RD Sharma Solutions Class 12 Mathematics Chapter 19 VSA

RD Sharma Solutions Class 12 Mathematics Chapter 19 VSA

Edited By Kuldeep Maurya | Updated on Jan 24, 2022 02:21 PM IST

RD Sharma class 12th exercise VSA is an extremely important book for all students who are in class 12. RD Sharma solutions is a trusted and famous name among numerous other NCERT solutions. Students and teachers highly recommend this book especially for its Mathematics solutions. The RD Sharma class 12 chapter 19 exercise VSA, especially can be an excellent guidebook for students who want to study and home well before their board exams..

This Story also Contains
  1. RD Sharma Class 12 Solutions Chapter19 VSA Definite Integrals - Other Exercise
  2. Definite Integrals Excercise:VSA
  3. RD Sharma Chapter wise Solutions

RD Sharma Class 12 Solutions Chapter19 VSA Definite Integrals - Other Exercise

Definite Integrals Excercise:VSA

Definite Integrals exercise Very short answer type question 1

Answer: \frac{\pi }{4}
Hint: You must know the integration rule of trigonometric functions with its limits.
Given: \int_{0}^{\frac{\pi}{2}} \sin ^{2} x\; d x
Solution:
\begin{aligned} &=\int_{0}^{\frac{\pi}{2}} \frac{1-\cos 2 x}{2} d x \\\\ &=\frac{1}{2} \int_{0}^{\frac{\pi}{2}} 1 . d x-\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \cos 2 x \; d x \end{aligned}
\begin{aligned} &=\frac{1}{2}[x]_{0}^{\frac{\pi}{2}}-\frac{1}{2}\left[\frac{\sin 2 x}{2}\right]_{0}^{\frac{\pi}{2}} \\\\ &=\frac{1}{2}\left[\frac{\pi}{2}-0\right]-\frac{1}{4}\left[\sin \left(2 \frac{\pi}{2}\right)-\sin 0\right] \end{aligned}
\begin{aligned} &=\frac{\pi}{4}-\frac{1}{4}[0] \\\\ &=\frac{\pi}{4} \end{aligned}

Definite Integrals exercise Very short answer type question 2

Answer: \frac{\pi }{4}
Hint: You must know the integration rule of trigonometric functions.
Given: \int_{0}^{\frac{\pi}{2}} \cos ^{2} x \; d x
Solution: \int_{0}^{\frac{\pi}{2}} \cos ^{2} x \; d x
\begin{aligned} &=\int_{0}^{\frac{\pi}{2}} \frac{1+\cos 2 x}{2} d x \\\\ &=\frac{1}{2} \int_{0}^{\frac{\pi}{2}} 1 . d x+\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \cos 2 x \; d x \end{aligned}
\begin{aligned} &=\frac{1}{2}[x]_{0}^{\frac{\pi}{2}}+\frac{1}{2}\left[\frac{\sin 2 x}{2}\right]_{0}^{\frac{\pi}{2}} \\\\ &=\frac{1}{2}\left[\frac{\pi}{2}-0\right]+\frac{1}{4}\left[\sin \frac{2 \pi}{2}-\sin 0\right] \\\\ &=\frac{\pi}{4} \end{aligned}

Definite Integrals exercise Very short answer type question 3

Answer: \frac{\pi }{2}
Hint: You must know the integration rules of trigonometric function with its limits
Given: \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \sin ^{2} x \; d x
Solution: \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \sin ^{2} x \; d x
\begin{aligned} &=\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \frac{1-\cos 2 x}{2} d x \\\\ &=\frac{1}{2} \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} 1 \cdot d x-\frac{1}{2} \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \cos 2 x\; d x \end{aligned}
=\frac{1}{2}[x]_{\frac{-\pi}{2}}^{\frac{\pi}{2}}-\frac{1}{2}\left[\frac{\sin 2 x}{2}\right]_{\frac{-\pi}{2}}^{\frac{\pi}{2}}
\begin{aligned} &=\frac{1}{2}\left[\frac{\pi}{2}-\left(-\frac{\pi}{2}\right)\right]-\frac{1}{4}\left[\sin \frac{2(\pi)}{2}-\sin \frac{2(-\pi)}{2}\right] \\\\ &=\frac{1}{2}\left[\frac{2 \pi}{2}\right]-\frac{1}{4}[0+0] \\\\ &=\frac{\pi}{2} \end{aligned}

Definite Integrals exercise Very short answer type question 4
Answer: \frac{\pi }{2}

Hint: You must know the integration rules of trigonometric function with its limits
Given: \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \cos ^{2} x \; d x
Solution: \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \cos ^{2} x \; d x
\begin{aligned} &=\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \frac{1+\cos 2 x}{2} d x \\\\ &=\frac{1}{2} \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} 1 . d x+\frac{1}{2} \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \cos 2 x\; d x \end{aligned}
\begin{aligned} &=\frac{1}{2}[x]_{\frac{-\pi}{2}}^{\frac{\pi}{2}}+\frac{1}{2}\left[\frac{\sin 2 x}{2}\right]_{\frac{\pi}{2}}^{\frac{\pi}{2}} \\\\ &=\frac{1}{2}\left[\frac{\pi}{2}-\left(-\frac{\pi}{2}\right)\right]+\frac{1}{4}\left[\sin \frac{2(\pi)}{2}+\sin \frac{2(-\pi)}{2}\right] \end{aligned}
\begin{aligned} &=\frac{1}{2}\left[\frac{2 \pi}{2}\right]+\frac{1}{4}[0+0] \\\\ &=\frac{\pi}{2} \end{aligned}

Definite Integrals exercise Very short answer type question 5

Answer: 0
Hint: You must know the integration rules of trigonometric function with its limits

Given:\int_{-\pi}^{\frac{\pi}{2}} \sin ^{3} x\; d x
Solution: \int_{-\pi}^{\frac{\pi}{2}} \sin ^{3} x\; d x
\begin{aligned} &=\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \sin ^{2} x \sin x \; d x \\\\ &=\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}}\left(1-\cos ^{2} x\right) \sin x\; d x \end{aligned}
=\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \sin x\; d x+\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \cos ^{2} x \sin x\; d x
We know that \int \sin x \; d x=-\cos x \text { and } \int \cos x\; d x=\sin x
\begin{aligned} &=[-\cos x]_{\frac{-\pi}{2}}^{\frac{\pi}{2}}+\left[\frac{-\cos ^{3} x}{3}\right]_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \\\\ &=-\cos \frac{\pi}{2}-\left(-\cos \frac{-\pi}{2}\right)+\left[\frac{\cos ^{3}\left(\frac{\pi}{2}\right)}{3}-\frac{\cos ^{3}\left(\frac{-\pi}{2}\right)}{3}\right] \\\\ &=0+0+0-0 \\\\ &=0 \end{aligned}

Definite Integrals exercise Very short answer type question 6

Answer: 0
Hint: You must know the integration rules of trigonometric function with its limits

Given: \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} x \cos ^{2} x \; d x
Solution: I=\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} x \cos ^{2} x \; d x
\begin{aligned} &f(x)=x \cos ^{2} x \\\\ &f(-x)=(-x) \cos ^{2}(-x) \\\\ &=-x \cos ^{2} x \\\\ &=-f(x) \end{aligned}
Hence, f(x) is an odd function.
Since,\int_{-a}^{a} f(x) d x=0 if f(x) is an odd
\therefore \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} x \cos ^{2} x\; d x=0

Definite Integrals exercise Very short answer type question 7

Answer: 1-\frac{\pi}{4}
Hint: You must know the integration rules of trigonometric function with its limits

Given: \int_{0}^{\frac{\pi}{4}} \tan ^{2} x \; d x
Solution: \int_{0}^{\frac{\pi}{4}} \tan ^{2} x \; d x
\begin{aligned} &=\int_{0}^{\frac{\pi}{4}}\left(\sec ^{2} x-1\right) d x \\\\ &=\int_{0}^{\frac{\pi}{4}} \sec ^{2} x d x-\int_{0}^{\frac{\pi}{4}} 1 d x \end{aligned}
\begin{aligned} &=[\tan x]_{0}^{\frac{\pi}{4}}-[x]_{0}^{\frac{\pi}{4}} \\\\ &=\tan \frac{\pi}{4}-\tan 0-\frac{\pi}{4}+0 \end{aligned}
\begin{aligned} &=1-0-\frac{\pi}{4}+0 \\\\ &=1-\frac{\pi}{4} \end{aligned}

Definite Integrals exercise Very short answer type question 8

Answer: \frac{\pi }{4}
Hint: You must know the integration rules of trigonometric function with its limits

Given: \int_{0}^{1} \frac{1}{x^{2}+1} d x
Solution: \int_{0}^{1} \frac{1}{x^{2}+1} d x
\begin{aligned} &=\left[\tan ^{-1} 1-\tan ^{-1} 0\right] \\\\ &=\frac{\pi}{4}-0 \\\\ &=\frac{\pi}{4} \end{aligned}

Definite Integrals exercise Very short answer type question 9

Answer: -1
Hint: You must know the integration rules of trigonometric function with its limits

Given: \int_{-2}^{1} \frac{|x|}{x} d x
Solution: \int_{-2}^{1} \frac{|x|}{x} d x
\begin{aligned} &=\int_{-2}^{0} \frac{-x}{x} d x+\int_{0}^{1} \frac{x}{x} d x \\\\ &=\int_{-2}^{0}-1 d x+\int_{0}^{1} 1 d x \end{aligned}
\begin{aligned} &=-[x]_{-2}^{0}+[x]_{0}^{1} \\\\ &=-[0+2]+[1+0] \\\\ &=-2+1 \\\\ &=-1 \end{aligned}

Definite Integrals exercise Very short answer type question 10

Answer: 1
Hint: You must know the integration rules of trigonometric function with its limits

Given: \int_{0}^{\infty} e^{-x} d x
Solution: \left[\frac{e^{-x}}{-1}\right]_{0}^{\infty}
\begin{aligned} &=-\left[\frac{1}{e^{\infty}}-\frac{1}{e^{0}}\right] \\\\ &=0+1 \\\\ &=1 \end{aligned}

Definite Integrals exercise Very short answer type question 11

Answer: \frac{\pi }{2}
Hint: You must know the integration rules of trigonometric function with its limits

Given: \int_{0}^{4} \frac{1}{\sqrt{16-x^{2}}} d x
Solution: \int_{0}^{4} \frac{1}{\sqrt{16-x^{2}}} d x
=\int_{0}^{4} \frac{1}{\sqrt{(4)^{2}-x^{2}}} d x
\begin{aligned} &\text { Put } x=4 \sin \theta \quad \theta=\sin ^{-1} \frac{x}{4} \\ &\mathrm{~d} \mathrm{x}=4 \cos \theta\; d \theta \end{aligned}
\begin{aligned} &=\int_{0}^{4} \frac{4 \cos \theta}{\sqrt{16-16 \sin ^{2} \theta}} d \theta \\\\ &=\int_{0}^{4} \frac{4 \cos \theta}{\sqrt{16\left(1-\sin ^{2} \theta\right)}} d \theta \end{aligned}
\begin{aligned} &=\int_{0}^{4} \frac{4 \cos \theta}{4 \sqrt{\cos ^{2} \theta}} d \theta \\\\ &=\int_{0}^{4} \frac{4 \cos \theta}{4 \cos \theta} d \theta \end{aligned}
\begin{aligned} &=\int_{0}^{4} 1 d \theta \\\\ &=[\theta]_{0}^{4}=\left[\operatorname{Sin}^{-1} \frac{x}{4}\right]_{0}^{4} \end{aligned}
\begin{aligned} &=\left[\sin ^{-1} \frac{4}{4}-\sin ^{-1} \frac{0}{4}\right] \\\\ &=\sin ^{-1} 1 \\\\ &=\frac{\pi}{2} \end{aligned}


Definite Integrals exercise Very short answer type question 12

Answer: \frac{\pi }{12}
Hint: You must know the integration rules of trigonometric function with its limits

Given: \int_{0}^{3} \frac{1}{x^{2}+9} d x
Solution: \int_{0}^{3} \frac{1}{x^{2}+9} d x
Use the formula \int \frac{1}{x^{2}+a^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}+c
\begin{aligned} &=\frac{1}{3}\left[\tan ^{-1} \frac{x}{3}\right]_{0}^{3} \\\\ &=\frac{1}{3}\left[\tan ^{-1} 1-\tan ^{-1} 0\right] \end{aligned}
\begin{aligned} &=\frac{1}{3}\left[\frac{\pi}{4}\right] \\\\ &=\frac{\pi}{12} \end{aligned}

Definite Integrals exercise Very short answer type question 13

Answer: \sqrt{2}
Hint: You must know the integration rules of trigonometric function with its limits

Given: \int_{0}^{\frac{\pi}{2}} \sqrt{1-\cos 2 x} \; d x
Solution: \int_{0}^{\frac{\pi}{2}} \sqrt{1-\cos 2 x} \; d x
\begin{aligned} &=\int_{0}^{\frac{\pi}{2}} \sqrt{2 \sin ^{2} x} \; d x \\\\ &=\int_{0}^{\frac{\pi}{2}} \sqrt{2} \sin x\; d x \end{aligned}
\begin{aligned} &=\sqrt{2}[-\cos x]_{0}^{\frac{\pi}{2}} \\\\ &=\sqrt{2}\left[-\cos \frac{\pi}{2}+\cos 0\right] \\\\ &=\sqrt{2} \end{aligned}

Definite Integrals exercise Very short answer type question 14

Answer: 0
Hint: You must know the integration rules of trigonometric function with its limits

Given: \int_{0}^{\frac{\pi}{2}} \log \tan x \; d x
Solution: \int_{0}^{\frac{\pi}{2}} \log \tan x \; d x .................(i)
\mathrm{I}=\int_{0}^{\frac{\pi}{2}} \log \tan \left(\frac{\pi}{2}-x\right) d x
=\int_{0}^{\frac{\pi}{2}} \log \cot x \; d x ..................(ii)
Adding (i) and (ii)
2 I=\int_{0}^{\frac{\pi}{2}} \log (\tan x) d x+\int_{0}^{\frac{\pi}{2}} \log (\cot x) d x
=\int_{0}^{\frac{\pi}{2}}(\log \tan x+\log \cot x) d x
=\int_{0}^{\frac{\pi}{2}}(\log \tan x \cdot \cot x) d x \quad[\because \log m+\log n=\log m n]
=\int_{0}^{\frac{\pi}{2}}(\log 1) d x \quad[\because \tan x \cdot \cot x=1]
\begin{aligned} &=\int_{0}^{\frac{\pi}{2}}(0) d x \quad[\because \log 1=0] \\\\ &=0 \end{aligned}


Definite Integrals exercise Very short answer type question 15

Answer: 0
Hint: You must know the integration rules of trigonometric function with its limits

Given: \int_{0}^{\frac{\pi}{2}} \log \left(\frac{3+5 \cos x}{3+5 \sin x}\right) d x .............(i)
Solution: \int_{0}^{\frac{\pi}{2}} \log \left(\frac{3+5 \cos x}{3+5 \sin x}\right) d x
Property: \int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x
\mathrm{I}=\int_{0}^{\frac{\pi}{2}} \log \frac{3+5 \cos \left(\frac{\pi}{2}-x\right)}{3+5 \sin \left(\frac{\pi}{2}-x\right)} d x
\begin{aligned} &=\int_{0}^{\frac{\pi}{2}} \log \frac{3+5 \sin x}{3+5 \cos x} d x \\\\ &=-\int_{0}^{\frac{\pi}{2}} \log \frac{3+5 \cos x}{3+5 \sin x} d x \end{aligned} ................(ii)
Adding (i) and (ii),
\begin{aligned} &21=\int_{0}^{\frac{\pi}{2}} \log \left(\frac{3+5 \cos x}{3+5 \sin x}\right) d x+\left[-\int_{0}^{\frac{\pi}{2}} \log \frac{3+5 \cos x}{3+5 \sin x} d x\right] \\\\ &21=0 \\\\ &I=0 \end{aligned}


Definite Integrals exercise Very short answer type question 16


Answer: \frac{\pi }{4}
Hint: You must know the integration rules of trigonometric function with its limits

Given: \int_{0}^{\frac{\pi}{2}} \frac{\sin ^{n} x}{\sin ^{n} x+\cos ^{n} x} d x
Solution: \int_{0}^{\frac{\pi}{2}} \frac{\sin ^{n} x}{\sin ^{n} x+\cos ^{n} x} d x ....................(i)
Property: \int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x
=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{n}\left(\frac{\pi}{2}-x\right)}{\sin ^{n}\left(\frac{\pi}{2}-x\right)+\cos ^{n}\left(\frac{\pi}{2}-x\right)} d x
=\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{n} x}{\sin ^{n} x+\cos ^{n} x} d x ..................(ii)
Add (i) and (ii)
\begin{aligned} &2 \mathrm{l}=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{n} x+\cos ^{n} x}{\sin ^{n} x+\cos ^{n} x} d x \\\\ &2 \mathrm{I}=\int_{0}^{\frac{\pi}{2}} 1 \cdot d x \end{aligned}
\begin{aligned} &21=[x]_{0}^{\frac{\pi}{2}} \\\\ &2 I=\left[\frac{\pi}{2}-0\right] \\\\ &I=\frac{\pi}{4} \end{aligned}

Definite Integrals exercise Very short answer type question 17

Answer: 0
Hint: You must know the integration rules of trigonometric function with its limits

Given: \int_{0}^{\pi} \cos ^{5} x \; d x
Solution: Using property \int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x
\mathrm{I}=\int_{0}^{\pi} \cos ^{5} x \; d x=\int_{0}^{\pi} \cos x \cos ^{4} x \; d x
=\int_{0}^{\pi} \cos x\left(1-\sin ^{2} x\right)^{2} d x
\begin{aligned} &\mathrm{Put} \sin \mathrm{x}=\mathrm{t} \\\\ &\cos x \; d x=d t \end{aligned}
\begin{aligned} &\mathrm{I}=\int_{0}^{\pi}\left(1-t^{2}\right)^{2} d x \\\\ &=\int_{0}^{\pi}\left(1+t^{4}-2 t^{2}\right) d x \end{aligned}
=\left[t+\frac{t^{5}}{5}-\frac{2 t^{3}}{3}\right]_{0}^{\pi}
\begin{aligned} &=\left[\sin x+\frac{\sin ^{5} x}{5}-\frac{2 \sin ^{3} x}{3}\right]_{0}^{\pi} \quad\quad\quad\quad[\sin \pi=0, \sin 0=0] \\\\ &I=0 \end{aligned}

Definite Integrals exercise Very short answer type question 18

Answer: 0
Hint: You must know the integration rules of trigonometric function with its limits

Given: \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \log \left(\frac{a-\sin \theta}{a+\sin \theta}\right) d \theta

Solution: I=\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \log \left(\frac{a-\sin \theta}{a+\sin \theta}\right) d \theta .............(i)
Let f(x)=\log \left(\frac{a-\sin \theta}{a+\sin \theta}\right)
f(-x)=\log \left(\frac{a-\sin (-\theta)}{a+\sin (-\theta)}\right)
=\log \left(\frac{a+\sin \theta}{a-\sin \theta}\right) \quad[\because \sin (-x)=-\sin x]
\begin{aligned} &=-\log \left(\frac{a-\sin \theta}{a+\sin \theta}\right) \\ &=-\mathrm{f}(\mathrm{x}) \end{aligned}
Hence, f(x) is an odd function.

Since, \int_{-a}^{a} f(x) d x=0 if f(x) is an odd.

\therefore \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \log \left(\frac{a-\sin \theta}{a+\sin \theta}\right) d \theta=0


Definite Integrals exercise Very short answer type question 19

Answer: 0
Hint: you must know the rule of integration for function of x

Given: \int_{-1}^{1} x|x| d x
Solution: I=\int_{-1}^{1} x|x| d x
\begin{aligned} &=\int_{-1}^{0} x(-x) d x+\int_{0}^{1} x(x) d x \\\\ &=\int_{-1}^{0}-x^{2} d x+\int_{0}^{1} x^{2} d x \end{aligned}
\begin{aligned} &=-\frac{1}{3}\left[x^{3}\right]_{-1}^{0}+\frac{1}{3}\left[x^{3}\right]_{0}^{1} \\\\ &=-\frac{1}{3}[0-(-1)]+\frac{1}{3}[1-0] \end{aligned}
\begin{aligned} &=-\frac{1}{3}+\frac{1}{3} \\\\ &=0 \end{aligned}

Definite Integrals exercise Very short answer type question 20

Answer: \frac{b-a}{2}
Hint: you must know the rule of integration for function of x

Given: \int_{a}^{b} \frac{f(x)}{f(x)+f(a+b-x)} d x
Solution: \mathrm{I}=\int_{a}^{b} \frac{f(x)}{f(x)+f(a+b-x)} d x ...............(i)
Using property \int_{a}^{b} f(x)=\int_{a}^{b} f(a+b-x) d x

\mathrm{I}=\int_{a}^{b} \frac{f(a+b-x)}{f(a+b-x)+f(a+b-(a+b-x))} d x
\mathrm{I}=\int_{a}^{b} \frac{f(a+b-x)}{f(a+b-x)+f(x)} d x ................(ii)
Add (i) and (ii)
\begin{aligned} &2 I=\int_{a}^{b} \frac{f(x)+f(a+b-x)}{f(x)+f(a+b-x)} d x \\\\ &2 I=\int_{a}^{b} 1 . d x \end{aligned}
\begin{aligned} &2 \mathrm{l}=[x]_{a}^{b} \\\\ &2 \mathrm{l}=\mathrm{b}-\mathrm{a} \\\\ &\mathrm{I}=\frac{b-a}{2} \end{aligned}

Definite Integrals exercise Very short answer type question 21

Answer: \frac{\pi }{4}
Hint: you must know the rule of integration for function of x
Given:\int_{0}^{1} \frac{1}{1+x^{2}} d x
Solution: \int_{0}^{1} \frac{1}{1+x^{2}} d x
\begin{aligned} &=\left[\tan ^{-1} x\right]_{0}^{1} \\\\ &={\left[\tan ^{-1} 1-\tan ^{-1} 0\right]} \\\\ &=\frac{\pi}{4} \end{aligned}

Definite Integrals exercise Very short answer type question 22

Answer: \frac{1}{2} \log 2
Hint: you must know the rule of integration for function of x
Given: \int_{0}^{\frac{\pi}{4}} \tan x\; d x
Solution: \int_{0}^{\frac{\pi}{4}} \tan x\; d x
\begin{aligned} &=\log [\sec x]_{0}^{\frac{\pi}{4}} \\\\ &=\log \left(\sec \frac{\pi}{4}\right)-\log (\sec 0) \\\\ &=\log |\sqrt{2}|-\log |1| \end{aligned}
\begin{aligned} &=\log \sqrt{2}-0 \\\\ &=\log \sqrt{2} \\\\ &=\log (2)^{\frac{1}{2}} \\\\ &=\frac{1}{2} \log 2 \end{aligned}

Definite Integrals exercise Very short answer type question 23
Answer: \log \frac{3}{2}

Hint: you must know the rule of integration for function of x
Given:\int_{2}^{3} \frac{1}{x} d x
Solution: \int_{2}^{3} \frac{1}{x} d x
\begin{aligned} &=[\log |x|]_{2}^{3} \\\\ &=\log 3-\log 2 \\\\ &=\log \frac{3}{2} \end{aligned}


Definite Integrals exercise Very short answer type question 24

Answer: \pi
Hint: you must know the rule of integration
Given:\int_{0}^{2} \sqrt{4-x^{2}}
Solution: \int_{0}^{2} \sqrt{4-x^{2}}
\begin{aligned} &\text { Put } x=2 \sin \theta \\\\ &d x=2 \cos \theta d \theta \end{aligned}
\begin{aligned} &=\int_{0}^{\frac{\pi}{2}} \sqrt{4-4 \sin ^{2} \theta} \cdot 2 \cos \theta d \theta \\\\ &=\int_{0}^{\frac{\pi}{2}} 4 \cos ^{2} \theta d \theta \end{aligned}
\begin{aligned} &=\int_{0}^{\frac{\pi}{2}} 4 \cdot \frac{1}{2}(1+\cos 2 \theta) d \theta \\\\ &=2\left[\theta+\frac{\sin 2 \theta}{2}\right]_{0}^{\frac{\pi}{2}} \end{aligned}
\begin{aligned} &=2\left[\frac{\pi}{2}+\frac{\sin \pi}{2}-0-0\right] \\\\ &=\pi \end{aligned}


Definite Integrals exercise Very short answer type question 25

Answer: \log _{e} 2
Hint: you must know the rule of integration for function of x
Given: \int_{0}^{1} \frac{2 x}{1+x^{2}} \mathrm{dx}
Solution: \int_{0}^{1} \frac{2 x}{1+x^{2}} \mathrm{dx}
Put 1+x^{2}=t
2 x \; d x=d t
\begin{aligned} &=\int_{0}^{1} \frac{d t}{t} \\\\ &=[\log t]_{0}^{1} \end{aligned}
\begin{aligned} &=\left[\log \left(1+x^{2}\right)\right]_{0}^{1} \\\\ &=[\log (1+1)-\log (1+0)] \\\\ &=\log _{e} 2 \end{aligned}

Definite Integrals exercise Very short answer type question 26

Answer: \frac{1}{2}(e-1)
Hint: you must know the rule of integration for function of x
Given: \int_{0}^{1} x e^{x^{2}} d x
Solution:
Put
\begin{aligned} &x^{2}=t \\\\ &2 x d x=d t \\\\ &x d x=\frac{d t}{2} \end{aligned}
\begin{aligned} &=\frac{1}{2} \int_{0}^{1} e^{t} d t \\\\ &=\frac{1}{2}\left[e^{t}\right]_{0}^{1} \end{aligned}
\begin{aligned} &=\frac{1}{2}\left[e^{x^{2}}\right]_{0}^{1} \\\\ &=\frac{1}{2}\left[e^{1}-e^{0}\right] \\\\ &=\frac{1}{2}[e-1] \end{aligned}

Definite Integrals exercise Very short answer type question 27

Answer: \frac{1}{2}
Hint: you must know the rule of integration
Given: \int_{0}^{\frac{\pi}{4}} \sin 2 x \; d x
Solution: \int_{0}^{\frac{\pi}{4}} \sin 2 x \; d x
\begin{aligned} &=\frac{1}{2}(-\cos 2 x)_{0}^{\frac{\pi}{4}} \\\\ &=-\frac{1}{2}(\cos 2 x)_{0}^{\frac{\pi}{4}} \end{aligned}
\begin{aligned} &=\frac{-1}{2}\left[\cos 2\left(\frac{\pi}{4}\right)-\cos 2(0)\right] \\\\ &=\frac{-1}{2}\left[\cos \frac{\pi}{2}-\cos 0\right] \end{aligned}
\begin{aligned} &=\frac{-1}{2}[0-1] \\\\ &=\frac{1}{2} \end{aligned}

Definite Integrals exercise Very short answer type question 28

Answer: \log _{e} 2
Hint: you must know the rule of integration
Given: \int_{e}^{e^{2}} \frac{1}{x \log x} d x
Solution: Put \log x=t
\frac{d x}{x}=\mathrm{dt}
\begin{aligned} &=\int_{e}^{e^{2}} \frac{1}{t} d t \\\\ &=[\log \mid t]_{-e}^{e^{2}} \end{aligned}
\begin{aligned} &=[\log [\log x]]_{e}^{e^{2}} \\\\ &=\log \left(\log e^{2}\right)-\log (\log e) \\\\ &=\log (2 \log e)-\log (1) \\\\ &=\log 2 \end{aligned}

Definite Integrals exercise Very short answer type question 29

Answer: 1
Hint: you must know the rule of integration
Given: \int_{0}^{\frac{\pi}{2}} e^{x}(\sin x-\cos x) d x
Solution: \int_{0}^{\frac{\pi}{2}} e^{x}(\sin x-\cos x) d x
=-\int_{0}^{\frac{\pi}{2}} e^{x}(\cos x-\sin x) d x
\begin{aligned} &f(x)=\cos x \\\\ &f^{\prime}(x)=-\sin x \\\\ &\int e^{x}\left[f(x)+f^{\prime}(x)\right] d x=e^{x} f(x)+c \end{aligned}
\begin{aligned} &\text { we get, } I=-\left[e^{x} \cos x\right]_{0}^{\frac{\pi }{2}} \\\\ &=-e^{\frac{\pi}{2}} \cos \frac{\pi}{2}+e^{0} \cos (0) \\\\ &=0+(1)(1) \\\\ &=1 \end{aligned}

Definite Integrals exercise Very short answer type question 30

Answer: \frac{1}{2} \log \left(\frac{17}{5}\right)
Hint: you must know the rule of integration
Given: \int_{2}^{4} \frac{x}{x^{2}+1} d x
Solution: Put x^{2}+1=t
\begin{aligned} &2 x \; d x=d t \\\\ &x \; d x=\frac{d t}{2} \end{aligned}
\begin{aligned} &\mathrm{I}=\frac{1}{2} \int_{2}^{4} \frac{d t}{t} \\\\ &=\frac{1}{2}[\log |t|]_{2}^{4} \end{aligned}
\begin{aligned} &=\frac{1}{2}\left[\log \left|x^{2}+1\right|\right]_{2}^{4} \\\\ &=\frac{1}{2}[\log (16+1)+\log (4+1)] \\\\ &=\frac{1}{2} \log \left(\frac{17}{5}\right) \end{aligned}

Definite Integrals exercise Very short answer type question 31

Answer: 2
Hint: you must know the rule of integration
Given: \text { If } \int_{0}^{1}\left(3 x^{2}+2 x+k\right) d x=0 \text { find } k
Solution: \int_{0}^{1}\left(3 x^{2}+2 x+k\right) d x=0
\begin{aligned} &{\left[\frac{3 x^{3}}{3}+\frac{2 x^{2}}{2}+k x\right]_{0}^{1}=0} \\\\ &{\left[x^{3}+x^{2}+k x\right]_{0}^{1}=0} \end{aligned}
\begin{aligned} &{[1+1+k-0]=0} \\\\ &k=-2 \end{aligned}

Definite Integrals exercise Very short answer type question 32

Answer: a=2
Hint: you must know the rule of integration
Given: \text { If } \int_{0}^{a} 3 x^{2} d x=8, \text { find } a
Solution: \int_{0}^{a} 3 x^{2} d x=8
\begin{aligned} &{\left[\frac{3 x^{3}}{3}\right]_{0}^{a}=8} \\\\ &{\left[x^{3}\right]_{0}^{a}=8} \end{aligned}
\begin{aligned} &a^{3}-0=8 \\\\ &a=\sqrt[3]{8} \\\\ &a=2 \end{aligned}

Definite Integrals exercise Very short answer type question 33

Answer: f^{\prime}(x)=x \sin x
Hint: you must know the rule of integration
Given: f(x)=\int_{0}^{x} t \sin t\; d t
Solution: f(x)=\int_{0}^{x} t \sin t\; d t
=\left[t \int \sin t\; d t-\int\left\{\frac{d t}{d t} \int \sin t \; d t\right\} d t\right]_{0}^{x}
\begin{aligned} &=\left[t(-\cos t)+\int \cos t d t\right]_{0}^{x} \\\\ &=[-t \cos t+\sin t]_{0}^{x} \end{aligned}
=-x \cos x+\sin x-(-0 \cos 0+\sin 0)
\begin{aligned} &f(x)=\sin x-x \cos x \\\\ &f^{\prime}(x)=\cos x-(x(-\sin x)+\cos x) \end{aligned}
\begin{aligned} &=\cos x+x \sin x-\cos x \\\\ &=x \sin x \end{aligned}

Definite Integrals exercise Very short answer type question 34

Answer: a=2
Hint: you must know the rule of integration
Given: -\int_{0}^{a} \frac{1}{4+x^{2}} d x=\frac{\pi}{8}, \text { find } a
Solution:
\begin{aligned} &\int_{0}^{a} \frac{1}{4+x^{2}} d x=\frac{\pi}{8} \\\\ &\int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a} \end{aligned}
\begin{aligned} &\therefore \int_{0}^{a} \frac{1}{2^{2}+x^{2}} d x=\frac{\pi}{8} \\\\ &\Rightarrow \frac{1}{2} \tan ^{-1} \frac{a}{2}-0=\frac{\pi}{8} \end{aligned}
\begin{aligned} &\Rightarrow \tan ^{-1} \frac{a}{2}=\frac{\pi}{4} \\\\ &\Rightarrow \frac{a}{2}=\tan ^{-1} \frac{\pi}{4} \\\\ &\Rightarrow \frac{a}{2}=1 \end{aligned}
\Rightarrow a=2

Definite Integrals exercise Very short answer type question 35

Answer:
Hint: Separate the terms of x and y and then integrate them.
Given:
Solution:
Integrating both sides



Definite Integrals exercise Very short answer type question 36

Answer: \frac{18}{\log _{e} 3}
Hint: you must know the rule of integration
Given: I=\int_{2}^{3} 3^{x} d x
Solution:
Let y=3^{x} ..............(i)
Taking logarithm on both sides
\begin{aligned} &\log y=\log 3^{x} \\\\ &\log y=x \log 3 \\\\ &y=e^{x \log 3} \end{aligned} ........(ii)
From eqn (i) and (ii) we can write
y=3^{x}=e^{x \log 3}
This means instead of integrating 3^{x} we will integrate e^{x \log 3}
\begin{aligned} &I=\int_{2}^{3} 3^{x} d x \\\\ &=\int_{2}^{3} e^{x \log 3} d x \end{aligned}
\begin{aligned} &=\left[\frac{e^{x \log 3}}{\log 3}\right]_{2}^{3} \\\\ &=\frac{1}{\log 3}\left[e^{3 \log 3}-e^{2 \log 3}\right] \end{aligned}
\begin{aligned} &=\frac{1}{\log 3}\left[e^{\log 3^{3}}-e^{\log 3^{2}}\right] \\\\ &=\frac{1}{\log 3}\left[3^{3}-3^{2}\right] \end{aligned}\begin{aligned} &=\frac{(27-9)}{\log 3} \\\\ &=\frac{18}{\log 3} \end{aligned}




Definite Integrals exercise Very short answer type question 37

Answer: 1
Hint: you must know the rule of integration
Given: \int_{0}^{2}[x] d x
Solution: \int_{0}^{2}[x] d x
\begin{aligned} &=\int_{0}^{1} 0 d x+\int_{1}^{2} 1 d x \\\\ &=0+[x]_{1}^{2} \\\\ &=2-1 \\\\ &=1 \end{aligned}


Definite Integrals exercise Very short answer type question 38

Answer: \frac{1}{2}
Hint: you must know the rule of integration
Given: \int_{0}^{1.5}[x] d x
Solution: \int_{0}^{1.5}[x] d x
\begin{aligned} &=\int_{0}^{1} 0 d x+\int_{1}^{1.5} 1 d x \\\\ &=[x]_{1}^{1.5} \end{aligned}
\begin{aligned} &=[1.5-1] \\\\ &=0.5 \\\\ &=\frac{1}{2} \end{aligned}

Definite Integrals exercise Very short answer type question 39

Answer: \frac{1}{2}
Hint: you must know the rule of integration
Given: \int_{0}^{1}\{x\} d x
Solution: \int_{0}^{1}\{x\} d x
\begin{aligned} &=\int_{0}^{1}(x-[x]) d x \\\\ &=\int_{0}^{1} x d x-\int_{0}^{1}[x] d x \end{aligned}
\begin{aligned} =&\left[\frac{x^{2}}{2}\right]_{0}^{1}-\int_{0}^{1} 0 d x \\\\ =&\left[\frac{1}{2}-0\right]-0 \\ \end{aligned}
=\frac{1}{2}

Definite Integrals exercise Very short answer type question 40

Answer: e-1
Hint: you must know the rule of integration
Given: \int_{0}^{1} e^{\{x\}} d x
Solution: \int_{0}^{1} e^{\{x\}} d x
Integration of exponential function is same as the function
\therefore\left[e^{\{x\}}\right]_{0}^{1} \quad\left[\because \int_{a}^{b} e^{x} d x=\left[e^{x}\right]_{a}^{b}\right]
\begin{aligned} &= e^{1}-e^{0} \\\\ &=e-1 \end{aligned}

Definite Integrals exercise Very short answer type question 41
Answer: \frac{3}{2}

Hint: you must know the rule of integration
Given: \int_{0}^{2} x[x] d x
Solution: \int_{0}^{2} x[x] d x
=\int_{0}^{1} x[0] d x+\int_{1}^{2} x(1) d x
\begin{aligned} &=\left[0+\frac{x^{2}}{2}\right]_{1}^{2} \\\\ &=\frac{4}{2}-\frac{1}{2}=\frac{3}{2} \end{aligned}

Definite Integrals exercise Very short answer type question 42

Answer: \frac{1}{\log _{e} 2}
Hint: you must know the rule of integration
Given: I=\int_{0}^{1} 2^{x-[x]} d x
Solution:
We know the values of greatest integer function on 0<x<1, \quad[x]=0
\begin{aligned} &I=\int_{0}^{1} 2^{x-0} d x \\\\ &=\int_{0}^{1} 2^{x} d x \\\\ &=\left[\frac{2^{x}}{\log 2}\right]_{0}^{1} \end{aligned}
\begin{aligned} &=\left[\frac{2^{1}}{\log 2}-\frac{2^{0}}{\log 2}\right] \\\\ &=\frac{(2-1)}{\log 2} \\\\ &=\frac{1}{\log 2} \end{aligned}

Definite Integrals exercise Very short answer type question 43

Answer: 0
Hint: you must know the rule of integration
Given: \int_{1}^{2} \log _{e}[x] d x
Solution: \int_{1}^{2} \log _{e}[x] d x
Using rule of greatest integer
\begin{aligned} & \int_{0}^{1} 0 d x+\int_{1}^{2} 1 d x+\int_{2}^{3} 2 d x \\\\ I=& \int_{1}^{2} \log [x] d x=\int_{0}^{1} \log (0) d x+\int_{1}^{2} \log 1 d x \\\\ =& 0 \end{aligned}


Definite Integrals exercise Very short answer type question 44

Answer: \sqrt{2}-1
Hint: The values of greatest integer function when 0<x<1,[x]=0
And when 1<x<2,[x]=1
Given: \int_{0}^{\sqrt{2}}\left[x^{2}\right] d x
Solution: \int_{0}^{\sqrt{2}}\left[x^{2}\right] d x
=\int_{0}^{1}\left[x^{2}\right] d x+\int_{1}^{\sqrt{2}}\left[x^{2}\right] d x [ using the value of greatest integer function ]
\begin{aligned} &=0+\int_{1}^{\sqrt{2}} 1 d x \\\\ &=[x]_{1}^{\sqrt{2}} \\\\ &=\sqrt{2}-1 \end{aligned}
Note: Final answer is not matching with the book.

Definite Integrals exercise Very short answer type question 45

Answer: \frac{\sqrt{2}-1}{\sqrt{2}}
Hint: you must know the rule of integration
Given: \int_{0}^{\frac{\pi}{4}} \sin \{x\} d x
Solution: \int_{0}^{\frac{\pi}{4}} \sin \{x\} d x
\begin{aligned} &=-[\cos \{x\}]_{0}^{\frac{\pi}{4}} \\\\ &=-\left[\cos \frac{\pi}{4}-\cos 0\right] \end{aligned}
\begin{aligned} &=-\left[\frac{1}{\sqrt{2}}-1\right] \\\\ &=\frac{\sqrt{2}-1}{\sqrt{2}} \end{aligned}

The RD Sharma class 12 solutions Definite Integrals VSA can be an excellent free study material for students who will appear for their board exams. Chapter 19 of the NCERT maths book deals with Definite Integral, Evaluating Definite Integrals, Definite Integral & Riemann integral Formulas, etc. Exercise VSA has 45 questions that require short and simple answers. The RD Sharma class 12th exercise VSA will guide you while you attempt to solve these questions.

The class 12 RD Sharma chapter 19 exercise VSA solution is a lucrative book of answers that will do wonders when practiced thoroughly. Students who have used the RD Sharma class 12 solutions Definite Integrals ex VSA in the past have found common questions in their board exams. Professionals in mathematics and teachers in India are responsible for drafting the RD Sharma class 12 solutions chapter 19 ex VSA book. Therefore, they contain some unique and improved methods of calculations rarely taught in class.

The RD Sharma class 12th exercise VSA always comes with the latest syllabus as it is updated with every new edition of the NCERT books. Students will find all answers to their NCERT questions in this book. Homework questions can also be answered with the help of this book, as teachers like to give questions from RD Sharma class 12th exercise VSA to test their student's progress.

Students can make use of these solutions to mark their performance and improve their weak areas so that they can solve all math problems without making any mistakes. The free copy of the RD Sharma class 12th exercise VSA pdf can be easily downloaded from the Career360 website, which is the one-stop destination for all RD Sharma solutions.

RD Sharma Chapter wise Solutions

Frequently Asked Questions (FAQs)

1. Is the latest version of class 12 RD Sharma chapter 4 exercise 4.5 solution book available online?

The class 12 RD Sharma chapter 19 exercise VSA solution book is always available, and the pdfs are updated regularly with any change in the CBSE syllabus. All answers provided in RD Sharma Solutions will correspond to the NCERT questions in the textbook.

2. In what ways does the RD Sharma class 12th exercise VSA help the students in completing their challenging homework?

Most of the homework questions given for the students are asked from the RD Sharma Class 12th exercise VSA solutions book. When the students own a copy of the RD Sharma Class 12th exercise VSA book, they can complete their homework effortlessly.

3. How can RD Sharma class 12 solutions Definite Integrals ex VSA be helpful for me?

The RD Sharma class 12 solutions Definite Integrals ex VSA can be a guide for students as it can help them test themselves on their recent lessons. They can use the answers in the book to check their own answers and see if they have made any mistakes.

4. Is the RD Sharma Class 12 Solutions Chapter 19 ex VSA used only by the students?

The RD Sharma Class 12 Solutions Chapter 19 Ex VSA reference guides are used by the students to clarify their doubts in the homework. Most of the teachers and mathematics tutors also refer to this guide to get ideas of solving sums quickly.

5. Where is the soft copy for the RD Sharma Class 12th exercise VSA available?

The students need not depend on hardcover solution books these days. The RD Sharma Class 12th Exercise VSA books can be downloaded from the Career 360 website and viewed from a laptop or smartphone according to their convenience.

Articles

Upcoming School Exams

Application Date:11 November,2024 - 10 January,2025

Application Date:11 November,2024 - 10 January,2025

Late Fee Application Date:13 December,2024 - 22 December,2024

Admit Card Date:13 December,2024 - 31 December,2024

View All School Exams
Get answers from students and experts
Back to top