RD Sharma class 12th exercise VSA is an extremely important book for all students who are in class 12. RD Sharma solutions is a trusted and famous name among numerous other NCERT solutions. Students and teachers highly recommend this book especially for its Mathematics solutions. The RD Sharma class 12 chapter 19 exercise VSA, especially can be an excellent guidebook for students who want to study and home well before their board exams..
Definite Integrals Excercise:VSA
Definite Integrals exercise Very short answer type question 1
Answer: $\frac{\pi }{4}$Hint: You must know the integration rule of trigonometric functions with its limits.
Given: $\int_{0}^{\frac{\pi}{2}} \sin ^{2} x\; d x$Solution: $\begin{aligned} &=\int_{0}^{\frac{\pi}{2}} \frac{1-\cos 2 x}{2} d x \\\\ &=\frac{1}{2} \int_{0}^{\frac{\pi}{2}} 1 . d x-\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \cos 2 x \; d x \end{aligned}$$\begin{aligned} &=\frac{1}{2}[x]_{0}^{\frac{\pi}{2}}-\frac{1}{2}\left[\frac{\sin 2 x}{2}\right]_{0}^{\frac{\pi}{2}} \\\\ &=\frac{1}{2}\left[\frac{\pi}{2}-0\right]-\frac{1}{4}\left[\sin \left(2 \frac{\pi}{2}\right)-\sin 0\right] \end{aligned}$$\begin{aligned} &=\frac{\pi}{4}-\frac{1}{4}[0] \\\\ &=\frac{\pi}{4} \end{aligned}$Definite Integrals exercise Very short answer type question 2
Answer: $\frac{\pi }{4}$Hint: You must know the integration rule of trigonometric functions.
Given: $\int_{0}^{\frac{\pi}{2}} \cos ^{2} x \; d x$Solution: $\int_{0}^{\frac{\pi}{2}} \cos ^{2} x \; d x$$\begin{aligned} &=\int_{0}^{\frac{\pi}{2}} \frac{1+\cos 2 x}{2} d x \\\\ &=\frac{1}{2} \int_{0}^{\frac{\pi}{2}} 1 . d x+\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \cos 2 x \; d x \end{aligned}$$\begin{aligned} &=\frac{1}{2}[x]_{0}^{\frac{\pi}{2}}+\frac{1}{2}\left[\frac{\sin 2 x}{2}\right]_{0}^{\frac{\pi}{2}} \\\\ &=\frac{1}{2}\left[\frac{\pi}{2}-0\right]+\frac{1}{4}\left[\sin \frac{2 \pi}{2}-\sin 0\right] \\\\ &=\frac{\pi}{4} \end{aligned}$Definite Integrals exercise Very short answer type question 3
Answer: $\frac{\pi }{2}$Hint: You must know the integration rules of trigonometric function with its limits
Given: $\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \sin ^{2} x \; d x$Solution: $\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \sin ^{2} x \; d x$$\begin{aligned} &=\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \frac{1-\cos 2 x}{2} d x \\\\ &=\frac{1}{2} \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} 1 \cdot d x-\frac{1}{2} \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \cos 2 x\; d x \end{aligned}$$=\frac{1}{2}[x]_{\frac{-\pi}{2}}^{\frac{\pi}{2}}-\frac{1}{2}\left[\frac{\sin 2 x}{2}\right]_{\frac{-\pi}{2}}^{\frac{\pi}{2}}$$\begin{aligned} &=\frac{1}{2}\left[\frac{\pi}{2}-\left(-\frac{\pi}{2}\right)\right]-\frac{1}{4}\left[\sin \frac{2(\pi)}{2}-\sin \frac{2(-\pi)}{2}\right] \\\\ &=\frac{1}{2}\left[\frac{2 \pi}{2}\right]-\frac{1}{4}[0+0] \\\\ &=\frac{\pi}{2} \end{aligned}$Definite Integrals exercise Very short answer type question 4
Answer: $\frac{\pi }{2}$
Hint: You must know the integration rules of trigonometric function with its limits
Given: $\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \cos ^{2} x \; d x$Solution: $\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \cos ^{2} x \; d x$$\begin{aligned} &=\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \frac{1+\cos 2 x}{2} d x \\\\ &=\frac{1}{2} \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} 1 . d x+\frac{1}{2} \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \cos 2 x\; d x \end{aligned}$$\begin{aligned} &=\frac{1}{2}[x]_{\frac{-\pi}{2}}^{\frac{\pi}{2}}+\frac{1}{2}\left[\frac{\sin 2 x}{2}\right]_{\frac{\pi}{2}}^{\frac{\pi}{2}} \\\\ &=\frac{1}{2}\left[\frac{\pi}{2}-\left(-\frac{\pi}{2}\right)\right]+\frac{1}{4}\left[\sin \frac{2(\pi)}{2}+\sin \frac{2(-\pi)}{2}\right] \end{aligned}$$\begin{aligned} &=\frac{1}{2}\left[\frac{2 \pi}{2}\right]+\frac{1}{4}[0+0] \\\\ &=\frac{\pi}{2} \end{aligned}$Definite Integrals exercise Very short answer type question 5
Answer: 0
Hint: You must know the integration rules of trigonometric function with its limits
Given:$\int_{-\pi}^{\frac{\pi}{2}} \sin ^{3} x\; d x$Solution: $\int_{-\pi}^{\frac{\pi}{2}} \sin ^{3} x\; d x$$\begin{aligned} &=\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \sin ^{2} x \sin x \; d x \\\\ &=\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}}\left(1-\cos ^{2} x\right) \sin x\; d x \end{aligned}$$=\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \sin x\; d x+\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \cos ^{2} x \sin x\; d x$We know that
$\int \sin x \; d x=-\cos x \text { and } \int \cos x\; d x=\sin x$$\begin{aligned} &=[-\cos x]_{\frac{-\pi}{2}}^{\frac{\pi}{2}}+\left[\frac{-\cos ^{3} x}{3}\right]_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \\\\ &=-\cos \frac{\pi}{2}-\left(-\cos \frac{-\pi}{2}\right)+\left[\frac{\cos ^{3}\left(\frac{\pi}{2}\right)}{3}-\frac{\cos ^{3}\left(\frac{-\pi}{2}\right)}{3}\right] \\\\ &=0+0+0-0 \\\\ &=0 \end{aligned}$Definite Integrals exercise Very short answer type question 6
Answer: 0
Hint: You must know the integration rules of trigonometric function with its limits
Given: $\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} x \cos ^{2} x \; d x$Solution: $I=\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} x \cos ^{2} x \; d x$$\begin{aligned} &f(x)=x \cos ^{2} x \\\\ &f(-x)=(-x) \cos ^{2}(-x) \\\\ &=-x \cos ^{2} x \\\\ &=-f(x) \end{aligned}$Hence, f(x) is an odd function.
Since,
$\int_{-a}^{a} f(x) d x=0$ if f(x) is an odd
$\therefore \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} x \cos ^{2} x\; d x=0$Definite Integrals exercise Very short answer type question 7
Answer: $1-\frac{\pi}{4}$Hint: You must know the integration rules of trigonometric function with its limits
Given: $\int_{0}^{\frac{\pi}{4}} \tan ^{2} x \; d x$Solution: $\int_{0}^{\frac{\pi}{4}} \tan ^{2} x \; d x$$\begin{aligned} &=\int_{0}^{\frac{\pi}{4}}\left(\sec ^{2} x-1\right) d x \\\\ &=\int_{0}^{\frac{\pi}{4}} \sec ^{2} x d x-\int_{0}^{\frac{\pi}{4}} 1 d x \end{aligned}$$\begin{aligned} &=[\tan x]_{0}^{\frac{\pi}{4}}-[x]_{0}^{\frac{\pi}{4}} \\\\ &=\tan \frac{\pi}{4}-\tan 0-\frac{\pi}{4}+0 \end{aligned}$$\begin{aligned} &=1-0-\frac{\pi}{4}+0 \\\\ &=1-\frac{\pi}{4} \end{aligned}$Definite Integrals exercise Very short answer type question 8
Answer: $\frac{\pi }{4}$Hint: You must know the integration rules of trigonometric function with its limits
Given: $\int_{0}^{1} \frac{1}{x^{2}+1} d x$Solution: $\int_{0}^{1} \frac{1}{x^{2}+1} d x$$\begin{aligned} &=\left[\tan ^{-1} 1-\tan ^{-1} 0\right] \\\\ &=\frac{\pi}{4}-0 \\\\ &=\frac{\pi}{4} \end{aligned}$Definite Integrals exercise Very short answer type question 9
Answer: $-1$Hint: You must know the integration rules of trigonometric function with its limits
Given: $\int_{-2}^{1} \frac{|x|}{x} d x$Solution: $\int_{-2}^{1} \frac{|x|}{x} d x$$\begin{aligned} &=\int_{-2}^{0} \frac{-x}{x} d x+\int_{0}^{1} \frac{x}{x} d x \\\\ &=\int_{-2}^{0}-1 d x+\int_{0}^{1} 1 d x \end{aligned}$$\begin{aligned} &=-[x]_{-2}^{0}+[x]_{0}^{1} \\\\ &=-[0+2]+[1+0] \\\\ &=-2+1 \\\\ &=-1 \end{aligned}$Definite Integrals exercise Very short answer type question 10
Answer: 1
Hint: You must know the integration rules of trigonometric function with its limits
Given: $\int_{0}^{\infty} e^{-x} d x$Solution: $\left[\frac{e^{-x}}{-1}\right]_{0}^{\infty}$$\begin{aligned} &=-\left[\frac{1}{e^{\infty}}-\frac{1}{e^{0}}\right] \\\\ &=0+1 \\\\ &=1 \end{aligned}$Definite Integrals exercise Very short answer type question 11
Answer: $\frac{\pi }{2}$Hint: You must know the integration rules of trigonometric function with its limits
Given: $\int_{0}^{4} \frac{1}{\sqrt{16-x^{2}}} d x$Solution: $\int_{0}^{4} \frac{1}{\sqrt{16-x^{2}}} d x$$=\int_{0}^{4} \frac{1}{\sqrt{(4)^{2}-x^{2}}} d x$$\begin{aligned} &\text { Put } x=4 \sin \theta \quad \theta=\sin ^{-1} \frac{x}{4} \\ &\mathrm{~d} \mathrm{x}=4 \cos \theta\; d \theta \end{aligned}$$\begin{aligned} &=\int_{0}^{4} \frac{4 \cos \theta}{\sqrt{16-16 \sin ^{2} \theta}} d \theta \\\\ &=\int_{0}^{4} \frac{4 \cos \theta}{\sqrt{16\left(1-\sin ^{2} \theta\right)}} d \theta \end{aligned}$$\begin{aligned} &=\int_{0}^{4} \frac{4 \cos \theta}{4 \sqrt{\cos ^{2} \theta}} d \theta \\\\ &=\int_{0}^{4} \frac{4 \cos \theta}{4 \cos \theta} d \theta \end{aligned}$$\begin{aligned} &=\int_{0}^{4} 1 d \theta \\\\ &=[\theta]_{0}^{4}=\left[\operatorname{Sin}^{-1} \frac{x}{4}\right]_{0}^{4} \end{aligned}$$\begin{aligned} &=\left[\sin ^{-1} \frac{4}{4}-\sin ^{-1} \frac{0}{4}\right] \\\\ &=\sin ^{-1} 1 \\\\ &=\frac{\pi}{2} \end{aligned}$
Answer: $\frac{\pi }{12}$Hint: You must know the integration rules of trigonometric function with its limits
Given: $\int_{0}^{3} \frac{1}{x^{2}+9} d x$Solution: $\int_{0}^{3} \frac{1}{x^{2}+9} d x$Use the formula
$\int \frac{1}{x^{2}+a^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}+c$$\begin{aligned} &=\frac{1}{3}\left[\tan ^{-1} \frac{x}{3}\right]_{0}^{3} \\\\ &=\frac{1}{3}\left[\tan ^{-1} 1-\tan ^{-1} 0\right] \end{aligned}$$\begin{aligned} &=\frac{1}{3}\left[\frac{\pi}{4}\right] \\\\ &=\frac{\pi}{12} \end{aligned}$Definite Integrals exercise Very short answer type question 13
Answer: $\sqrt{2}$Hint: You must know the integration rules of trigonometric function with its limits
Given: $\int_{0}^{\frac{\pi}{2}} \sqrt{1-\cos 2 x} \; d x$Solution: $\int_{0}^{\frac{\pi}{2}} \sqrt{1-\cos 2 x} \; d x$$\begin{aligned} &=\int_{0}^{\frac{\pi}{2}} \sqrt{2 \sin ^{2} x} \; d x \\\\ &=\int_{0}^{\frac{\pi}{2}} \sqrt{2} \sin x\; d x \end{aligned}$$\begin{aligned} &=\sqrt{2}[-\cos x]_{0}^{\frac{\pi}{2}} \\\\ &=\sqrt{2}\left[-\cos \frac{\pi}{2}+\cos 0\right] \\\\ &=\sqrt{2} \end{aligned}$Definite Integrals exercise Very short answer type question 14
Answer: 0
Hint: You must know the integration rules of trigonometric function with its limits
Given: $\int_{0}^{\frac{\pi}{2}} \log \tan x \; d x$Solution: $\int_{0}^{\frac{\pi}{2}} \log \tan x \; d x$ .................(i)
$\mathrm{I}=\int_{0}^{\frac{\pi}{2}} \log \tan \left(\frac{\pi}{2}-x\right) d x$$=\int_{0}^{\frac{\pi}{2}} \log \cot x \; d x$ ..................(ii)
Adding (i) and (ii)
$2 I=\int_{0}^{\frac{\pi}{2}} \log (\tan x) d x+\int_{0}^{\frac{\pi}{2}} \log (\cot x) d x$$=\int_{0}^{\frac{\pi}{2}}(\log \tan x+\log \cot x) d x$$=\int_{0}^{\frac{\pi}{2}}(\log \tan x \cdot \cot x) d x \quad[\because \log m+\log n=\log m n]$$=\int_{0}^{\frac{\pi}{2}}(\log 1) d x \quad[\because \tan x \cdot \cot x=1]$$\begin{aligned} &=\int_{0}^{\frac{\pi}{2}}(0) d x \quad[\because \log 1=0] \\\\ &=0 \end{aligned}$Definite Integrals exercise Very short answer type question 15
Answer: 0
Hint: You must know the integration rules of trigonometric function with its limits
Given: $\int_{0}^{\frac{\pi}{2}} \log \left(\frac{3+5 \cos x}{3+5 \sin x}\right) d x$ .............(i)
Solution: $\int_{0}^{\frac{\pi}{2}} \log \left(\frac{3+5 \cos x}{3+5 \sin x}\right) d x$Property:
$\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$$\mathrm{I}=\int_{0}^{\frac{\pi}{2}} \log \frac{3+5 \cos \left(\frac{\pi}{2}-x\right)}{3+5 \sin \left(\frac{\pi}{2}-x\right)} d x$$\begin{aligned} &=\int_{0}^{\frac{\pi}{2}} \log \frac{3+5 \sin x}{3+5 \cos x} d x \\\\ &=-\int_{0}^{\frac{\pi}{2}} \log \frac{3+5 \cos x}{3+5 \sin x} d x \end{aligned}$ ................(ii)
Adding (i) and (ii),
$\begin{aligned} &21=\int_{0}^{\frac{\pi}{2}} \log \left(\frac{3+5 \cos x}{3+5 \sin x}\right) d x+\left[-\int_{0}^{\frac{\pi}{2}} \log \frac{3+5 \cos x}{3+5 \sin x} d x\right] \\\\ &21=0 \\\\ &I=0 \end{aligned}$
Answer: $\frac{\pi }{4}$Hint: You must know the integration rules of trigonometric function with its limits
Given: $\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{n} x}{\sin ^{n} x+\cos ^{n} x} d x$Solution: $\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{n} x}{\sin ^{n} x+\cos ^{n} x} d x$ ....................(i)
Property:
$\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$$=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{n}\left(\frac{\pi}{2}-x\right)}{\sin ^{n}\left(\frac{\pi}{2}-x\right)+\cos ^{n}\left(\frac{\pi}{2}-x\right)} d x$$=\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{n} x}{\sin ^{n} x+\cos ^{n} x} d x$ ..................(ii)
Add (i) and (ii)
$\begin{aligned} &2 \mathrm{l}=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{n} x+\cos ^{n} x}{\sin ^{n} x+\cos ^{n} x} d x \\\\ &2 \mathrm{I}=\int_{0}^{\frac{\pi}{2}} 1 \cdot d x \end{aligned}$$\begin{aligned} &21=[x]_{0}^{\frac{\pi}{2}} \\\\ &2 I=\left[\frac{\pi}{2}-0\right] \\\\ &I=\frac{\pi}{4} \end{aligned}$Definite Integrals exercise Very short answer type question 17
Answer: 0
Hint: You must know the integration rules of trigonometric function with its limits
Given: $\int_{0}^{\pi} \cos ^{5} x \; d x$Solution: Using property
$\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$$\mathrm{I}=\int_{0}^{\pi} \cos ^{5} x \; d x=\int_{0}^{\pi} \cos x \cos ^{4} x \; d x$$=\int_{0}^{\pi} \cos x\left(1-\sin ^{2} x\right)^{2} d x$$\begin{aligned} &\mathrm{Put} \sin \mathrm{x}=\mathrm{t} \\\\ &\cos x \; d x=d t \end{aligned}$$\begin{aligned} &\mathrm{I}=\int_{0}^{\pi}\left(1-t^{2}\right)^{2} d x \\\\ &=\int_{0}^{\pi}\left(1+t^{4}-2 t^{2}\right) d x \end{aligned}$$=\left[t+\frac{t^{5}}{5}-\frac{2 t^{3}}{3}\right]_{0}^{\pi}$$\begin{aligned} &=\left[\sin x+\frac{\sin ^{5} x}{5}-\frac{2 \sin ^{3} x}{3}\right]_{0}^{\pi} \quad\quad\quad\quad[\sin \pi=0, \sin 0=0] \\\\ &I=0 \end{aligned}$Definite Integrals exercise Very short answer type question 18
Answer: 0
Hint: You must know the integration rules of trigonometric function with its limits
Given: $\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \log \left(\frac{a-\sin \theta}{a+\sin \theta}\right) d \theta$Solution: $I=\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \log \left(\frac{a-\sin \theta}{a+\sin \theta}\right) d \theta$ .............(i)
Let
$f(x)=\log \left(\frac{a-\sin \theta}{a+\sin \theta}\right)$$f(-x)=\log \left(\frac{a-\sin (-\theta)}{a+\sin (-\theta)}\right)$$=\log \left(\frac{a+\sin \theta}{a-\sin \theta}\right) \quad[\because \sin (-x)=-\sin x]$$\begin{aligned} &=-\log \left(\frac{a-\sin \theta}{a+\sin \theta}\right) \\ &=-\mathrm{f}(\mathrm{x}) \end{aligned}$Hence, f(x) is an odd function.
Since,
$\int_{-a}^{a} f(x) d x=0$ if f(x) is an odd.
$\therefore \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \log \left(\frac{a-\sin \theta}{a+\sin \theta}\right) d \theta=0$Definite Integrals exercise Very short answer type question 19
Answer: 0
Hint: you must know the rule of integration for function of x
Given: $\int_{-1}^{1} x|x| d x$Solution: $I=\int_{-1}^{1} x|x| d x$$\begin{aligned} &=\int_{-1}^{0} x(-x) d x+\int_{0}^{1} x(x) d x \\\\ &=\int_{-1}^{0}-x^{2} d x+\int_{0}^{1} x^{2} d x \end{aligned}$$\begin{aligned} &=-\frac{1}{3}\left[x^{3}\right]_{-1}^{0}+\frac{1}{3}\left[x^{3}\right]_{0}^{1} \\\\ &=-\frac{1}{3}[0-(-1)]+\frac{1}{3}[1-0] \end{aligned}$$\begin{aligned} &=-\frac{1}{3}+\frac{1}{3} \\\\ &=0 \end{aligned}$Definite Integrals exercise Very short answer type question 20
Answer: $\frac{b-a}{2}$Hint: you must know the rule of integration for function of x
Given: $\int_{a}^{b} \frac{f(x)}{f(x)+f(a+b-x)} d x$Solution: $\mathrm{I}=\int_{a}^{b} \frac{f(x)}{f(x)+f(a+b-x)} d x$ ...............(i)
Using property
$\int_{a}^{b} f(x)=\int_{a}^{b} f(a+b-x) d x$$\mathrm{I}=\int_{a}^{b} \frac{f(a+b-x)}{f(a+b-x)+f(a+b-(a+b-x))} d x$$\mathrm{I}=\int_{a}^{b} \frac{f(a+b-x)}{f(a+b-x)+f(x)} d x$ ................(ii)
Add (i) and (ii)
$\begin{aligned} &2 I=\int_{a}^{b} \frac{f(x)+f(a+b-x)}{f(x)+f(a+b-x)} d x \\\\ &2 I=\int_{a}^{b} 1 . d x \end{aligned}$$\begin{aligned} &2 \mathrm{l}=[x]_{a}^{b} \\\\ &2 \mathrm{l}=\mathrm{b}-\mathrm{a} \\\\ &\mathrm{I}=\frac{b-a}{2} \end{aligned}$Definite Integrals exercise Very short answer type question 21
Answer: $\frac{\pi }{4}$Hint: you must know the rule of integration for function of x
Given:$\int_{0}^{1} \frac{1}{1+x^{2}} d x$Solution: $\int_{0}^{1} \frac{1}{1+x^{2}} d x$$\begin{aligned} &=\left[\tan ^{-1} x\right]_{0}^{1} \\\\ &={\left[\tan ^{-1} 1-\tan ^{-1} 0\right]} \\\\ &=\frac{\pi}{4} \end{aligned}$Definite Integrals exercise Very short answer type question 22
Answer: $\frac{1}{2} \log 2$Hint: you must know the rule of integration for function of x
Given: $\int_{0}^{\frac{\pi}{4}} \tan x\; d x$Solution: $\int_{0}^{\frac{\pi}{4}} \tan x\; d x$$\begin{aligned} &=\log [\sec x]_{0}^{\frac{\pi}{4}} \\\\ &=\log \left(\sec \frac{\pi}{4}\right)-\log (\sec 0) \\\\ &=\log |\sqrt{2}|-\log |1| \end{aligned}$$\begin{aligned} &=\log \sqrt{2}-0 \\\\ &=\log \sqrt{2} \\\\ &=\log (2)^{\frac{1}{2}} \\\\ &=\frac{1}{2} \log 2 \end{aligned}$Definite Integrals exercise Very short answer type question 23
Answer: $\log \frac{3}{2}$
Hint: you must know the rule of integration for function of x
Given:$\int_{2}^{3} \frac{1}{x} d x$Solution: $\int_{2}^{3} \frac{1}{x} d x$$\begin{aligned} &=[\log |x|]_{2}^{3} \\\\ &=\log 3-\log 2 \\\\ &=\log \frac{3}{2} \end{aligned}$Definite Integrals exercise Very short answer type question 24
Answer: $\pi$Hint: you must know the rule of integration
Given:$\int_{0}^{2} \sqrt{4-x^{2}}$Solution: $\int_{0}^{2} \sqrt{4-x^{2}}$$\begin{aligned} &\text { Put } x=2 \sin \theta \\\\ &d x=2 \cos \theta d \theta \end{aligned}$$\begin{aligned} &=\int_{0}^{\frac{\pi}{2}} \sqrt{4-4 \sin ^{2} \theta} \cdot 2 \cos \theta d \theta \\\\ &=\int_{0}^{\frac{\pi}{2}} 4 \cos ^{2} \theta d \theta \end{aligned}$$\begin{aligned} &=\int_{0}^{\frac{\pi}{2}} 4 \cdot \frac{1}{2}(1+\cos 2 \theta) d \theta \\\\ &=2\left[\theta+\frac{\sin 2 \theta}{2}\right]_{0}^{\frac{\pi}{2}} \end{aligned}$$\begin{aligned} &=2\left[\frac{\pi}{2}+\frac{\sin \pi}{2}-0-0\right] \\\\ &=\pi \end{aligned}$Definite Integrals exercise Very short answer type question 25
Answer: $\log _{e} 2$Hint: you must know the rule of integration for function of x
Given: $\int_{0}^{1} \frac{2 x}{1+x^{2}} \mathrm{dx}$Solution: $\int_{0}^{1} \frac{2 x}{1+x^{2}} \mathrm{dx}$Put
$1+x^{2}=t$$2 x \; d x=d t$$\begin{aligned} &=\int_{0}^{1} \frac{d t}{t} \\\\ &=[\log t]_{0}^{1} \end{aligned}$$\begin{aligned} &=\left[\log \left(1+x^{2}\right)\right]_{0}^{1} \\\\ &=[\log (1+1)-\log (1+0)] \\\\ &=\log _{e} 2 \end{aligned}$Definite Integrals exercise Very short answer type question 26
Answer: $\frac{1}{2}(e-1)$Hint: you must know the rule of integration for function of x
Given: $\int_{0}^{1} x e^{x^{2}} d x$Solution:Put
$\begin{aligned} &x^{2}=t \\\\ &2 x d x=d t \\\\ &x d x=\frac{d t}{2} \end{aligned}$$\begin{aligned} &=\frac{1}{2} \int_{0}^{1} e^{t} d t \\\\ &=\frac{1}{2}\left[e^{t}\right]_{0}^{1} \end{aligned}$$\begin{aligned} &=\frac{1}{2}\left[e^{x^{2}}\right]_{0}^{1} \\\\ &=\frac{1}{2}\left[e^{1}-e^{0}\right] \\\\ &=\frac{1}{2}[e-1] \end{aligned}$Definite Integrals exercise Very short answer type question 27
Answer: $\frac{1}{2}$Hint: you must know the rule of integration
Given: $\int_{0}^{\frac{\pi}{4}} \sin 2 x \; d x$Solution: $\int_{0}^{\frac{\pi}{4}} \sin 2 x \; d x$$\begin{aligned} &=\frac{1}{2}(-\cos 2 x)_{0}^{\frac{\pi}{4}} \\\\ &=-\frac{1}{2}(\cos 2 x)_{0}^{\frac{\pi}{4}} \end{aligned}$$\begin{aligned} &=\frac{-1}{2}\left[\cos 2\left(\frac{\pi}{4}\right)-\cos 2(0)\right] \\\\ &=\frac{-1}{2}\left[\cos \frac{\pi}{2}-\cos 0\right] \end{aligned}$$\begin{aligned} &=\frac{-1}{2}[0-1] \\\\ &=\frac{1}{2} \end{aligned}$Definite Integrals exercise Very short answer type question 28
Answer: $\log _{e} 2$Hint: you must know the rule of integration
Given: $\int_{e}^{e^{2}} \frac{1}{x \log x} d x$Solution: Put
$\log x=t$$\frac{d x}{x}=\mathrm{dt}$$\begin{aligned} &=\int_{e}^{e^{2}} \frac{1}{t} d t \\\\ &=[\log \mid t]_{-e}^{e^{2}} \end{aligned}$$\begin{aligned} &=[\log [\log x]]_{e}^{e^{2}} \\\\ &=\log \left(\log e^{2}\right)-\log (\log e) \\\\ &=\log (2 \log e)-\log (1) \\\\ &=\log 2 \end{aligned}$Definite Integrals exercise Very short answer type question 29
Answer: 1
Hint: you must know the rule of integration
Given: $\int_{0}^{\frac{\pi}{2}} e^{x}(\sin x-\cos x) d x$Solution: $\int_{0}^{\frac{\pi}{2}} e^{x}(\sin x-\cos x) d x$$=-\int_{0}^{\frac{\pi}{2}} e^{x}(\cos x-\sin x) d x$$\begin{aligned} &f(x)=\cos x \\\\ &f^{\prime}(x)=-\sin x \\\\ &\int e^{x}\left[f(x)+f^{\prime}(x)\right] d x=e^{x} f(x)+c \end{aligned}$$\begin{aligned} &\text { we get, } I=-\left[e^{x} \cos x\right]_{0}^{\frac{\pi }{2}} \\\\ &=-e^{\frac{\pi}{2}} \cos \frac{\pi}{2}+e^{0} \cos (0) \\\\ &=0+(1)(1) \\\\ &=1 \end{aligned}$Definite Integrals exercise Very short answer type question 30
Answer: $\frac{1}{2} \log \left(\frac{17}{5}\right)$Hint: you must know the rule of integration
Given: $\int_{2}^{4} \frac{x}{x^{2}+1} d x$Solution: Put
$x^{2}+1=t$$\begin{aligned} &2 x \; d x=d t \\\\ &x \; d x=\frac{d t}{2} \end{aligned}$$\begin{aligned} &\mathrm{I}=\frac{1}{2} \int_{2}^{4} \frac{d t}{t} \\\\ &=\frac{1}{2}[\log |t|]_{2}^{4} \end{aligned}$$\begin{aligned} &=\frac{1}{2}\left[\log \left|x^{2}+1\right|\right]_{2}^{4} \\\\ &=\frac{1}{2}[\log (16+1)+\log (4+1)] \\\\ &=\frac{1}{2} \log \left(\frac{17}{5}\right) \end{aligned}$Definite Integrals exercise Very short answer type question 31
Answer: 2
Hint: you must know the rule of integration
Given: $\text { If } \int_{0}^{1}\left(3 x^{2}+2 x+k\right) d x=0 \text { find } k$Solution: $\int_{0}^{1}\left(3 x^{2}+2 x+k\right) d x=0$$\begin{aligned} &{\left[\frac{3 x^{3}}{3}+\frac{2 x^{2}}{2}+k x\right]_{0}^{1}=0} \\\\ &{\left[x^{3}+x^{2}+k x\right]_{0}^{1}=0} \end{aligned}$$\begin{aligned} &{[1+1+k-0]=0} \\\\ &k=-2 \end{aligned}$Definite Integrals exercise Very short answer type question 32
Answer: $a=2$Hint: you must know the rule of integration
Given: $\text { If } \int_{0}^{a} 3 x^{2} d x=8, \text { find } a$Solution: $\int_{0}^{a} 3 x^{2} d x=8$$\begin{aligned} &{\left[\frac{3 x^{3}}{3}\right]_{0}^{a}=8} \\\\ &{\left[x^{3}\right]_{0}^{a}=8} \end{aligned}$$\begin{aligned} &a^{3}-0=8 \\\\ &a=\sqrt[3]{8} \\\\ &a=2 \end{aligned}$Definite Integrals exercise Very short answer type question 33
Answer: $f^{\prime}(x)=x \sin x$Hint: you must know the rule of integration
Given: $f(x)=\int_{0}^{x} t \sin t\; d t$Solution: $f(x)=\int_{0}^{x} t \sin t\; d t$$=\left[t \int \sin t\; d t-\int\left\{\frac{d t}{d t} \int \sin t \; d t\right\} d t\right]_{0}^{x}$$\begin{aligned} &=\left[t(-\cos t)+\int \cos t d t\right]_{0}^{x} \\\\ &=[-t \cos t+\sin t]_{0}^{x} \end{aligned}$$=-x \cos x+\sin x-(-0 \cos 0+\sin 0)$$\begin{aligned} &f(x)=\sin x-x \cos x \\\\ &f^{\prime}(x)=\cos x-(x(-\sin x)+\cos x) \end{aligned}$$\begin{aligned} &=\cos x+x \sin x-\cos x \\\\ &=x \sin x \end{aligned}$Definite Integrals exercise Very short answer type question 34
Answer: $a=2$Hint: you must know the rule of integration
Given: $-\int_{0}^{a} \frac{1}{4+x^{2}} d x=\frac{\pi}{8}, \text { find } a$Solution: $\begin{aligned} &\int_{0}^{a} \frac{1}{4+x^{2}} d x=\frac{\pi}{8} \\\\ &\int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a} \end{aligned}$$\begin{aligned} &\therefore \int_{0}^{a} \frac{1}{2^{2}+x^{2}} d x=\frac{\pi}{8} \\\\ &\Rightarrow \frac{1}{2} \tan ^{-1} \frac{a}{2}-0=\frac{\pi}{8} \end{aligned}$$\begin{aligned} &\Rightarrow \tan ^{-1} \frac{a}{2}=\frac{\pi}{4} \\\\ &\Rightarrow \frac{a}{2}=\tan ^{-1} \frac{\pi}{4} \\\\ &\Rightarrow \frac{a}{2}=1 \end{aligned}$$\Rightarrow a=2$
Definite Integrals exercise Very short answer type question 36
Answer: $\frac{18}{\log _{e} 3}$Hint: you must know the rule of integration
Given: $I=\int_{2}^{3} 3^{x} d x$Solution: Let
$y=3^{x}$ ..............(i)
Taking logarithm on both sides
$\begin{aligned} &\log y=\log 3^{x} \\\\ &\log y=x \log 3 \\\\ &y=e^{x \log 3} \end{aligned}$ ........(ii)
From eqn (i) and (ii) we can write
$y=3^{x}=e^{x \log 3}$This means instead of integrating
$3^{x}$ we will integrate
$e^{x \log 3}$$\begin{aligned} &I=\int_{2}^{3} 3^{x} d x \\\\ &=\int_{2}^{3} e^{x \log 3} d x \end{aligned}$$\begin{aligned} &=\left[\frac{e^{x \log 3}}{\log 3}\right]_{2}^{3} \\\\ &=\frac{1}{\log 3}\left[e^{3 \log 3}-e^{2 \log 3}\right] \end{aligned}$$\begin{aligned} &=\frac{1}{\log 3}\left[e^{\log 3^{3}}-e^{\log 3^{2}}\right] \\\\ &=\frac{1}{\log 3}\left[3^{3}-3^{2}\right] \end{aligned}$$\begin{aligned} &=\frac{(27-9)}{\log 3} \\\\ &=\frac{18}{\log 3} \end{aligned}$
Definite Integrals exercise Very short answer type question 38
Answer: $\frac{1}{2}$Hint: you must know the rule of integration
Given: $\int_{0}^{1.5}[x] d x$Solution: $\int_{0}^{1.5}[x] d x$$\begin{aligned} &=\int_{0}^{1} 0 d x+\int_{1}^{1.5} 1 d x \\\\ &=[x]_{1}^{1.5} \end{aligned}$$\begin{aligned} &=[1.5-1] \\\\ &=0.5 \\\\ &=\frac{1}{2} \end{aligned}$Definite Integrals exercise Very short answer type question 39
Answer: $\frac{1}{2}$Hint: you must know the rule of integration
Given: $\int_{0}^{1}\{x\} d x$Solution: $\int_{0}^{1}\{x\} d x$$\begin{aligned} &=\int_{0}^{1}(x-[x]) d x \\\\ &=\int_{0}^{1} x d x-\int_{0}^{1}[x] d x \end{aligned}$$\begin{aligned} =&\left[\frac{x^{2}}{2}\right]_{0}^{1}-\int_{0}^{1} 0 d x \\\\ =&\left[\frac{1}{2}-0\right]-0 \\ \end{aligned}$$=\frac{1}{2}$Definite Integrals exercise Very short answer type question 40
Answer: $e-1$Hint: you must know the rule of integration
Given: $\int_{0}^{1} e^{\{x\}} d x$Solution: $\int_{0}^{1} e^{\{x\}} d x$Integration of exponential function is same as the function
$\therefore\left[e^{\{x\}}\right]_{0}^{1} \quad\left[\because \int_{a}^{b} e^{x} d x=\left[e^{x}\right]_{a}^{b}\right]$$\begin{aligned} &= e^{1}-e^{0} \\\\ &=e-1 \end{aligned}$Definite Integrals exercise Very short answer type question 41
Answer: $\frac{3}{2}$
Hint: you must know the rule of integration
Given: $\int_{0}^{2} x[x] d x$Solution: $\int_{0}^{2} x[x] d x$$=\int_{0}^{1} x[0] d x+\int_{1}^{2} x(1) d x$$\begin{aligned} &=\left[0+\frac{x^{2}}{2}\right]_{1}^{2} \\\\ &=\frac{4}{2}-\frac{1}{2}=\frac{3}{2} \end{aligned}$Definite Integrals exercise Very short answer type question 42
Answer: $\frac{1}{\log _{e} 2}$Hint: you must know the rule of integration
Given: $I=\int_{0}^{1} 2^{x-[x]} d x$Solution: We know the values of greatest integer function on
$0<x<1, \quad[x]=0$$\begin{aligned} &I=\int_{0}^{1} 2^{x-0} d x \\\\ &=\int_{0}^{1} 2^{x} d x \\\\ &=\left[\frac{2^{x}}{\log 2}\right]_{0}^{1} \end{aligned}$$\begin{aligned} &=\left[\frac{2^{1}}{\log 2}-\frac{2^{0}}{\log 2}\right] \\\\ &=\frac{(2-1)}{\log 2} \\\\ &=\frac{1}{\log 2} \end{aligned}$Definite Integrals exercise Very short answer type question 43
Answer: 0
Hint: you must know the rule of integration
Given: $\int_{1}^{2} \log _{e}[x] d x$Solution: $\int_{1}^{2} \log _{e}[x] d x$Using rule of greatest integer
$\begin{aligned} & \int_{0}^{1} 0 d x+\int_{1}^{2} 1 d x+\int_{2}^{3} 2 d x \\\\ I=& \int_{1}^{2} \log [x] d x=\int_{0}^{1} \log (0) d x+\int_{1}^{2} \log 1 d x \\\\ =& 0 \end{aligned}$Definite Integrals exercise Very short answer type question 44
Answer: $\sqrt{2}-1$Hint: The values of greatest integer function when
$0<x<1,[x]=0$And when
$1<x<2,[x]=1$ Given: $\int_{0}^{\sqrt{2}}\left[x^{2}\right] d x$Solution: $\int_{0}^{\sqrt{2}}\left[x^{2}\right] d x$$=\int_{0}^{1}\left[x^{2}\right] d x+\int_{1}^{\sqrt{2}}\left[x^{2}\right] d x$ [ using the value of greatest integer function ]
$\begin{aligned} &=0+\int_{1}^{\sqrt{2}} 1 d x \\\\ &=[x]_{1}^{\sqrt{2}} \\\\ &=\sqrt{2}-1 \end{aligned}$Note: Final answer is not matching with the book.
Definite Integrals exercise Very short answer type question 45
Answer: $\frac{\sqrt{2}-1}{\sqrt{2}}$Hint: you must know the rule of integration
Given: $\int_{0}^{\frac{\pi}{4}} \sin \{x\} d x$Solution: $\int_{0}^{\frac{\pi}{4}} \sin \{x\} d x$$\begin{aligned} &=-[\cos \{x\}]_{0}^{\frac{\pi}{4}} \\\\ &=-\left[\cos \frac{\pi}{4}-\cos 0\right] \end{aligned}$$\begin{aligned} &=-\left[\frac{1}{\sqrt{2}}-1\right] \\\\ &=\frac{\sqrt{2}-1}{\sqrt{2}} \end{aligned}$The RD Sharma class 12 solutions Definite Integrals VSA can be an excellent free study material for students who will appear for their board exams. Chapter 19 of the NCERT maths book deals with Definite Integral, Evaluating Definite Integrals, Definite Integral & Riemann integral Formulas, etc. Exercise VSA has 45 questions that require short and simple answers. The RD Sharma class 12th exercise VSA will guide you while you attempt to solve these questions.
The class 12 RD Sharma chapter 19 exercise VSA solution is a lucrative book of answers that will do wonders when practiced thoroughly. Students who have used the RD Sharma class 12 solutions Definite Integrals ex VSA in the past have found common questions in their board exams. Professionals in mathematics and teachers in India are responsible for drafting the RD Sharma class 12 solutions chapter 19 ex VSA book. Therefore, they contain some unique and improved methods of calculations rarely taught in class.
The RD Sharma class 12th exercise VSA always comes with the latest syllabus as it is updated with every new edition of the NCERT books. Students will find all answers to their NCERT questions in this book. Homework questions can also be answered with the help of this book, as teachers like to give questions from RD Sharma class 12th exercise VSA to test their student's progress.
Students can make use of these solutions to mark their performance and improve their weak areas so that they can solve all math problems without making any mistakes. The free copy of the RD Sharma class 12th exercise VSA pdf can be easily downloaded from the Career360 website, which is the one-stop destination for all RD Sharma solutions.