: 0111+x2dx
Solution: 0111+x2dx=tan1xdx [11+x2dx=tan1x]
=tan1(1)tan1(0)[tan(π4)=1tan1(1)=π4,tan0=0tan1(0)=0]
=[π40]=π4

Definite Integrals Exercise 19.1 Question 5

Answer: log(2)
Hint:Use indefinite formula to solve the integral and then put the value of limit to get the required answer.
Given: 23xx2+1dx
Solution:23xx2+1dx
Put x2+1=t2xdx=dtxdx=dt2
When x=2 thent=32+1=4+1=5
When x=3 then t=32+1=9+1=10
Then23xx2+1dx=125101tdt=12[log|t|]510 [1xdx=log|x|]
=12[log10log5] [logalogb=logab]
=12log105
=12log2 [logam=mloga]
=log(212)
=log2

Definite Integrals Exercise 19.1 Question 6

Answer: π2ab
Hint:Use indefinite formula to solve the integral and then put the value of limit to get the required answer
Given:01a2+b2x2dx
Solution:
01a2+b2x2dx

Definite Integrals Exercise 19.1 Question 7

Answer:π2
Hint:Use indefinite formula to solve the integral and then put the value of limit to get the required answer
Given: 1111+x2dx
Solution:1111+x2dx [11+x2dx=tan1x]
=tan1(1)tan1(1) [tan(π4)=1tan1(1)=π4tan1(1)=π4]
=[π4+π4]=2π4=π2

Definite Integrals Exercise 19.1 Question 8

Answer:1
Hint: Use indefinite formula to solve the integral and then put the value of limit to get the required answer
Given: 0exdx
Solution:
0exdx=[ex1]0 (eax=dxeaxa)
=1[ex]0=[ee0]=[ee0]=1[01]=1(1)=1[e=0,e0=1]

Definite Integrals Exercise 19.1 Question 10

Answer: 2
Hint: Use indefinite formula to solve the integral and then put the value of limit to get the required answer
Given: 0π2(sinx+cosx)dx
Solution:
0π2(sinx+cosx)dx=0π2sinxdx+0π2cosxdx
=[cosx]0π2+[sinx]0π2[sinxdx=cosxcosxdx=sinx]
=[cosπ2cos0]+[sinπ2sin0][cosπ2=0,cos0=1sinπ2=1,sin0=0]
=(01)+(10)
=(1)+1
=1+1=2

Definite Integrals Exercise 19.1 Question 11

Answer: 12log2
Hint: Use indefinite formula to solve the integral and then put the value of limit to get the required answer
Given: π4π2cotxdx
Solution:π4π2cotxdx=[log|sinx|]π4π2 (cotxdx=log|sinx|)
=[log|sinπ2||sinπ4|]
=log1log12 [sinπ2=1,sinπ4=12]
=log112[logalogb=logab]=log2=log212[logam=mloga]
=12log2

Definite Integrals Exercise 19.1 Question 12

Answer:log(2+1)
Hint:: Use indefinite formula to solve the integral and then put the value of limit to get the required answer
Given: 0π4secxdx
Solution: 0π4secxdx=[log|secx+tanx|]0π4[secxdx=log|secx+tanx|]
=[log|secπ4+tanπ4|log|sec0tan0|]=[log|2+1|log|10|]][secπ4=2tanπ4=1 sec0=1tan0=0]
=log(2+1)log1
=log(2+1)0 [log1=0]
=log(2+1)

Definite Integrals Exercise 19.1 Question 13

Answer: log(2123)
Hint: Use indefinite formula then put the limit to get the required answer
Given:π6π4cosecxdx
Solution:π6π4cosecxdx=[log|cosecxcotx|]π6π4[cosecxdx=log|cosecxcotx|]
=[log|cosecπ4cotπ4|log|cosecπ6cotπ6|][cosecπ4=2cotπ4=2cosecπ6=2cotπ6=3]
=[log(21)log(23)]=log(21)log(23)[logalogb=logab]
=log(2123)

Definite Integrals Exercise 19.1 Question 14

Answer:2log21
Hint: Use indefinite formula then put the limit to get the required answer
Given: 01(1x1+x)dx
Solution:
01(1x1+x)dx
Put
x=cos2θ2θ=cos1xθ=cos1x2dx=sin2θ(2)dθdx=2sin2θdθ
Whenx=0 thenθ=π2×12=π4
When x=1 then θ=0
Then
01(1x1+x)dx=π401cos2θ1+cos2θ(2sin2θ)dθ=π402sin2θ2cos2θ2sin2θdθ [1+cos2θ=2cos2θ1cos2θ=2sin2θ]
=0π4sin2θcos2θ2sin2θdθ[abf(x)dx=baf(x)dx]=0π4sin2θcos2θ2.2sinθcosθdθ[sin2θ=2sinθcosθ]=40π4sin3θcosθdθ
Again put cosθ=tsinθdθ=dtdθ=dtsinθ
When θ=0 then t=2
And When θ=π4 then t=12
Then
011x1+xdx=4112sin3θtdtsinθ=4112sin2θtdt=42121cos2ttdt
[sin2θ=1cos2θ]
=42121t2tdt=4112(1tt2t)dt=4112(1tt)dt=41121tdt+4112tdt=4[log|t|]112+4[t1+11+1]112
[xndx=xn+1n+11xdx=log|x|]
=4[log|t|]112+4[t22]112=4[log12log1]+2[(12)212]=4log12+2(121) [logam=mloga]
=4log(2)1+2(12)=4(log2)1=4log21=2log212×21=2log21

Definite Integrals Exercise 19.1 Question 15

Answer: 2
Hint: Use indefinite formula then put the limit to get the required answer
Given:π011+sinxdx
Solution:π011+sinxdx
Rationalizing,0π(11+sinx×1sinx1sinx)dx=0π(1sinx(1+sinx)(1sinx))
=0π1sinx1sin2xdx[(a+b)(ab)=a2b2]=0π1sinxcos2xdx[1sin2x=cos2x]
=0π(1cos2xsinxcos2x)dx=0π(sec2xsinxcosx1cosx)dx
=0π(sec2xtanxsecx)dx[1cosx=secx,sinxcosx=tanx]=0πsec2x0πtanxsecxdx[sec2xdx=tanxsecxtanxdx=secx]
=[tanx]0π[secx]0π=[tanπtan0][secπsec0]][tanπ=tan0=0secπ=1,sec0=1]
=[00][11]
=0(2)
=2

Definite Integrals Exercise 19.1 Question 16

Answer: 2
Hint: Use indefinite formula then put the limit to get the required answer
Given: π4π411+sinxdx
Solution:
π4π411+sinxdx
=π4π4(11+sinx×1sinx1sinx)dx=π4π4(1sinx1sin2x)dx[(a+b)(ab)=a2b2]
=π4π4(1sinxcos2x)dx[1sin2x=cos2x]
=π4π4(1cos2xsinxcos2x)dx=π4π4(sec2xsinxcosx1cosx)dx[1cosx=secxsinxcosx=tanx]
=π4π4(sec2xtanxsecx)dx=π4π4sec2xdxπ4π4secxtanxdx [secxtanxdx=secxsec2xdx=tanx]
=[tanx]π4π4[secx]π4π4
=[tanπ4tan(π4)][secπ4sec(π4)]=[tanπ4+tan(π4)][secπ4sec(π4)][tan(θ)=tanθ]sec(θ)=secθ]
=[tanπ4+tan(π4)][tanπ4=1]
=2tanπ4
=2.1
=2

Definite Integrals Exercise 19.1 Question 17

Answer:π4
Hint: Use indefinite formula then put the limit to solve this integral
Given: 0π2cos2xdx
Solution:0π2cos2xdx
=0π2(1+cos2x2)dx[2cos2θ=1+cos2θcos2θ=1+cos2θ2]
=0π2(12+cos2x2)dx=0π212dx+120π2cos2xdx=120π2x0dx+120π2cos2xdx[xndx=xn+1n+1cosaxdx=sinaxa]
=12[x0+10+1]0π2+12[sin2x2]0π2=12[x]0π2+14[sin2x]0π2=12[π20]+14[sin2×π2sin2×0] [sinπ=sin0=0]
=π4+14[sinπsin0]
=π4

Definite Integrals Exercise 19.1 Question 18

Answer: 23
Hint: Use indefinite formula then put the limit to solve this integral
Given: 0π2cos3xdx
Solution:0π2cos3xdx=0π2(cos3x+3cosx4)dx[cos3x=4cos3x3cosxcos3x+3cosx=4cos3xcos3x=cos3x+3cosx4]
=0π3(cos3x4+34cosx)dx=140π2cos3x+340π2cosxdx=14[sin3x3]0π2+34[sinx]0π2=14×3[sin3×π2sin3×0]+34[sinπ2sin0][sin3π2=sin(π+π2)]=sinπ2=1sinπ2=1
=112[10]+34[10]
=112+34=1+912
=812=23

Definite Integrals Exercise 19.1 Question 19

Answer: 512
Hint: Use indefinite formula then put the limit to solve this integral
Given: 0π6cosxcos2xdx
Solution:0π6cosxcos2xdx=220π6cosxcos2xdx
=120π62cosxcos2xdx=120π6[cos(x+2x)+cos(x2x)]dx[2cosCcosD=cos(C+D)+cos(CD)]=120π6(cos3x+cos(x))dx=120π6(cos3x+cosx)dx[cos(θ)=cosθ]
=120π6cos3xdx+120π6cosxdx=12[sin3x3]0π6+12[sinx]0π6=16[sin3x]0π6+12[sinx]0π6=16[sin3×π6sin3×0]+12[sinπ6sin0]
=16[sinπ2sin0]+12[sinπ6]=161+1212=16+14=4+624=1024=512

Definite Integrals Exercise 19.1 Question 20

Answer: 23
Hint: Use indefinite formula then put the limit to solve this integral
Given: 0π2sinxsin2xdx
Solution:0π2sinxsin2xdx=120π2\2sinxsin2xdx
=120π2{cos(x2x)cos(x+2x)}dx [2sinAsinB=cos(AB)cos(A+B)]
=120π2{cos(x)cos(3x)}dx[cos(θ)=cosθ]
=120π2{cosxcos3x}dx=120π2cosxdx120π2cos3xdx[cosxdx=sinxcosaxdx=sinaxa]
=12[sinx]0π212[sin3x3]0π2=12[sinπ2sin0]13×2[sin3π2sin0][sin0=0]
=12sinπ216sin3π2=12sinπ216sin(π+π2)=12sinπ216sin(π2)[sinπ2=1]
=12×116(1)
=12+16=6+212=812
=23

Definite Integrals Exercise 19.1 Question 21
Answer: 23

Hint: Use indefinite formula then put the limit to solve this integral
Given: π3π4(tanx+cotx)2dx
Solution:π3π4(tanx+cotx)2dx=π3π4[sinxcosx+cosxsinx]2dx[tanθ=sinθcosθ,cotθ=cosθsinθ]
=π3π4[sin2x+cos2xsinxcosx]2dx[sin2x+cos2x=1]
=π3π4[1sinxcosx]2dx=π3π4[22sinxcosx]2dx [2sinxcosx=sin2x]
=π3π4[22sinxcosx]2dx=π3π4[2sin2x]2dx=π3π44sin22xdx [1sinx=cosecx]
=4π3π4cosec22xdx=4[cot2x2]π3π4 [cosec2θdθ=cotθ]
=42[cot2x]π3π4=2[cot2×π4cot2×π3]=2[cotπ2cot2π3]=2[cotπ2cot(ππ3)] [cotπ3=13cotπ2=0]
=2[cotπ2(cotπ3)]=2[0(13)]=2(13)=23

Definite Integrals Exercise 19.1 Question 22

Answer: 3π16
Hint: Use indefinite formula then put the limit to solve this integral
Given: 0π2cos4xdx
Solution:
0π2cos4xdx=0π2(cos2x)2dx
=0π2(1+cos2x2)2dx[2cos2x=1+cos2xcos2x=1+cos2x2]
=140π2(1+cos2x)2dx=140π2[1+cos22x+2cos2x]dx [(a+b)2=a2+b2+2ab]
=140π2[1+1+cos4x2+2cos2x]dx[2cos2x=1+cos2xcos2x=1+cos2x2]
=140π2[1+12+cos4x2+2cos2x]dx=140π2[32+cos4x2+2cos2x]dx=14×320π2x0dx+14×20π2cos4xdx+240π2cos2xdx [xndx=xn+1n+1cosaxdx=sinaxa]
=38[x]0π2+18[sin4x4]0π2+24[sin2x2]0π2=38[π20]+132[sin4×π2sin4×0]+12×2[sin2×π2sin2×0]=38[π2]+132[sin2πsin0]+14[sinπsin0]=3π16+0+0[sin2π=sin0=sinπ=0]=3π16

Definite Integrals Exercise 19.1 Question 23

Answer: π4(a2+b2)
Hint: Use indefinite formula then put the limit to solve this integral
Given:0π2(a2cos2x+b2sin2x)dx
Solution:
0π2(a2cos2x+b2sin2x)dx
=0π2(a2cos2x+b2(1cos2x))dx[cos2x+sin2x=1sin2x=1cos2x]
=0π2(a2cos2x+b2b2cos2x)dx=0π3(a2b2)cos2xdx+b2dx=(a2b2)20π22cos2xdx+b20π21dx=(a2b2)20π2(1+cos2x)dx+b20π2x0dx [cos2x+sin2x=1sin2x=1cos2x]
=0π2(a2cos2x+b2b2cos2x)dx=0π3(a2b2)cos2xdx+b2dx=(a2b2)20π22cos2xdx+b20π21dx=(a2b2)20π2(1+cos2x)dx+b20π2x0dx [2cos2θ=1+cos2θ]
=(a2b2)20π21dx+(a2b2)π220π2cos2xdx+b20π2x0dx=(a2b2)20π2x0dx+(a2b2)π220π3cos2xdx+b20π2x0dx[xndx=xn+1n+1cosaxdx=sinaxa]
=(a2b2)2[x0+10+1]0π2+(a2b2)2[sin2x2]+b2[x0+10+1]0π2=(a2b2)2[π20]+(a2b2)2×2[sin2×π2sin2×0]+b2[π20] [sinπ=sin0=0]
=(a2b2)2×π2+(a2b2)2×2[sinπsin0]+b2[π20]=(a2b2)π4+0+b2π2=a2πb2π+2b2π4=a2π+b2π4=(a2+b2)π4


Definite Integrals Exercise 19.1 Question 24

Answer: 2
Hint: Use indefinite formula then put the limit to solve this integral
Given: 0π21+sinxdx
Solution:
0π21+sinxdx
=0π2(sin2x2+cos2x2+2sinx2cosx2)dx[sin2θ+cos2θ=1sin2θ=2sinθcosθ]
=0π2(sinx2+cosx2)2dx[a2+b2+2ab=(a+b)2]
=0π2(sinx2+cosx2)dx=0π3sinx2dx+0π3cosx2dx [sinaxdx=cosaxacosaxdx=sinaxa]
=[cosx212]0π2+[sinx212]0π2=2[cosx2]0π2+2[sinx2]0π2
=2[cosπ2×2cos0×12]+2[sinπ2×2sin0×12=2[cosπ4cos0]+2[sinπ4sin0]=2[121]+[120] [sinπ4=cosπ4=12sin0=0]
=22+2+22=2

Definite Integrals Exercise 19.1 Question 25

Answer: 2
Hint: Use indefinite formula then put the limit to solve this integral
Given: 0π21+cosxdx
Solution:
0π21+cosxdx
=0π22cos2x2dx [1+cos2θ=2cos2θ]
=0π22cosx2dx [cosaxdx=sinaxa]
=20π2cosx2dx=2[sinx212]0π2=2.2[sinx2]0π2=22[sinπ2×2sin02] [sinπ4=12,sin0=0]
=22[sinπ40]=22[120]=2212=2

Definite Integrals Exercise 19.1 Question 26

Answer:π2
Hint: Use indefinite formula then put the limit to solve this integral
Given: 0π2x2sinxdx
Solution:0π2x2sinxdx
Integrating by parts =>Let x2 be the first part and sin x be the 2nd part
=x20π2sinxdx0π2{dx2dxsinxdx}dx=[x2(cosx)]0π20π22x(cosx)dx [sinxdx=cosx]
=[x2(cosx)]0π2+20π2xcosxdx=[(π2)2cosπ202cos0]+20π2xcosxdx=[π24×00]+2[xcosxdx]0π220π2[d(x)dxcosxdx]dx [cosxdx=sinx]=2[x(sinx)]0π220π21sinxdx

(Again using integration by parts method)

=2[π2sinπ20×sin0]2[cosx]0π2[sinxdx=cosx]=2[π2×10]+2[cosx]0π2[sinπ2=1,sin0=0]

=π+2[cosπ2cos0]=π+2[01]=π2 [cosπ2=0cos0=1]

Definite Integrals Exercise 19.1 Question 27

Answer: π21
Hint:Use indefinite formula then put the limit to solve this integral
Given: 0π2xcosxdx
Solution:
0π2xcosxdx
Integrating by parts => Let x be the 1st part and cos x be the 2nd part
=[xcosxdx]0π20π2{d(x)dxcosxdx}dx=[xsinx]0π20π2(1sinx)dx[cosxdx=sinx]
=[π2sinπ20×sin0]0π2sinxdx[sinπ2=1,sin0=0]
=[π210][cosx]0π2[sinxdx=cosx]=π2+[cosx]0π2=π2+[cosπ2cos0][cosπ2=0,cos0=1]
=π2+[01]
=π21

Definite Integrals Exercise 19.1 Question 29

Answer: 2+π22π21622
Hint: Use indefinite formula then put the limit to solve this integral
Given: 0π4x2sinxdx
Solution:
0π4x2sinxdx
Integrating by parts then, x2 and sin x be the 2 parts
=[x2sinxdx]0π40π4(d(x2)dxsinxdx)dx=[x2(cosx)]0π40π4[2x(cosx)dx][sinxdx=cosx]
=[x2cosx]0π4+20π4xcosxdx
(Again using integration by parts method x and cos x be the 2 terms)
=[π242cosπ40×cos0]+2[xcosxdx]0π420π4(d(x)dxcosxdx)dx
=[π216120]+2[xsinx]0π420π41sinxd[cosxdx=sinxcosπ4=12,cos0=1]
=π2162+2[π4sinπ40×sin0]20π4sinxdx=π2162+2[π4120]2[cosx]0π4[sinxdx=cosxsinπ4=12,sin0=0]
=π2162+2[π42]+2[cosx]0π4=π2162+2π42+2[cosπ4cos0][cosπ4=12,cos0=1]
=π2162+2π42+2[121]=π2162+2π42+2×222=2+π22π21622

Definite Integrals Exercise 19.1 Question 30

Answer: π4
Hint: Use indefinite formula then put the limit to solve this integral
Given: 0π2x2cos2xdx
Solution:
0π2x2cos2xdx
Integrating by parts then
=[x2cos2xdx]0π20π2{d(x2)dxcos2xdx}dx=[x2sin2x2]0π20π22xsin2x2[cosaxdx=sinaxa]
=12[x2sin2x]220π2xsin2xdx
Again using integrating on by parts method
=12[(π2)2sin2×π202sin0][xsin2xdx]0π20π2(d(x)dxsin2xdx)dx
=12[π24sinπsin0×0][x(cos2x2)]0π2+0π2(cos2x2)dx=12×0+12[xcos2x]0π20π2cos2x2dx[sinaxdx=cosaxasinπ=0,sin0=0]
=12[π2cos2×π20×cos2×0]12[sin2x2]0π2[cosaxdx=sinaxa]
=12[π2cosπ0]12×2[sin2x]0π2=12[π2](1)14[sin2×π2sin2×0] [cosπ=1]
=12(π2)14[sinπsin0]=π414[00] [sinπ=sin0=0]
=π4

Definite Integrals Exercise 19.1 Question 31

Answer:
π348π8
Hint: Use indefinite integral formula then put the limits to solve this integral
Given:
0π2x2cos2xdx
Solution:
0π2x2cos2xdx=120π22x2cos2xdx=120π2x2(2cos2x)dx=120π2x2(1+cos2x)dx
[2cos2θ=1+cos2θ]=120π2(x2+x2cos2x)dx=120π2x2dx+120π3(x2cos2x)dx. (1)
Now
0π2x2dx=[x2+12+1]0π2=[x33]0π2=13[x3]0π2=13[(π2)3(0)3]=13[π380]
=π324 .................(ii)
And
120π2(x2cos2x)dx
Integrating by parts, then
0π2(x2cos2x)dx=[x2cos2xdx]0π20π2{ddx(x2)cos2xdx}dx
=[x2sin2x2]0π20π22x21sin2x2dx
[cosaxdx=sinaxa,ddx(xn)=nxn1] =12[x2sin2x]0π20π2xsin2xdx=12[(π2)2sin2×π2(0)2sin2×0]{[xsin2xdx]0π20π2ddx(x)sin2xdxdx}

[By integrating in parts method]

=12[(π4)2sinπ0][x(cos2x2)]0π2+0π21(cos2x2)x

[sinaxdx=cosaxa,ddx(xn)=nxn1]

=12[(π4)2×0]+[xcos2x2]0π2120π2cos2xdx [sinπ=0]

=0+12[xcos2x]0π212[sin2x2]0π2

[cosaxdx=sinaxa]

=12[π2cos2×π20cos2×0]14[sin2x]0π2=12π2cosπ14[sin2×π2sin2×0]

[cosπ=1&sinπ=0=sin0]

=π4(1)14[sinπsin0]=π414[00]=π4....(3)

Putting the value of integrals from eq(2) and (3) in (1) then

0π2(x2cos2x)dx=12×π243+12(π4)=π348π8

Definite Integrals Exercise 19.1 Question 32

Answer:
2log21
Hint: Use indefinite integral formula and then put the limits to solve this integral
Given:
12logxdx
Solution:
12logxdx
Integrating by parts, then
12logxdx=[logx1dx]1212[ddx(logx)1dx]dx=[logxx]12121xxdx[1dx=x;ddx(logx)=1x]=[2log211log1]121dx[1dx=x,log1=0]
=[2log21(0)][x]12=2log2[21]=2log21

Definite Integrals Exercise 19.1 Question 33

Answer:
34log3log2
Hint:Use indefinite integral formula then put the limits to solve this integral
Given:
13logx(x+1)2dx=13logx1(x+1)2dx
Integrating by parts then
13logx1(x+1)2dx=[logx1(x+1)2dx]1313{ddx(logx)1(x+1)2dx}dx=[logx(x+1)2dx]1313{1x(x+1)2dx}dx=[logx((x+1)2+12+1)]13131x((x+1)2+12+1)dx
=[logx((x+1)11)]13131x((x+1)11)dx=[logxx+1]13+131x(x+1)dx=[log33+1log11+1]13+131x(x+1)dx
=[log34log12]+131x(x+1)dx=[log340]+131x(x+1)dx=14log3+131x(x+1)dx..(1)131x(x+1)dx
To solve this integral first we need to find its partial fraction then we will integrate and put the limits. So1x(x+1)=Ax+Bx+11=Ax(x+1)(x)+Bx+1x(x+1)1=A(x+1)+Bx1=Ax+A+Bx1=(A+B)x+A

Equating coefficient of x from both sides

0=A+BA=BB=A

Again Equating coefficient of constant term from both side, then

1=A

B=A=1

A=1,B=1

Thus

1x(x+1)=1x1x+1

Now

13(1x1x+1)dx=131xdx131x+1dx

put x+1=u

dx=duin the 2nd integral, then when x=1

u=2and when x=3,u=4 then

13(1x1x+1)dx=131xdx241udu=[log|x|]13[log|u|]24[1xdx=log|x|]

=[log3log1][log4log2]=[log30][log42]=log3log2..(2)

putting the value of this integral eq(2) in eq(1) then

13logx(x+1)2dx=14log3+log3log2

=(14+1)log3log2=(1+44)log3log2=34log3log2


Definite Integrals Exercise 19.1 Question 34

Answer:
ee
Hint: Use indefinite formula and put limits to solve this integral
Given:
1eexx(1+xlogx)dx
Solution:
1eexx(1+xlogx)dx=1e(exx+exxlogx)dx=1eexxdx+1eexlogxdx
applying integration by parts method in 1st integral then
=[ex1xdx]1e1e[ddx(ex)1xdx]dx+1eexlogxdx=[exlogx]1e1eexlogxdx+1eexlogxdx=[eelogee1log1][loge=1,1log1=0]=[ee.10]
=ee

Definite Integrals Exercise 19.1 Question 35

Answer:
12
Hint: Use indefinite formula and put limits to solve this integral
Given:
1elogxxdx
Putting logx=t
1xdx=dt
dx=xdt
and when x=1 thent=log1=0
[log1=0]
When x=e then t=loge=1
[loge=1]
Then
1elogxxdx=01txxdt=01tdt=[t1+11+1]01=[t22]01
=12[t2]01=12[1202]=12[10]=12

Definite Integrals Exercise 19.1 Question 36

Answer:
e22e

Hint: Use indefinite integral formula and put limits to solve this integral
Given:

ee2{1logx1(logx)2}dx

Solution:

ee2{1logx1(logx)2}dx=ee21logxdxee21(logx)2dx=ee21logx1dxee21(logx)2dx=[1logx1dx]ee2ee2{ddx(1logx)1dx}dxee21(logx)2dx[1dx=x&ddx(1x)=ddx(x1)=1x11=1x2=1x2]

=[1logxx]θe2θe(1(logx)2)1xxdxee21(logx)2dx=[xlogx]ee2+ee21(logx)2dxee21(logx)2dx=[e2loge2eloge]=[e22logeeloge][loge=1]=[e22e]

Definite Integrals Exercise 19.1 Question 37

Answer:
12log6
Hint: Use indefinite formula and put limits to solve this integral
Given:
12x+3x(x+2)dx
Solution:
12x+3x(x+2)dx=12xx+2dx+123x(x+2)dx=121x+2dx+3121x(x+2)dx ..............(1)
Now
121x+2dx
Putting x+2=u
dx=du
when x=1 then u=1+2=3and when x=2 then u=2+2=4
Then
121x+2dx=341udu=[logu]34[1xdx=logx]=[log4log3] ...............(2)
and
121x(x+2)dx
To solve this integral, first we need to find its partial fraction then integrate it and put the given limits. So
1x(x+2)=Ax+B(x+2)1=Ax(x)(x+2)+B(x+2)x(x+2)1=(x+2)A+Bx1=Ax+2A+Bx1=(A+B)x+2A
Equating coefficient of x from both sides, then0=A+BB=A

Again, Equating coefficient of constant term from both sides then

1=2AA=12

B=12

A=12&B=12

Then

1x(x+2)=12x12(x+2)121x(x+2)dx=12(12x12(x+2))dx=1212(1x1(x+2))dx=12121xdx12121(x+2)dx

Put x+2=u

dx=du in the 2nd integral then

121x(x+2)dx=12121xdx12121udx=12[logx]1212[logu]12[1xdx=logx]=12[logx]1212[log(x+2)]12[u=x+2]

=12[log2log1]12[log(2+2)log(1+2)]=12[log20]12[log(4)log(3)]=12[log2]12log4+12log3 ..............(3)

Putting the value of integrals from eq(2) and (3) in (1), we get

12x+3x(x+2)dx=log4log3+3[12log212log4+12log3]=log4log3+32log232log4+32log3=(132)log4(132)log3+32log2=(232)log4(232)log3+32log2

=12log4(12)log3+32log2=12[log22+log3+3log2]=12[2log2+log3+3log2]=12[log2+log3]

$$=12log(2×3)[log(mn)=logm+logn]=12log6

Definite Integrals Exercise 19.1 Question 38

Answer:
15log6+35tan1(5)
Hint: Use indefinite integral formula and put the limits to solve this integral
Given:
012x+35x2+1dx
Solution:
$$012x+35x2+1dx=01(2x5x2+1+35x2+1)dx=012x5x2+1dx+0135x2+1dx=15015×2x5x2+1dx+30115x2+1dx=150110x5x2+1dx+30115x2+1dx ..........(1)
Now,
150110x5x2+1dx
Put
5x2+1=u10xdx=du
$$15011udu=15[logu]01[1xdx=logx]=15[log(5x2+1)]01[u=5x2+1]
$$=15[log(512+1)log(5.02+1)]=15[log(5+1)log(0+1)]=15[log6log1]
[log1=0]
=15log6 .........................(2)
And
$$0115x2+1dx=0115(x2+15)dx=15011(x2+(15)2)dx=15[15tan1(x15)]01=15115[tan1(5x1)]01
$$=15[tan151tan15.0]=15[tan15tan10]=15tan1(5)0=15tan1(5) .....................(3)

Put the value of the integrals from (2) and (3) in (1) then

$$012x+35x2+1dx=15log6+315tan1(5)=15log6+35tan1(5)

Definite Integrals Exercise 19.1 Question 39

Answer:
117log(21+574)
Hint: Use indefinite formula and then put limits to solve this integral
Given:
0214+xx2dx
Solution:
$$0214+xx2dx=021(x2x4)dx=021x22x12+(12)2(12)24dx=021(x12)2(14)4dx=021(x12)2(1+164)dx
$$=021(x12)2(174)dx=021(174)(x12)2dx
Putting (x12)=t
dx=dt
When x=0 then
t=12
and when x=2 then
t=212=412=32
Then
$$0214+xx2dx=12321(172)2t2dx=[12×172log|172+t172t|]1232
$$=117[log|172+3217232|log172+(12)172(12))]=117[log|172+321732|log|172+(12)172+12|]
=117[log|17+3173|log|171217+12|]
=117[log|17+3173|log|17117+1|]
[logmlogn=log(mn)]
=117log[(17+3173)(17117+1)]
=117log(17+3173×17+1171)
=117log(17+317+17+31731717+3)
=117log(20+41720417)
=117log(4(5+17)4(517))
=117log(5+17517)
=117log(5+17517×5+175+17)
=117log((5+17)2(517)(5+17))
=117log(52+(17)2+2.517(5)2(17)2)
[(a+b)2=a2+b2+2ab(a+b(ab)=(a2b2)]
=117log(25+17+10172517)
=117log(2(21+517)8)
=117log(21+5174)

Definite Integrals Exercise 19.1 Question 40

Answer:
27[tan157tan117]
Hint: Use indefinite formula and then put limits to solve this integral
Given:
0112x2+x+1dx
Solution:
0112x2+x+1dx=0112(x2+x2+12)dx
=12011(x2+x2+12)dx
=12011x2+2x14+(14)2(14)2+12dx
=12011(x+14)2(14)2+12dx
=12011(x+14)2116+12dx
=12011(x+14)2(1816)dx
=12011(x+14)2(716)dx
=12011(x+14)2+(74)2dx
Put
x+14=udx=du
When x=0 then
u=14
when x=1 then
u=1+14=4+14=54
Then
120112x2+x+1dx=1214541u2+(74)2du=12[174tan1u74]1454=12×47[tan14u7]1454
=27[tan14×547tan14×147]=27[tan157tan117]


Definite Integrals Exercise 19.1 Question 41

Answer:
π8
Hint: Use indefinite integral formula then put limits to solve this integral
Given:
01x(1x)dx
Solution:
01x(1x)dx
Put
x=sin2θdx=2sinθ.cosθdθ
When x=0 then
θ=0
When x=1 then
θ=π2
Then
01x(1x)dx=0π2sin2θ(1sin2θ)2sinθcosθdθ
[1sin2θ=cos2θ]
=0π2sinθcos2θ2sinθcosθdθ
=0π2sinθcosθ2sinθcosθdθ
=120π24sin2θcos2θdθ
=120π2(2sinθcosθ)2dθ
[sin2θ=2sinθcosθ]
=120π2(sin2θ)2dθ
=120π2sin22θdθ
=120π2(1cos2θ2)dθ
[2sin2θ=1cos2θsin2θ=1cos2θ2]
=120π2(12cos2θ2)dθ
=12×20π21dθ140π2cos2θdθ
[1dx=x]
[cosaxdx=sinaxa]
=14[θ]0π214[sin2θ2]0π2
=14[π20]18[sin2θ]0π2
=14π218[sin2×π2sin2×0]
=π818[sinπsin0]
=π818[00][sinπ=sin0=0]
=π8

Definite Integrals Exercise 19.1 Question 42

Answer:
π3
Hint: Use indefinite formula and put the limits to solve this integral
Given:
0213+2xx2dx
Solution:
0213+2xx2dx=021(x22x3)dx
=021{x22x1+113}dx
=021{(x1)213}dx
[(ab)2=a22ab+b2]
=021{(x1)24}dx
=0214(x1)2dx
=02122(x1)2dx
=[sin1(x12)]02
[1a2x2dx=sin1xa]
=[sin1(212)sin1(012)]
=[sin1(12)sin1(12)]
[sin1(θ)=sinθ]
=[sin1(12)+sin1(12)]
=2sin1(12)
[sin112=π6]
=2.π6
=π3

Definite Integrals Exercise 19.1 Question 43

Answer:
π
Hint: Use indefinite formula and put the limits to solve this integral
Given:
0414xx2dx
Solution:
0414xx2dx=041(x22.2x+(2)2(2)2)dx
=041{(x2)24}dx
[(ab)2=a22ab+b2]
=0414(x2)2dx
=04122(x2)2dx[1a2x2dx=sin1(xa)]
=[sin1(x22)]04
=[sin1(422)sin1(022)]
=[sin1(22)sin1(22)]
=[sin1(1)sin1(1)]
=[sin1(1)+sin1(1)][sin1(θ)=sinθ]
=2sin1(1)
=2.π2
=π

Definite Integrals Exercise 19.1 Question 44

Answer:
π8
Hint: Use indefinite formula and put the limits to solve this integral
Given:
111x2+2x+5dx
Solution:
111x2+2x+5dx=111x2+2x+4+1dx
=111(x2+2x+1)+4dx
=111(x+1)2+22dx
=12[tan1(x+12)]11
=12[tan1(1+12)tan1(1+12)]
=12[tan1(22)tan1(02)]
=12[tan1(1)tan1(0)]
=12[π40]
[tan1(1)=π4,tan1(0)=0]
=π8

Definite Integrals Exercise 19.1 Question 45
Answer:

5735
Hint: Use indefinite formula and put the limits to solve this integral
Given:
14x2+x2x+1dx
Sol:
14x2+x2x+1dx
Putting
2x+1=t2
2dx=2tdt
dx=tdt
and When x=4then
t=3
and when x=4 then
t=3
then
33(t212)2+(t2212)t2tdt=3314(t21)2+12(t21)ttdt
=33(14(t4+12t2)+t212)dt
=33(t4+12t2+2t224)dt
=33(t414)dt
=33(t4414)dt
=1433t4dt1433t0dt
=14[t4+14+1]3314[t0+10+1]33
=14[t55]3314[t]33
=120[t5]3314[t]33
=[(3)5(3)5]2014[33]
=14[2439353+3]
=14[243933×5+535]
=14[2439315+535]
=14[228435]
=2282035
=1141035
=57535
=5735

Definite Integrals Exercise 19.1 Question 46

Answer:
142
Hint: Use indefinite integral formula then put limits to solve this integral
Given:
01x(1x)5dx
Sol:
01x(1x)5dx=01x(15x+10x210x3+5x4x5)dx
(By Binomial theorem)
=01(x5x2+10x310x4+5x5x6)dx
=01xdx501x2dx+1001x3dx1001x4dx+501x5dx01x6dx
=[x1+11+1]015[x2+12+1]01+10[x3+13+1]0110[x4+14+1]01+5[x5+15+1]01[x6+16+1]01
=[x22]015[x33]01+10[x44]0110[x55]01+5[x66]01[x77]01
=12[10]53[1303]+104[1404]105[1505]+56[1606]17[1707]
=1253+522+5617
=310+1512+5617
=16(2322)17
=7642
=142

Definite Integrals Exercise 19.1 Question 47

Answer:
e22e
Hint: Use indefinite integral formula and put the limits to solve this integral
Given:
12(x1x2)exdx
Sol:
12(x1x2)exdx=12(xx21x2)exdx
=12(1x1x2)exdx
=12(1xex1x2ex)dx
=121xexdx121x2exdx
Applying integration by parts method in Ist integral, then
12(x1x2)xdx=[1xexdx]1212(ddx(1x)exdx)dx121x2exdx
=[1xex]12121x2exdx121x2exdx
=[1xex]12+121x2exdx121x2exdx
=[12e211e1]
=e22e

Definite Integrals Exercise 19.1 Question 48

Answer:
e24+14+2π
Hint: Use indefinite formula then put the limits to solve this integral
Given:
01(xe2x+sinπx2)dx
Sol:
01(xe2x+sinπx2)dx=01xe2xdx+01sinπx2dx
Applying integration by parts method in 1st integral then
=[xe2xdx]0101(d(x)dxe2xdx)dx+[cosπ2xπ2]01]01
=[xe2x2]0101e2x2dx+2π[cosπx2]01
=[1e2.120.e202]011201e2x2dx+2π[cosπ×12cosπ×02]
=[e220]12[e2x2]01+2π[cosπ2cos0]
=[e22]14[e21e2.0]+2π[01]
=[e22]14[e21]+2π[1]
=[e22]e24+142π
=2e2e24+14+2π
=e24+14+2π

Definite Integrals Exercise 19.1 Question 49

Answer:

Answer:
01(xex+cosπx4)dx
Sol:01(xex+cosπx4)dx=01xexdx+01cosπx4dx

Applying integration by parts method in !st integral then

=[xexdx]0101(d(x)dxexdx)dx+[sinπ4xπ4]01

=[xex]01011.exdx+4π[sinπx4]01

=[1.e10.e0][ex]01+4π[sinπ4sin0]

=[e0][e1e0]+4π[sinπ4sin0]

=[e][e1]+4π[120]

=ee+1+4π×12

=22π+1

Definite Integrals Exercise 19.1 Question 50

Answer:

Answer:eπ2

Hint: Use indefinite integral formula then put the limits to solve this integral

Given:

π2πex(1sinx1cosx)dx

Sol:

π2πex(1sinx1cosx)dx=π2πex(12sinx2cosx2)2sin2x2dx

[sin2θ=2sinθcosθ1cos2θ=2sin2θ]

=π2πex(12sin2x22sinx2cosx22sin2x2)dx
[1sinθ=cosecθ,cotθ=sinθcosθ]
=π2πex(cosec2x22cosx2sinx2)dx
=π2πexcosec2x22π2πexcotx2dx
=12[π2πexcosec2x2dx2π2πexcotx2dx]
=12π2πexcosec2x2dx2{[cotx2exdx]π2ππ2π(d(cotx2)dxexdx)dx}

Using integration by parts in second term,

=12π2πexcosec2x2dx2{[cotx2ex]π2ππ2π(cosec2x2)12exdx}

[ddxcotax=cosec2axa,exdx=ex]

=12π2πexcosec2x2dx2{[cotπ2eπcotπ4eπ2]+12π2πcosec2x2exdx}

=12π2πexcosec2x2dx1(0.eπ1eπ2)12π2πcosec2x2exdx

[cotπ2=0,cotπ4=1]

=(0eπ2)

=eπ2

Definite Integrals Exercise 19.1 Question 51

Answer:0
Hint: Use indefinite formula then put the limits to solve this integral
Given:
02πex2sin(x2+π4)dx
Sol:
02πex2sin(x2+π4)dx
=02πex2[sinπ4cosx2+cosπ4sinx2]dx
[sin(A+B)=sinAcosB+cosAsinB]
=02πex2[12cosx2+12sinx2]dx
=1202π[cosx2ex2+sinx2ex2]dx
=1202πcosx2ex2dx+1202πsinx2ex2dx
=12{02πex2sinx2dx}+12{02πex2cosx2dx}
=12{[sinx2ex212]02π02πcosx212ex212dx}+1202πex2cosx2dx
[using integration by parts]
=12[2sinx2ex2]02π1202πex2cosx2dx+1202πex2cosx2dx
=12×2[sin2π2e2π2sin02e02]
=2[sinπeπsin0e0]
=2[00]
[sinπ=sin0=0]
=0

Definite Integrals Exercise 19.1 Question 52

Answer:

Answer:325(e2π+1)
Hint: Use indefinite formula then put the limit to solve this integral
Given:
02πexcos(π4+x2)dx
Solution:
I=02πexcos(π4+x2)dx ....................(1)
Apply integration by parts method, then
02πexcos(π4+x2)dx=[cos(π4+x2)exdx]02π02π{ddxcos(π4+x2)exdx}dx
I=[cos(π4+x2)]02π02πsin(π4+x2)12exdx[exdx=exdcos(ax)dx=sinaxa]
I=[e2πcos(π4+2π2)e0cos(π4+02)]+1202πsin(π4+x2)exdx
I=[e2πcos(π4+π)cosπ4]+12[{sin(π4+x2)exdx}02π02π{ddxsin(π4+x2)exdx}dx]
I=[e2π(cosπ4)cos(π4)]+12{[sin(π4+x2)]02π02πcos(π4+x2)12exdx}
(Again using integrating by parts method)
[ddxsinax=cosaxa,ex=ex2π]
I=[e2π(12)12]+12[sin(π4+2π2)e2πsin(π4+02)e0]1402πcos(π4+x2)exdx
[cosπ4=12]
I=[e2π212]+12[sin(π+π4)e2πsinπ4]14I
I=12(e2π+1)+12(sinπ4e2πsinπ4)14I [sinπ4=12]
I=12(e2π+1)12[12e2π+12]14I
I+14I=12(e2π+1)122e2π122
4I+I4=12(e2π+1)122(e2π+1)
5I4=(e2π+1)[12122]=(e2π+1)[2122]
I=45322(e2π+1)=2×2×25322(e2π+1)
I=325(e2π+1)

Definite Integrals Exercise 19.1 Question 53

Answer:

Answer: 152(e2π+1)
Hint: Use indefinite formula then put the limit to solve this integral
Given: 0πe2xsin(π4+x)dx
Solution: LetI=0πe2xsin(π4+x)dx ...............................(1)
Apply integration by parts method
I=[sin(π4+x)e2x2]0π0π{ddx(sin(π4+x))e2xdx}dx
I=[sin(π4+x)e2x2]0π0πcos(π4+x)e2x2dx[ddxsinax=cosaxaeaxdx=eaxa]

I=12[sin(π4+x)e2x]0π120πcos(π4+x)e2xdx
I=12[sin(π4+π)e2πsin(π4+0)e0]
12{[cos(π4+x)e2xdx]0π0π(ddxcos(π4+x)e2xdx)dx}
I=12[sinπ4e2πsinπ4]12{[cos(π4+x)e2x2]0π0πsin(π4+x)e2x2dx}
[ddxcosax=sinax.a,eaxdx=eaxa,sin(π+x)=sinx]
I=12[12e2π12]1212[cos(π4+π)e2πcos(π4+0)e0]140πsin(π4+x)e2xdx
[sinπ4=12]
I=1212[e2π+1]14[cosπ4e2πcosπ4]14I[cos(π+x)=cosx]I+14I=122[e2π+1]+14[12e2π+12][cosπ4=12]4I+I4=122[e2π+1]+1412(e2π+1)5I4=[e2π+1](142122)=[e2π+1](1242)I=45(142)(e2π+1)=152(e2π+1)

Definite Integrals Exercise 19.1 Question 54

Answer:423
Hint: Use indefinite formula then put the limit to solve this integral
Given: 0111+xxdx
Solution:
Let,I=0111+xxdx
=01(11+xx×1+x+x1+x+x)dx=01(1+x+x(1+xx)(1+x+x))dx[(a+b)(ab)=a2b2]=01(1+x+x(1+x)2(x)2)dx=01(1+x+x1+xx)dx=011+x+x1dx=011+xdx+01xdx
Put 1+x=tdx=dt
I=01tdt+01xdx=01t12dt+01x12dx[xndx=xn+1n+1]=[t12+112+1]01+[x12+112+1]01
=[t3232]01+[x3232]01=23[t32]01+23[x32]01=23[(1+x)32]01+23[x32]01=23[(1+1)32(1+0)32]01+23[132032]01=23[232132]+23[132]=23[22321+1]
=23(2)2
=2322
=423

Definite Integrals Exercise 19.1 Question 55

Answer:

Answer: log(3227)
Hint: Use indefinite formula then put the limit to solve this integral
Given:12x(x+1)(x+2)dx
Solution:
12x(x+1)(x+2)dx ..................(1)
To solve this integral, first we will final its partial fraction then integrate it with the given limits.
So,x(x+1)(x+2)=Ax+1+Bx+2 ............................(2)
x=A(x+1)(x+2)(x+1)+B(x+1)(x+2)(x+2)x=A(x+2)+B(x+1)x=Ax+2A+Bx+Bx=(A+B)x+2A+B
Equating coefficient of x from both sides,
1=A+B ........................(a)
And again equating coefficients of constant term from both sides, then
0=2A+B2A=BB=2A ........................(b)
Put the value of A from (b) in (a) then
1=A+(2A)=A2A=AA=1B=2A=2(1)=2
SoA=1,B=2
Then equation (2) becomes
x(x+1)(x+2)=1x+1+2x+2
Now equation (1)
12x(x+1)(x+2)dx=121x+1dx+2121x+2dx ..................(3)
121x+1dx
Putting x+1=tdx=dt
When x=1 then t=1+1=2
And When x=2 then t=2+1=3
Then 121x+1dx=121tdt=[logt]]23[1xdx=logx]]
=[log|3|log|2|]
=[log3log2] .......................(4)
and 121x+1dx
Putting x+2=udx=du
When x=1 then u=2+1=3
And x=2 then u=2+2=4
Then121x+2dx=341udu=[log|u|]34=log|4|log|3|=log4log3 ......(5)
12x(x+1)(x+2)dx=121x+1dx+2121x+2dx=[log3log2]+2[log4log3]=log3+log2+2log222log3[logam=mloga]=3log3+log2+4log2
=3log3+5log2=5log23log3=log25log33[logalogb=logab]=log32log27
=log(3227)

Definite Integrals Exercise 19.1 Question 56

Answer:

Answer: 23
Hint: Use indefinite formula then put the limit to solve this integral
Given:0π2sin3xdx
Solution: Let,I=0π2sin3xdx=0π2sin2xsinxdx
=0π2(1cos2x)sinxdx [sin2x=1cos2x]
=0π2(sinxcos2xsinx)dx
=0π2sinxdx0π2cos2xsinxdx
Putt=cosxdt=sinxdxdx=dtsinx in the 2nd Integral term
=0π2sinxdx0π2t2sinxdtsinx
=0π2sinxdx+0π2t2dt [sinxdx=cosx,xndx=xn+1n+1]
=[cosx]0π2+[t2+12+1]0π2
=[cosπ2cos0]+13[t3]0π2
=[cosπ2cos0]+13[cos3x]0π2 [cosπ2=0,cos0=1]
=[01]+13[cos3π2cos30]0π2
=1+13[0313]=1+13[01]
=113=313=23


Definite Integrals Exercise 19.1 Question 57

Answer: 0
Hint: Use indefinite formula then put the limit to solve this integral
Given: 0π(sin2x2cos2x2)dx
Solution: 0π(sin2x2cos2x2)dx=0π(cos2x2sin2x2)dx
=0πcos2×x2dx [cos2θsin2θ=cos2θ]
=0πcosxdx
=[sinx]0π [cosxdx=sinx]
=[sinπsin0] [sinπ=sin0=0]
=1[00]
=0

Definite Integrals Exercise 19.1 Question 58

Answer:

Answer: e42e24
Hint: Use indefinite formula then put the limit to solve this integral
Given: 12e2x(1x12x2)dx
Solution:
12e2x(1x12x2)dx=212e2x(12x12×2x2)dx Put 2x=t2dx=dtdx=dt2
When x=1 then t=2 and
When x=2 then t=4
Then 12e2x(1x12x2)dx=212e2x(12x14x2)dx=224et(1t1t2)dt2=24et(1t1t2)dt=24et1tdt24et1t2dt

Apply integration by parts in 1st integral, then

12e2x(1x12x2)dx=[1tetdt]2424(ddt(1t)etdt)dt24et1t2dt

=[1tet]2424(1t2et)dt24et1t2dt [ddx(1x)=d(x1)dx=1x11=1x2=1x2exdx=ex]

=[14e412e2]+241t2etdt241t2etdt

=14(e42e2)=e42e24

Definite Integrals Exercise 19.1 Question 59

Answer: π
Hint: Use indefinite formula then put the limit to solve this integral
Given: 121(x1)(2x)dx
Solution:
121(x1)(2x)dx=1212xx22+xdx=1213xx22dx
=121(x23x+2)dx
=121(x22x32+(32)2(32)2+2)dx[a2+b22ab=(ab)2]
=121((x32)294+2)dx
=121((x32)2(984))dx=121((x32)2(14))dx=121(12)2(x32)2dx
Putting (x32)=tdx=dt
When x=1 then t=132=232=12
And When x=2 then t=232=432=12
Then 121(x1)(2x)dx=12121(12)2t2dt
=[sin1(t12)]1212 [1a2x2dx=sin1xa]
=[sin1(2t)]122
=[sin1(2×12)sin1(2×12)] [sin(θ)=sinθ]
=sin1(1)sin1(1)
=sin1(1)+sin1(1)
=2sin1(1) [sin1=π2]
=2×π2
=π

Definite Integrals Exercise 19.1 Question 60

Answer: k=12
Hint: Use indefinite formula then put the limit to solve this integral
Given: 0k12+8x2dx=π16
Solution: 0k12+8x2dx=π16
0k18(x2+28)dx=π16180k1x2+14dx=π16180k1x2+(12)2dx=π16[1a2+x2dx=1atan1xa]18[112tan1(x12)]0k=π16
18×2[tan12x]0k=π1614[tan12k0]=π16tan12k=4π16[tanπ4=1]tan12k=π42k=tanπ4=1k=12

Definite Integrals Exercise 19.1 Question 61

Answer: a=2
Hint: Use indefinite formula then put the limit to solve this integral
Given: 0a3x2dx=8
Solution: 0a3x2dx=8
30ax2dx=83[x2+12+1]0a=8[xndx=xn+1n+1]3[x33]0a=8[x3]0a=8[a303]=8a3=8a=23a=2

Definite Integrals Exercise 19.1 Question 62

Answer: 2
Hint: Use indefinite formula then put the limit to solve this integral
Given: π3π21cos2xdx
Solution: π3π21cos2xdx=π3π22sin2xdx[1cos2θ=2sin2θ]
=π3π22sinxdx=2π3π2sinxdx[sinxdx=cosx]=2[cosx]π3π2=2[cos3π2cosπ][cos(π+π2)=cosπ2]=2[cos(π+π2)cosπ]=2[cosπ2cosπ][cosπ2=0cosπ=1]=2[01)=2×1=2

Definite Integrals Exercise 19.1 Question 63

Answer: 8
Hint: Use indefinite formula then put the limit to solve this integral
Given: 02π1+sinx2dx
Solution: 02π1+sinx2dx=02πcos2x4+sin2x4+2sinx4cosx4dx
[1=cos2θ+sin2θ,sin2θ=2sinθcosθ]
=02π(cosx4+sinx4)2dx[a2+b2+2ab=(a+b)2]
=02π(cosx4+sinx4)dx [sinaxdx=cosaxacosaxdx=sinaxa]
=02πcosx4dx+02πsinx4dx
=[sinx414]02π[cosx414]02π
=4[sin2π4sin0]4[cos2π4cos0] [sinπ2=cos0=1sin0=cosπ2=0]
=4[sinπ2sin0]4[cosπ2cos0]
=4[10]4[01]
=4+4
=8

Definite Integrals Exercise 19.1 Question 64

Answer: π32
Hint: Use indefinite formula then put the limit to solve this integral
Given:0π4(tanx+cotx)2dx
Solution:
0π4(tanx+cotx)2dx=0π41(tanx+cotx)2dx=0π41(sinxcosx+cosxsinx)2dx[tanθ=sinθcosθ,cotθ=cosθsinθ]=0π41(sin2x+cos2xsinxcosx)2dx
=0π4(sinxcosxsin2x+cos2x)2dx [sin2x+cos2x=1]
=0π4(sinxcosx)21dx
$=\int_{0}^{\frac{\pi}{4}} \sin ^{2} x \cos ^{2} x d x \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; $ [1sin2θ=cos2θ]
=0π4sin2x(1sin2x)dx [2sin2θ=1cos2θsin2θ=1cos2θ2]
=0π4sin2xdx0π4sin4xdx
=0π41cos2x2dx0π4(sin2x)2dx=0π412(1cos2x)dx0π4(1cos2x2)2dx=120π4(1cos2x)dx140π4(1cos2x)2dx=120π41dx120π4cos2xdx140π4(1+cos22x2cos2x)dx=120π41dx120π4cos2xdx140π41dx140π4cos22xdx240π4cos2xdx=(1214)0π41dx(12+12)0π4cos2xdx140π4(1+cos4x2)dx
[1+cos2θ=2cos2θ]
=(214)0π41dx0π4cos2xdx180π41dx180π4cos4xdx=140π41dx180π41dx0π4cos2xdx180π4cos4xdx=(1418)0π41dx0π4cos2xdx180π4cos4xdx=(218)[x]0π4[sin2x2]0π418[sin4x4]0π4
[1dx=x,cosaxdx=sinaxa]
=18(π40)12[sin2π4sin0]18[sin4π4sin0]
=18π412[sinπ20]18[sinπsin0]
[sin0=0,sinπ=0]
=π3212[00]18[00]
=π32

Definite Integrals Exercise 19.1 Question 65

Answer: 38log3
Hint: Use indefinite formula then put the limit to solve this integral
Given: 01xlog(1+2x)dx
Solution: 01xlog(1+2x)dx
Apply integration by parts, we get
=[log(1+2x)xdx]0101{ddxlog(1+2x)xdx}dx [xndx=xn+1n+1ddx(log(ax+b))=1ax+ba]
=[log(1+2x)x1+11+1]0101(11+2x2x1+11+1)dx
=[log(1+2x)x22]0120112x+1x22dx=[log(1+2(1))122log(1+2(0))022]12012x22x+1dx=[log32log1×0]12012x2+xx2x+1dx=log321201x(2x+1)x2x+1dx
=log321201(x(2x+1)2x+1x2x+1)dx=log321201xdx+12012x+112(2x+1)dx=log321201xdx+1201(2x+1(2x+1)12x+1)dx=log3212[x1+11+1]01+14011dx140112x+1dx [xndx=xn+1n+1]
=log3212[x22]01+14[x0+10+1]01140112x+1dx=log3214[1202]+14[10]140112x+1dx=log3214+14140112x+1dx=log32140112x+1dx
Put 2x+1=t2dx=dtdx=dt2
When x=0 then t=2 and
When x=1 then t=3

=log3214131tdt2=log3218[log|t|]13=log3218[log3log1]=log3218[log3]+0=log3(1218)=log3(418)=38log3

Definite Integrals Exercise 19.1 Question 66

Answer: 43
Hint: Use indefinite formula then put the limit to solve this integral
Given: π6π3(tanx+cotx)2dx
Solution:π6π3(tanx+cotx)2dx=π6π3(tan2x+cot2x+2tanxcotx)dx[(a+b)2=a2+b2+2ab]
=π6π3((sec2x1)+(cosec2x1)+2tanx1tanx)dx=π6π3(sec2x1)+(cosec2x1)+2tanx1tanx)dx=π6π3sec2xdx1π6π3dx+π6π3cosec2xdx1π6π3dx+2π6π3dx=π6π3π3sec2xdx+π6π3cosec2xdx2π6π3dx+2π6π3dx
[sec2xdx=tanxcosec2xdx=cotx]
=(313)(133)=(31313+3)=2323=2×323=623=43

Definite Integrals Exercise 19.1 Question 67

Answer: (a2+b2)π8+(a2b2)4
Hint: Use indefinite formula then put the limit to solve this integral
Given: 0π4(a2cos2x+b2sin2x)dx
Solution:
0π4(a2cos2x+b2sin2x)dx=0π4[a2(1sin2x)+b2sin2x]dx[1=sin2θ+cos2θ1sin2θ=cos2θ]=0π4(a2a2sin2x+b2sin2x)dx=0π4[a2+sin2x(b2a2)]dx=a20π41dx+(b2a2)0π4sin2xdx
$=a^{\frac{\pi}{4}} \int_{0}^{\frac{\pi}{4}} 1 d x+\left(b^{2}-a^{2}\right) \int_{0}^{\frac{\pi}{4}}\left(\frac{1-\cos 2 x}{2}\right) d x \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \quad\left[1-\cos 2 \theta=2 \sin ^{2} \theta\right] $
=aπ40π41dx+(b2a2)20π41dx(b2a2)20π4cos2xdx
=(a2+(b2a2)2)0π4xdx(b2a2)20π4cos2xdx
=(2a2+(b2a2)2)[x0+10+1]0π4(b2a2)2[sin2x2]0π4
=(a2+b22)[x]0π4(b2a2)2×2[sin2×π4sin2×0]
=(a2+b22)(π40)(b2a2)4[sin(π2)sin0]
[sinπ2=1,sin0=0]
=(a2+b22)π4(b2a2)4sin(10)=(a2+b22)π4+(a2b24)

Definite Integrals Exercise 19.1 Question 68

Answer: 14log(2e)
Hint: Use indefinite formula then put the limit to solve this integral
Given: 0111+2x+2x2+2x3+x4dx
Solution: 0111+2x+2x2+2x3+x4dx
=011x4+2x3+2x2+2x+1dx=011x4+x2+x2+2x3+2x+1dx=011x4+x2+2x3+x2+2x+1dx=011x2(x2+1)+2x(x2+1)+(x2+1)dx=011(x2+1)(x2+2x+1)dx=011(x2+1)(x+1)2dx
[(a+b)2=a2+2ab+b2]
To solve this integral, first we have to find its partial fractions then integrate it by using indefinite integral formula then put the limits to get required answer.
So,
1(x2+1)(x+1)2=Ax+1+B(x+1)2+Cx+Dx2+11=A(x+1)2(x2+1)x+1+B(x+1)2(x2+1)(x+1)2+(Cx+D)(x+1)2(x2+1)(x2+1)1=A(x+1)2(x2+1)+B(x2+1)+(Cx+D)(x+1)21=A(x3+x+x2+1)+B(x2+1)+(Cx+D)(x2+2x+1)
[(a+b)2=a2+b2+2ab]1=Ax3+Ax+Ax2+A+Bx2+B+Cx3+2Cx2+Cx+Dx2+2Dx+D

Equating coefficient of and constant term respectively

0=A+C

0=A+B+2C+D

0=A+C+2D

1=A+B+D

From (a) and (c)

A+C+2D=0

0+2D=0

D=0

Put the value of D in (b) and (d)

A+B+2C=0

A+B=1

Subtracting (e) – (f) then

A+B+2C=0

A+B=12C=1

C=12

Then (a)=>A=C=(12)=12

And (d)

A+B+D=112+B+0=1B=112=12A=12,B=12,C=12

1(x2+1)(x+1)2=12(x+1)+12(x+1)2+12x+0x2+1=12(x+1)+12(x+1)212xx2+1

Now 0111+2x+2x2+2x2+xdx=01(12(x+1)+12(x+1)212xx2+1)dx

=12011(x+1)dx+12011(x+1)2dx1201xx2dx ..........(1)
Put x+1=tdx=dt
When x=0 then t=1
And When x=1 then t=2
Then 12011(x+1)dx+12011(x+1)2dx
=12121tdt+12121t2dt=12121tdt+1212t2dt[xndx=xn+1n+1,1xdx=log|x|]
=12[log2log1]+12[t11]12=12[log2log1]12[1t]12=12log212[1211]=12log212[122]=12log212[12]=12log2+14
And
1201xx2+1dx
When x=0 then p=1 and
When x=1 then p=2
1201xx2+1dx=12121pdp2=14121pdp=14[log|p|]12=14[log2log1]=14[log2][1xdx=log|x|][log1=0]
Then From (1)
0111+2x+2x2+2x3+x4dx=12log2+1414log2=log2(1214)+14=log2(214)+14=14log2+14=14log2+14 loge [ loge =1]=14l(og2+loge)=14log(2e)[logm+logn=log(mn)]


Class 12, mathematics, chapter 19, Definite Integrals, is one of the challenging portions in the syllabus. There are five exercises in this chapter, ex 19.1 to ex 19.5. The first exercise of this chapter, ex 19.1, consists of 68 questions. These questions revolve around the concept of evaluating the Definite Integrals. There are two levels of questions in this exercise, Level 1 and Level 2. If the students face difficulties in any of the questions, they can very well refer to the RD Sharma Class 12 Chapter 19 Exercise 19.1 material to clarify their doubts.

As ex 19.1 is the first exercise in the Definite Integrals chapter, it consists of pure basics. A strong foundation for this chapter can be laid only through this exercise. Hence, the student needs to concentrate well while working with it. This book follows the NCERT pattern giving a valid reason for the CBSE students to follow it. The RD Sharma Class 12th Exercise 19.1 solution book consists of various practice questions to make the students understand this concept correctly.

If the students find this exercise challenging, they can solve exercise 19.1 with the help of Class 12 RD Sharma Chapter 19 Exercise 19.1 Solution material. All the solutions are provided by the staff members who are experts in this domain. With little practice, you can start solving Definite Integrations effortlessly. This exercise is very significant because the following exercises are based on the basics discussed here. Otherwise, it would be a huge burden to solve the rest of the four exercises.

The main benefit for the students who use the RD Sharma Solutions Definite Integrals Ex 19.1 is that they need not purchase it. These solution books are freely available at the Career 360 website. No payment or monetary charge is required to be paid by them. Therefore, an abundance of students has benefitted by learning the concepts through the RD Sharma Class 12th Exercise 19.1 material.

These books are used to prepare questionnaires by the staff who prepare questions for the public exams. Hence using the RD Sharma Class 12 Solutions Chapter 19 Ex 19.1 will help you achieve better marks in the exam.

RD Sharma Chapter wise Solutions

NEET Highest Scoring Chapters & Topics
This ebook serves as a valuable study guide for NEET exams, specifically designed to assist students in light of recent changes and the removal of certain topics from the NEET exam.
Download E-book

Frequently Asked Questions (FAQs)

1. Which solution books are the most prescribed ones for the class 12 students to clarify their doubts on the mathematics chapter 19?

The RD Sharma Class 12th Exercise 19.1 material is the most prescribed solution book for the class 12 students to clarify their doubts on mathematics chapter 19.

2. Where can I find the RD Sharma books for free?

The RD Sharma solution books are available at the Career 360 website that can be accessed for free of cost.

3. How many questions are answered for exercise 18.1 in the RD Sharma book?

There are around sixty-eight questions, including its subparts in exercise 19.1, and the solutions are provided for every question in the RD Sharma Class 12th Exercise 19.1 book.

4. How to download the RD Sharma solution book from the career 360 websites?

Visit the Career 360 website and search for the name of the solution book you require. You’ll soon be able to access the book, click on the Download option to download it.

5. Which pattern do the RD Sharma books follow?

The RD Sharma Solution books follow the NCERT pattern. This makes it useful for the CBSE board students.

Articles

Back to top