Definite Integrals Excercise:RE
Definite Integrals Exercise Revision Exercise Question 1
Answer:$\frac{128}{15}$Given:$\int_{0}^{4} x \sqrt{4-x} d x$Hint: Use the formula
$\int_{0}^{a} f(x) d x$Solution:$\begin{aligned} &I=\int_{0}^{4} x \sqrt{4-x} d x \\ & \end{aligned}$$I=\int_{0}^{4}(4-x) \sqrt{4-(4-x)} d x$$\left(\because \int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right)$$\begin{aligned} &=\int_{0}^{4}(4-x) \sqrt{x} d x \\ & \end{aligned}$$=\int_{0}^{4} 4 \sqrt{x}-x^{\frac{3}{2}}$$\begin{aligned} &=4\left(\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right)_{0}^{4}-\left(\frac{-x^{\frac{5}{2}}}{\frac{5}{2}}\right)_{0}^{4} \\ & \end{aligned}$$=\frac{8}{3}(8-0)-\frac{2}{5}(32-0)$$\begin{aligned} &=\frac{64}{3}-\frac{64}{5} \\ & \end{aligned}$$=\frac{320-192}{15} \\$$=\frac{128}{15}$Definite Integrals Exercise Revision Exercise Question 2
Answer:$\frac{326}{135}$Given:$\int_{1}^{2} x \sqrt{3 x-2} d x$Hint: Use the substitution method
Solution:$\int_{1}^{2} x \sqrt{3 x-2} d x$Let
$3 x-2=t$$3dx = dt$ (differentiating w.r.t x)
$\begin{aligned} &\Rightarrow \int_{1}^{2} \frac{t+2}{3} \times \sqrt{t} \times \frac{d t}{3} \\ & \end{aligned}$$=\frac{1}{9} \int_{1}^{2}(t+2) \sqrt{t} d t \\$$=\frac{1}{9} \int_{1}^{2}(t)^{\frac{3}{2}}+2 \sqrt{t} d t$$\begin{aligned} &=\frac{1}{9}\left[\left(\frac{t^{\frac{5}{2}}}{\frac{5}{2}}\right)_{1}^{2}+2\left(\frac{t^{\frac{3}{2}}}{\frac{3}{2}}\right)_{1}^{2}\right] \\ & \end{aligned}$$=\frac{1}{9}\left\{\frac{2}{5}\left[(3 x-2)^{\frac{5}{2}}\right]_{1}^{2}+\frac{4}{3}\left[(3 x-2)^{\frac{3}{2}}\right]_{1}^{2}\right\}$$\begin{aligned} &=\frac{1}{9}\left[\frac{2}{5}(32-1)+\frac{4}{3}(8-1)\right] \\ & \end{aligned}$$=\frac{1}{9}\left(\frac{2}{5} \times 31+\frac{4}{3} \times 7\right)=\frac{1}{9}\left(\frac{186+140}{15}\right) \\$$=\frac{326}{135}$Definite Integrals Exercise Revision Exercise Question 3
Answer:$\frac{16}{3}$Given:$\int_{1}^{5} \frac{x}{\sqrt{2 x-1}} d x$Hint: Let the denominator
$(2x-1) = t$Solution: $\int_{1}^{5} \frac{x}{\sqrt{2 x-1}} d x$Let
$t=2 x-1=>x=\frac{t+1}{2}$$dt = 2dx$ (differentiating w.r.t x)
$\begin{aligned} &I=\int_{1}^{5} \frac{t+1}{\frac{2}{\sqrt{t}}} \times \frac{d t}{2} \\ & \end{aligned}$$I=\int_{1}^{5} \frac{t+1}{2 \sqrt{t}} d t=\frac{1}{4} \int_{1}^{5} \sqrt{t}+(t)^{\frac{-1}{2}} d t$$=\frac{1}{4}\left(\frac{t^{\frac{3}{2}}}{\frac{3}{2}}+\frac{t^{\frac{1}{2}}}{\frac{1}{2}}\right)_{1}^{5}$$=\frac{1}{4}\left(\frac{2}{3}(2 x-1)^{\frac{3}{2}}+2(2 x-1)^{\frac{1}{2}}\right)_{1}^{5}$$\begin{aligned} &=\frac{1}{4}\left(\frac{2}{3}(27-1)+2(3-1)\right) \\ & \end{aligned}$$=\frac{1}{4}\left(\frac{2}{3}(26)+2(2)\right)$$\begin{aligned} &=\frac{1}{4}\left(\frac{52+12}{3}\right) \\ & \end{aligned}$$=\frac{1}{4} \times \frac{64}{3} \\$$=\frac{16}{3}$Definite Integrals Exercise Revision Exercise Question 5
Answer:$\frac{\pi}{4}-\frac{1}{2} \log 2$Given:$\int_{0}^{1} \tan ^{-1} x d x$Hint: Use the integration by parts method
Solution:$\int_{0}^{1} \tan ^{-1} x d x$$\int_{0}^{1} \tan ^{-1} x \cdot 1 d x$We know that
$\int u v d x=u \int v d x-v \int u d x$$\begin{aligned} &=\left(x\tan ^{-1} x \right)_{0}^{1}-\int_{0}^{1} \frac{1}{1+x^{2}} \times x d x \\ & \end{aligned}$$=\frac{\pi}{4}-\frac{1}{2} \int_{0}^{1} \frac{1}{t} d t \\$$=\frac{\pi}{4}-\frac{1}{2}[\log (t)]_{0}^{1}=\frac{\pi}{4}-\frac{1}{2}\left[\log \left(1+x^{2}\right)\right]_{0}^{1}$$\begin{aligned} &=\frac{\pi}{4}-\frac{1}{2}(\log 2-\log 1) \\ & \end{aligned}$ $(\because log 1= 0)$$=\frac{\pi}{4}-\frac{1}{2} \log 2$Definite Integrals Excercise Revision Exercise Question 6
Answer:$\frac{\pi}{2}-\log 2$Given:$\int_{0}^{1} \cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right) d x$Hint: Use the substitution method and trigonometric identities
Solution: $\int_{0}^{1} \cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right) d x$Put
$\begin{aligned} &x=\tan \theta \\ & \end{aligned}$$\Rightarrow d x=\sec ^{2} \theta d \theta$$\begin{aligned} &=\int_{0}^{1} \cos ^{-1}\left(\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}\right) \times \sec ^{2} \theta d \theta \\ & \end{aligned}$$=\int_{0}^{1} \cos ^{-1}(\cos 2 \theta) \times \sec ^{2} \theta d \theta$ $\quad\left(\because \cos 2 \theta=\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}\right)$$\begin{aligned} &=2 \int_{0}^{1} \theta \sec ^{2} \theta d \theta \\ & \end{aligned}$$=2\left[\theta \int_{0}^{1} \sec ^{2} \theta d \theta-\int_{0}^{1} \frac{d}{d \theta} \theta\left[\sec ^{2} \theta d \theta\right]_{0}^{1}\right] \\$$=2\left[\theta \tan \theta-\int \tan \theta d \theta\right]_{0}^{1}$$\begin{aligned} &=2(\theta \tan \theta)_{0}^{1}-2 \int_{0}^{1} \frac{\sin \theta}{\cos \theta} d \theta \\ & \end{aligned}$$=2\left[\tan ^{-1} x \times \tan \left(\tan ^{-1} x\right)\right]_{0}^{1}-2 \int_{0}^{1} \frac{\sin \theta}{\cos \theta} d \theta$Let
$\begin{aligned} &\cos \theta=t \\ & \end{aligned}$$\Rightarrow-\sin \theta d \theta=\mathrm{dt}$ (differentiate w.r.t
$\theta$)
$\begin{aligned} =& 2\left(\tan ^{-1} 1 \times 1\right)+2 \int_{0}^{1} \frac{1}{t} d t \\ \end{aligned}$$= 2 \times \frac{\pi}{4}+2[\log |t|]_{0}^{1} \\$$=\frac{\pi}{2}+2[\log |\cos \theta|]_{0}^{1}$$\begin{aligned} &=\frac{\pi}{2}+2\left[\log \left|\cos \left(\tan ^{-1} x\right)\right|\right]_{0}^{1} \\ & \end{aligned}$$=\frac{\pi}{2}+2\left(\log \frac{1}{\sqrt{2}}-\log 1\right) \\$$=\frac{\pi}{2}-\log 2$Definite Integrals Excercise Revision Exercise Question 7
Answer: $\frac{\pi}{2}-\log 2$Given:$\int_{0}^{1} \tan ^{-1}\left(\frac{2 x}{1+x^{2}}\right) d x$Hint: Use substitution method and then apply the formula of
$\tan 2\theta$Solution: $\int_{0}^{1} \tan ^{-1}\left(\frac{2 x}{1+x^{2}}\right) d x$Let
$\mathrm{x}=\tan \theta$$d x=\sec ^{2} \theta d \theta$ (differentiate w.r.t x )
Now,
$0 < x <1$$0<\tan \theta<1$$0<\theta<\frac{\pi}{4}$Now,
$\begin{aligned} &\int_{0}^{\frac{\pi}{4}} \tan ^{-1}\left(\frac{2 \tan \theta}{1+\tan ^{2} \theta}\right) \sec ^{2} \theta d \theta \\ & \end{aligned}$$=2 \int_{0}^{\frac{\pi}{4}} \theta \sec ^{2} \theta d \theta \\$$=2\left[\theta \int \sec ^{2} \theta d \theta-\int \frac{d}{d \theta} \theta \int \sec ^{2} \theta d \theta\right]_{0}^{\frac{\pi}{4}}$$\begin{aligned} &{\left[\because \int u v d x=u \int v d x-\int \frac{d}{d x} u \int v d x\right]} \\ & \end{aligned}$$=2\left[(\theta \tan \theta)_{0}^{\frac{\pi}{4}}-\int_{0}^{\frac{\pi}{4}} \tan \theta d \theta\right]$$\begin{aligned} &=2\left(\frac{\pi}{4}-0\right)-2 \int_{0}^{\frac{\pi}{4}} \tan \theta d \theta \\ & \end{aligned}$$=\frac{\pi}{2}-2 \int_{0}^{\frac{\pi}{4}} \frac{\sin \theta}{\cos \theta} d \theta$Let
$\cos \theta=t$$-\sin \theta d \theta=\mathrm{dt}$ (differentiate w.r.t

)
$\begin{aligned} &=\frac{\pi}{2}+2 \int_{0}^{\frac{\pi}{4}} \frac{1}{t} d t \\ & \end{aligned}$$=\frac{\pi}{2}+2(\log |t|)_{0}^{\frac{\pi}{4}}$$\begin{aligned} &=\frac{\pi}{2}+2(\log |\cos \theta|)_{0}^{\frac{\pi}{4}}\\ & \end{aligned}$$=\frac{\pi}{2}+2\left(\log \frac{1}{\sqrt{2}}-\log 1\right)\\$$=\frac{\pi}{2}+2 \log \frac{1}{\sqrt{2}}\\$ $(\because \log 1=0)\\$$=\frac{\pi}{2}-\log 2$Definite Integrals Excercise Revision Exercise Question 8
Answer:$\frac{\pi}{2 \sqrt{3}}-\frac{3}{2} \log \frac{4}{3}$Given: $\int_{0}^{\frac{1}{\sqrt{3}}} \tan ^{-1}\left(\frac{3 x-x^{3}}{1-3 x^{2}}\right) d x$Hint: You must know about trigonometric identities and formula of
$\int u v d x$Solution:$\int_{0}^{\frac{1}{\sqrt{3}}} \tan ^{-1}\left(\frac{3 x-x^{3}}{1-3 x^{2}}\right) d x$Let
$\tan x=\theta$$d x=\sec ^{2} \theta d \theta$ (differentiate w.r.t x )
We know ,
$\begin{aligned} &0<\tan \theta<\frac{1}{\sqrt{3}} \\ & \end{aligned}$$0<\theta<\frac{\pi}{6}$$\therefore \int_{0}^{\frac{\pi}{6}} \tan ^{-1}\left(\frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}\right) \times \sec ^{2} \theta d \theta$$\begin{aligned} &=\int_{0}^{\frac{\pi}{6}} \tan ^{-1}(\tan 3 \theta) \times \sec ^{2} \theta d \theta \\ & \end{aligned}$$=3 \int_{0}^{\frac{\pi}{6}} \theta \sec ^{2} \theta d \theta$We know that
$\left[\because \int u v d x=u \int v d x-\int \frac{d}{d x} u \int v d x\right]$$\begin{aligned} &=3(\theta \tan \theta)_{0}^{\frac{\pi}{6}}-3 \int_{0}^{\frac{\pi}{6}} \tan \theta d \theta \\ & \end{aligned}$$=3\left(\frac{\pi}{6} \times \frac{1}{\sqrt{3}}-0\right)-3 \int_{0}^{\frac{\pi}{6}} \tan \theta d \theta$Let
$\cos \theta=t$$-\sin \theta d \theta=\mathrm{dt}$ (differentiate w.r.t
$\theta$)
$\begin{aligned} &=\frac{\pi}{2 \sqrt{3}}+3 \int_{0}^{\frac{\pi}{6}} \frac{1}{t} d t \\ & \end{aligned}$$=\frac{\pi}{2 \sqrt{3}}+3(\log |t|)_{0}^{\frac{\pi}{6}}=\frac{\pi}{2 \sqrt{3}}+3(\log |\cos \theta|)_{0}^{\frac{\pi}{6}}$$\begin{aligned} &=\frac{\pi}{2 \sqrt{3}}+3\left(\log \frac{\sqrt{3}}{2}-\log 1\right)_{0}^{\frac{\pi}{6}} \\ & \end{aligned}$$\frac{\pi}{2 \sqrt{3}}-\frac{3}{2} \log \frac{4}{3}$Definite Integrals Excercise Revision Exercise Question 9
Answer: $2\log2 -1$Given:$\int_{0}^{1} \frac{1-x}{1+x} d x$Hint: Apply integration by parts method
Solution: $\int_{0}^{1} \frac{1-x}{1+x} d x$$\begin{aligned} &=\int_{0}^{1} \frac{1-x-1+1}{1+x} d x=\int_{0}^{1} \frac{2-(x+1)}{1+x} d x \\ & \end{aligned}$$=\int_{0}^{1} \frac{2}{1+x} d x-\int_{0}^{1} d x$$\begin{aligned} &=2[\log (1+x)]_{0}^{1}-(x)_{0}^{1} \\ & \end{aligned}$$=2(\log 2-\log 1)-1 \\$$=2 \log 2-1$Definite Integrals Excercise Revision Exercise Question 10
Answer:$\frac{1}{4} \log \left(\frac{2 \sqrt{3}+3}{3}\right)$Given:$\int_{0}^{\frac{\pi}{3}} \frac{\cos x}{3+4 \sin x} d x$Hint: Apply Substitution method
Solution:$\int_{0}^{\frac{\pi}{3}} \frac{\cos x}{3+4 \sin x} d x$Let
$3+4 \sin x=t$$4 \cos d x=d t$ (diff w.r.t x)
$\begin{aligned} &\frac{1}{4} \int_{0}^{\frac{\pi}{3}} \frac{1}{t} d t=\frac{1}{4}(\log t)_{0}^{\frac{\pi}{3}} \\ & \end{aligned}$$=\frac{1}{4}[\log |3+4 \sin x|]_{0}^{\frac{\pi}{3}}$$\begin{aligned} &=\frac{1}{4}\left(\log \left(3+4 \times \frac{\sqrt{3}}{2}\right)-\log 3\right) \\ & \end{aligned}$$=\frac{1}{4}(\log (3+2 \sqrt{3})-\log 3) \\$$=\frac{1}{4} \log \left(\frac{3+2 \sqrt{3}}{3}\right)$Definite Integrals Exercise Revision Exercise question 11
Answer:$2-\frac{\pi}{2}$Given:$\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{2} x}{(1+\cos x)^{2}} d x$Hint:Use the formula

and then apply integration rule by parts method.
Solution:
$\begin{aligned} &\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{2} x}{(1+\cos x)^{2}} d x \\ & \end{aligned}$$=\int_{0}^{\frac{\pi}{2}} \frac{1-\cos ^{2} x}{(1+\cos x)^{2}} d x$$\begin{aligned} &=\int_{0}^{\frac{\pi}{2}} \frac{1-\cos x}{(1+\cos x)} d x \\ & \end{aligned}$$=\int_{0}^{\frac{\pi}{2}} \frac{1-\cos x-1+1}{1+\cos x} d x$$\begin{aligned} &=\int_{0}^{\frac{\pi}{2}} \frac{2-(1+\cos x)}{1+\cos x} d x \\ & \end{aligned}$$=\int_{0}^{\frac{\pi}{2}} \frac{2}{1+\cos x} d x-\int_{0}^{\frac{\pi}{2}} \frac{1+\cos x}{1+\cos x} d x$$\begin{aligned} &=2 \int_{0}^{\frac{\pi}{2}} \frac{(1-\cos x)}{\left(1-\cos ^{2} x\right)} d x-\frac{\pi}{2} \\ & \end{aligned}$$=2 \int_{0}^{\frac{\pi}{2}} \frac{(1-\cos x)}{\sin ^{2} x} d x-\frac{\pi}{2}$$\begin{aligned} &=2 \int_{0}^{\frac{\pi}{2}} \cos e c^{2} x-\operatorname{cosec} x \cdot \cot x d x-\frac{\pi}{2} \\ & \end{aligned}$$=2(-\cot x+\cos e c x)_{0}^{\frac{\pi}{2}}-\frac{\pi}{2} \\$$=2(-0+1+0)-\frac{\pi}{2} \\$$=2-\frac{\pi}{2}$Definite Integrals Exercise Revision Exercise question 12
Answer: $2(\sqrt{2-1})$Given: $\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{\sqrt{1+\cos x}} d x$Hint: Use substitution Method
Solution:$\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{\sqrt{1+\cos x}} d x$Let
$1+\cos x=t$$-\sin x dx = dt$ (diff w.r.t x)
Now,
$\begin{aligned} &\int_{0}^{\frac{\pi}{2}}-\frac{1}{\sqrt{t}} d t \\ & \end{aligned}$$=-\left(\frac{\sqrt{t}}{\frac{1}{2}}\right)_{0}^{\frac{\pi}{2}}=-2(\sqrt{1+\cos x})_{0}^{\frac{\pi}{2}}$$\begin{aligned} &=-2(1-\sqrt{2}) \\ & \end{aligned}$$=2(\sqrt{2}-1)$Definite Integrals Exercise Revision Exercise question 13
Answer:$\frac{\pi}{4}$Given: $\int_{0}^{\frac{\pi}{2}} \frac{\cos x}{1+\sin ^{2} x} d x$Hint: You must know about the integration of
$\frac{1}{1+x^{2}}$Solution:$\int_{0}^{\frac{\pi}{2}} \frac{\cos x}{1+\sin ^{2} x} d x$Let
$\sin x=t$$\cos xdx=dt$ (Differentiate w.r.t to x)
Now
$\int_{0}^{\frac{\pi}{2}} \frac{1}{1+t^{2}} d t$$\begin{aligned} &=\left(\tan ^{-1} t\right)_{0}^{\frac{\pi}{2}}=\left[\tan ^{-1}(\sin x)\right]_{0}^{\frac{\pi}{2}} \\ & \end{aligned}$$=\tan ^{-1} 1-\tan ^{-1} 0 \\$$=\frac{\pi}{4}-0\left(\because \tan \frac{\pi}{4}=1\right)$Definite Integrals Exercise Revision Exercise question 14
Answer: $\frac{8}{3}$
Given:$\int_{0}^{\pi} \sin ^{3} x(1+2 \operatorname{cox})(1+\cos x)^{2} d x$Hint: Use trigonometric identity and then apply substitution method
Solution:$\int_{0}^{\pi} \sin ^{3} x(1+2 \operatorname{cox})(1+\cos x)^{2} d x$$\begin{aligned} &\int_{0}^{\pi} \sin x\left(1-\cos ^{2} x\right)(1+2 \operatorname{cox})(1+\cos x)^{2} d x \\ & \end{aligned}$${\left[\begin{array}{l} \because \sin ^{2} x+\cos ^{2} x=1 \\ \sin ^{2} x=1-\cos ^{2} x \end{array}\right]}$Now,
Let
$\begin{aligned} &\cos x=t \\ & \end{aligned}$$-\sin x d x=d t$ (Diff w.r.t to x)
$\begin{aligned} &\Rightarrow-\int_{0}^{\pi}\left(1-t^{2}\right)(1+2 t)(1+t)^{2} d x \\ & \end{aligned}$$\Rightarrow-\int_{0}^{\pi}\left(1-t^{2}\right)(1+2 t)(1+t)^{2} d t \\$$\Rightarrow-\int_{0}^{\pi}\left(1+t^{2}+2 t+2 t+2 t^{3}+4 t^{2}-2 t^{2}-t^{4}-2 t^{3}-2 t^{5}-4 t^{4}\right) d t$$\begin{aligned} &\Rightarrow-\int_{0}^{\pi}\left(1+4 t+4 t^{2}-2 t^{3}-5 t^{4}-2 t^{5}\right) d t \\ &\end{aligned}$$\Rightarrow-\left(t+2 t^{2}+\frac{4 t^{3}}{3}-\frac{t^{4}}{2}-t^{5}-\frac{t^{6}}{3}\right)_{-1}^{1} \\$$\left\{\begin{array}{l} \therefore 0<x<\pi \\ 1<\cos x<-1 \\ 1<t<-1 \end{array}\right\}$$\begin{aligned} &\Rightarrow\left(t+2 t^{2}+\frac{4 t^{3}}{3}-\frac{t^{4}}{2}-t^{5}-\frac{t^{6}}{3}\right)_{-1}^{1} \\ & \end{aligned}$$\Rightarrow\left(1+2+\frac{4}{3}-\frac{1}{2}-1-\frac{1}{3}\right)_{-1}^{1}-\left((-1)+2-\frac{4}{3}-\frac{1}{2}+1-\frac{1}{3}\right)_{-1}^{1}$$\begin{aligned} &\Rightarrow 2-\frac{1}{2}+1-2+\frac{5}{3}+\frac{1}{2} \\ & \end{aligned}$$=1+\frac{5}{3}=\frac{8}{3}$Definite Integrals Exercise Revision Exercise question 15
Answer:$\frac{\pi}{4}$Given:$\int_{0}^{\infty} \frac{x}{(1+x)\left(1+x^{2}\right)} d x$Hint: Use Partial fraction method
Solution:$\int_{0}^{\infty} \frac{x}{(1+x)\left(1+x^{2}\right)} d x$Using Partial fraction
$\begin{aligned} &\frac{x}{(1+x)\left(1+x^{2}\right)}=\frac{A}{1+x}+\frac{B x+c}{1+x^{2}} \\ & \end{aligned}$$\Rightarrow x=A\left(1+x^{2}\right)+(B x+C)(1+x) \\$$\Rightarrow x=A+A x^{2}+B x+B x^{2}+C+C x \\$$\Rightarrow x=(A+C)+(A+B) x^{2}+(B+C) x$On comparing
$\begin{aligned} &A+C=0, B+C=1, A+B=0 \\ & \end{aligned}$$\therefore A=\frac{-1}{2}, B=\frac{1}{2}, C=\frac{1}{2}$Hence,
$\begin{aligned} &\int_{0}^{\infty} \frac{x}{(1+x)\left(1+x^{2}\right)} d x=\int_{0}^{\infty}\left(\frac{-1}{2(1+x)}+\frac{1}{2}\left(\frac{x+1}{1+x^{2}}\right)\right) d x \\ & \end{aligned}$$=-\frac{1}{2}[\log |1+x|]_{0}^{\infty}+\frac{1}{2} \int_{0}^{\infty} \frac{x}{1+x^{2}}+\frac{1}{1+x^{2}} d x$$\begin{aligned} &=-\frac{1}{2}\left[\log \frac{\sqrt{1+x^{2}}}{x+1}\right]_{0}^{\infty}+\frac{1}{2}\left(\tan ^{-1} x\right)_{0}^{\infty} \\ & \end{aligned}$$=\frac{1}{2} \times 0+\frac{1}{2}\left(\frac{\pi}{2}-0\right)=\frac{\pi}{4}$Definite Integrals Exercise Revision Exercise Question 16
Answer:$\frac{3}{5\sqrt{2}}$Given:$\int_{0}^{\frac{\pi}{4}} \sin 2 x \sin 3 x d x$Hint: You must know the identity 2 sin x sin y
Solution: $\int_{0}^{\frac{\pi}{4}} \sin 2 x \sin 3 x d x$$\begin{aligned} &{[\therefore 2 \sin x \sin y=\cos (x-y)-\cos (x+y)]} \\ & \end{aligned}$$=\frac{1}{2} \int_{0}^{\frac{\pi}{4}} \cos x-\cos 5 x d x \\$$(\therefore \cos (-x)=\cos x)$$\begin{aligned} &=\frac{1}{2}\left(\sin x-\frac{\sin 5 x}{5}\right)_{0}^{\frac{\pi}{4}}=\frac{1}{2}\left(\sin \frac{\pi}{4}+\frac{\sin \frac{\pi}{4}}{5}\right) \\ & \end{aligned}$$=\frac{1}{2}\left(\frac{1}{\sqrt{2}}+\frac{1}{5 \sqrt{2}}\right)=\frac{1}{2} \times\left(\frac{5+1}{5 \sqrt{2}}\right) \\$$=\frac{1}{2} \times \frac{6}{5 \sqrt{2}}=\frac{3}{5 \sqrt{2}}$Definite Integrals Exercise Revision Exercise Question 17
Answer:$\frac{\pi}{2}-1$Given:$\int_{0}^{1} \sqrt{\frac{1-x}{1+x}} d x$Hint: Do rationalization and then integrate by parts
Solution:$\int_{0}^{1} \sqrt{\frac{1-x}{1+x}} d x$$\begin{aligned} &\int_{0}^{1} \sqrt{\frac{1-x}{1+x}} d x \\ & \end{aligned}$$=\int_{0}^{1} \sqrt{\frac{1-x}{1+x} \times \frac{1-x}{1-x}} d x=\int_{0}^{1} \sqrt{\frac{(1-x)^{2}}{1-x^{2}}} d x$$\begin{aligned} &=\int_{0}^{1} \frac{1-x}{\sqrt{1-x^{2}}} d x=\int_{0}^{1} \frac{1}{\sqrt{1-x^{2}}} d x-\int_{0}^{1} \frac{x}{\sqrt{1-x^{2}}} d x \\ & \end{aligned}$$=\left(\sin ^{-1} x\right)_{0}^{1}-\left(-\frac{1}{2} \sqrt{\frac{1-x^{2}}{\frac{1}{2}}}\right)_{0}^{1}$$\begin{aligned} &=\left(\sin ^{-1} x\right)_{0}^{1}+\left[\sqrt{1-x^{2}}\right]_{0}^{1} \\ & \end{aligned}$$=\left(\frac{\pi}{2}-1\right)$Definite Integrals Exercise Revision Exercise Question 18
Answer:$\frac{\sqrt{e}-1}{e}$Given: $\int_{1}^{2} \frac{1}{x^{2}} e^{-\frac{1}{x}} d x$Hint: Use Substitution method
Solution:Let
$\begin{aligned} &\frac{-1}{x}=t \\ & \end{aligned}$ (Differentiating w.r.t to x)
$\frac{1}{x^{2}} d x=d t$$\begin{aligned} &\int_{1}^{2} \frac{1}{x^{2}} e^{-\frac{1}{x}} d x\\ & \end{aligned}$$\int_{1}^{2} e^{t} d t=\left(e^{t}\right)_{1}^{2}=\left(e^{\frac{-1}{x}}\right)_{1}^{2}\\$$\begin{aligned} &=e^{\frac{-1}{2}}-e^{-1} \\ \end{aligned}$$=e^{-\frac{1}{2}}-\frac{1}{e} \\$$=\frac{\sqrt{e}-1}{e}$Definite Integrals Exercise Revision Exercise Question 19
Answer:$\frac{2}{35}-\frac{9}{280 \sqrt{2}}$Given:$\int_{0}^{\frac{\pi}{4}} \cos ^{4} x \sin ^{3} x d x$Hint: Use trigonometric identities.
Solution: $\int_{0}^{\frac{\pi}{4}} \cos ^{4} x \sin ^{3} x d x$$\begin{aligned} &=\int_{0}^{\frac{\pi}{4}} \cos ^{4} x \sin x\left(1-\cos ^{2} x\right) d x \\ & \end{aligned}$$\left(\begin{array}{l} \because \sin ^{2} x+\cos ^{2} x=1 \\ \sin ^{2} x=1-\cos ^{2} x \end{array}\right)$$\begin{aligned} &\text { Let } \\ & \end{aligned}$$\cos x=t \\$ (Differentiate w.r.t to x)
$-\sin x d x=d t$$\begin{aligned} &=-\int_{0}^{\frac{\pi}{4}} t^{4}\left(1-t^{2}\right) d t \\ & \end{aligned}$$=\int_{0}^{\frac{\pi}{4}} t^{4}\left(t^{2}-1\right) d t \\$$=\int_{0}^{\frac{\pi}{4}}\left(t^{6}-t^{4}\right) d t=\left(\frac{t^{7}}{7}-\frac{t^{5}}{5}\right)_{0}^{\frac{\pi}{4}}$$\begin{aligned} &=\left(\frac{\cos ^{7} x}{7}-\frac{\cos ^{5} x}{5}\right)_{0}^{\frac{\pi}{4}}=\frac{1}{(\sqrt{2})^{7}} \times \frac{1}{7}-\frac{1}{(\sqrt{2})^{5}} \times \frac{1}{5}-\frac{1}{7}+\frac{1}{5} \\ & \end{aligned}$$=\frac{1}{56 \sqrt{2}}-\frac{1}{20 \sqrt{2}}+\frac{2}{35}$$\begin{aligned} &=\frac{1}{4 \sqrt{2}}\left(\frac{1}{14}-\frac{1}{5}\right)+\frac{2}{35} \\ & \end{aligned}$$=\frac{2}{35}+\frac{1}{4 \sqrt{2}}\left(\frac{5-14}{70}\right) \\$$=\frac{2}{35}-\frac{9}{280 \sqrt{2}}$Definite Integrals Exercise Revision Exercise Question 20
Answer: $\frac{3}{2}$Given: $\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{\sqrt{1+\cos x}}{(1-\cos x)^{\frac{3}{2}}} d x$Hint: Do rationalization and then apply substitution method
Solution: $\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{\sqrt{1+\cos x}}{(1-\cos x)^{\frac{3}{2}}} d x$$\begin{aligned} &=\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{\sqrt{1+\cos x}}{(1-\cos x)^{\frac{3}{2}}} \times \frac{\sqrt{1-\cos x}}{\sqrt{1-\cos x}} d x\\ & \end{aligned}$$=\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{\sqrt{1-\cos ^{2} x}}{(1-\cos x)^{2}} d x=\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{\sin x}{(1-\cos x)^{2}} d x$$\begin{aligned} &\text { Let } \\ & \end{aligned}$$1-\cos x=t \\$ (differentiate w.r.t to x)
$\sin x d x=d t$$\begin{aligned} &=\int_{\frac{1}{2}}^{1} \frac{1}{t^{2}} d t=-\frac{1}{2}\left(t^{-1}\right)_{\frac{1}{2}}^{1}=-\frac{1}{4} \\ & \end{aligned}$Definite Integrals Excercise Revision Exercise Question 21
Answer: $\frac{-\pi}{4}$Given:$\int_{0}^{\frac{\pi}{2}} x^{2} \cos 2 x d x$Hint: Apply integration by parts method
Solution:$\int_{0}^{\frac{\pi}{2}} x^{2} \cos 2 x d x$$\begin{aligned} &{\left[x^{2} \frac{\sin 2 x}{2}\right]_{0}^{\frac{\pi}{2}}-\int_{0}^{\frac{\pi}{2}} 2 x \frac{\sin 2 x}{2} d x} \\ & \end{aligned}$${\left[\because \int u v d x=u \int v d x-\int \frac{d}{d x} u \int v d x\right]}$$\begin{aligned} &=\left[x^{2} \frac{\sin 2 x}{2}\right]_{0}^{\frac{\pi}{2}}-\left[\left(-x \frac{\cos 2 x}{2}\right)+\int_{0}^{\frac{\pi}{2}} \frac{\cos 2 x}{2} d x\right] \\ \end{aligned}$$=\left[x^{2} \frac{\sin 2 x}{2}\right]_{0}^{\frac{\pi}{2}}+\left(x \frac{\cos 2 x}{2}\right)_{0}^{\frac{\pi}{2}}-\frac{1}{2}\left(\frac{\sin 2 x}{2}\right)_{0}^{\frac{\pi}{2}} \\$$=0-\frac{\pi}{2} \times \frac{1}{2}-0=-\frac{\pi}{4}$
Definite Integrals Excercise Revision Exercise Question 22
Answer:$\log\left ( \frac{4}{e} \right )$Given:$\int_{0}^{1} \log (1+x) d x$Hint: Apply the formula of
$\int u v d x$Solution: $\int_{0}^{1} \log (1+x) d x$$\begin{aligned} &=\int_{0}^{1} \log (1+x) \cdot 1 d x \\ & \end{aligned}$$=[\log (1+x) x]_{0}^{1}-\int_{0}^{1} \frac{x}{1+x} d x \\$${\left[\because \int u v d x=u \int v d v-\int \frac{d}{d x} u \int v d x\right]}$$\begin{aligned} &=[\log (1+x) x]_{0}^{1}-\int_{0}^{1} \frac{x+1-1}{1+x} d x \\ & \end{aligned}$$=[\log (1+x) x]_{0}^{1}-\int_{0}^{1} 1-\frac{1}{1+x} d x$$\begin{aligned} &=[\log (1+x) x]_{0}^{1}-[x-\log (1+x)]_{0}^{1} \\ & \end{aligned}$$=\log 2-\log 0-[(1-\log 2)-(0-\log 1)]$We know
$\log1 = 0$$\begin{aligned} &\therefore \log 2-1+\log 2=2 \log 2-1 \\ & \end{aligned}$$=\log 4-\log e$$\begin{aligned} &\left(\begin{array}{l} \therefore \log e=1, a \log b=\log b^{a} \\ \therefore \log a-\log b=\log \frac{a}{b} \end{array}\right) \\ & \end{aligned}$$=\log \left(\frac{4}{e}\right)$Definite Integrals Excercise Revision Exercise Question 23
Answer:$\frac{57}{5}-\sqrt{5}$Given:$\int_{2}^{4} \frac{x^{2}+x}{\sqrt{2 x+x}} d x$Hint: Use substitution method
Solution: $\int_{2}^{4} \frac{x^{2}+x}{\sqrt{2 x+x}} d x$Let
$\begin{aligned} &2 x+1=t^{2} \\ & \end{aligned}$$2 d x=2 t d t \\$ (Differentiate w.r.t to x)
$d x=t d t$Now,
$\int_{2}^{4} \frac{x^{2}+x}{\sqrt{2 x+x}} d x$$\begin{aligned} &=\int_{2}^{4} \frac{\left(\frac{t^{2}-1}{2}\right)^{2}+\left(\frac{t^{2}-1}{2}\right)}{t} t d t \\ & \end{aligned}$$=\int_{2}^{4} \frac{\left(t^{2}-1\right)^{2}+2\left(t^{2}-1\right)}{4} d t$$\begin{aligned} &=\frac{1}{4} \int_{2}^{4}\left(t^{4}+1-2 t^{2}+2 t^{2}-2\right) d t \\ & \end{aligned}$$=\frac{1}{4} \int_{2}^{4} t^{4}-1 d t \\$$=\frac{1}{4}\left(\frac{t^{5}}{5}-t\right)^{4}$$\begin{aligned} &=\frac{1}{4}\left[\frac{(2 x+1)^{2} \sqrt{2 x+1}}{5}-\sqrt{2 x+1}\right]_{2}^{4} \\ & \end{aligned}$$=\frac{1}{4}\left[\left(\frac{81 \times 3}{5}-3\right)-\left(\frac{25 \sqrt{5}}{5}-\sqrt{5}\right)\right]$$\begin{aligned} &=\frac{1}{4}\left[\left(\frac{243-15}{5}\right)-\left(\frac{25 \sqrt{5}-5 \sqrt{5}}{5}\right)\right] \\ & \end{aligned}$$=\frac{1}{4} \times \frac{228}{5}-\frac{1}{4} \times \frac{20 \sqrt{5}}{5} \\$$=\frac{57}{5}-\sqrt{5}$Definite Integrals Excercise Revision Exercise Question 24
Answer:$\frac{\pi^{2}}{16}-\frac{\pi}{4}+\frac{1}{2} \log 2$Given:$\int_{0}^{1} x\left(\tan ^{-1} x\right)^{2} d x$Hint: Apply the formula of
$\int uv dx$Solution:$\int_{0}^{1} x\left(\tan ^{-1} x\right)^{2} d x$Let
$\begin{aligned} &\tan ^{-1} x=t \\ & \end{aligned}$$x=\tan t \\$ (Differentiate w.r.t to x)
$d x=\sec ^{2} t d t$$\begin{aligned} &=\int_{0}^{1}(\tan t) t^{2} \sec ^{2} t d t \\ & \end{aligned}$$=\left[t^{2} \frac{\tan ^{2} t}{2}\right]_{0}^{1}-\int_{0}^{1} 2 t \times \frac{\tan ^{2} t}{2} d t \\$$=\left[t^{2} \frac{\tan ^{2} t}{2}\right]_{0}^{1}-\int_{0}^{1} t\left(\sec ^{2} t-1\right) d t$$\begin{aligned} &=\left[t^{2} \frac{\tan ^{2} t}{2}\right]_{0}^{1}-\int_{\ell}^{1} t \sec ^{2} t d t+\int_{0}^{1} t d t \\ & \end{aligned}$$=\left[t^{2} \frac{\tan ^{2} t}{2}\right]_{0}^{1}-(t \tan t)_{0}^{1}+\int_{0}^{1} \tan t d t+\left(\frac{t^{2}}{2}\right)_{0}^{1} \\$$=\left[t^{2} \frac{\tan ^{2} t}{2}\right]_{0}^{1}-(t \tan t)_{0}^{1}+[\log |\sec t|]_{0}^{1}+\left(\frac{t^{2}}{2}\right)_{0}^{1}$Now
$0< x< 1$$\begin{aligned} &\Rightarrow 0<\tan ^{-1} x<\frac{\pi}{4} \\ & \end{aligned}$$\Rightarrow 0<t<\frac{\pi}{4}$$\begin{aligned} &=\left[t^{2} \frac{\tan ^{2} t}{2}\right]_{0}^{\frac{\pi}{4}}-(t \tan t)_{0}^{\frac{\pi}{4}}+[\log |\sec t|]_{0}^{\frac{\pi}{4}}+\left(\frac{t^{2}}{2}\right)_{0}^{\frac{\pi}{4}} \\ & \end{aligned}$$=\left(\frac{\pi}{4}\right)^{2} \times \frac{1}{2}-\frac{\pi}{4}+\log \sqrt{2}+\left(\frac{\pi}{4}\right)^{2} \times \frac{1}{2}$$\begin{aligned} &=\frac{\pi^{2}}{16} \times \frac{1}{2}-\frac{\pi}{4}+\log \sqrt{2}+\frac{\pi^{2}}{16} \times \frac{1}{2} \\ & \end{aligned}$$=2 \times \frac{\pi^{2}}{16} \times \frac{1}{2}-\frac{\pi}{4}+\log \sqrt{2} \\$$=\frac{\pi^{2}}{16}-\frac{\pi}{4}+\log \sqrt{2}$Definite Integrals Excercise Revision Exercise Question 25
Answer: $\pi-2$
Given: $\int_{0}^{1}\left(\cos ^{-1} x\right)^{2}$Hint: Using substitution method and formula of
$\int uv dx$Solution:$\int_{0}^{1}\left(\cos ^{-1} x\right)^{2}$Let
$\begin{aligned} &\cos ^{-1} x=\theta \Rightarrow x=\cos \theta \\ & \end{aligned}$ (Differentiate w.r.t to x)
$d x=-\sin \theta d \theta \\$$=\int_{0}^{1} \theta^{2}(-\sin \theta d \theta)$$\begin{aligned} &=-\int_{0}^{1} \theta^{2} \sin \theta d \theta \\ & \end{aligned}$$=-\left[\theta^{2}(\cos \theta)\right]_{0}^{1}+\int_{0}^{1} 2 \theta(-\cos \theta) d \theta \\$$=\theta^{2}(\cos \theta)_{0}^{1}-2\left[(\theta \sin \theta)_{0}^{1}-\int_{0}^{1} \sin \theta d \theta\right]$$\begin{aligned} &=(\theta^{2}\cos \theta)_{0}^{1}-2(\theta \sin \theta)_{0}^{1}+2(-\cos \theta)_{0}^{1} \\ \end{aligned}$$=\left[\left(\cos ^{-1} x\right)^{2} x\right]_{0}^{1}-2\left[\cos ^{-1} x \sin \left(\cos ^{-1} x\right)\right]_{0}^{1}-2(x)_{0}^{1} \\$$= 0-2\left(0-\frac{\pi}{2}\right)-2=\frac{2 \pi}{2}-2 \\$$= \pi-2$Definite Integrals Exercise Revision Exercise Question 26
Answer:$\frac{1}{2}\log 6$Given:$\int_{1}^{2} \frac{(x+3)}{x(x+2)} d x$Hint: Do integration by parts
Solution:$\int_{1}^{2} \frac{(x+3)}{x(x+2)} d x$$\begin{aligned} &=\int_{1}^{2} \frac{(x+2+1)}{x(x+2)} d x \\ & \end{aligned}$$=\int_{1}^{2} \frac{1}{x} d x+\int_{1}^{2}\left(\frac{1}{x(x+2)}\right) d x \\$$=\int_{1}^{2} \frac{1}{x} d x+\frac{1}{2} \int_{1}^{2}\left(\frac{x+2-x}{x(x+2)}\right) d x$$\begin{aligned} &=\int_{1}^{2} \frac{1}{x} d x+\frac{1}{2} \int_{1}^{2} \frac{1}{x} d x-\frac{1}{2} \int_{1}^{2} \frac{1}{x+2} d x \\ & \end{aligned}$$=\frac{3}{2} \int_{1}^{2} \frac{1}{x} d x-\frac{1}{2} \int_{1}^{2} \frac{1}{x+2} d x$$\begin{aligned} &=\frac{3}{2}(\log x)_{1}^{2}-\frac{1}{2}[\log (x+2)]_{1}^{2} \\ & \end{aligned}$$=\frac{3}{2} \log 2-\frac{1}{2} \log 4+\frac{1}{2} \log 3 \\$$=\frac{3}{2} \log 2-\log 2+\frac{1}{2} \log 3$$\begin{aligned} &=\frac{1}{2} \log 2+\frac{1}{2} \log 3=\frac{1}{2}(\log 2+\log 3) \\ & \end{aligned}$$=\frac{1}{2} \log 6(\therefore \log a+\log b=\log a b)$Definite Integrals Exercise Revision Exercise Question 27
Answer:$\frac{1}{2}$Given:$\int_{0}^{\frac{\pi}{4}} e^{x} \sin x d x$Hint: Apply the formula of
$\int uvdx$Solution: $I=\int_{0}^{\frac{\pi}{4}} e^{x} \sin x d x$ ……… (1)
$\begin{aligned} &I=\left(-e^{x} \cos x\right)_{0}^{\frac{\pi}{4}}+\int_{0}^{\frac{\pi}{4}} e^{x} \cos x d x \\ & \end{aligned}$${\left[\because \int u v d x=u \int v d v-\int \frac{d}{d x} u \int v d x\right]}$$\begin{aligned} &\Rightarrow I=\left(-e^{x} \cos x\right)_{0}^{\frac{\pi}{4}}+\left(e^{x} \sin x\right)_{0}^{\frac{\pi}{4}}-\int_{0}^{\frac{\pi}{4}} e^{x} \sin x d x \\ & \end{aligned}$$\Rightarrow I=\left(-e^{x} \cos x\right)_{0}^{\frac{\pi}{4}}+\left(e^{x} \sin x\right)_{0}^{\frac{\pi}{4}}-I[\therefore \text { from }(1)]$$\begin{aligned} &\Rightarrow 2 I=-e^{\frac{\pi}{4}} \times \frac{1}{\sqrt{2}}-(-1)+e^{\frac{\pi}{4}} \times \frac{1}{\sqrt{2}}-0 \\ & \end{aligned}$$\Rightarrow 2 I=1 \Rightarrow I=\frac{1}{2}$Definite Integrals Exercise Revision Exercise Question 28
Answer:
Answer:$\frac{\pi}{4}-\frac{2}{3}$Given: $\int_{0}^{\frac{\pi}{4}} \tan ^{4} x d x$Hint: Use trigonometric identities and then integrate by parts
Solution: $\int_{0}^{\frac{\pi}{4}} \tan ^{4} x d x=\int_{0}^{\frac{\pi}{4}} \tan ^{2} x \tan ^{2} x d x$$=\int_{0}^{\frac{\pi}{4}} \tan ^{2} x\left(\sec ^{2} x-1\right) d x \\$$\begin{aligned} & &=\int_{0}^{\frac{\pi}{4}} \tan ^{2} x \sec ^{2} x d x-\int_{0}^{\frac{\pi}{4}}\left(\sec ^{2} x-1\right) d x \end{aligned}$$\begin{aligned} &p u t \\ & \end{aligned}$$\tan x=t \\$ (Differentiate w.r.t to x)
$\sec ^{2} x d x=d t$$\begin{aligned} &=\left(\frac{t^{3}}{3}\right)_{0}^{\frac{\pi}{4}}-\left(1-\frac{\pi}{4}\right)=\frac{1}{3}-1+\frac{\pi}{4} \\ & \end{aligned}$$=\frac{\pi}{4}-\frac{2}{3}$Definite Integrals Exercise Revision Exercise Question 29
Answer:$\frac{1}{2}$Given:$\int_{0}^{1}|2 x-1| d x$Hint: You must know how to open mode
Solution:$\int_{0}^{1}|2 x-1| d x$$\begin{aligned} &=\int_{0}^{\frac{1}{2}}-(2 x-1) d x+\int_{\frac{1}{2}}^{1}(2 x-1) d x \\ & \end{aligned}$$=\left(\frac{-2 x^{2}}{2}+x\right)_{0}^{\frac{1}{2}}+\left(\frac{2 x^{2}}{2}-x\right)^{\frac{1}{2}}$$\begin{aligned} &=-\left(\frac{1}{2}\right)^{2}+\frac{1}{2}-\left(\frac{1}{2}\right)^{2}+\frac{1}{2} \\ & \end{aligned}$$=-\frac{1}{4}+\frac{1}{2}-\frac{1}{4}+\frac{1}{2} \\$$=\frac{-1}{2}+1$$=\frac{-1}{2}+1$$= \frac{1}{2}$
Answer:$2$Given: $\int_{1}^{2}\left|x^{2}-2 x\right| d x$Hint: Open the mode and then do integration by parts
Solution: $\int_{1}^{2}\left|x^{2}-2 x\right| d x$$\begin{aligned} &=\int_{1}^{2}-\left(x^{2}-2 x\right) d x+\int_{2}^{3}\left(x^{2}-2 x\right) d x \\ & \end{aligned}$$=\left(\frac{-x^{3}}{3}+x^{2}\right)_{1}^{2}+\left(\frac{x^{3}}{3}-x^{2}\right)_{2}^{3}$$\begin{aligned} &=\frac{-8}{3}+4+\frac{1}{3}-1+9-9-\frac{8}{3}+4 \\ & \end{aligned}$$=7-\frac{15}{3} \\$$=\frac{21-15}{3} \\$$=\frac{6}{3}$$= 2$Definite Integrals Exercise Revision Exercise question 31
Answer:$2\sqrt{2}-2$Hint: To solve this question we will split
$\sin x.\cos x$ in two forms.
$\left[\begin{array}{l} \because \sin x=\cos x \\ \tan x=1 \\ x=\frac{\pi}{4} \end{array}\right]$Given:$\int_{0}^{\frac{\pi}{2}}|\sin x-\cos x| d x$Solution:$\begin{aligned} &\int_{0}^{\frac{\pi}{4}}(\sin x-\cos x) d x+\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}(\sin x-\cos x) d x \\ & \end{aligned}$$=-[-\cos x-\sin x]_{0}^{\frac{\pi}{4}}+[-\cos x-\sin x]_{\frac{\pi}{4}}^{\frac{\pi}{2}}$ $\left[\begin{array}{l} |x|=-x, x<0 \\ =x, x>0 \end{array}\right]$$\begin{aligned} &=-[\cos x-\sin x]_{0}^{\frac{\pi}{4}}-[\cos x+\sin x]_{\frac{\pi}{4}}^{\frac{\pi}{2}} \\ & \end{aligned}$$=\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right)-(1+0)-\left[(0+1)-\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right)\right] \\$$=2 \sqrt{2}-2$Definite Integrals Exercise Revision Exercise question 36
Answer:$0$Hint: To solve the equation, the value of negative is always zero
Given:$\int_{-a}^{a} \frac{x e^{x^{2}}}{1+x^{2}} d x$Solution: $\begin{aligned} &\int_{-a}^{a} f(x) d x=\int_{-a}^{a} f(a-a-x) d x \\ & \end{aligned}$$=\int_{-a}^{a} f(-x) d x$$\begin{aligned} &=-\int_{-a}^{a} f(x) d x \\ & \end{aligned}$$I=\int_{-a}^{a} \frac{(-x) e^{x^{2}}}{1+x^{2}} d x \\$$2 I=0 \\$$I=0$Definite Integrals Exercise Revision Exercise question 32
Answer:$\frac{2}{\pi}$Hint: To solve this question we will do integration by separation
Given:$\int_{0}^{1}|\sin 2 \pi x| d x$Solution:$\int_{0}^{1}|\sin 2 \pi x| d x$$\begin{aligned} &=\int_{0}^{\frac{1}{2}}(\sin 2 \pi x) d x+\int_{\frac{1}{2}}^{1}-\sin 2 \pi x d x \\ & \end{aligned}$$=\left[\frac{-\cos 2 \pi x}{2 \pi}\right]_{0}^{\frac{1}{2}}+\left[\frac{\cos 2 \pi x}{2 \pi}\right]_{\frac{1}{2}}^{1}$$\begin{aligned} &=\frac{-1}{2 \pi}[\cos \pi-\cos 0]+\frac{1}{2 \pi}[\cos 2 \pi-\cos \pi] \\ & \end{aligned}$$=\frac{-1}{2 \pi}[-1-1]+\frac{1}{2 \pi}[1-(-1)] \\$$=\frac{-1}{2 \pi} \times-2+\frac{1}{2 \pi} \times 2 \\$$=\frac{1+1}{\pi} \\$$=\frac{2}{\pi}$Definite Integrals Exercise Revision Exercise question 33
Answer: $\frac{28}{3}$Hint: To solve this question we need to use
$\int x^{n}$ formula
Given:$\int_{1}^{3}\left|x^{2}-4\right| d x$ $\left\{\begin{array}{l} x^{2}-4, x^{2} \geq 4 \\\\ -\left(x^{2}-4\right), x^{2} \leq 4 \end{array}\right.$$\begin{aligned} &I=-\int_{1}^{2}\left(x^{2}-4\right) d x+\int_{2}^{3}\left(x^{2}-4\right) d x \\ & \end{aligned}$$I=-\left(\frac{x^{2}}{3}-4 x\right)_{1}^{2}+\left(\frac{x^{3}}{3}-4 x\right)_{2}^{3}$$\begin{aligned} &I=-\left(\frac{8}{3}-8-\frac{1}{3}+4\right)+\left(\frac{27}{3}-12-\frac{8}{3}+8\right) \\ & \end{aligned}$$I=-\frac{8}{3}+8+\frac{1}{3}-4+\frac{27}{3}-12-\frac{8}{3}+8 \\$$I=\frac{28}{3}$Definite Integrals Exercise Revision Exercise question 34
Answer: $0$Hint: When the value of
$f\left ( x \right )$ is odd then answer is zero
Given:$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^{9} x d x$Solution:$\begin{aligned} &f(x)=\sin ^{9} x \\ & \end{aligned}$$x \rightarrow-x$ $\left[\int_{-a}^{a} f(x) d x=0, f(x)->o d d\right]$$f(-x)=\sin ^{9}(-x)=>(-\sin x)^{9}$$=-\sin ^{9} x$$f(-x)=-f(x) \Rightarrow \mathrm{f}(\mathrm{x}) \text { is odd }$$\int_{-a}^{a} f(x) d x=0, \text { when } \mathrm{f}(\mathrm{x}) \text { is odd }$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^{9} x d x=0$Definite Integrals Exercise Revision Exercise question 35
Answer:$0$Hint: When the value of
$f\left ( x \right )$ is odd then answer is zero
Given:$\int_{\frac{1}{2}}^{\frac{1}{2}} \cos x \log \left(\frac{1+x}{1-x}\right) d x$Solution:$\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x$ $\left[\int_{-a}^{a} f(x) d x=0, f(x)->o d d\right]$$\begin{aligned} &f(x)=\cos x \log \left(\frac{1+x}{1-x}\right) \\ & \end{aligned}$$f(-x)=\cos (-x) \log \left(\frac{1+(-x)}{1-(-x)}\right)$$\begin{aligned} &=\cos x \log \left(\frac{1-x}{1+x}\right) \\ & \end{aligned}$$f(-x)=-f(x)$F(x) is odd function
$\int_{\frac{-1}{2}}^{\frac{1}{2}} \cos x \log \left(\frac{1+x}{1-x}\right) d x=0$Definite Integrals Exercise Revision Exercise Question 37
Answer:$\frac{\pi}{4}$Hint: To solve this equation we have to change cot into tan
Given:$\int_{0}^{\frac{\pi}{2}} \frac{1}{1+\cot ^{7} x} d x$Solution:$\int_{0}^{\frac{\pi}{2}} \frac{1}{1+\cot ^{7} x} d x=-\int_{0}^{\frac{\pi}{2}} \frac{1}{1+\frac{1}{\cot ^{7} x}} d x$ $I=\int_{0}^{\frac{\pi}{2}} \frac{\tan ^{7} x}{1+\tan ^{7} x} d x$ ………….. (1)
$I=\int_{0}^{\frac{\pi}{2}} \frac{1}{1+\cot \left(0+\frac{\pi}{2}-x\right)^{3}} d x$$I=\int_{0}^{\frac{\pi}{2}} \frac{1}{1+\tan ^{7} x} d x$ …….. (2)
Adding equation (1) and (2)
$2 I=\int_{0}^{\frac{\pi}{2}} \frac{\tan ^{7} x}{1+\tan ^{7} x} d x+\int_{0}^{\frac{\pi}{2}} \frac{1}{1+\tan ^{7} x} d x$$\begin{gathered} 2 I=\int_{0}^{\frac{\pi}{2}} d x \\ \end{gathered}$$2 I=[x]_{0}^{\frac{\pi}{2}}$$\begin{aligned} &2 I=\frac{\pi}{2}-0 \\ & \end{aligned}$$I=\frac{\pi}{2 \times 2} \\$$I=\frac{\pi}{4}$Definite Integrals Exercise Revision Exercise Question 38
Answer: $0$Hint: To solve this equation, we have to use f(x) formula
Given:$\int_{0}^{2 \pi} \cos ^{7} x d x$Solution:$\begin{aligned} &I=\int_{0}^{2 a} f(x) d x=\int_{0}^{a}[f(x)+f(2a-x)] d x \\ & \end{aligned}$$I=\int_{0}^{\frac{\pi}{2}} \cos ^{7} x+\cos ^{7}(2 \pi-x) d x$$\begin{aligned} &I=2 \int_{0}^{\frac{\pi}{2}} \cos ^{7} x d x \\ & \end{aligned}$$I=2 \int_{0}^{\frac{\pi}{2}}\left(\cos ^{7} x-\cos ^{7} x\right) d x$$I= 0$Definite Integrals Exercise Revision Exercise Question 39
Answer: $\frac{a}{2}$Hint: To solve this equation use formula
$\int_{0}^{a} f(x) d x$Given: $\int_{0}^{a} f(x) d x$Solution:$\begin{aligned} &\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\\ & \end{aligned}$$I=\int_{0}^{a} \frac{\sqrt{a-x}}{\sqrt{a-x}+\sqrt{a-(a-x)}} d x\\$ ........(1)
$I=\int_{0}^{a} \frac{\sqrt{a-x}}{\sqrt{a-x}+\sqrt{x}} d x$ ........(2)
Adding (1) and (2)
$I+I=\int_{0}^{a} \frac{\sqrt{a-x}}{\sqrt{a-x}+\sqrt{a-(a-x)}} d x+\int_{0}^{a} \frac{\sqrt{a-x}}{\sqrt{a-x}+\sqrt{x}} d x$$\begin{aligned} &2 I=\int_{0}^{a} \frac{\sqrt{x}+\sqrt{a-x}}{\sqrt{a+x}+\sqrt{x}} d x \\ & \end{aligned}$$2 I=\int_{0}^{a} d x \\$$2 I=(x)_{0}^{a}$$\begin{aligned} &\quad \Rightarrow a-0=a \\ & \end{aligned}$$2 I=a \\$$I=\frac{a}{2}$Definite Integrals Exercise Revision Exercise Question 40
Answer:$\frac{\pi}{6}$Hint: To solve this equation we will use
$\int f\left ( x \right )dx$ formula
Given: $\int_{0}^{\frac{\pi}{2}} \frac{1}{1+\tan ^{3} x} d x$Solution:$\begin{aligned} &I=\int_{0}^{\frac{\pi}{2}} \frac{1}{1+\tan ^{3}\left(\frac{\pi}{2}-x\right)} d x \\ & \end{aligned}$ $\left[\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right]$$\because \tan \left(\frac{\pi}{2}-x\right)=\cot x=\frac{1}{\tan x}$$I=\int_{0}^{\frac{\pi}{2}} \frac{\tan ^{3} x}{\tan ^{3} x+1} d x$ …………. (1)
$I=\int_{0}^{\frac{\pi}{2}} \frac{1}{\tan ^{3} x+1} d x$ ……………. (2)
$2 I=\int_{0}^{\frac{\pi}{2}}\left(\frac{1+\tan ^{3} x}{\tan ^{3} x+1}\right) d x$$2 I=[x]_{0}^{\frac{\pi}{2}} \\$$I=\frac{\pi}{4}$Definite Integrals Exercise Revision Exercise Question 41
Answer:$\frac{\pi}{4}$Hint: In this Statement, we will use
$\int_{0}^{a} f(x) d x$ formula
Given:$\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x$Solution:$\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x$$\begin{aligned} &\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x \\ & \end{aligned}$$I=\int_{0}^{\pi} \frac{(\pi-x) \sin (\pi-x)}{1+\cos ^{2}(\pi-x)} d x \\$$=\int_{0}^{\pi} \frac{(\pi-x) \sin x}{1+\cos ^{2} x} d x$$\begin{aligned} &=\int_{0}^{\pi} \frac{\pi \sin x}{1+\cos ^{2} x} d x-\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x \\ & \end{aligned}$$I=\int_{0}^{\pi} \frac{\pi \sin x}{1+\cos ^{2} x} d x-I$$\begin{aligned} &2 I=\pi \int_{0}^{\pi} \frac{\sin x}{1+\cos ^{2} x} d x \\ & \end{aligned}$$2 I=\pi \int_{1}^{-1} \frac{-d t}{1+t^{2}}$$\begin{aligned} &I=\frac{\pi}{2} \int_{1}^{-1} \frac{d t}{1+t^{2}} \\ & \end{aligned}$$I=\frac{\pi}{2}\left[\tan ^{-1} t\right]_{-1}^{1} \\$$I=\frac{\pi}{2}\left(\tan ^{-1}-\tan ^{-1}(-1)\right. \\$$I=\frac{\pi}{2}\left[\frac{\pi}{4}-\left(-\frac{\pi}{4}\right)\right]$$\begin{aligned} &I=\frac{\pi}{2}\left[\frac{\pi}{2}\right] \\ & \end{aligned}$$I=\frac{\pi}{4}$Definite Integrals Exercise Revision Exercise Question 42
Answer:$I= \frac{\pi}{5}$Hint: In this equation we have
$\int_{0}^{a} f(x)$ formula
Given: $\int_{0}^{\pi} x \sin x \cos ^{4} x d x$Solution:$\begin{aligned} &\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x \\ & \end{aligned}$$I=\int_{0}^{\pi}(\pi-x) \sin (\pi-x) \cos ^{4}(\pi-x) d x \\$$=\int_{0}^{\pi}(\pi-x) \sin x \cdot \cos ^{4} x d x$$\begin{aligned} &=\pi \int_{0}^{\pi} \sin x \cdot \cos ^{4} x d x-\int_{0}^{\pi} x \cdot \sin x \cdot \cos ^{4} x d x \\ & \end{aligned}$$I=\frac{\pi}{2} \int_{0}^{\pi} \sin x \cdot \cos ^{4} x d x-I$$I=-\frac{\pi}{2} \int_{1}^{-1} t^{4} d t$ $\left[\begin{array}{l} \cos x=t \\ \sin x d x=d t \\ x \rightarrow 0 \\ t \cos x=1 \end{array}\right]$$\begin{aligned} &I=\frac{\pi}{2} \int_{-1}^{1} t^{4} d t \\ & \end{aligned}$$I=\frac{\pi}{10}\left[t^{5}\right]_{-1}^{1} \\$$I=\frac{\pi}{10}\left[1^{5}-(-1)^{5}\right] \\$$I=\frac{\pi}{10}(1+1) \\$$I=\frac{2 \pi}{10} \\$$I=\frac{\pi}{5}$Definite Integrals Exercise Revision Exercise Question 43
Answer:$\frac{\pi^{2}}{2ab}$Hint: To solve this equation we will convert statement in terms of tan and sec.
Given:$\int_{0}^{\pi} \frac{x}{a^{2} \cos ^{2} x+b^{2} \sin ^{2} x} d x$Solution:$\begin{aligned} & \int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x \\ & \end{aligned}$$I=\int_{0}^{\pi} \frac{x}{a^{2} \cos ^{2} x+b^{2} \sin ^{2} x} d x$$\begin{aligned} I &=\int_{0}^{\pi} \frac{\pi-x}{a^{2} \cos ^{2} x+b^{2} \sin ^{2} x} d x \\ \end{aligned}$$I =\int_{0}^{\pi} \frac{\pi}{a^{2} \cos ^{2} x+b^{2} \sin ^{2} x} d x-\int_{0}^{\pi} \frac{\pi}{a^{2} \cos ^{2} x+b^{2} \sin ^{2} x} d x$$\begin{aligned} &2 I=\int_{0}^{\pi} \frac{\pi}{a^{2} \cos ^{2} x+b^{2} \sin ^{2} x} d x \\ & \end{aligned}$$2 I=\pi \int_{0}^{\pi} \frac{1}{a^{2} \cos ^{2} x+b^{2} \sin ^{2} x} d x \\$$I=\frac{\pi}{2} \int_{0}^{\pi} \frac{\sec ^{2} x}{a^{2}+b^{2} \tan ^{2} x} d x$$\begin{aligned} &I=\frac{\pi}{2} \times 2 \int_{0}^{\frac{\pi}{2}} \frac{\sec ^{2} x}{a^{2}+b^{2} \tan ^{2} x} d x \\ & \end{aligned}$$I=\frac{\pi}{b} \int_{0}^{\infty} \frac{1}{a^{2}+t^{2} d t}$ $\left[\begin{array}{l} b \tan x=t \\ b \sec ^{2} d x=d t \end{array}\right]$$I=\frac{\pi}{b}\left[\frac{1}{a} \tan ^{-} \frac{t}{a}\right]_{0}^{\infty}$$\begin{aligned} &I=\frac{\pi}{a b}\left[\tan ^{-1} \infty-\tan ^{-1} 0\right] \\ & \end{aligned}$$I=\frac{\pi}{a b}\left[\frac{\pi}{2}-0\right] \\$$I=\frac{\pi^{2}}{2 a b}$Definite Integrals Exercise Revision Exercise Question 44
Answer:$\log 2$Hint: To solve this equation we convert tan in form of sec
Given: $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}|\tan x| d x$Solution:$\begin{aligned} &I=\int_{-\frac{\pi}{4}}^{0}-\tan x d x+\int_{0}^{\frac{\pi}{4}} \tan x d x \\ & \end{aligned}$$I=\int_{0}^{-\frac{\pi}{4}} \tan x d x+\int_{0}^{\frac{\pi}{4}} \tan x d x$$\begin{aligned} I &=[\log |\sec x|]_{0}^{-\frac{\pi}{4}}+[\log |\sec x|]_{0}^{\frac{\pi}{4}} \\ & \end{aligned}$$=\log \sqrt{2}+\log \sqrt{2} \\$$=2 \log \sqrt{2} \\$$=2 \log (2)^{\frac{1}{2}} \\$$=\log 2$Definite Integrals Exercise Revision Exercise Question 45
Answer:$2-\sqrt{2}$Hint: To solve this equation we will split the x
Given:$\int_{0}^{15}\left[x^{2}\right] d x$Solution:$I= \int_{0}^{15}\left[x^{2}\right] d x$$\begin{aligned} &I=\int_{0}^{\frac{3}{2}}(x)^{2} d x \\ & \end{aligned}$$I=\int_{0}^{1} 0 d x+\int_{1}^{\sqrt{2}} 1 d x+\int_{\sqrt{2}}^{\frac{3}{2}} 2 d x$$\begin{aligned} &I=0+[x]_{1}^{\sqrt{2}}+[2 x]_{\sqrt{2}}^{\frac{3}{2}} \\ & \end{aligned}$$I=(\sqrt{2}-1)+(3-2 \sqrt{2}) \\$$I=2-\sqrt{2}$Definite Integrals Excercise Revision Exercise Question 46
Answer: $\frac{\pi}{\sin \alpha}[\pi+\alpha]$Hint: To solve this equation we convert cos and sin into tan
Given: $\frac{\pi}{\sin \alpha}[\pi+\alpha]$Solution: $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$$\begin{aligned} I &=\int_{0}^{\pi} \frac{\pi-x}{1+\cos \alpha \sin (\pi-x)} d x \\ \end{aligned}$$I =\int_{0}^{\pi} \frac{\pi-x}{1+\cos \alpha \sin x} d x \\$$I =\int_{0}^{\pi} \frac{\pi}{1+\cos \alpha \sin x} d x-\int_{0}^{\pi} \frac{x}{1+\cos \alpha \sin x} d x$Let
$\begin{aligned} 2 I &=\int_{0}^{\pi} \frac{\pi}{1+\cos \alpha \sin x} d x \\ \end{aligned}$$2 I =\int_{0}^{\pi} \frac{\pi}{1+\cos x \cdot \frac{2 \tan \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}} d x$$\begin{aligned} &2 I=\pi \int_{0}^{\pi} \frac{1+\tan ^{2} \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}-2 \cos \alpha \tan \frac{x}{2}} d x \\ & \end{aligned}$$I=\frac{\pi}{2} \int_{0}^{\pi} \frac{\sec ^{2} \frac{x}{2}}{\tan ^{2} \frac{x}{2}-2 \cos \alpha \tan \frac{x}{2}+1} d x$Let
$\begin{aligned} &\tan \frac{x}{2}=t \\ & \end{aligned}$$\Rightarrow>\sec ^{2} \frac{x}{2} d x=2 d t \\$$x=0 \rightarrow t=\tan 0=0 \\$$x=x \rightarrow t=\tan \frac{\pi}{2}=\infty$$\begin{aligned} &I=\frac{\pi}{2} \int_{0}^{\infty} \frac{2 d t}{t^{2}-2 \cos \alpha t+1} \\ & \end{aligned}$$I=\pi \int_{0}^{\infty} \frac{d t}{(t-\cos \alpha)^{2}+\left(1-\cos ^{2} x\right)} \\$$I=\pi \int_{0}^{\infty} \frac{d t}{\sin ^{2} \alpha+(t-\cos x)^{2}}$$\begin{aligned} &I=\pi-\frac{1}{\sin \alpha} \cdot \tan ^{-1}\left(\frac{t-\cos \alpha}{\sin \alpha}\right)_{0}^{\infty} \\ & \end{aligned}$$I=\frac{\pi}{\sin \alpha}\left(\tan ^{-1} \infty-\tan ^{-1}\left(\frac{-\cos \alpha}{\sin \alpha}\right)\right) \\$$I=\frac{\pi}{\sin \alpha}\left(\frac{\pi}{2}-\tan ^{-1}(-\cot \alpha)\right)$$\begin{aligned} &=\frac{\pi}{\sin \alpha}\left(\frac{\pi}{2}+\tan ^{-1}(\cot \alpha)\right) \\ & \end{aligned}$$=\frac{\pi}{\sin \alpha}\left(\frac{\pi}{2}+\tan ^{-1} \tan \left(\frac{\pi}{2}+\alpha\right)\right) \\$$=\frac{\pi}{\sin \alpha}\left(\frac{\pi}{2}+\left(\frac{\pi}{2}+\alpha\right)\right)$$= \frac{\pi}{\sin \alpha}[\pi+\alpha]$Definite Integrals Excercise Revision Exercise Question 47
Answer:$\frac{\pi^{2}}{16}$Hint: To solve this we use
$a^{4}+b^{4}, \int_{0}^{a} f(x)$ form
Given:$\int_{0}^{\frac{\pi}{2}} \frac{x \sin x \cos x}{\sin ^{4} x+\cos ^{4} x} d x$Solution:$I= \int_{0}^{\frac{\pi}{2}} \frac{x \sin x \cos x}{\sin ^{4} x+\cos ^{4} x} d x$ ………. (1)
$\begin{aligned} &\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x \\ & \end{aligned}$$I=\int_{0}^{\frac{\pi}{2}} \frac{\left(\frac{\pi}{2}-x\right) \sin \left(\frac{\pi}{2}-x\right) \cos \left(\frac{\pi}{2}-x\right)}{\sin ^{4}\left(\frac{\pi}{2}-x\right)+\cos ^{4}\left(\frac{\pi}{2}-x\right)} d x$$\begin{aligned} &I=\int_{0}^{\frac{\pi}{2}} \frac{\left(\frac{\pi}{2}-x\right) \cos x \sin x}{\cos ^{4} x+\sin ^{4} x} d x \\ & \end{aligned}$ …….. (2)
$2 I=\int_{0}^{\frac{\pi}{2}} \frac{\cos x \sin x}{\cos ^{4} x+\sin ^{4} x} d x \\$${\left[a^{4}+b^{4}=\left(a^{2}+b^{2}\right)^{2}-2 a^{2} b^{2}\right]}$$\begin{aligned} &I=\frac{\pi}{4} \int_{0}^{\frac{\pi}{2}} \frac{\cos x \sin x}{\cos ^{2} x+\sin ^{2} x-2 \cos ^{2} x \cdot \sin ^{2} x} d x \\ & \end{aligned}$$I=\frac{\pi}{4} \int_{0}^{\frac{\pi}{2}} \frac{\cos x \sin x}{1-(2 \cos x \cdot \sin x)^{2}} d x$$\begin{aligned} &\sin 2 x=2 \sin x \cdot \cos x \\ & \end{aligned}$$\sin x \cos x=\frac{\sin 2 x}{2}$$\begin{aligned} &I=\frac{\pi}{4} \int_{0}^{\frac{\pi}{2}} \frac{\sin \frac{2 x}{2}}{1-\left(\frac{\sin 2 x}{2}\right)^{2}} d x \\ & \end{aligned}$$I=\frac{\pi}{4} \int_{0}^{\frac{\pi}{2}} \frac{\sin \frac{2 x}{2}}{\left(\frac{2-\sin ^{2} 2 x}{2}\right)} d x$$\begin{aligned} &I=\frac{\pi}{4} \int_{0}^{\frac{\pi}{2}} \frac{\sin 2 x}{1+1-\sin ^{2} x} d x \\ & \end{aligned}$$I=\frac{\pi}{4} \int_{0}^{\frac{\pi}{2}} \frac{\sin 2 x}{1+\cos ^{2} x} d x$$\begin{aligned} &\cos 2 x=t \\ & \end{aligned}$$-2 \sin 2 x=\frac{d t}{d x} \\$$\sin 2 x d x=\frac{-d t}{2}$$\begin{aligned} &I=\frac{\pi}{4} \times \frac{-1}{2} \int \frac{d t}{1+t^{2}} \\ & \end{aligned}$ $\left[\begin{array}{l} x=0, t=1 \\ x=\frac{\pi}{2}, t=-1 \end{array}\right]$$I=\frac{-\pi}{8} \int_{+1}^{-1} \frac{d t}{1+t^{2}}$$\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x \\$$I=\frac{\pi}{8} \int_{-1}^{1} \frac{d t}{1+t^{2}}$$\begin{aligned} &I=\frac{\pi}{8}\left[\tan ^{-1} t\right]_{-1}^{1} \\ \end{aligned}$$I=\frac{\pi}{8}\left[\tan ^{-1} 1-\tan ^{-1}(-1)\right] \\$$I=\frac{\pi}{8}\left[\frac{\pi}{4}+\frac{\pi}{4}\right] \\$$I=\frac{\pi}{8}\left(\frac{2 \pi}{4}\right) \\$$I=\frac{\pi^{2}}{16}$Definite Integrals Excercise Revision Exercise Question 48
Answer:$I=\frac{1}{\sqrt{2}} \ln |\sqrt{2}+1|$Hint: To solve this question we use f(x) form
Given:$\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{2} x}{\sin x+\cos x} d x$Solution:$I= \int_{0}^{\frac{\pi}{2}} \frac{\cos ^{2} x}{\sin x+\cos x} d x$$\begin{aligned} &\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x \\ & \end{aligned}$$I=\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{2}\left(\frac{\pi}{2}-x\right)}{\sin \left(\frac{\pi}{2}-x\right)+\cos \left(\frac{\pi}{2}-x\right)} d x$$\begin{aligned} &=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{2} x}{\cos x+\sin x} d x \\ \end{aligned}$$2 I=\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{2} x}{\sin x+\cos x} d x+\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{2} x}{\sin x+\cos x} d x \\$$2 I=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{2} x+\cos ^{2} x}{\sin x+\cos x} d x$ #check the steps and contents again
$\begin{aligned} &2 I=\int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{2}(\sin x+\cos x)} d x\\ & \end{aligned}$$2 I=\frac{1}{\sqrt{2}} \int_{0}^{\frac{\pi}{2}} \frac{1}{\cos x \frac{1}{\sqrt{2}}+\sin x \frac{1}{\sqrt{2}}} d x\\$$2 I=\frac{1}{\sqrt{2}} \int_{0}^{\frac{\pi}{2}} \frac{1}{\cos x \cos \frac{\pi}{4}+\sin x \sin \frac{\pi}{4}} d x$$\begin{aligned} &2 I=\frac{1}{\sqrt{2}} \int_{0}^{\frac{\pi}{2}} \frac{1}{\cos \left(x-\frac{\pi}{4}\right)} d x \\ & \end{aligned}$$2 I=\frac{1}{\sqrt{2}} \int_{0}^{\frac{\pi}{2}} \sec \left(x-\frac{\pi}{4}\right) d x$$\begin{aligned} &\left.2 I=\frac{1}{\sqrt{2}}\left[\ln \mid \sec \left(x-\frac{\pi}{4}\right)+\tan \left(x-\frac{\pi}{4}\right)\right]\right]_{0}^{\frac{\pi}{2}} \\ & \end{aligned}$$2 I=\frac{1}{\sqrt{2}}\left[\ln \mid \sec \left(\frac{\pi}{2}-\frac{\pi}{4}\right)+\tan \left(\frac{\pi}{2}-\frac{\pi}{4}\right)\right]-\ln \left[\sec \left(0-\frac{\pi}{4}\right)+\tan \left(0-\frac{\pi}{4}\right)\right]$$\begin{aligned} &2 I=\frac{1}{\sqrt{2}}\left[\ln \left|\frac{(\sqrt{2}+1)(\sqrt{2}+1)}{(\sqrt{2}-1) \sqrt{2}-1}\right|\right] \\ & \end{aligned}$$2 I=\frac{1}{\sqrt{2}}\left[\ln \left|\frac{(\sqrt{2}+1)^{2}}{(\sqrt{2})^{2}-(1)^{2}}\right|\right.$$\begin{aligned} &2 I=\frac{\sqrt{2} \cdot \sqrt{2}}{\sqrt{2}} \ln |\sqrt{2}+1| \\ & \end{aligned}$$I=\frac{1}{\sqrt{2}} \ln |\sqrt{2}+1|$Definite Integrals Excercise Revision Exercise Question 49
Answer:$-\frac{\pi}{2}$Hint: To solve this equation we use By Part
Given:$\int_{0}^{\pi} \cos 2 x \log \sin x d x$Solution:$\int f(x) g(x) d x\\$$\downarrow$By Parts
$\begin{aligned} &f(x) g(x) d x=\int \frac{d(f x)}{d x} \int g(x) d x(d x) \\ & \end{aligned}$$f(x)=\log \sin x \\$$g(x)=\cos 2 x$$\begin{aligned} &\Rightarrow\left[\log (\sin x) \int \cos 2 x d x-\int \frac{d(\log \sin x)}{d x} \int \cos 2 x d x d x\right]_{0}^{\pi} \\ & \end{aligned}$${\left[\log (\sin x) \frac{\sin 2 x}{2}-\int \frac{1}{\sin x} \cos x \cdot \frac{\sin 2 x}{x} d x\right]_{0}^{\pi}}$$\begin{aligned} &\Rightarrow\left[\frac{1}{2} \sin 2 x \cdot \log \sin x-\frac{1}{2} \int 2 \cos ^{2} x d x\right]_{2}^{\pi} \\ & \end{aligned}$$\Rightarrow\left[\frac{1}{2} \sin 2 x \cdot \log \sin x-\frac{1}{2} \int(\cos 2 x-1)\right]_{2}^{\pi} \\$$\Rightarrow\left[\left[\frac{1}{2} \sin 2 x \cdot \log (\sin x)-\frac{1}{2}\left(\frac{\sin 2 x}{2}+x\right)\right]_{0}^{\pi}\right]$$\begin{aligned} &I=\left[\frac{1}{2} \sin 2 x \cdot \log (\sin x)-\frac{1}{2} \frac{\sin 2 x}{2}-\frac{x}{2}\right]_{0}^{\pi} \\ & \end{aligned}$$\frac{1}{2} \sin 2 \pi \cdot \log (\sin \pi)-\frac{1}{2} \frac{\sin 2 \pi}{2}-\frac{\pi}{2}-\frac{1}{2} \sin 0 \log \sin 0+\frac{1}{2} \sin 0+0 \\$$=0-0-\frac{\pi}{2}-0+0+0 \\$$=-\frac{\pi}{2}$Definite Integrals Excercise Revision Exercise Question 50
Answer:$\frac{\pi^{2}}{2 a \sqrt{a^{2}-1}}$Hint: To solve this equation we convert cos
Given:$\int_{0}^{\pi} \frac{x}{a^{2}-\cos ^{2} x} d x, a>1$Solution:Let
$I=\int_{0}^{\pi} \frac{x}{a^{2}-\cos ^{2} x} d x$$\begin{aligned} &I=\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x \\ & \end{aligned}$$I=\int_{0}^{\pi} \frac{\pi-x}{a^{2}-\cos ^{2}(\pi-x)} d x=\int_{0}^{\pi} \frac{\pi-x}{a^{2}-\cos ^{2} x} d x$$\begin{aligned} &2 I=\int_{0}^{\pi} \frac{\pi}{a^{2}-\cos ^{2} x} d x \\ & \end{aligned}$$2 I=\pi \int_{0}^{\pi} \frac{1}{2 a}\left[\frac{1}{1+a \cos x}+\frac{1}{1-\cos x}\right] d x \\$$2 I=\frac{\pi}{2 a} \int_{0}^{\pi} \frac{1}{a+\cos x} d x+\frac{\pi}{2 a} \int_{0}^{\pi} \frac{1}{1-a \cos x} d x$$\begin{aligned} &2 I=\frac{\pi}{a} \int_{0}^{\pi} \frac{1}{a+\cos x} d x \\ & \end{aligned}$$\cos x=\frac{1-\tan ^{2} \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}$$\begin{aligned} &2 I=\frac{\pi}{a} \int_{0}^{\pi} \frac{1}{a+\frac{1-\tan ^{2} \frac{x}{2}}{\sec ^{2} \frac{x}{2}}} d x\\ & \end{aligned}$$2 I=\frac{\pi}{a} \int_{0}^{\pi} \frac{\sec ^{2} \frac{x}{2}}{(a-1) \tan ^{2} \frac{x}{2}+a+1} d x$$\begin{aligned} &2 I=\frac{\pi}{a} \int_{0}^{\pi} \frac{\frac{d}{d x} \tan \frac{x}{2} d x}{(a-1) \tan ^{2} \frac{x}{2}+(a+1)} \\ & \end{aligned}$$I=\frac{\pi}{a(a-1)} \int_{0}^{\pi} \frac{d \tan \frac{x}{2}}{\tan ^{2} \frac{x}{2}+\frac{a+1}{a-1}}$$\begin{aligned} &I=\frac{\pi}{a(a-1)} \times \sqrt{\frac{a+1}{a+1}}\left|\tan ^{-1} \frac{\tan \frac{x}{2}}{\sqrt{\frac{a+1}{a-1}}}\right|_{0}^{\pi} \\ & \end{aligned}$$I=\frac{\pi}{a \sqrt{a^{2}-1}}\left(\tan ^{-1} \infty-\tan ^{-1} 0\right)$$\begin{aligned} &=\frac{\pi}{a} \times \frac{1}{a \sqrt{a^{2}-1}} \times \frac{\pi}{2} \\ & \end{aligned}$$=\frac{\pi^{2}}{2 a \sqrt{a^{2}-1}}$Definite Integrals Exercise Revision Exercise question 51
Answer: $I=\pi\left(\frac{\pi}{2}-1\right)$
Hint: To solve this equation we split tan x and sec x
Given:$\int_{0}^{\pi} \frac{x \tan x}{\sec x+\tan x} d x$Solution:$I=\int_{0}^{\pi} \frac{x \tan x}{\sec x+\tan x} d x$$I=\int_{0}^{\pi} \frac{x \frac{\sin x}{\cos x}}{\frac{1}{\cos x}+\frac{\sin x}{\cos x}} d x$ $\left[\begin{array}{l} \because \tan x=\frac{\sin x}{\cos x} \\ \sec =\frac{1}{\cos x} \end{array}\right]$$I=\int_{0}^{\pi} \frac{x \sin x}{1+\sin x} d x$$\begin{aligned} &I=\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x \\ & \end{aligned}$$I=\int_{0}^{\pi} \frac{(\pi-x) \sin (\pi-x)}{1+\sin (\pi-x)} d x \\$$I=\int_{0}^{\pi} \frac{(\pi-x) \sin x}{1+\sin x} d x$$\begin{aligned} &I=\int_{0}^{\pi} \frac{\pi \sin x-x \sin x}{1+\sin x} d x \\ & \end{aligned}$$I=\int_{0}^{\pi} \frac{\sin x}{1+\sin x} d x-\int_{0}^{\pi} \frac{x \sin x}{1+\sin x} d x \\$$I=\int_{0}^{\pi} \frac{\sin x}{1+\sin x} d x-I$$2 I=\pi \int_{0}^{\pi} \frac{\sin x(1-\sin x)}{(1+\sin x)(1-\sin x)} d x$$\begin{aligned} &2 I=\pi \int_{0}^{\pi} \frac{\sin x-\sin ^{2} x}{\cos ^{2} x} d x \\ & \end{aligned}$$I=\pi \int_{0}^{\pi}\left(\frac{\sin x}{\cos ^{2} x}-\frac{\sin x}{\cos ^{2} x}\right) d x$$\begin{aligned} &I=\pi \int_{0}^{\pi}\left(\frac{1}{\cos x} \frac{\sin x}{\cos x}-\tan ^{2} x\right) d x \\ & \end{aligned}$$I=\pi \int_{0}^{\pi} \sec x \tan x d x-\pi \int_{0}^{\pi} \tan ^{2} x d x$$\begin{aligned} &I=\pi \int_{0}^{\pi} \sec x \tan x d x-\pi \int_{0}^{\pi} \sec ^{2} x d x+\pi \int_{0}^{\pi} 1 d x \\ & \end{aligned}$$2 I=\pi[\sec x]_{0}^{\pi}-\pi[\tan x]_{0}^{\pi}+\pi[x]_{0}^{\pi}$$\begin{aligned} &2 I=\pi(\sec \pi-\sec 0)-\pi(\tan \pi-\tan 0)+\pi(\pi-0) \\ & \end{aligned}$$2 I=\pi(-1-1)-\pi(-0)+\pi^{2} \\$$I=\frac{-2 \pi+\pi^{2}}{2} \\$$I=\pi\left(\frac{-2}{2}+\frac{\pi}{2}\right) \\$$I=\pi\left(\frac{\pi}{2}-1\right)$Definite Integrals Exercise Revision Exercise question 52
Answer: $\frac{}{}$$\frac{1}{2}$Hint: To use this equation, we use
$\int_{0}^{a} f(x) d x$ formula
Given:$\int_{2}^{3} \frac{\sqrt{x}}{\sqrt{5-x}+\sqrt{x}} d x$Solution: $I=\int_{2}^{3} \frac{\sqrt{x}}{\sqrt{5-x}+\sqrt{x}} d x$ ……………. (1)
$\begin{aligned} &I=\int_{2}^{3} \frac{\sqrt{5-x}}{\sqrt{5-(5-x)}+\sqrt{5-x}} d x \\ & \end{aligned}$$I=\int_{2}^{3} \frac{\sqrt{5-x}}{\sqrt{x}+\sqrt{5-x}} d x$ ……………… (2)
By adding (1) and (2)
$\begin{aligned} &2 I=\int_{2}^{3} \frac{\sqrt{x}+\sqrt{5-x}}{\sqrt{x}+\sqrt{5-x}} d x \\ & \end{aligned}$$2 I=\int_{2}^{3} d x \Rightarrow 2 I=[x]_{3}^{2} \\$$2 I=[3-2] \\$$I=\frac{1}{2}$Definite Integrals Exercise Revision Exercise question 53
Answer:$\frac{2}{\sqrt{2}} \log (\sqrt{2}+1)$Hint: To solve this equation we use
$\int_{0}^{a} f\left ( x \right )$ formula
Given:$\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{2} x}{\sin x+\cos x} d x$Solution:$\begin{aligned} &I=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{2}\left(\frac{\pi}{2}-x\right)}{\sin \left(\frac{\pi}{2}-x\right)+\cos \left(\frac{\pi}{2}-x\right)} d x \\ & \end{aligned}$$=\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{2} x}{\cos x+\sin x} d x$$\begin{aligned} &\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{2} x}{\cos x+\sin x} d x \\ & \end{aligned}$$2 I=\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{2} x+\sin ^{2} x}{\cos x+\sin x} d x$$\begin{aligned} I &=\frac{1}{\sqrt{2}} \int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{2} \cos x+\frac{1}{\sqrt{2}} \sin x} d x \\ & \end{aligned}$$=\frac{1}{\sqrt{2}} \int_{0}^{\frac{\pi}{2}} \frac{1}{\cos \left(x-\frac{\pi}{4}\right)} d x \\$$=\frac{1}{\sqrt{2}} \int_{0}^{\frac{\pi}{2}} \sec \left(x-\frac{\pi}{4}\right) d x$$\begin{aligned} &=\frac{1}{2}\left\{\log \sec \left|x-\frac{\pi}{9}\right|+\tan \left|x-\frac{\pi}{9}\right|\right\}_{0}^{\frac{\pi}{2}} \\ & \end{aligned}$$=\frac{1}{\sqrt{2}} \log \left|\sec \frac{\pi}{4}+\tan \frac{\pi}{4}\right|-\log \left|\sec \left(-\frac{\pi}{4}\right)+\tan \left(-\frac{\pi}{4}\right)\right| \\$$=\frac{1}{\sqrt{2}}\{\log (\sqrt{2}+1)-\log (\sqrt{2}-1)\}$$\begin{aligned} &=\frac{1}{\sqrt{2}} \log \left(\frac{\sqrt{2}+1}{\sqrt{2}-1}\right) \\ & \end{aligned}$$=\frac{1}{\sqrt{2}} \log \left(\frac{(\sqrt{2}+1)^{2}}{2-1}\right) \\$$=\frac{2}{\sqrt{2}} \log (\sqrt{2}+1)$Definite Integrals Exercise Revision Exercise question 54
Answer: $\frac{\pi^{2}}{8}$Hint: In this equation, we use
$\int x^{n}dx$ formula
Given:$\int_{0}^{\frac{\pi}{2}} \frac{x}{\sin ^{2} x+\cos ^{2} x} d x$Solution: $I=\int_{0}^{\frac{\pi}{2}} \frac{x}{\sin ^{2} x+\cos ^{2} x} d x$$I=\int_{0}^{\frac{\pi}{2}} x d x$ $\left[\int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right]$$\begin{aligned} &I=\left[\frac{x^{2}}{2}\right]_{0}^{\frac{\pi}{2}} \\ & \end{aligned}$$I=\frac{\pi^{2}}{8}-0 \\$$I=\frac{\pi^{2}}{8}$Definite Integrals Exercise Revision Exercise question 55
Answer:$0$Hint: In this equation we use
$f\left ( x \right )= -f\left ( x \right )$Given:$\int_{-\pi}^{\pi} x^{10} \sin ^{7} x d x$Solution:$\begin{aligned} &I=f(x) \Rightarrow-f(x) \\ & \end{aligned}$$\int_{-a}^{a} f(x) d x=0 \\$$I=\int_{-\pi}^{\pi} x^{10} \sin ^{7} x d x$$\begin{aligned} &I=\int_{-\pi}^{\pi} x^{10} \sin ^{7} x d x \\ & \end{aligned}$$f(x)=x^{10} \sin ^{7} x d x \\$$\begin{aligned} &f(-x)=(-x)^{10} \sin ^{7}(-x) d x \\ & \end{aligned}$$f(-x)=-x^{10} \sin ^{7} x \\$$f(-x)=-f(x) \\$$\int_{-a}^{a} f(x) d x=0 \\$$\int_{-\pi}^{\pi} x^{10} \sin ^{7} x d x=0$Definite Integrals Exercise Revision Exercise question 56
Answer:$I=\frac{\pi}{2}-2 \log \sqrt{2}$Hint: To this equation convert cot into tan
Given:$\int_{0}^{1} \cot ^{-1}\left(1-x+x^{2}\right) d x$Solution: $\begin{aligned} &\int_{0}^{1} \tan ^{-1}\left(\frac{1}{1-x+x^{2}}\right) d x \\ & \end{aligned}$$\int_{0}^{1} \tan ^{-1}\left(\frac{1}{(1-x)(1-x)}\right) d x \\$$=\int_{0}^{1} \tan ^{-1}\left(\frac{x+1-x}{(1-x)(1-x)}\right)$$\begin{aligned} &=\int_{0}^{1}\left(\tan ^{-1} x+\tan ^{-1}(1-x)\right) d x \\ & \end{aligned}$$=\int_{0}^{1} \tan ^{-1} x d x+\int_{0}^{1} \tan ^{-1}(1-x) d x$$\tan^{-1}x=t$Put
$x=\tan t$$\begin{aligned} &1=\sec ^{2} \frac{d t}{d x} \\ & \end{aligned}$$d x=\sec ^{2} d t \\$$I=\int \tan ^{-1} x d x \\$$=\int t \sec ^{2} t d t$$\begin{aligned} &=t \int \sec ^{2} t d t-\int \tan t d t \\ & \end{aligned}$$=t \tan t-\int \tan t d t \\$$=t \tan t-\log |\sec t|$$\begin{aligned} &I_{2}=\int \tan ^{-1}(1-x) d x\\ & \end{aligned}$$\text { Put }$ $1-x=m\\$$-1=\frac{d m}{d x}\\$$d x=-d m\\$$\text { Put }$$\begin{aligned} &1=\sec ^{2} \frac{v d v}{d m} \\ & \end{aligned}$$m=\tan v \\$$d m=\sec ^{2} v d v \\$$I_{2}=-\int \tan ^{-1} m d n \\$$=-\int v \cdot \sec ^{2} v d v$$\begin{aligned} &=(v \tan v-\log |\sec v|) \\ & \end{aligned}$$\int \cot ^{-1}\left(1-x+x^{2}\right) d x=I_{1}+I_{2} \\$$=t \tan t-\log \sec t|-v \tan v-\log | \sec v \mid \\$$=t \tan t-\log \log |\sec t|-v \tan v+\log |\sec v| \\$$t=\tan ^{-1} x \\$$\tan t=x \\$$\tan v=m=1-x$$\begin{aligned} &=\left[x \tan ^{-1}-\log \sqrt{1+x^{2}}-(1-x) \tan ^{-1}(1-x)+\log \left(\sqrt{1-x^{2}+1}\right]_{0}^{1}\right.\\ & \end{aligned}$$=\left(\frac{\pi}{4}-\log \sqrt{2}\right)-\left(\frac{-\pi}{4}+\log \sqrt{2}\right)$$\begin{aligned} &=\frac{\pi}{4}-\log \sqrt{2}+\frac{\pi}{4}-\log \sqrt{2} \\ & \end{aligned}$$=\frac{\pi}{2}-2 \log \sqrt{2}$Definite Integrals Exercise Revision Exercise Question 57
Answer: $\frac{\pi}{\sqrt{35}}$Hint: To solve this equation, we convert cos x into tan x
Given: $\int_{0}^{\pi} \frac{d x}{6-\cos x}$Solution$I= \int _{0}^{\pi}\frac{dx}{6-\left ( \frac{1-\tan ^{2}\frac{x}{2}}{1+\tan\frac{x}{2}} \right )}$$=\int_{0}^{\pi} \frac{\sec ^{2} \frac{x}{2}}{6+6 \tan ^{2} \frac{x}{2}-1+\tan ^{2} \frac{x}{2}} d x$$\begin{aligned} &=\frac{1}{7} \int_{0}^{\pi} \frac{\sec ^{2} \frac{x}{2}}{\frac{5}{7}+\tan ^{2} \frac{x}{2}} d x \\ & \end{aligned}$$\text { Let } \tan \frac{x}{2}=t \\$$\frac{1}{2} \sec ^{2} \frac{x}{2} d x=d t$$\begin{aligned} &\sec ^{2} \frac{x}{2} d x=2 d t \\ & \end{aligned}$$I=\frac{2}{7} \int_{0}^{\pi} \frac{d t}{\sqrt{\frac{5}{7}}^{2}+t^{2}}$$\begin{aligned} &I=\frac{2}{7} \frac{1}{\sqrt{\frac{5}{7}}}\left(\tan ^{-1} \frac{t}{\sqrt{\frac{5}{7}}}\right)_{0}^{\infty} \\ & \end{aligned}$$=\frac{2}{\sqrt{35}}\left(\frac{\pi}{2}-0\right) \\$$I=\frac{\pi}{\sqrt{35}}$Definite Integrals Exercise Revision Exercise Question 58
Answer:$\frac{-1}{2 \sqrt{5}} \log \left[\frac{2 \sqrt{5}-\sqrt{5}-3}{2 \sqrt{5}+\sqrt{5}-3}\right]$Hint: To solve this we convert sin and cos into tan
Given:$\int_{0}^{\frac{\pi}{2}} \frac{1}{2 \cos x+4 \sin x} d x$Solution:Let
$\begin{aligned} &I=\int_{0}^{\frac{\pi}{2}} \frac{1}{2 \cos x+4 \sin x} d x \\ & \end{aligned}$$I=\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \frac{1}{\cos x+2 \sin x} d x$$=\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \frac{\sec ^{2} \frac{x}{2}}{1-\tan ^{2} \frac{x}{2}+4 \tan ^{2} \frac{x}{2}} d x$Let
$\begin{aligned} &t=\tan ^{2} \frac{x}{2} \\ & \end{aligned}$$\frac{d t}{d x}=\sec ^{2} \frac{x}{2} \times \frac{1}{2}$$2 d t=\sec ^{2} \frac{x}{2} d x$Now
$\begin{aligned} &\frac{1}{2} \times 2 \int_{0}^{1} \frac{d t}{1-t^{2}+4 t} \\ & \end{aligned}$$I=-\int_{0}^{1} \frac{d t}{t^{2}-4 t-1} \\$$I=-\int_{0}^{1} \frac{d t}{t^{2}-4 t-1+2^{2}-2^{2}}$$\begin{aligned} &I=-\int_{0}^{1} \frac{d t}{(t-2)^{2}-(\sqrt{5})^{2}} \\ & \end{aligned}$$I=\frac{-1}{2 \sqrt{5}} \log \left|\frac{t-2-\sqrt{5}}{t-2+\sqrt{5}}\right|_{0}^{1} \\$$I=\frac{-1}{2 \sqrt{5}} \log \left|\frac{-1-\sqrt{5}}{-1+\sqrt{5}}\right|-\log \left|\frac{-2-\sqrt{5}}{-2+\sqrt{5}}\right|$$\begin{aligned} &=\frac{-1}{2 \sqrt{5}} \log \left[\left|\frac{-1-\sqrt{5}}{-1+\sqrt{5}}\right| \times\left|\frac{-2-\sqrt{5}}{-2-\sqrt{5}}\right|\right] \\ & \end{aligned}$$=\frac{-1}{2 \sqrt{5}} \log \left(\frac{2-\sqrt{5}+2 \sqrt{5}-5}{2+\sqrt{5}-2 \sqrt{5}-\sqrt{5}}\right) \\$$=\frac{-1}{2 \sqrt{5}} \log \left(\frac{2 \sqrt{5}-\sqrt{5}-3}{-2 \sqrt{5}+\sqrt{5}-3}\right)$Definite Integrals Exercise Revision Exercise Question 59
Answer: $\tan ^{-1}2-\frac{\pi}{4}$Hint: To solve this we assume cosec x and cot x in t
Given:$\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{\cos e c x \cot x}{1+\operatorname{cosec}^{2} x} d x$Solution: $\begin{aligned} &\cos e c x=t \\ & \end{aligned}$$\operatorname{cosec} x \cdot \cot x d x=d t \\$$\int_{2}^{1} \frac{-d t}{1+t^{2}}=-\left[\tan ^{-1} t\right]_{0}^{1} \\$$=-\left(\frac{\pi}{4}-\tan ^{-1} 2\right) \\$$=\tan ^{-1} 2-\frac{\pi}{4}$Definite Integrals Exercise Revision Exercise Question 60
Answer:
Answer:$\frac{1}{2 \sqrt{5}} \log \left|\frac{1-\frac{1}{2}-\frac{\sqrt{5}}{2}}{1-\frac{1}{2}+\frac{\sqrt{5}}{2}}\right|-\log \left|\frac{1+\sqrt{5}}{1-\sqrt{5}}\right|$Hint: To this equation we convert cos and sin in terms of tan
Given:$\int_{0}^{\frac{\pi}{2}} \frac{d x}{4 \cos x+2 \sin x}$Solution:$I= \int_{0}^{\frac{\pi}{2}} \frac{d x}{4 \cos x+2 \sin x}$$\left[\begin{array}{l} \sin x=\frac{2 \tan \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}} \\ \cos x=\frac{1-\tan ^{2} \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}} \end{array}\right]$$\begin{aligned} I &=\int_{0}^{\frac{\pi}{2}} \frac{d x}{\left(\frac{4-4 \tan ^{2} \frac{x}{2}}{4+4 \tan ^{2} \frac{x}{2}}\right)+\frac{4 \tan \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}} \\ \end{aligned}$$I =\int_{0}^{\frac{\pi}{2}} \frac{\sec ^{2} \frac{x}{2} d x}{4-4 \tan ^{2} \frac{x}{2}+4 \tan \frac{x}{2}}$$\begin{aligned} &{\left[\begin{array}{l} \tan \frac{x}{2}=t \\ \frac{1}{2} \sec ^{2} \frac{x}{2} d x=d t \\ \sec ^{2} \frac{x}{2} d x=2 d t \end{array}\right]} \\ & \end{aligned}$$I=\int \frac{2 d t}{4-4 t^{2}-4 t} \\$$I=-\frac{1}{2} \int \frac{d t}{t^{2}-2 t-1}$$\begin{aligned} I &=-\frac{1}{2} \int \frac{d t}{t^{2}+2 t-1} \\ \end{aligned}$$I =-\frac{1}{2} \int \frac{d t}{\left(t-\frac{1}{2}\right)^{2}-\left(\frac{\sqrt{5}}{2}\right)^{2}}$$\begin{aligned} &I=-\frac{1}{2} \frac{1}{2 \times \frac{\sqrt{5}}{2}} \log \left|\frac{t-\frac{1}{2}-\frac{\sqrt{5}}{2}}{t-\frac{1}{2}+\frac{\sqrt{5}}{2}}\right| \\ & \end{aligned}$$I=-\frac{1}{2 \sqrt{5}} \log \left|\frac{\tan \frac{x}{2}-\frac{1+\sqrt{5}}{2}}{\tan \frac{x}{2}-\frac{1-\sqrt{5}}{2}}\right|_{0}^{\frac{\pi}{2}}$$\begin{aligned} &\frac{1}{2 \sqrt{5}} \log \left|\frac{1-\frac{1}{2}-\frac{\sqrt{5}}{2}}{1-\frac{1}{2}+\frac{\sqrt{5}}{2}}\right|-\log \left|\frac{1+\sqrt{5}}{1-\sqrt{5}}\right| \\ & \end{aligned}$$I=\frac{1}{2 \sqrt{5}} \log \left|\frac{1-\frac{1}{2}-\frac{\sqrt{5}}{2}}{1-\frac{1}{2}+\frac{\sqrt{5}}{2}}\right|-\log \left|\frac{1+\sqrt{5}}{1-\sqrt{5}}\right|$Definite Integrals Excercise Revision Exercise Question 61
Answer:$1$Hint: To solve the integration we have to just integrate x and put the limits.
Given:$\int_{0}^{1} x d x$Solution:$\int_{0}^{1} x d x$$\begin{aligned} &=\left[\frac{x^{2}}{2}\right]_{0}^{1} \\ & \end{aligned}$$=\frac{1-0}{2} \\$$=\frac{1}{2}$Definite Integrals Excercise Revision Exercise Question 62
Answer:$\frac{34}{3}$Hint: To solve the given statement we have to integrate them individually
Given:$\int_{0}^{2}\left(2 x^{2}+3\right) d x$Solution:$\int_{0}^{2}\left(2 x^{2}+3\right) d x$$\begin{aligned} &=\int_{0}^{2} 2 x^{2} d x+\int_{0}^{2} 3 d x \\ & \end{aligned}$$=2\left[\frac{x^{3}}{3}\right]_{0}^{2}+3[x]_{0}^{2} \\$$=\frac{163}{3}+6 \\$$=\frac{34}{3}$Definite Integrals Excercise Revision Exercise Question 63
Answer:$\frac{57}{2}$Hint: To solve the given question we have to integrate them individually.
Given:$\int_{1}^{4}\left(x^{2}+x\right) d x$Solution: $\int_{1}^{4}\left(x^{2}+x\right) d x$$\begin{aligned} &=\int_{1}^{4} x^{2} d x+\int_{1}^{4} x d x \\ & \end{aligned}$$=\left[\frac{x^{3}}{3}\right]_{1}^{4}+\left[\frac{x^{2}}{2}\right]_{1}^{4} \\$$=\frac{64-1}{3}+\frac{16-1}{2} \\$$=\frac{63}{3}+\frac{15}{2} \\$$=\frac{42+15}{2} \\$$=\frac{57}{2}$
Definite Integrals Exercise Revision Exercise Question 64
Answer:$\frac{1}{2} \frac{e^{4}-1}{e^{2}}$Hint: To solve the given statement we have to use the formula.
Given:$\int_{-1}^{1} e^{2 x} d x$Solution:$\begin{aligned} &\int_{a}^{b} f(x) d x=\frac{b-a}{n} \lim _{x \rightarrow \infty}[f(a)+f(a+h)+\ldots f(a+(h-1)] \\ & \end{aligned}$$f(x)=e^{2 x} \\$$a=-1, b=1, h=\frac{1+1}{n}=\frac{2}{n}$$\begin{aligned} &\int_{1}^{1} e^{2 x} d x=\frac{2}{n^{2}} \lim _{h \rightarrow \infty}\left[e^{2 a}+e^{2(a+h)}+\ldots .+e^{2(a+(n-1) h)}\right] \\ &\end{aligned}$$=\frac{2}{n} \lim _{h \rightarrow \infty}\left[e^{2 a}+e^{2 a} e^{2 h}+\ldots .+e^{2 a} e^{2(n-1) h}\right] \\$$=\frac{2}{n} \lim _{h \rightarrow \infty}\left[e^{2 a}\left(1+e^{2 h}+\ldots .+e^{2(n-1) h}\right]\right. \\$$=\frac{2}{n} e^{-2} \lim _{h \rightarrow \infty}\left[1+e^{2 h}+\ldots .+e^{2(n-1) h}\right]$$\begin{aligned} &a=1, r=e^{2 h} \\ & \end{aligned}$$S_{n}=\frac{a\left(r^{n}-1\right)}{r-1} \\$$\int_{1}^{1} e^{2 x} d x=\frac{2}{n} \lim _{h \rightarrow \infty}\left[e^{2 a}+e^{2 a+2 h}+\ldots .+e^{2 a+2(n-1) h}\right]$$\begin{aligned} &=\frac{2}{n} \lim _{h \rightarrow \infty}\left[e^{2 a}+e^{2 a} e^{2 h}+\ldots .+e^{2 a} e^{2(n-1) h}\right] \\ & \end{aligned}$$=\frac{2}{n} \lim _{h \rightarrow \infty}\left[e^{2 a}\left(1+e^{2 h}+\ldots .+e^{2(n-1) h}\right]\right. \\$$=\frac{2}{n e^{2}} \lim _{h \rightarrow \infty}\left[\frac{1 \cdot\left(e^{2 / n}-1\right)}{e^{2 h}-1}\right] \\$$=\frac{2}{e^{2}} \lim _{h \rightarrow \infty}\left[\frac{1 \cdot\left(e^{2 m}-1\right)}{n e^{2 h}-1}\right]$$=\frac{2}{e^{2}} \lim _{h \rightarrow \infty}\left[\frac{\left.e^{2 n} e^{2 / h}-1\right)}{\left(e^{2 n}-1\right) \frac{2}{h}}\right]$$\begin{aligned} &h=\frac{2}{n} \Rightarrow n=\frac{2}{h} \\ & \end{aligned}$$n \rightarrow \infty \\$$n \rightarrow 0$$\begin{aligned} &\int_{1}^{1} e^{2 x} d x=\frac{2}{n} \lim _{h \rightarrow \infty}\left[e^{2 a}+e^{2 a+2 h}+\ldots .+e^{2 a+2(n-1) h}\right] \\ & \end{aligned}$$=\frac{2}{n^{2}} \lim _{h \rightarrow \infty}\left[e^{2 a}+e^{2 a} e^{2 h}+\ldots .+e^{2 a} e^{2(n-1) h}\right] \\$$=\frac{2}{n^{2}} \lim _{h \rightarrow \infty}\left[e^{2 a}\left(1+e^{2 h}+\ldots .+e^{2(n-1) h}\right]\right. \\$$=\frac{2}{n e^{2} \lim _{h \rightarrow \infty}}\left[\frac{1 \cdot\left(e^{2 m n}-1\right)}{e^{2 h}-1}\right] \\$$=\frac{2}{e^{2}} \lim _{h \rightarrow \infty}\left[\frac{1 \cdot\left(e^{2 n n}-1\right)}{n e^{2 h}-1}\right]$$\begin{aligned} &=\frac{2}{e^{2}} \times\left(e^{4}-1\right) \lim _{n \rightarrow 0}\left[\frac{1}{\left(\frac{e^{2 n}-1}{h}\right) \times 2}\right] \\ & \end{aligned}$$=\frac{2}{e^{2}} \times\left(e^{4}-1\right) \lim _{n \rightarrow 0}\left[\frac{1}{\left(\frac{e^{2 n}-1}{h}\right) \times 4}\right]$$\begin{aligned} &=\frac{2\left(e^{4}-1\right)}{4 e^{2}} \lim _{n \rightarrow 0}\left[\frac{1}{\left(\frac{e^{2 n}-1}{h}\right)}\right] \\ & \end{aligned}$$=\frac{\left(e^{4}-1\right)}{2 e^{2}} \\$$\int_{-1}^{1} e^{2 x} d x=\frac{1}{2} \frac{e^{4}-1}{e^{2}}$Definite Integrals Exercise Revision Exercise Question 65
Answer:$\frac{1}{e^{2}}\left[1-\frac{1}{e}\right]$Hint: To solve the given statement use the formula of
$e^{-x}$Given:$\int_{2}^{3} e^{-x} d x$Solution:$\int_{2}^{3} e^{-x} d x$$\begin{aligned} &=\left[-e^{-x}\right]_{2}^{3} \\ & \end{aligned}$$=\left(-e^{-3}\right)-\left(-e^{-2}\right) \\$$=-e^{-3}+e^{-2} \\$$=-\frac{1}{e^{3}}+\frac{1}{e^{2}} \\$$=\frac{1}{e^{2}}\left[1-\frac{1}{e}\right]$Definite Integrals Exercise Revision Exercise Question 66
Answer:$\frac{112}{3}$Hint: To solve the given statement we have to integrate them individually.
Given: $\int_{1}^{3}\left(2 x^{2}+5 x\right) d x$Solution:$\begin{aligned} &\int_{1}^{3} 2 x^{2} d x+\int_{1}^{3} 5 x d x \\ &=2\left[\frac{x^{3}}{3}\right]_{1}^{3}+5\left[\frac{x^{2}}{2}\right]^{3} \\ & \end{aligned}$$=2\left[\frac{27-1}{3}\right]+5\left[\frac{9-1}{2}\right] \\$$=2\left[\frac{26}{3}\right]+5\left[\frac{8}{2}\right] \\$$=\frac{52}{3}+20 \\$$=\frac{52+60}{3} \\$$=\frac{112}{3}$Definite Integrals Exercise Revision Exercise question 67
Answer:$\frac{62}{3}$Hint: To solve the given statement we have to integrate them individually.
Given:$\int_{1}^{3}\left(x^{2}+3 x\right) d x$Solution:$\begin{aligned} &\int_{1}^{3}\left(x^{2}+3 x\right) d x \\ &\int_{1}^{3}\left(x^{2}+3 x\right) d x \\ &=\int_{1}^{3} x^{2} d x+\int_{1}^{3} 3 x d x \end{aligned}$$\begin{aligned} &=\left[\frac{x^{3}}{3}\right]_{1}^{3}+3\left[\frac{x^{2}}{2}\right]_{1}^{3} \\ &=\frac{27-1}{3}+3\left[\frac{9-1}{2}\right] \\ &=\frac{26}{3}+\frac{24}{2} \\ &=\frac{26+36}{3} \\ &=\frac{62}{3} \end{aligned}$Definite Integrals Exercise Revision Exercise question 68
Answer: $\frac{20}{3}$Hint: To solve the given statement we have to integrate them individually
Given:$\int_{0}^{2}\left(x^{2}+2\right) d x$Solution:$\int_{0}^{2}\left(x^{2}+2\right) d x$$\begin{aligned} &=\int_{0}^{2} x^{2} d x+\int_{0}^{2} 2 d x \\ &=\left[\frac{x^{3}}{3}\right]_{0}^{2}+[2 x]_{0}^{2} \\ &=\frac{8}{3}+4 \\ &=\frac{8+12}{3} \\ &=\frac{20}{3} \end{aligned}$Definite Integrals Exercise Revision Exercise question 69
Answer:$12$Hint: To solve the given statement we have to integrate them individually
Given:$\int_{0}^{3}\left(x^{2}+1\right) d x$Solution:$\begin{aligned} &=\int_{0}^{3} x^{2} d x+\int_{0}^{3} 1 d x \\ &=\left[\frac{x^{3}}{3}\right]_{0}^{3}+[x]_{0}^{3} \\ &=\left[\frac{27}{3}-\frac{0}{3}\right]+[3-0] \\ &=9+3 \\ &=12 \end{aligned}$The 19th chapter in class 12 mathematics syllabus consist of many concepts that are challenging for the students to understand. This chapter consists of five exercises, ex 19.1 to ex 19.5. The concepts that these exercises cover is Evaluation of Definite Integrals, solving sums with Integrals and Riemann Integral formulas. There are 69 questions in total including its subparts given in the RD Sharma Class 12 Solutions Definite Integrals RE book. to help the students cover all these sums easily without cracking their heads, the Class 12 RD Sharma Chapter 19 Exercise RE Solutions helps a lot.
Students who want to avail the RD Sharma class 12 solutions chapter 19 ex RE book can take a look at these benefits that come with using RD Sharma solutions:-
Students who are in class 12 need to do a lot of self-practice at home. The RD Sharma class 12th exercise RE solution will help them in this endeavor by providing accurate answers that can be used to check their performance.
The answers in the RD Sharma class 12th exercise RE book are crafted by experts from India who have immense knowledge in maths. They have provided some improved methods of calculations that can be used by students to solve questions faster.
Teachers in various schools like to test students by giving them questions from the RD Sharma solutions. Therefore, students can use these solutions to complete their homework and impress their school teachers.
Students who have studied the RD Sharma class 12 solutions chapter 19 ex RE thoroughly have said that they have found common questions from the book in their board papers.
Unlike expensive study materials and NCERT solutions, the RD Sharma class 12 solutions Indefinite Integrals ex RE pdf is available for free at the Career360 website. You can download the latest version of the book as they keep updating the pdf according to the recent syllabus.