Careers360 Logo
RD Sharma Class 12 Exercise 19.4(b) Definite Integrals Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise 19.4(b) Definite Integrals Solutions Maths - Download PDF Free Online

Updated on Jan 24, 2022 02:19 PM IST

Many CBSE schools widely recommend the RD Sharma books to their students. These books are the best guide for the students to help them do their homework. Especially when chapters like Definite Integrals in Mathematics are present, a good solution material is essential to recheck the answers. This purpose is served by the RD Sharma Class 12th Exercise 19.4(b) Solution book.

RD Sharma Class 12 Solutions Chapter19 Definite Integrals - Other Exercise

Definite Integrals Excercise: 19.4(B)

Definite Integrals Exercise 19.4 (a) Question 16

Answer : abxf(x)dx=a+b2abf(x)dx
Given : f(a+bx)=f(x) and prove that
abxf(x)=a+b2abf(x)dx
Hint : You must know the formula of abf(x)dx
Solution : I=abxf(x)dx
I=ab(a+bx)f(a+bx)dx(abf(x)dx=abf(a+bx)dx)I=ab(a+bx)f(x)dx[f(a+bx)=f(x)]I=ab(a+b)f(x)dxabxf(x)dx
I=ab(a+b)f(x)dxI2I=(a+b)abf(x)dxI=a+b2abf(x)dx
abxf(x)dx=a+b2abf(x)dx (proved) 

Definite Integrals Exercise 19.4 (b) Question 3

Answer : π4
Hints:- You must know the integration rules of trigonometric functions and its limits
Given : 0π/2cotxcotx+tanxdx
Solution : I=0π/2cotxcotx+tanxdx .....(1)
I=tanxtanx+cotx .....(2)
Adding (1) and (2)
2I=0π/2tanx+cotxtanx+cotxdx2I=0π/21dx2I=[x]0π/2
I=12×π2=π4

Definite Integrals Exercise 19.4 (b) Question 4

Answer:- π4
Hints:- You must know the integration rules of trigonometric functions and its limits
Given:-0π/2sin3/2xsin3/2x+cos3/2xdx
Solution : I=0π/2sin3/2xcos3/2x+sin3/2xdx ....(1)
I=0π/2sin3/2(π2x)cos3/2(π2x)+sin3/2(π2x)dx[0af(x)dx=0af(ax)dx]I=0π/2cos3/2xsin3/2x+cos3/2xdx
Adding (1) and (2)
I+I=0π/2sin3/2xsin3/2x+cos3/2xdx+0π/2cos3/2xsin3/2x+cos3/2xdx2I=0π/2sin3/2x+cos3/2xsin3/2x+cos3/2xdx2I=0π/21.dx
2I=[x]0π/22I=[π20]I=π4

Definite Integrals Exercise 19.4 (b) Question 5

Answer:- π4
Hints:- You must know the integration rules of trigonometric functions and its limits
Given : 0π/2sinnxsinnx+cosnxdx
Solution : I=0π/2sinnxsinnx+cosnxdx ...(1)
I=0π/2sinn(π2x)sinn(π2x)+cosn(π2x)dx[0af(x)dx=0af(ax)dx]
I=0π/2cosnxcosnx+sinnxdx ....(2)
Adding (1) and (2)
I+I=0π/2sinnxsinnx+cosnxdx+0π/2cosnxsinnx+cosnxdx2I=0π/2sinnx+cosnxsinnx+cosnxdx2I=0π/21dx
2I=[x]0π/22I=[π20]I=π4

Definite Integrals Exercise 19.4 (b) Question 2

Answer : π4
Hints:- You must know the integration rules of trigonometric functions and its limits
Given : 0π/211+cotxdx
Solution : 0π/211+cotxdx
0π/2dx1+cosxsinx0π/2dxsinxsinx+cosx .....(1)
We know [0af(x)=0af(ax)dx]
I=0π/2sin(π2x)sin(π2x)+cos(π2x)dxI=0π/2cosxsinx+cosxdx ....(2)
Adding,
I+I=0π/2sinxsinx+cosxdx+0π/2cosxsinx+cosxdx2I=0π/2sinx+cosxsinx+cosxdx2I=0π/21dx
2I=[x]0π/2
I=12×π2=π4

Definite Integrals Exercise 19.4 (b) Question 6

Answer:- π4
Hints:- You must know the integration rules of trigonometric functions and its limits
Given:- 0π/211+tanxdx
Solution :
I=0π/211+sinxcosxdxI=0π/2cosxcosx+sinxdx ....(1)
I=0π/2cos(π2x)cos(π2x)+sin(π2x)dx[0af(x)dx=0af(ax)dx]
I=0π/2sinxsinx+cosxdx
Adding (1) and (2)
I+I=0π/2cosxcosx+sinxdx+0π/2sinxcosx+sinxdx2I=0π/2sinx+cosxsinx+cosxdx2I=0π/21dx
2I=[x]0π/22I=[π20]I=π4

Definite Integrals Exercise 19.4 (b) Question 7

Answer:- π4
Hints:- You must know the integration rules of trigonometric functions and its limits
Given:- 0a1x+a2x2dx
Solution : 0a1x+a2x2dx
x=asinθ[x=0,asinθ=0,θ=0]
dx=acosθdθ[x=a,0sinθ=a,sinθ=1,θ=π/2]
I=0π/2acosθasinθ+a2a2sin2θdθ
=0π/2acosθasinθ+a1sin2θdθ=0π/2acosθasinθ+acosθdθ=0π/2acosθa(sinθ+cosθ)dθ
=0π/2cosθsinθ+cosθdθ .....(1)
I=0π/2cos(π2θ)sin(π2θ)+cos(π2θ)dθ[0af(x)dx=0af(ax)dx]
I=0π/2sinθcosθ+sinθdθ .....(2)
Adding both (1) and (2)
I+I=0π/2sinθcosθ+sinθdθ+0π/2cosθsinθ+cosθdθ2I=0π/2sinθ+cosθsinθ+cosθdθ2I=0π/21.dθ
2I=[0]0π/22I=[π20]I=π4

Definite Integrals Exercise 19.4 (b) Question 8

Answer:- 0
Hints:- You must know the integration rules of trigonometric functions and its limits
Given:- 0logx1+x2dx
Solution : 0logx1+x2dx
Using substitute x=1t
We get 01logx1+x2dx=0logx1+x2dx
And 0logx1+x2dx=0

Definite Integrals Exercise 19.4 (b) Question 9

Answer : π8log2
Hints:- You must know the integration rules of trigonometric functions and its limits
Given:- 01logx(1+x)1+x2dx
Solution : 01logx(1+x)1+x2dx
 Put x=tanθdx=sec2θdθ
Lower limit, x=0, then θ=tan10=0
Upper limit, x=1, then θ=tan1=π4
I=0π4log|1+tanθ|1+tan2θsec2θdθI=0π4log|1+tanθ|sec2θsec2θdθI=0π4log|1+tanθ|dθ
I=0π4log|1+tan(π4θ)|dθI=0π4log|1+(1tanθ)1+tanθ|dθI=0π4log|21+tanθ|dθ
=0π4log2dθ0π4log|1+tanθ|dθI=log2[θ]0π4I2I=π4log2I=π8log2

Definite Integrals Exercise 19.4 (b) Question 10

Answer:- π4
Hints:- You must know about the integration rules of functions .
Given:- 0x(1+x)(1+x2)dx
Solution : 0x(1+x)(1+x2)dx
We can write integrand using partial fractions
x(x2+1)(x+1)=Ax+B(x2+1)+C(x+1)x(x2+1)(x+1)=(Ax+B)(x+1)+C(x2+1)(x2+1)(x+1)
Cancelling denominators
x=(Ax+B)(x+1)+C(x2+1) ......(1)
Putting x=1, in (1) 
x=(Ax+B)(x+1)+C(x2+1)1=(A×1+B)(1+1)+C(12+1)1=2(A+B)+C(2)1=2A+2B+2C .....(2)
Putting x=0 in (1) 
x=(Ax+B)(x+1)+C(x2+1)0=(A×0+B)(0+1)+C(0+1)
0=B+CB=C
Put in (2)
1=2A2C+2CA=12
Putting x=1
1=(A(1)+B(1+1)+C((1)2+1)1=(A+B)(0)+C(2)1=2CC=12
Put value of A and C in (2)
2A+2B+2C=12×12+2B+2×12=11+2B1=12B=1B=12
A=12,B=12,C=12
Hence we can write
x(x+1)(x2+1)=(12x+12)(x2+1)+12(x+1)=x2(x2+1)+12(x2+1)12(x+1)
Solving
I3=1201x+1dx=12[log|x+1|0=12[log(1)log(1)]=0
Hence,
I=I1+I2+I3=0+π4+0=π4

Definite Integrals Exercise 19.4 (b) Question 11

Answer:- π24
Hints:- You must know the integration rules of trigonometric functions.
Given:- 0πxtanxsecxcosecxdx
Solution : I=0πxsinxcosx1cosx×1sinxdx
I=0πxsin2xdx ......(1)
I=0π(πx)sin2(πx)dxI=0π(πx)sin2xdx .......(2)
Adding (1) and (2)
I+I=0ππsin2xdx2I=0ππsin2xdx2I=π20π(1cos2x)dx
2I=π2[xsin2x2]0π2I=π2[(πsin2π2)(0sin02)]
2I=π2[π]2I=π22I=π24

Definite Integrals Exercise 19.4 (b) Question 12

Answer:- π5
Hints:- You must know the integration rules of trigonometric functions and its limits
Given:- 0πsinxcos4xdx
Solution : 0πsinxcos4xdx=I ......(1)
I=0π(πx)sin(πx)cos4(πx)dx
I=0π(πx)sinxcos4xdx  .......(2) [sin(πx)=sinx]
Eq(1)+Eg(2)[cos(πx)=cosx]
2I=0πxsinxcos4xdx+0π(πx)sinxcos4xdx2I=0ππsinxcos4xdx
Let sinx=t
x=0,x=πt=0,t=0cosxdx=dt2I=00 No benefit. 
Now, Let cosx=t
x=0,t=1x=π,t=1
2I=11πt4dtI=π211t4dtI=π2[t55]11
=π2[1515]=π2[25]=π5

Definite Integrals Exercise 19.4 (b) Question 13

Answer:- 2π3
Hints:- You must know the integration rules of trigonometric functions.
Given:- 0πxsin3xdx
Solution : 0πxsin3xdx=I
I=0πxsin3x.dx[0af(x)dx=0af(ax)dx]
I=0π(πx)[sin(πx)]3dxI=0π(πx)sin3xdxI=0ππsin3xdx0πxsin3xdx
I=π0πsin3xdxI2I=π0πsin3xdx2I=π0π14(3sinxsin3x)dx
I=π80π3sinxsin3xdxI=π8[3(cosx)+cos3x3]0π
Putting limits
I=π8[3cosπ+cos3x3][3cos0+cos3(0)3]I=π8[(3)(1)+(1)3][3+13]I=π8×2[313]
I=π4[913]I=π4×83=2π3

Definite Integrals Exercise 19.4 (b) Question 14

Answer: π22log(2)
Hints:- You must know the integration rules of trigonometric and logarithmic functions.
Given:- 0πxlogsinxdx
Solution : 0πxlogsinxdx .....(1)
I=0π(πx)logsin(πx)dxI=0π(πx)log(sinx)dx .....(2)
Adding (1) and (2)
2I=π0πlog(sinx)dx
2I=2π0π/2log(sinx)dxI=π(π2log2)I=π22log(2)



Definite Integrals Exercise 19.4 (b) Question 15

Answer:- (π2)π2
Hints:- You must know the integration rules of trigonometric rule.
Given:- 0πxsinx1+sinxdx
Solution : 0πxsinx1+sinxdx
I=0π(πx)xsin(πx)1+sin(πx)dx[0af(x)dx=0af(ax)dx]
I=0ππsinx1+sinxdxI2I=0ππsinx(1sinx)(1+sinx)(1sinx)dx2I=0ππsinx(1sinx)(1sin2x)dx
2Iπ=0πsinxsin2xcos2xdx2Iπ=0πsinxcos2xdx0πsin2xcos2xdx2Iπ=0πsecxtanxdx0πtan2xdx
2Iπ=[secπsec0]0πsec2xdx+0π1dx2Iπ=[11][tan]0π[x]0π
2Iπ=[2][tanπtan0]+π2Iπ=[2]0+πI=(π2)π2

Definite Integrals Exercise 19.4 (b) Question 16

Answer:- απsinα
Hints:- You must know the integration rules of trigonometric functions and its limits.
Given:- 0πx1+cosαsinxdx,0<α<π
Solution : 0πx1+cosαsinxdx ....(1)
I=0π(πx)1+cosαsin(πx)dxI=0π(πx)1+cosαsinxdx .....(2)
Adding (1) and (2)
2I=π0πdx1+cosαsinx2I=π0πsec2π2dx(1+tan2x2)+2cosαtanx2
Put tanx2=t
sec2π2dx=2dt2I=π0π2dt1+t2+2tcosα2I=2π0πdt(t+cosα)2+sin2α
I=πsinα[tan1(t+cosαsinα)]0=πsinα[tan1()tan1(cotα)]=πsinα[π2(π2α)]=απsinα

Definite Integrals Exercise 19.4 (b) Question 17

Answer:- π24
Hints:- You must know about the integration rules of trigonometry functions.
Given:- 0πxcos2xdx
Solution : 0πxcos2xdx=I
I=0π(πx)cos2(πx)dxI=0π(πx)cos2xdxI=0ππcos2xdx0πxcos2xdx
I=π0πcos2xdxI2I=π0πcos2x+12dx2I=π0πcos2x2dx+0π12dx
=π[12[sin2x2]0π+12[x]0π]2I=π4[sin2πsin0]+π2[π]
2I=π24I=π24

Definite Integrals Exercise 19.4 (b) Question 18

Answer:- π12
Hints:- You must know the integration rules of trigonometric functions and its limits.
Given:- π/6π/311+cot3/2xdx
Solution : π/6π/311+cot3/2xdx=I ...(1)
I=π/6π/311+cot(π2x)3/2dx[abf(x)dx=abf(1+bx)dx]
I=π/6π/31tan3/2+1dxI=π/6π/3cot1/2x1+cot3/2xdx ...(2)
Adding (1) and (2)
2I=π/6π/311+cot3/2xdx+π/6π/3cot1/2x1+cot3/2xdx2I=π/6π/31+cot1/2x1+cot3/2xdx2I=π/6π/31dx
2I=[x]π/6π/32I=[π/3π/6]2I=2ππ6
I=π12

Definite Integrals Exercise 19.4 (b) Question 19

Answer:- π4
Hints:- You must know the integration rules of trigonometric functions and its limits.
Given:- 0π/2tan7xtan7x+cot7xdx
Solution : I=0π/2tan7xtan7x+cot7xdx ....(1)
I=0π/2tan7(π2x)tan7(π2x)+cot7(π2x)dx
I=0π/2cot7xtan7x+cot7xdx... (2) [0af(x)dx=0af(ax)dx]
Adding both
2I=0π/2tan7x+cot7xtan7x+cot7xdx2I=0π/21dx2I=[x]0π/2
2I=π2I=π4

Definite Integrals Exercise 19.4 (b) Question 20

Answer:- 3
Hints:- You must know about the rules of integration.
Given:- 2810xx+10xdx
Solution : 2810xx+10xdx ....(1)
Then , I=2810(2+8x)2+8x+10(2+8x)dx[abf(x)dx=abf(a+bx)dx]
I=28x10x+xdx ...(2)
Adding (1) and (2)
2I=2810x+xx+10xdx2I=281dx2I=[x]28
2I=[82]I=62I=3

Definite Integrals Exercise 19.4 (b) Question 21

Answer:- π3
Hints:- You must know the integration rules of trigonometric functions.
Given:- 0πxsinxcos2xdx
Solution : 0πxsinxcos2xdx=I ....(1)
I=0π(πx)sin(πx)cos2(πx)dxI=0π(πx)sinxcos2xdx .....(2)
Adding (1) and (2)
2I=0πxsinxcos2xdx+0π(πx)sinxcos2xdx2I=0ππsinxcos2xdx
Let cosx=t
x=0,t=1x=π,t=1
2I=11πt2dtI=π2[t33]11I=π2[1313]
I=π2[23]I=π3

Definite Integrals Exercise 19.4 (b) Question 22

Answer:- π216
Hints:- You must know the integration rules of trigonometric functions and its limits.
Given:- 0π/2xsinxcosxsin4x+cos4xdx
Solution : 0π/2xsinxcosxsin4x+cos4xdx
I=0π/2(π2x)sin(π2x)cos(π2x)sin4(π2x)+cos4(π2x)dxI=0π/2(π2x)cosxsinxcos4x+sin4xdx
I=π20π/2cosxsinxsin4x+cos4xdx0π/2xcosxsinxsin4x+cos4xdxI=π2×20π/22tanxsec2x1+(tan2x)2dxI
Let tan2x=z
2tanxsec2xdx=dzx=0,z=0x=π2,z=2I=π40dz1+z2
I=π80[tan1z]0I=π80[tan1tan10]I=π8[π20]=π216

Definite Integrals Exercise 19.4 (b) Question 23

Answer:- 0
Hints:- You must know the integration rules of trigonometric functions .
Given:- π/2π/2xcos2xdx
Solution : I=π/2π/2xcos2xdx
f(x)=xcos2xf(x)=(x)cos2(x)=xcos2x=f(x)
Hence, f(x) is an odd function.
Since, aaf(x)dx=0, if f(x) is an odd function
I=0

Definite Integrals Exercise 19.4 (b) Question 24

Answer:- 3π8
Hints:- You must know the integration rules of trigonometric functions and its limits.
Given:- π/2π/2sin4xdx
Solution : π/2π/2sin4xdx
=π/2π/2(1cos2x2)2dx=14π/2π/2(1+cos22x2cos22x)dx=14π/2π/2(1+1+cos4x22cos2x)dx
=38π/2π/2dx+18cos4xdx12cos2xdx=38x.]π/2π/2+132sin4x]π/2π/212sin2x]π/2π/2=3π8

Definite Integrals Exercise 19.4 (b) Question 25 Subquestion (i)

Answer:- 0
Hints:- You must know the integration rules of logarithmic functions.
Given:- 11log(2x2+x)dx
Solution :
f(x)=log(2x2+x)f(x)=log(2x2+x)
=log(2+x)log(2x)=[log(2x)log(2+x)]=log(2x2+x)
=f(x)f(x)=f(x)
f(x) is an odd function
So =11log(2x2+x)dx=0

Definite Integrals Exercise 19.4 (b) Question 25 Subquestion (ii)

Answer:- 0
Hints:- You must know the integral rules of logarithmic functions.
Given:- ππ(1x2)sinxcos2xdx
Solution : ππ(1x2)sinxcos2xdx=f(x)
f(x)=(1x2)sinxcos2x=f(x), is an odd function I=ππ(1x2)sinxcos2x.dx=0

Definite Integrals Exercise 19.4 (b) Question 26

Answer:- π412
Hints:- You must know the integral rules of trignometric functions with its limits.
Given:- π/4π/4sin2xdx
Solution : π/4π/4sin2xdx
=π/4π/41cos2x2dx=12π/4π/4(1cos2x)dx=12[xsin2x]π/4π/4
=12[π4sin2×π4(π4)+sin(2×π4)]=12[π4+π41+0]=2π2×412=π412

Definite Integrals Exercise 19.4 (b) Question 27

Answer:- πlog2
Hints:- You must know the integral rules of logarithmic functions.
Given:- 0πlog(1cosx)dx
Solution :
I=0πlog(1cosx)dx=0πlog(2sin2x2)dx=0πlog2dx+20πlogsinx2dx
 Let t=x2x0;t0dt=12dxxπ;tπ2
I=log2[x]0π+40π2logsintdtI=πlog2+4×(π2log2)I=πlog2

Definite Integrals Exercise 19.4 (b) Question 28

Answer:- 0
Hints:- You must know the integration rules of trignometry functions.
Given:- π/2π/2log(2sinx2+sinx)dx
Solution : f(x)=π/2π/2log(2sinx2+sinx)dx
f(x)=log(2+sinx2sinx)dxf(x)=log(2sinx2+sinx)dx=f(x)=f(x)
f(x) is an odd function
π/2π/2log(2sinx2+sinx)dx=0

Definite Integrals Exercise 19.4 (b) Question 29

Answer:- π2
Hints:- You must know the integral rules of logarithmic functions.
Given:- ππ2x(1+sinx)1+cos2xdx
Solution : ππ2x1+cos2xdx+ππ2xsinx1+cos2xdx
I1I2
I1=0 [being an odd function]
I2=20π2xsinx1+cos2xdxI2=40πxsinx1+cos2xdx
Where I3=4I2+0=4I
Let I3=0πxsinx1+cos2xdx
=0π(πx)sin(πx)1+cos2(πx)dx=0π(πx)sinx1+cos2xdx=0ππsinx1+cos2xdx0πxsinx1+cos2xdx
=π0πsinx1+cos2xdxI32I3=π0πsinx1+cos2xdx
Put cosx=tx0,t=1
sinxdx=dtxπ,t=1
2I3=π11dt1+t2=π[tan1x]112I3=π22
I3=π24I=π2

Definite Integrals Exercise 19.4 (b) Question 30

Answer:- 0
Hints:- You must know the integral rules of trignometric functions and odd even functions.
Given:- aalog(asinθa+sinθ)dθ,a>0
Solution : f(x)=log(asinθa+sinθ)
f(x)=log(a+sinθasinθ)=log(asinθa+sinθ)=f(x)
f(x) is an odd function
aalog(asinθa+sinθ)dθ=0

Definite Integrals Exercise 19.4 (b) Question 31

Answer:- 2loge7
Hints:- You must know the rules of integration .
Given:- 223x3+2|x|+1x2+|x|+1dx
Solution : I=223x3+2|x|+1x2+|x|+1dx
=223x3x2+|x|+1+222|x|+1x2+|x|+1dx Odd function  Even function 
=2022|x|+1x2+|x|+1dx=2loge7π201(tan1(x)+tan1(1x)tan1(1x)tan1(x))dx
I=π2
I=16152[abf(x)dx=abf(a+bx)dx]I=22(4345)
I=202dtt=2022|x|+1x2+|x|+1dx
Put x2+|x|+1=t
2x+1dx=dtI=202dtt=2[loge|t|]02
=2[loge|x2+|x|+1|]02=2[loge(4+2+1)log(0+0+1)]=2[loge7loge1]=2loge7

Definite Integrals Exercise 19.4 (b) Question 32 Subquestion (i)

Answer:- π2
Hints:- You must know the integral rules of trignometric functions.
Given:- 3π/2π/2{sin2(3π+x)+(π+x)3}dx
Solution : 3π/2π/2{sin2(3π+x)+(π+x)3}dx
I=3π/2π/2{(x+π)3+sin2x}dx ....(1)
=3π/2π/2((π23π2xπ)3+sin2(π23π2x))dx=3π/2π/2((x+π)3+sin2x)dx......(2)
Add (1) and (2)
2I=3π/2π/22sin2xdx2I=23π/2π/2(1cos2x2)dx2I=23π/2π/212dx23π/2π/2(cos2x2)dx
2I=x]3π/2π/2sin2x]3π/2π/22I=π2(3π2)sin2(π2)+sin2x(3π2)2I=π2+3π2sin(π)+sin(3π)
2I=2π20I=π2

Definite Integrals Exercise 19.4 (b) Question 32 Subquestion (ii)

Answer:- 0
Hints:- You must know the integration rules of trignometric functions .
Given:- 01tan1(12x1+xx2)dx
Solution :
I=01tan1(12x1+xx2)dxI=01tan1x+(1x)1+x(1x)dxI=01tan1(x)+tan1(1x)dx ....(1)
I=01tan1(1+x)dx+tan1(11+x)dxI=01tan1(1x)+tan1(x)dx .....(2)
Adding both
2I=01(tan1(x)+tan1(1x)tan1(1x)tan1(x))dx2I=0I=0

Definite Integrals Exercise 19.4 (b) Question 33

Answer:- 16152
Hints:- You must know the rules of integration.
Given:- 02x2xdx
Solution : I=02x2xdx
I=02(2x)xdx[abf(x)dx=abf(a+bx)dx]
I=022xdx02x3/2xdx=2×23x3/2]0225x5/2]02I=22(4345)I=16152

Definite Integrals Exercise 19.4 (b) Question 34

Answer:- 0
Hints:- You must know about the integration rules of logarithm functions.
Given:- I=01log(1x1)dx
Solution :
I=01log(1x1)dxI=01log(1xx)dx ....(1)
I=01log(1(1x))1xdxI=01logx1xdx .....(2)
Adding both
2I=01log1xxdx+01logx1xdx2I=01log(1xxx1x)dx2I=01log1dx
2I=0I=0

Definite Integrals Exercise 19.4 (b) Question 35

Answer:- 2π
Hints:- You must know the rules of integration.
Given:- 11|xcosπx|dx
Solution : f(x)=11|xcosπx|dx
|f(x)|=f(x) when x0 and f(x) when x<0
 When f(x)=xcos(πx), we have 
|xcos(πx)|={xcos(πx);1x1/2xcos(πx);1/2x<0xcosπx;0x<1/2xcos(πx);1/2x<1I=11|xcosπx|dx
I=11/2xcos(πx)1/20xcos(πx)dx+01/2xcos(πx)dx1/21xcos(πx)dx
Now we can easily compile indefinite integral
I=xcos(πx)dx=xcos(πx)π+cos(πx)π
I=(I1/2I1)(I0I1/2)+(I1/2I0)(I1I1/2)
Where
I1=1π2I1/2=12πI0=1π2
I1/2=12πI1=1π2
Putting values
We get I=2π

Definite Integrals Exercise 19.4 (b) Question 36

Answer:- π222
Hints:- You must know the integration rules of trigonometric functions.
Given:- 0πx1+sin2x+cos7xdx
Solution : 0πx1+sin2x+cos7xdx ....(1)
Then
I=0ππx1sin2(πx)+cos7(πx)dxI=0ππx1+sin2xcos7xdx ....(2)
Adding (1) +(2)
2I=0πx1+sin2x+cos7x+πx1+sin2xcos7x)dx2I=π0π11+sin2xdx
Dividing numerator and denominator by cos2x
2I=π0πsec2xsec2x+tan2xdx2I=π0πsec2x1+2tan2xdx2I=π0π/2sec2x1+2tan2xdx [02af(x)dx=020af(x)]
Put tanx=z
Then sec2x.dx=dzwhenx0,z0
x=π2,z
2I=2π0dz1+(2z)22I=2π×tan12z2]0
I=π2×(tan1tan10)I=π2×(π20)I=π222

Definite Integrals Exercise 19.4 (b) Question 37

Answer:

Answer:- π(π/2α)cosα
Hints:- You must know the integral rules of trigonometric functions.
Given:- 0πx1+sinαsinxdx
Solution : I=0πx1+sinαsinxdx
I=0ππx1+sinαsin(πx)dxI=0ππ1+sinαsinxdx0πx1+sinαsinxdxI=0ππ1+sinαsinxI
2I=0ππ1+sinαsinx2I=π0π1sinαsinx+1dx
Substituting sinx=2tanx/21+tan2x/2
2I=π0π1+tan2x/21+tan2x/2+sinα+2tan2x/2dxI=π20πsec2x/21+tan2x/2+sinα+2tanx/2dx
Let tanx2=t Also when x0,t0
sec2x2=2dtxπ,t
I=π202dtt2+2tsinα+1I=π201(t+sinα)2+cos2αdtI=πcosα[tan1(1+sinαcosα)]0
I=πcosα[tan1tan1(tanα)]I=πcosα[π2α]

Definite Integrals Exercise 19.4 (b) Question 38

Answer:- 0
Hints:- You must know the integral rules of trignometric functions and its limits.
Given:- 02πsin100xcos|10|xdx
Solution : 02πsin100xcos|10|xdx
Suppose : f(x)=sin100xcos|10|x
Now f(2πx)=sin100(2πx)cos|10|(2πx)
=(sinx)100(cosx)|10|=sin100xcos|10|x=f(x)
I=02πsin100xcos10xdx=20πsin100xcos10xdx
Again
f(πx)=sin100(πx)cos|10|(πx)=sin100x(cosx)|10|x=sin100xcos10x=f(x)
Its and odd function
I=2×0=0

Definite Integrals Exercise 19.4 (b) Question 39

Answer:- π4(a+b)
Hints:- You must know the integral rules of trignometric functions.
Given:- 0π/2asinx+bcosxsinx+cosxdx
Solution : I=0π/2asinx+bcosxsinx+cosx ....(1)
I=0π/2asin(π/2x)+bcos(π/2x)sin(π/2x)+cos(π/2x)dx
I=0π/2acosx+bsinxsinx+cosxdx .....(2)
Adding both
2I=0π/2(a+b)cosx+sinxsinx+cosxdx2I=0π/2(a+b)dx2I=(a+b)[x]0π/2
2I=(a+b)(π2)I=(a+b)π4

Definite Integrals Exercise 19.4 (b) Question 40

Answer:- 1π(521π)
Hints:- You must know the integral rules of trignometric functions.
Given:- 03/2|xcosπx|dx
Solution : 03/2|xcosπx|dx
0<x<120<πx<π2cosπx>0xcos(πx)>0
|xcosπx|=xcosπx12<x<32
π2<πx<3π2cosπx<0xcosπx<0|xcosπx|=xcosπx
I=03/2|xcosπx|dxI=03/2xcosπx+1/23/2(xcosπx)I=01/2xcosπx1/23/2xcosπxdx
xcosπx=xsinπxπsinπxπxcosπx=xπsinπx+cosπxπ2
I=[xπsinπx+cosπxπ2]012[xπsinπx+cosπxπ2]123/2I=[1π(120)+1π2(01)][1π(32(1))+1π2(00)]
=[12π1π2][2π]=[52π1π2]=1π[521π]

Definite Integrals Exercise 19.4 (b) Question 41

Answer:- 1π
Hints:- You must know the integral rules of trignometric functions.
Given:- 01|xsinπx|dx
Solution : 01|xsinπx|dx
=[xcosxππ+sinπxπ2]01=[1cosππ+sinππ20+0]
=[(1)1π+0]=1π

Definite Integrals Exercise 19.4 (b) Question 42

Answer:- 2π+1π2
Hints:- You must know the integration rules of trignometric functions.
Given:- 03/2|xsinπx|dx
Solution : 03/2|xsinπx|dx
=01xsinπxdx13/2xsinπxdx=[xcosxππ+sinπxπ2]01[xcosxππ+sinπxπ]13/2
=[1cosππ+sinππ20+0][32cos3π/2π+cosππ+sin3π/2π2sinππ]13/2=1π+320+1π+1π2+0=2π+1π2

Definite Integrals Exercise 19.4 (b) Question 43

Answer:- Proved
Hints:- You must know the rules of continuous integral functions.
Given:- f(2ax)=f(x)
Prove : 02af(x)dx=20af(x)dx
Solution : acf(x)dx=abf(x)dx+bcf(x)dx
So L.H.S,
acf(x)dx=abf(x)dx+bcf(x)dx ....(1)
Let x=2at when, x=2a,t=0
dx=dtx=a,t=a
Subscription
02af(x)dx=a0f(2at)dt
Using the property of integration [0bf(x)dx=baf(x)dt]
Substituting in eq (1) [02af(x)dx=0af(2at)dt]
02af(x)dx=0af(x)dx+02af(2ax)dx[02af(x)dx=02af(2ax)dx]
Now using the property
abf(x)dx+abg(x)dx=abf(x)+g(x)dx02af(x)dx=0af(x)+f(2ax)dx
Since f(2ax)=f(x)
02af(x)dx=0af(x)+f(x)dx02af(x)dx=20af(x)dx
Hence proved


Definite Integrals Exercise 19.4 (b) Question 44

Answer:

Answer:- Proved
Hints:- You must know the integration rules of trignometric functions.
Given:- f(2ax)=f(x)
Prove : 02af(x)dx=0
Solution : Let I=02af(x)dx
Using additive property
I=0af(x)dx+a2af(x)dx
Consider the integral a2af(x)dx
 Let x=2at, then dx=dtx=a,t=a and x=2a,t=0
a2af(x)dx=a0f(2at)dt=0af(2at)dt=0af(2ax)dx
We have f(2ax)=f(x)
I=0af(x)dx0af(x)dx=0I=0
Hence, 02af(x)dx=0

Definite Integrals Exercise 19.4 (b) Question 45 Subquestion (i)

Answer:- Proved
Hints:- You must know the rules of integration.
Given:- If f is an integral function, prove aaf(x2)dx=20af(x2)dx
Solution:- f is an integrable function
I=aaf(x2)dxf(x)=f(x2)f(x)=f(x2)=f(x2)
Hence it is an even function
Using integration property, if function is an even function
aaf(x)dx=20af(x)dx
Therefore,
aaf(x2)dx=20af(x2)dx
Hence proved

Definite Integrals Exercise 19.4 (b) Question 45 Subquestion (ii)

Answer:- Proved
Hints:- You must know the rules of integration.
Given:- f is an integrable function
Solution:- We have, f is an integrable function
I=aaxf(x2)dx
Let
f(x)=xf(x2)f(x)=xf(x2)=f(x)
Hence it is an odd function
Using integration property,
If function is odd, aaf(x)dx=0
aaxf(x2)dx=0
Hence proved

Definite Integrals Exercise 19.4 (b) Question 46

Answer:- Proved
Hints:- You must know the continuity of integral functions.
Given:- f(x) is a continuous on [0,2a]
Solution : I=02af(x)dx
By additive property
I=0af(x)dx+02af(x)dx
Consider the integral 02af(x)dx
 Let x=2at, then dx=dt When x=a,t=ax=2a,t=0
Hence
a2af(x)dx=a0f(2at)dt0af(2at)dt=0af(2ax)dx
Therefore,
I=0af(x)dx+0af(2ax)dx=0a{f(x)+f(2ax)}dx
Hence proved.

Definite Integrals Exercise 19.4 (b) Question 47

Answer:- Proved
Hints:- You must know the rules of integration with its limits.
Given:- f(a+bx)=f(x)
Prove abxf(x)dx=a+b2abf(x)dx
Solution : I=abxf(x)dx ......(1)
Using property of definite integral
I=ab(a+bx)f(a+bx)dx
It is given that, f(a+bx)=f(x)
I=ab(a+bx)f(x)dxI=(a+b)abf(x)dxabxf(x)dx .....(2)
Adding (1) and (2)
2I=(a+b)abf(x)dxI=(a+b)2abf(x)dx
Hence proved.

Definite Integrals Exercise 19.4 (b) Question 48

Answer:- Proved
Hints:- You must know the continuity rules of integration.
Given:- f(x) is a continuous function on [a,a]
Solution:- aaf(x)dx=0af(x)+f(x)dx
[f(x)=f(x)f(x) even f(x)=f(x)f(x) odd ]aaf(x)dx={0af(x)+f(x)dxf(x) even 0af(x)+f(x)dxf(x) odd ]
aaf(x)dx={0a2f(x)dxf(x) even 0f(x) odd ]
Hence aaf(x)dx=0af(x)+f(x)]dx is true because this function is not zero

Definite Integrals Exercise 19.4 (b) Question 49

Answer:- Proved
Hints:- You must know the rules of integration for trignometric functions.
Given:- Prove 0πxf(sin)dx=π20πf(sinx)dx
Solution : Let I=0πxf(sin)dx ....(1)
I=0π(πx)f(sin(πx))dx=0π(πx)f(sinx)dx ......(2)
Adding (1) and (2)
2I=0π(x+πx)f(sinx)dx
2I=π0πf(sinx)dxI=π20πf(sinx)dx0πf(sinx)dx=π20πf(sinx)dx
Hence proved.


Definite Integrals Exercise 19.4 (b) Question 50

Answer:- 2(n+1)(n+2)(n+3)
Hints:- You must know the rules of integration with its limits.
Given:- Prove 0af(x)dx=0af(ax)dx
Hence evaluate 01x2(1x)ndx
Solution : Let I=0af(x)dx ....(1)
 Put x=atdx=dt
When, x=0,t=a0=a
x=a,t=aa=0
I=0af(x)dx=a0f(at)(dt)=a0f(at)dt=0af(ax)dx [abf(x)dx=baf(x)dx]
0af(x)dx=0af(ax)dx
Now, 01x2(1x)ndx
I=01(1x2)[1(1x)]ndx=01(12x+x2)xndx=01(xn2xn+1+xn+2)dx
=[xn+1n+12xn+2n+2+xn+3n+3]01=[1n+12n+2+1n+3]
=(n+2)(n+3)2(n+1)(n+3)+(n+1)(n+2)(n+1)(n+2)(n+3)=n2+5n+62n28n6+n2+3n+2(n+1)(n+2)(n+3)=2(n+1)(n+2)(n+3)


The mathematics syllabus of the class 12 students consists of a challenging chapter, Definite Integrals. It is the 19th chapter and has five exercises. The fourth exercises consist of ex 19.4(a) and ex.19.4(b). The latter portion has 53 questions given in the textbook. The concept present in this exercise is to evaluate and prove the definite integrals of the given sums. The students can use the RD Sharma Class 12 Chapter 19 Exercise 19.4(b) reference material whenever a doubt strikes them.

The solutions are provided for every sum given in the textbook. The concepts are explained clearly, and the sums are solved in every possible method to arrive at the solution. The RD Sharma solution follow the NCERT pattern, and this gives a valid reason why the CBSE students must use it. The RD Sharma Class 12th Exercise 19.4(b) consists of numerous practice sums for the students to check their understanding capability about the concept of the Definite Integrals.

If you find any difficulties in solving integration sums, good practice must be undergone. A teacher or a tutor is not required 24 x 7 when you have the Class 12 RD Sharma Chapter 19 Exercise 19.4(b) Solution material. All the solutions provided in this book are given by wise experts who have a strong foundation in their respective subjects. Once integration becomes easier to solve, soon you can witness yourself crossing your benchmark score and achieving good marks. And to attain this level, you need the RD Sharma Class 12th Exercise 19.4(b) book.

The RD Sharma Class 12 Solutions Definite Integrals Ex 19.4(b) books are more convenient for the students to refer to as they are available as a freebie. The students can visit the Career 360 website to find books free of charge.

Teachers use the RD Sharma Class 12 Solutions Chapter 19 Ex 19.4(b) to prepare questions for the exams, and the students use it to solve homework and assignment sums. Therefore, this recourse material would be of great help to you in your exam preparation. Hence, visit the Career 360 website now and get a copy for yourself.

RD Sharma Chapter wise Solutions

NEET Highest Scoring Chapters & Topics
This ebook serves as a valuable study guide for NEET exams, specifically designed to assist students in light of recent changes and the removal of certain topics from the NEET exam.
Download E-book

Frequently Asked Questions (FAQs)

1. What makes RD Sharma solution books so unique?
  • Experts provide the solution given in the RD Sharma books.

  • Numerous practice questions are available.

  • It is accessed free of cost.

2. Which is the solution book that the class 12 students who have doubts about chapter 19 can refer to?

The RD Sharma Class 12th Exercise 19.4(b) solution book is the best choice for the students who have doubts in the Definite Integrals chapter.

3. How many questions are answered from ex 19.4(b) in the RD Sharma books?

The RD Sharma Class 12th Exercise 19.4(b) material consists of answers for all the 53 questions present in this exercise.

4. What makes it easier for the CBSE board students to use the RD Sharma books for doubt clarifications?

The RD Sharma books are based on the NCERT curriculum, this makes the CBSE students attune to these books for their reference.

5. How can I download the RD Sharma reference book from the Career 360 website?

Browse for the career 360 website and search the name of the solution book. Once you get it, you can access its content and click the Download button to save the PDF file on your device

Articles

Back to top