Careers360 Logo
RD Sharma Solutions Class 12 Mathematics Chapter 19 RE

RD Sharma Solutions Class 12 Mathematics Chapter 19 RE

Updated on Jan 24, 2022 02:21 PM IST

RD Sharma class 12th exercise RE has become the holy grail of students in India. Hundreds of students have already placed their trust in RD Sharma Solutions and have experienced the magic of the book. The RD Sharma class 12 chapter 19 exercise RE is a must-have from their series and should be availed by all aspiring students. RD Sharma Solutions The solutions in the book will be of immense help to students preparing for board exams.

This Story also Contains
  1. RD Sharma Class 12 Solutions Chapter19 RE Definite Integrals - Other Exercise
  2. Definite Integrals Excercise:RE
  3. RD Sharma Chapter wise Solutions

RD Sharma Class 12 Solutions Chapter19 RE Definite Integrals - Other Exercise

Background wave

Definite Integrals Excercise:RE

Definite Integrals Exercise Revision Exercise Question 1

Answer:12815
Given:04x4xdx
Hint: Use the formula 0af(x)dx
Solution:
I=04x4xdx
I=04(4x)4(4x)dx
(0af(x)dx=0af(ax)dx)
=04(4x)xdx
=044xx32
=4(x3232)04(x5252)04
=83(80)25(320)
=643645
=32019215
=12815

Definite Integrals Exercise Revision Exercise Question 2

Answer:326135
Given:12x3x2dx
Hint: Use the substitution method
Solution:12x3x2dx
Let 3x2=t
3dx=dt (differentiating w.r.t x)
12t+23×t×dt3
=1912(t+2)tdt
=1912(t)32+2tdt
=19[(t5252)12+2(t3232)12]
=19{25[(3x2)52]12+43[(3x2)32]12}
=19[25(321)+43(81)]
=19(25×31+43×7)=19(186+14015)
=326135

Definite Integrals Exercise Revision Exercise Question 3

Answer:163
Given:15x2x1dx
Hint: Let the denominator(2x1)=t
Solution:
15x2x1dx
Let t=2x1=>x=t+12
dt=2dx (differentiating w.r.t x)
I=15t+12t×dt2
I=15t+12tdt=1415t+(t)12dt
=14(t3232+t1212)15
=14(23(2x1)32+2(2x1)12)15
=14(23(271)+2(31))
=14(23(26)+2(2))
=14(52+123)
=14×643
=163

Definite Integrals Exercise Revision Exercise Question 5

Answer:π412log2
Given:01tan1xdx
Hint: Use the integration by parts method
Solution:
01tan1xdx
01tan1x1dx
We know that uvdx=uvdxvudx
=(xtan1x)010111+x2×xdx
=π412011tdt
=π412[log(t)]01=π412[log(1+x2)]01
=π412(log2log1) (log1=0)
=π412log2

Definite Integrals Excercise Revision Exercise Question 6

Answer:π2log2
Given:01cos1(1x21+x2)dx
Hint: Use the substitution method and trigonometric identities
Solution:
01cos1(1x21+x2)dx
Put x=tanθ
dx=sec2θdθ
=01cos1(1tan2θ1+tan2θ)×sec2θdθ
=01cos1(cos2θ)×sec2θdθ (cos2θ=1tan2θ1+tan2θ)
=201θsec2θdθ
=2[θ01sec2θdθ01ddθθ[sec2θdθ]01]
=2[θtanθtanθdθ]01
=2(θtanθ)01201sinθcosθdθ
=2[tan1x×tan(tan1x)]01201sinθcosθdθ
Let cosθ=t
sinθdθ=dt (differentiate w.r.t θ)
=2(tan11×1)+2011tdt
=2×π4+2[log|t|]01
=π2+2[log|cosθ|]01
=π2+2[log|cos(tan1x)|]01
=π2+2(log12log1)
=π2log2

Definite Integrals Excercise Revision Exercise Question 7

Answer: π2log2
Given:01tan1(2x1+x2)dx
Hint: Use substitution method and then apply the formula of tan2θ
Solution:
01tan1(2x1+x2)dx
Let x=tanθ
dx=sec2θdθ (differentiate w.r.t x )
Now, 0<x<1
0<tanθ<1
0<θ<π4
Now,
0π4tan1(2tanθ1+tan2θ)sec2θdθ
=20π4θsec2θdθ
=2[θsec2θdθddθθsec2θdθ]0π4
[uvdx=uvdxddxuvdx]
=2[(θtanθ)0π40π4tanθdθ]
=2(π40)20π4tanθdθ
=π220π4sinθcosθdθ
Let cosθ=t
sinθdθ=dt (differentiate w.r.t )
=π2+20π41tdt
=π2+2(log|t|)0π4
=π2+2(log|cosθ|)0π4
=π2+2(log12log1)
=π2+2log12 (log1=0)
=π2log2

Definite Integrals Excercise Revision Exercise Question 8

Answer:π2332log43
Given: 013tan1(3xx313x2)dx
Hint: You must know about trigonometric identities and formula of uvdx
Solution:
013tan1(3xx313x2)dx
Let tanx=θ
dx=sec2θdθ (differentiate w.r.t x )
We know ,
0<tanθ<13
0<θ<π6
0π6tan1(3tanθtan3θ13tan2θ)×sec2θdθ
=0π6tan1(tan3θ)×sec2θdθ
=30π6θsec2θdθ
We know that [uvdx=uvdxddxuvdx]
=3(θtanθ)0π630π6tanθdθ
=3(π6×130)30π6tanθdθ
Let cosθ=t
sinθdθ=dt (differentiate w.r.t θ)
=π23+30π61tdt
=π23+3(log|t|)0π6=π23+3(log|cosθ|)0π6
=π23+3(log32log1)0π6
π2332log43


Definite Integrals Excercise Revision Exercise Question 9

Answer: 2log21
Given:011x1+xdx
Hint: Apply integration by parts method
Solution:
011x1+xdx
=011x1+11+xdx=012(x+1)1+xdx
=0121+xdx01dx
=2[log(1+x)]01(x)01
=2(log2log1)1
=2log21

Definite Integrals Excercise Revision Exercise Question 10

Answer:14log(23+33)
Given:0π3cosx3+4sinxdx
Hint: Apply Substitution method
Solution:
0π3cosx3+4sinxdx
Let 3+4sinx=t
4cosdx=dt (diff w.r.t x)
140π31tdt=14(logt)0π3
=14[log|3+4sinx|]0π3
=14(log(3+4×32)log3)
=14(log(3+23)log3)
=14log(3+233)

Definite Integrals Exercise Revision Exercise question 11

Answer:2π2
Given:0π2sin2x(1+cosx)2dx
Hint:
Use the formula and then apply integration rule by parts method.
Solution:
0π2sin2x(1+cosx)2dx
=0π21cos2x(1+cosx)2dx
=0π21cosx(1+cosx)dx
=0π21cosx1+11+cosxdx
=0π22(1+cosx)1+cosxdx
=0π221+cosxdx0π21+cosx1+cosxdx
=20π2(1cosx)(1cos2x)dxπ2
=20π2(1cosx)sin2xdxπ2
=20π2cosec2xcosecxcotxdxπ2
=2(cotx+cosecx)0π2π2
=2(0+1+0)π2
=2π2

Definite Integrals Exercise Revision Exercise question 12

Answer: 2(21)
Given: 0π2sinx1+cosxdx
Hint: Use substitution Method
Solution:0π2sinx1+cosxdx
Let 1+cosx=t
sinxdx=dt (diff w.r.t x)
Now,
0π21tdt
=(t12)0π2=2(1+cosx)0π2
=2(12)
=2(21)

Definite Integrals Exercise Revision Exercise question 13

Answer:π4
Given: 0π2cosx1+sin2xdx
Hint: You must know about the integration of 11+x2
Solution:0π2cosx1+sin2xdx
Let sinx=t
cosxdx=dt (Differentiate w.r.t to x)
Now 0π211+t2dt
=(tan1t)0π2=[tan1(sinx)]0π2
=tan11tan10
=π40(tanπ4=1)

Definite Integrals Exercise Revision Exercise question 14
Answer: 83

Given:0πsin3x(1+2cox)(1+cosx)2dx
Hint: Use trigonometric identity and then apply substitution method
Solution:0πsin3x(1+2cox)(1+cosx)2dx
0πsinx(1cos2x)(1+2cox)(1+cosx)2dx
[sin2x+cos2x=1sin2x=1cos2x]
Now,
Let
cosx=t
sinxdx=dt (Diff w.r.t to x)
0π(1t2)(1+2t)(1+t)2dx
0π(1t2)(1+2t)(1+t)2dt
0π(1+t2+2t+2t+2t3+4t22t2t42t32t54t4)dt
0π(1+4t+4t22t35t42t5)dt
(t+2t2+4t33t42t5t63)11
{0<x<π1<cosx<11<t<1}
(t+2t2+4t33t42t5t63)11
(1+2+4312113)11((1)+24312+113)11
212+12+53+12
=1+53=83

Definite Integrals Exercise Revision Exercise question 15

Answer:π4
Given:0x(1+x)(1+x2)dx
Hint: Use Partial fraction method
Solution:
0x(1+x)(1+x2)dx
Using Partial fraction
x(1+x)(1+x2)=A1+x+Bx+c1+x2
x=A(1+x2)+(Bx+C)(1+x)
x=A+Ax2+Bx+Bx2+C+Cx
x=(A+C)+(A+B)x2+(B+C)x
On comparing
A+C=0,B+C=1,A+B=0
A=12,B=12,C=12
Hence,
0x(1+x)(1+x2)dx=0(12(1+x)+12(x+11+x2))dx
=12[log|1+x|]0+120x1+x2+11+x2dx
=12[log1+x2x+1]0+12(tan1x)0
=12×0+12(π20)=π4

Definite Integrals Exercise Revision Exercise Question 16

Answer:352
Given:0π4sin2xsin3xdx
Hint: You must know the identity 2 sin x sin y
Solution: 0π4sin2xsin3xdx
[2sinxsiny=cos(xy)cos(x+y)]
=120π4cosxcos5xdx
(cos(x)=cosx)
=12(sinxsin5x5)0π4=12(sinπ4+sinπ45)
=12(12+152)=12×(5+152)
=12×652=352


Definite Integrals Exercise Revision Exercise Question 17

Answer:π21
Given:011x1+xdx
Hint: Do rationalization and then integrate by parts
Solution:
011x1+xdx
011x1+xdx
=011x1+x×1x1xdx=01(1x)21x2dx
=011x1x2dx=0111x2dx01x1x2dx
=(sin1x)01(121x212)01
=(sin1x)01+[1x2]01
=(π21)

Definite Integrals Exercise Revision Exercise Question 18

Answer:e1e
Given: 121x2e1xdx
Hint: Use Substitution method
Solution:
Let
1x=t (Differentiating w.r.t to x)
1x2dx=dt
121x2e1xdx
12etdt=(et)12=(e1x)12
=e12e1
=e121e
=e1e


Definite Integrals Exercise Revision Exercise Question 19

Answer:23592802
Given:0π4cos4xsin3xdx
Hint: Use trigonometric identities.
Solution: 0π4cos4xsin3xdx
=0π4cos4xsinx(1cos2x)dx
(sin2x+cos2x=1sin2x=1cos2x)
 Let 
cosx=t (Differentiate w.r.t to x)
sinxdx=dt
=0π4t4(1t2)dt
=0π4t4(t21)dt
=0π4(t6t4)dt=(t77t55)0π4
=(cos7x7cos5x5)0π4=1(2)7×171(2)5×1517+15
=15621202+235
=142(11415)+235
=235+142(51470)
=23592802

Definite Integrals Exercise Revision Exercise Question 20

Answer: 32
Given: π3π21+cosx(1cosx)32dx
Hint: Do rationalization and then apply substitution method
Solution:
π3π21+cosx(1cosx)32dx
=π3π21+cosx(1cosx)32×1cosx1cosxdx
=π3π21cos2x(1cosx)2dx=π3π2sinx(1cosx)2dx
 Let 
1cosx=t (differentiate w.r.t to x)
sinxdx=dt
=1211t2dt=12(t1)121=14


Definite Integrals Excercise Revision Exercise Question 21

Answer: π4
Given:0π2x2cos2xdx
Hint: Apply integration by parts method
Solution:0π2x2cos2xdx
[x2sin2x2]0π20π22xsin2x2dx
[uvdx=uvdxddxuvdx]
=[x2sin2x2]0π2[(xcos2x2)+0π2cos2x2dx]
=[x2sin2x2]0π2+(xcos2x2)0π212(sin2x2)0π2
=0π2×120=π4

Definite Integrals Excercise Revision Exercise Question 22

Answer:log(4e)
Given:01log(1+x)dx
Hint: Apply the formula of uvdx
Solution: 01log(1+x)dx
=01log(1+x)1dx
=[log(1+x)x]0101x1+xdx
[uvdx=uvdvddxuvdx]
=[log(1+x)x]0101x+111+xdx
=[log(1+x)x]0101111+xdx
=[log(1+x)x]01[xlog(1+x)]01
=log2log0[(1log2)(0log1)]
We know log1=0
log21+log2=2log21
=log4loge
(loge=1,alogb=logbalogalogb=logab)
=log(4e)

Definite Integrals Excercise Revision Exercise Question 23

Answer:5755
Given:24x2+x2x+xdx
Hint: Use substitution method
Solution: 24x2+x2x+xdx
Let
2x+1=t2
2dx=2tdt (Differentiate w.r.t to x)
dx=tdt
Now, 24x2+x2x+xdx
=24(t212)2+(t212)ttdt
=24(t21)2+2(t21)4dt
=1424(t4+12t2+2t22)dt
=1424t41dt
=14(t55t)4
=14[(2x+1)22x+152x+1]24
=14[(81×353)(25555)]
=14[(243155)(255555)]
=14×228514×2055
=5755

Definite Integrals Excercise Revision Exercise Question 24

Answer:π216π4+12log2
Given:01x(tan1x)2dx
Hint: Apply the formula of uvdx
Solution:
01x(tan1x)2dx
Let
tan1x=t
x=tant (Differentiate w.r.t to x)
dx=sec2tdt
=01(tant)t2sec2tdt
=[t2tan2t2]01012t×tan2t2dt
=[t2tan2t2]0101t(sec2t1)dt
=[t2tan2t2]011tsec2tdt+01tdt
=[t2tan2t2]01(ttant)01+01tantdt+(t22)01
=[t2tan2t2]01(ttant)01+[log|sect|]01+(t22)01
Now 0<x<1
0<tan1x<π4
0<t<π4
=[t2tan2t2]0π4(ttant)0π4+[log|sect|]0π4+(t22)0π4
=(π4)2×12π4+log2+(π4)2×12
=π216×12π4+log2+π216×12
=2×π216×12π4+log2
=π216π4+log2

Definite Integrals Excercise Revision Exercise Question 25
Answer: π2

Given: 01(cos1x)2
Hint: Using substitution method and formula of uvdx
Solution:01(cos1x)2
Let
cos1x=θx=cosθ (Differentiate w.r.t to x)
dx=sinθdθ
=01θ2(sinθdθ)
=01θ2sinθdθ
=[θ2(cosθ)]01+012θ(cosθ)dθ
=θ2(cosθ)012[(θsinθ)0101sinθdθ]
=(θ2cosθ)012(θsinθ)01+2(cosθ)01
=[(cos1x)2x]012[cos1xsin(cos1x)]012(x)01
=02(0π2)2=2π22
=π2

Definite Integrals Exercise Revision Exercise Question 26

Answer:12log6
Given:12(x+3)x(x+2)dx
Hint: Do integration by parts
Solution:12(x+3)x(x+2)dx
=12(x+2+1)x(x+2)dx
=121xdx+12(1x(x+2))dx
=121xdx+1212(x+2xx(x+2))dx
=121xdx+12121xdx12121x+2dx
=32121xdx12121x+2dx
=32(logx)1212[log(x+2)]12
=32log212log4+12log3
=32log2log2+12log3
=12log2+12log3=12(log2+log3)
=12log6(loga+logb=logab)

Definite Integrals Exercise Revision Exercise Question 27

Answer:12
Given:0π4exsinxdx
Hint: Apply the formula of uvdx
Solution: I=0π4exsinxdx ……… (1)
I=(excosx)0π4+0π4excosxdx
[uvdx=uvdvddxuvdx]
I=(excosx)0π4+(exsinx)0π40π4exsinxdx
I=(excosx)0π4+(exsinx)0π4I[ from (1)]
2I=eπ4×12(1)+eπ4×120
2I=1I=12

Definite Integrals Exercise Revision Exercise Question 28

Answer:

Answer:π423
Given: 0π4tan4xdx
Hint: Use trigonometric identities and then integrate by parts
Solution:
0π4tan4xdx=0π4tan2xtan2xdx
=0π4tan2x(sec2x1)dx
=0π4tan2xsec2xdx0π4(sec2x1)dx
put
tanx=t (Differentiate w.r.t to x)
sec2xdx=dt
=(t33)0π4(1π4)=131+π4
=π423

Definite Integrals Exercise Revision Exercise Question 29

Answer:12
Given:01|2x1|dx
Hint: You must know how to open mode
Solution:01|2x1|dx
=012(2x1)dx+121(2x1)dx
=(2x22+x)012+(2x22x)12
=(12)2+12(12)2+12
=14+1214+12
=12+1=12+1
=12


Definite Integrals Exercise Revision Exercise Question 30

Answer:2
Given: 12|x22x|dx
Hint: Open the mode and then do integration by parts
Solution:
12|x22x|dx
=12(x22x)dx+23(x22x)dx
=(x33+x2)12+(x33x2)23
=83+4+131+9983+4
=7153
=21153
=63
=2

Definite Integrals Exercise Revision Exercise question 31

Answer:222
Hint: To solve this question we will split sinx.cosx in two forms. [sinx=cosxtanx=1x=π4]
Given:0π2|sinxcosx|dx
Solution:
0π4(sinxcosx)dx+π4π2(sinxcosx)dx
=[cosxsinx]0π4+[cosxsinx]π4π2 [|x|=x,x<0=x,x>0]
=[cosxsinx]0π4[cosx+sinx]π4π2
=(12+12)(1+0)[(0+1)(12+12)]
=222

Definite Integrals Exercise Revision Exercise question 36

Answer:0
Hint: To solve the equation, the value of negative is always zero
Given:aaxex21+x2dx
Solution:
aaf(x)dx=aaf(aax)dx
=aaf(x)dx
=aaf(x)dx
I=aa(x)ex21+x2dx
2I=0
I=0

Definite Integrals Exercise Revision Exercise question 32

Answer:2π
Hint: To solve this question we will do integration by separation
Given:01|sin2πx|dx
Solution:
01|sin2πx|dx
=012(sin2πx)dx+121sin2πxdx
=[cos2πx2π]012+[cos2πx2π]121
=12π[cosπcos0]+12π[cos2πcosπ]
=12π[11]+12π[1(1)]
=12π×2+12π×2
=1+1π
=2π

Definite Integrals Exercise Revision Exercise question 33

Answer: 283
Hint: To solve this question we need to use xn formula
Given:13|x24|dx {x24,x24(x24),x24
I=12(x24)dx+23(x24)dx
I=(x234x)12+(x334x)23
I=(83813+4)+(2731283+8)
I=83+8+134+2731283+8
I=283

Definite Integrals Exercise Revision Exercise question 34

Answer: 0
Hint: When the value of f(x) is odd then answer is zero
Given:π2π2sin9xdx
Solution:f(x)=sin9x
xx [aaf(x)dx=0,f(x)>odd]
f(x)=sin9(x)=>(sinx)9
=sin9x
f(x)=f(x)f(x) is odd 
aaf(x)dx=0, when f(x) is odd 
π2π2sin9xdx=0

Definite Integrals Exercise Revision Exercise question 35

Answer:0
Hint: When the value of f(x) is odd then answer is zero
Given:1212cosxlog(1+x1x)dx
Solution:
aaf(x)dx=20af(x)dx [aaf(x)dx=0,f(x)>odd]
f(x)=cosxlog(1+x1x)
f(x)=cos(x)log(1+(x)1(x))
=cosxlog(1x1+x)
f(x)=f(x)
F(x) is odd function
1212cosxlog(1+x1x)dx=0



Definite Integrals Exercise Revision Exercise Question 37

Answer:π4
Hint: To solve this equation we have to change cot into tan
Given:0π211+cot7xdx
Solution:
0π211+cot7xdx=0π211+1cot7xdx I=0π2tan7x1+tan7xdx ………….. (1)
I=0π211+cot(0+π2x)3dx
I=0π211+tan7xdx …….. (2)
Adding equation (1) and (2)
2I=0π2tan7x1+tan7xdx+0π211+tan7xdx
2I=0π2dx
2I=[x]0π2
2I=π20
I=π2×2
I=π4

Definite Integrals Exercise Revision Exercise Question 38

Answer: 0
Hint: To solve this equation, we have to use f(x) formula
Given:02πcos7xdx
Solution:
I=02af(x)dx=0a[f(x)+f(2ax)]dx
I=0π2cos7x+cos7(2πx)dx
I=20π2cos7xdx

I=20π2(cos7xcos7x)dx
I=0

Definite Integrals Exercise Revision Exercise Question 39

Answer: a2
Hint: To solve this equation use formula 0af(x)dx
Given:
0af(x)dx
Solution:
0af(x)dx=0af(ax)dx
I=0aaxax+a(ax)dx ........(1)
I=0aaxax+xdx ........(2)
Adding (1) and (2)
I+I=0aaxax+a(ax)dx+0aaxax+xdx
2I=0ax+axa+x+xdx
2I=0adx
2I=(x)0a
a0=a
2I=a
I=a2

Definite Integrals Exercise Revision Exercise Question 40

Answer:π6
Hint: To solve this equation we will use f(x)dx formula
Given: 0π211+tan3xdx
Solution:
I=0π211+tan3(π2x)dx [0af(x)dx=0af(ax)dx]
tan(π2x)=cotx=1tanx
I=0π2tan3xtan3x+1dx …………. (1)
I=0π21tan3x+1dx ……………. (2)
2I=0π2(1+tan3xtan3x+1)dx

2I=[x]0π2

I=π4

Definite Integrals Exercise Revision Exercise Question 41

Answer:π4
Hint: In this Statement, we will use 0af(x)dx formula
Given:0πxsinx1+cos2xdx
Solution:
0πxsinx1+cos2xdx
0af(x)dx=0af(ax)dx
I=0π(πx)sin(πx)1+cos2(πx)dx
=0π(πx)sinx1+cos2xdx
=0ππsinx1+cos2xdx0πxsinx1+cos2xdx
I=0ππsinx1+cos2xdxI
2I=π0πsinx1+cos2xdx
2I=π11dt1+t2
I=π211dt1+t2
I=π2[tan1t]11
I=π2(tan1tan1(1)
I=π2[π4(π4)]
I=π2[π2]
I=π4


Definite Integrals Exercise Revision Exercise Question 42

Answer:I=π5
Hint: In this equation we have 0af(x) formula
Given: 0πxsinxcos4xdx
Solution:
0af(x)dx=0af(ax)dx
I=0π(πx)sin(πx)cos4(πx)dx
=0π(πx)sinxcos4xdx
=π0πsinxcos4xdx0πxsinxcos4xdx
I=π20πsinxcos4xdxI
I=π211t4dt [cosx=tsinxdx=dtx0tcosx=1]
I=π211t4dt
I=π10[t5]11
I=π10[15(1)5]
I=π10(1+1)
I=2π10
I=π5

Definite Integrals Exercise Revision Exercise Question 43

Answer:π22ab
Hint: To solve this equation we will convert statement in terms of tan and sec.
Given:0πxa2cos2x+b2sin2xdx
Solution:
0af(x)dx=0af(ax)dx
I=0πxa2cos2x+b2sin2xdx
I=0ππxa2cos2x+b2sin2xdx
I=0ππa2cos2x+b2sin2xdx0ππa2cos2x+b2sin2xdx
2I=0ππa2cos2x+b2sin2xdx
2I=π0π1a2cos2x+b2sin2xdx
I=π20πsec2xa2+b2tan2xdx
I=π2×20π2sec2xa2+b2tan2xdx
I=πb01a2+t2dt [btanx=tbsec2dx=dt]
I=πb[1atanta]0
I=πab[tan1tan10]
I=πab[π20]
I=π22ab

Definite Integrals Exercise Revision Exercise Question 44

Answer:log2
Hint: To solve this equation we convert tan in form of sec
Given: π4π4|tanx|dx
Solution:
I=π40tanxdx+0π4tanxdx
I=0π4tanxdx+0π4tanxdx
I=[log|secx|]0π4+[log|secx|]0π4
=log2+log2
=2log2
=2log(2)12
=log2

Definite Integrals Exercise Revision Exercise Question 45

Answer:22
Hint: To solve this equation we will split the x
Given:015[x2]dx
Solution:I=015[x2]dx
I=032(x)2dx
I=010dx+121dx+2322dx
I=0+[x]12+[2x]232
I=(21)+(322)
I=22

Definite Integrals Excercise Revision Exercise Question 46

Answer: πsinα[π+α]
Hint: To solve this equation we convert cos and sin into tan
Given: πsinα[π+α]
Solution: 0af(x)dx=0af(ax)dx
I=0ππx1+cosαsin(πx)dx
I=0ππx1+cosαsinxdx
I=0ππ1+cosαsinxdx0πx1+cosαsinxdx
Let
2I=0ππ1+cosαsinxdx
2I=0ππ1+cosx2tanx21+tan2x2dx
2I=π0π1+tan2x21+tan2x22cosαtanx2dx
I=π20πsec2x2tan2x22cosαtanx2+1dx
Let
tanx2=t
⇒>sec2x2dx=2dt
x=0t=tan0=0
x=xt=tanπ2=
I=π202dtt22cosαt+1
I=π0dt(tcosα)2+(1cos2x)
I=π0dtsin2α+(tcosx)2
I=π1sinαtan1(tcosαsinα)0
I=πsinα(tan1tan1(cosαsinα))
I=πsinα(π2tan1(cotα))
=πsinα(π2+tan1(cotα))
=πsinα(π2+tan1tan(π2+α))
=πsinα(π2+(π2+α))
=πsinα[π+α]

Definite Integrals Excercise Revision Exercise Question 47

Answer:π216
Hint: To solve this we use a4+b4,0af(x) form
Given:0π2xsinxcosxsin4x+cos4xdx
Solution:
I=0π2xsinxcosxsin4x+cos4xdx ………. (1)
0af(x)dx=0af(ax)dx
I=0π2(π2x)sin(π2x)cos(π2x)sin4(π2x)+cos4(π2x)dx
I=0π2(π2x)cosxsinxcos4x+sin4xdx …….. (2)
2I=0π2cosxsinxcos4x+sin4xdx
[a4+b4=(a2+b2)22a2b2]
I=π40π2cosxsinxcos2x+sin2x2cos2xsin2xdx
I=π40π2cosxsinx1(2cosxsinx)2dx
sin2x=2sinxcosx
sinxcosx=sin2x2
I=π40π2sin2x21(sin2x2)2dx
I=π40π2sin2x2(2sin22x2)dx
I=π40π2sin2x1+1sin2xdx
I=π40π2sin2x1+cos2xdx
cos2x=t
2sin2x=dtdx
sin2xdx=dt2
I=π4×12dt1+t2 [x=0,t=1x=π2,t=1]
I=π8+11dt1+t2
abf(x)dx=baf(x)dx
I=π811dt1+t2
I=π8[tan1t]11
I=π8[tan11tan1(1)]
I=π8[π4+π4]
I=π8(2π4)
I=π216

Definite Integrals Excercise Revision Exercise Question 48

Answer:I=12ln|2+1|
Hint: To solve this question we use f(x) form
Given:0π2cos2xsinx+cosxdx
Solution:I=0π2cos2xsinx+cosxdx
0af(x)dx=0af(ax)dx
I=0π2cos2(π2x)sin(π2x)+cos(π2x)dx
=0π2sin2xcosx+sinxdx
2I=0π2cos2xsinx+cosxdx+0π2sin2xsinx+cosxdx
2I=0π2sin2x+cos2xsinx+cosxdx #check the steps and contents again
2I=0π212(sinx+cosx)dx
2I=120π21cosx12+sinx12dx
2I=120π21cosxcosπ4+sinxsinπ4dx
2I=120π21cos(xπ4)dx
2I=120π2sec(xπ4)dx
2I=12[lnsec(xπ4)+tan(xπ4)]]0π2
2I=12[lnsec(π2π4)+tan(π2π4)]ln[sec(0π4)+tan(0π4)]
2I=12[ln|(2+1)(2+1)(21)21|]
2I=12[ln|(2+1)2(2)2(1)2|
2I=222ln|2+1|
I=12ln|2+1|

Definite Integrals Excercise Revision Exercise Question 49

Answer:π2
Hint: To solve this equation we use By Part
Given:0πcos2xlogsinxdx
Solution:f(x)g(x)dx

By Parts
f(x)g(x)dx=d(fx)dxg(x)dx(dx)
f(x)=logsinx
g(x)=cos2x
[log(sinx)cos2xdxd(logsinx)dxcos2xdxdx]0π
[log(sinx)sin2x21sinxcosxsin2xxdx]0π
[12sin2xlogsinx122cos2xdx]2π
[12sin2xlogsinx12(cos2x1)]2π
[[12sin2xlog(sinx)12(sin2x2+x)]0π]
I=[12sin2xlog(sinx)12sin2x2x2]0π
12sin2πlog(sinπ)12sin2π2π212sin0logsin0+12sin0+0
=00π20+0+0
=π2

Definite Integrals Excercise Revision Exercise Question 50

Answer:π22aa21
Hint: To solve this equation we convert cos
Given:0πxa2cos2xdx,a>1
Solution:
Let I=0πxa2cos2xdx
I=0af(x)dx=0af(ax)dx
I=0ππxa2cos2(πx)dx=0ππxa2cos2xdx
2I=0ππa2cos2xdx
2I=π0π12a[11+acosx+11cosx]dx
2I=π2a0π1a+cosxdx+π2a0π11acosxdx
2I=πa0π1a+cosxdx
cosx=1tan2x21+tan2x2
2I=πa0π1a+1tan2x2sec2x2dx
2I=πa0πsec2x2(a1)tan2x2+a+1dx
2I=πa0πddxtanx2dx(a1)tan2x2+(a+1)
I=πa(a1)0πdtanx2tan2x2+a+1a1
I=πa(a1)×a+1a+1|tan1tanx2a+1a1|0π
I=πaa21(tan1tan10)
=πa×1aa21×π2
=π22aa21


Definite Integrals Exercise Revision Exercise question 51
Answer: I=π(π21)

Hint: To solve this equation we split tan x and sec x
Given:0πxtanxsecx+tanxdx
Solution:I=0πxtanxsecx+tanxdx
I=0πxsinxcosx1cosx+sinxcosxdx [tanx=sinxcosxsec=1cosx]
I=0πxsinx1+sinxdx
I=0af(x)dx=0af(ax)dx
I=0π(πx)sin(πx)1+sin(πx)dx
I=0π(πx)sinx1+sinxdx
I=0ππsinxxsinx1+sinxdx
I=0πsinx1+sinxdx0πxsinx1+sinxdx
I=0πsinx1+sinxdxI
2I=π0πsinx(1sinx)(1+sinx)(1sinx)dx
2I=π0πsinxsin2xcos2xdx
I=π0π(sinxcos2xsinxcos2x)dx
I=π0π(1cosxsinxcosxtan2x)dx
I=π0πsecxtanxdxπ0πtan2xdx
I=π0πsecxtanxdxπ0πsec2xdx+π0π1dx
2I=π[secx]0ππ[tanx]0π+π[x]0π
2I=π(secπsec0)π(tanπtan0)+π(π0)
2I=π(11)π(0)+π2
I=2π+π22
I=π(22+π2)
I=π(π21)

Definite Integrals Exercise Revision Exercise question 52

Answer: 12
Hint: To use this equation, we use 0af(x)dx formula
Given:23x5x+xdx
Solution:
I=23x5x+xdx ……………. (1)
I=235x5(5x)+5xdx
I=235xx+5xdx ……………… (2)
By adding (1) and (2)
2I=23x+5xx+5xdx
2I=23dx2I=[x]32
2I=[32]
I=12


Definite Integrals Exercise Revision Exercise question 53

Answer:22log(2+1)
Hint: To solve this equation we use 0af(x) formula
Given:0π2sin2xsinx+cosxdx
Solution:
I=0π2sin2(π2x)sin(π2x)+cos(π2x)dx
=0π2cos2xcosx+sinxdx
0π2sin2xcosx+sinxdx
2I=0π2cos2x+sin2xcosx+sinxdx
I=120π212cosx+12sinxdx
=120π21cos(xπ4)dx
=120π2sec(xπ4)dx
=12{logsec|xπ9|+tan|xπ9|}0π2
=12log|secπ4+tanπ4|log|sec(π4)+tan(π4)|
=12{log(2+1)log(21)}
=12log(2+121)
=12log((2+1)221)
=22log(2+1)

Definite Integrals Exercise Revision Exercise question 54

Answer: π28
Hint: In this equation, we use xndx formula
Given:0π2xsin2x+cos2xdx
Solution:
I=0π2xsin2x+cos2xdx
I=0π2xdx [xndx=xn+1n+1+c]
I=[x22]0π2
I=π280
I=π28

Definite Integrals Exercise Revision Exercise question 55

Answer:0
Hint: In this equation we use f(x)=f(x)
Given:ππx10sin7xdx
Solution:
I=f(x)f(x)
aaf(x)dx=0
I=ππx10sin7xdx
I=ππx10sin7xdx
f(x)=x10sin7xdx
f(x)=(x)10sin7(x)dx
f(x)=x10sin7x
f(x)=f(x)
aaf(x)dx=0
ππx10sin7xdx=0

Definite Integrals Exercise Revision Exercise question 56

Answer:I=π22log2
Hint: To this equation convert cot into tan
Given:01cot1(1x+x2)dx
Solution:
01tan1(11x+x2)dx
01tan1(1(1x)(1x))dx
=01tan1(x+1x(1x)(1x))
=01(tan1x+tan1(1x))dx
=01tan1xdx+01tan1(1x)dx
tan1x=t
Put x=tant
1=sec2dtdx
dx=sec2dt
I=tan1xdx
=tsec2tdt
=tsec2tdttantdt
=ttanttantdt
=ttantlog|sect|
I2=tan1(1x)dx
 Put  1x=m
1=dmdx
dx=dm
 Put 
1=sec2vdvdm
m=tanv
dm=sec2vdv
I2=tan1mdn
=vsec2vdv
=(vtanvlog|secv|)
cot1(1x+x2)dx=I1+I2
=ttantlogsect|vtanvlog|secv
=ttantloglog|sect|vtanv+log|secv|
t=tan1x
tant=x
tanv=m=1x
=[xtan1log1+x2(1x)tan1(1x)+log(1x2+1]01
=(π4log2)(π4+log2)
=π4log2+π4log2
=π22log2

Definite Integrals Exercise Revision Exercise Question 57

Answer: π35
Hint: To solve this equation, we convert cos x into tan x
Given: 0πdx6cosx
Solution
I=0πdx6(1tan2x21+tanx2)
=0πsec2x26+6tan2x21+tan2x2dx
=170πsec2x257+tan2x2dx
 Let tanx2=t
12sec2x2dx=dt
sec2x2dx=2dt
I=270πdt572+t2
I=27157(tan1t57)0
=235(π20)
I=π35

Definite Integrals Exercise Revision Exercise Question 58

Answer:125log[255325+53]
Hint: To solve this we convert sin and cos into tan
Given:
0π212cosx+4sinxdx
Solution:
Let
I=0π212cosx+4sinxdx
I=120π21cosx+2sinxdx

=120π2sec2x21tan2x2+4tan2x2dx
Let
t=tan2x2
dtdx=sec2x2×12
2dt=sec2x2dx
Now
12×201dt1t2+4t
I=01dtt24t1
I=01dtt24t1+2222
I=01dt(t2)2(5)2
I=125log|t25t2+5|01
I=125log|151+5|log|252+5|
=125log[|151+5|×|2525|]
=125log(25+2552+5255)
=125log(255325+53)

Definite Integrals Exercise Revision Exercise Question 59

Answer: tan12π4
Hint: To solve this we assume cosec x and cot x in t
Given:π6π2cosecxcotx1+cosec2xdx
Solution:
cosecx=t
cosecxcotxdx=dt
21dt1+t2=[tan1t]01
=(π4tan12)
=tan12π4

Definite Integrals Exercise Revision Exercise Question 60

Answer:

Answer:125log|11252112+52|log|1+515|
Hint: To this equation we convert cos and sin in terms of tan
Given:0π2dx4cosx+2sinx
Solution:I=0π2dx4cosx+2sinx
[sinx=2tanx21+tan2x2cosx=1tan2x21+tan2x2]
I=0π2dx(44tan2x24+4tan2x2)+4tanx21+tan2x2
I=0π2sec2x2dx44tan2x2+4tanx2
[tanx2=t12sec2x2dx=dtsec2x2dx=2dt]
I=2dt44t24t
I=12dtt22t1
I=12dtt2+2t1
I=12dt(t12)2(52)2
I=1212×52log|t1252t12+52|
I=125log|tanx21+52tanx2152|0π2
125log|11252112+52|log|1+515|
I=125log|11252112+52|log|1+515|

Definite Integrals Excercise Revision Exercise Question 61

Answer:1
Hint: To solve the integration we have to just integrate x and put the limits.
Given:01xdx
Solution:01xdx
=[x22]01
=102
=12

Definite Integrals Excercise Revision Exercise Question 62

Answer:343
Hint: To solve the given statement we have to integrate them individually
Given:02(2x2+3)dx
Solution:
02(2x2+3)dx
=022x2dx+023dx
=2[x33]02+3[x]02
=1633+6
=343

Definite Integrals Excercise Revision Exercise Question 63

Answer:572
Hint: To solve the given question we have to integrate them individually.
Given:14(x2+x)dx
Solution: 14(x2+x)dx
=14x2dx+14xdx
=[x33]14+[x22]14
=6413+1612
=633+152
=42+152
=572

Definite Integrals Exercise Revision Exercise Question 64

Answer:12e41e2
Hint: To solve the given statement we have to use the formula.
Given:11e2xdx
Solution:
abf(x)dx=banlimx[f(a)+f(a+h)+f(a+(h1)]
f(x)=e2x
a=1,b=1,h=1+1n=2n
11e2xdx=2n2limh[e2a+e2(a+h)+.+e2(a+(n1)h)]
=2nlimh[e2a+e2ae2h+.+e2ae2(n1)h]
=2nlimh[e2a(1+e2h+.+e2(n1)h]
=2ne2limh[1+e2h+.+e2(n1)h]
a=1,r=e2h
Sn=a(rn1)r1
11e2xdx=2nlimh[e2a+e2a+2h+.+e2a+2(n1)h]
=2nlimh[e2a+e2ae2h+.+e2ae2(n1)h]
=2nlimh[e2a(1+e2h+.+e2(n1)h]
=2ne2limh[1(e2/n1)e2h1]
=2e2limh[1(e2m1)ne2h1]
=2e2limh[e2ne2/h1)(e2n1)2h]
h=2nn=2h
n
n0
11e2xdx=2nlimh[e2a+e2a+2h+.+e2a+2(n1)h]
=2n2limh[e2a+e2ae2h+.+e2ae2(n1)h]
=2n2limh[e2a(1+e2h+.+e2(n1)h]
=2ne2limh[1(e2mn1)e2h1]
=2e2limh[1(e2nn1)ne2h1]
=2e2×(e41)limn0[1(e2n1h)×2]
=2e2×(e41)limn0[1(e2n1h)×4]
=2(e41)4e2limn0[1(e2n1h)]
=(e41)2e2
11e2xdx=12e41e2

Definite Integrals Exercise Revision Exercise Question 65

Answer:1e2[11e]
Hint: To solve the given statement use the formula of ex
Given:23exdx
Solution:23exdx
=[ex]23
=(e3)(e2)
=e3+e2
=1e3+1e2
=1e2[11e]

Definite Integrals Exercise Revision Exercise Question 66

Answer:1123
Hint: To solve the given statement we have to integrate them individually.
Given: 13(2x2+5x)dx
Solution:
132x2dx+135xdx=2[x33]13+5[x22]3
=2[2713]+5[912]
=2[263]+5[82]
=523+20
=52+603
=1123

Definite Integrals Exercise Revision Exercise question 67

Answer:623
Hint: To solve the given statement we have to integrate them individually.
Given:13(x2+3x)dx
Solution:
13(x2+3x)dx13(x2+3x)dx=13x2dx+133xdx
=[x33]13+3[x22]13=2713+3[912]=263+242=26+363=623

Definite Integrals Exercise Revision Exercise question 68

Answer: 203
Hint: To solve the given statement we have to integrate them individually
Given:02(x2+2)dx
Solution:02(x2+2)dx
=02x2dx+022dx=[x33]02+[2x]02=83+4=8+123=203

Definite Integrals Exercise Revision Exercise question 69

Answer:12
Hint: To solve the given statement we have to integrate them individually
Given:03(x2+1)dx
Solution:
=03x2dx+031dx=[x33]03+[x]03=[27303]+[30]=9+3=12

The 19th chapter in class 12 mathematics syllabus consist of many concepts that are challenging for the students to understand. This chapter consists of five exercises, ex 19.1 to ex 19.5. The concepts that these exercises cover is Evaluation of Definite Integrals, solving sums with Integrals and Riemann Integral formulas. There are 69 questions in total including its subparts given in the RD Sharma Class 12 Solutions Definite Integrals RE book. to help the students cover all these sums easily without cracking their heads, the Class 12 RD Sharma Chapter 19 Exercise RE Solutions helps a lot.

Students who want to avail the RD Sharma class 12 solutions chapter 19 ex RE book can take a look at these benefits that come with using RD Sharma solutions:-

  • Students who are in class 12 need to do a lot of self-practice at home. The RD Sharma class 12th exercise RE solution will help them in this endeavor by providing accurate answers that can be used to check their performance.

  • The answers in the RD Sharma class 12th exercise RE book are crafted by experts from India who have immense knowledge in maths. They have provided some improved methods of calculations that can be used by students to solve questions faster.

  • Teachers in various schools like to test students by giving them questions from the RD Sharma solutions. Therefore, students can use these solutions to complete their homework and impress their school teachers.

  • Students who have studied the RD Sharma class 12 solutions chapter 19 ex RE thoroughly have said that they have found common questions from the book in their board papers.

  • Unlike expensive study materials and NCERT solutions, the RD Sharma class 12 solutions Indefinite Integrals ex RE pdf is available for free at the Career360 website. You can download the latest version of the book as they keep updating the pdf according to the recent syllabus.

RD Sharma Chapter wise Solutions

NEET Highest Scoring Chapters & Topics
This ebook serves as a valuable study guide for NEET exams, specifically designed to assist students in light of recent changes and the removal of certain topics from the NEET exam.
Download E-book

Frequently Asked Questions (FAQs)

1. Is the method of explanation provided in the RD Sharma class 12 solutions Definite Integrals ex RE solutions easy for the students to grasp?

The answers that are given in the RD Sharma class 12 solutions Definite Integrals ex RE book are written by people who are erudite on the particular subject. Therefore, the concepts can catch the key points easily. 


2. What makes the class 12 RD Sharma Chapter 19 exercise RE book, the most preferred reference guide?

The class 12 RD Sharma Chapter 19 exercise VSA solution consist of many simple and tricky methods to arrive at a solution. This makes the students save time when they are able to solve the sums quickly during their examinations. Hence, the RD Sharma solutions become the most preferable set of guides.

3. Is the recent version of RD Sharma class 12th exercise RE available?

The latest version of RD Sharma class 12th exercise RE can be obtained from the Career360 website. Searching the book in the search query box will give the desired results.

4. How can the class 12 RD Sharma chapter 19 exercise VSA solution book be used for self-study?

The class 12 RD Sharma Chapter 19 exercise VSA Solution consists of solved sums in various possible methods. This helps the students pick the easy format that they find easy to prepare for their tests.

5. What makes the RD Sharma solution the best set of reference material for the JEE aspirants?

The syllabus of RD Sharma solutions for maths covers the syllabus for JEE mains exams. Therefore, students use these solutions for their exam preparations.

Articles

Get answers from students and experts
Back to top