In this RD Sharma class 12 solutions FBQ Chapter 10, Differentiation is a process in Maths, where we find the quick rate of function change based on one of its variables. Class 12 RD Sharma chapter 10 exercise FBQ solution consists of various topics that play a major role in finding the rate of displacement. At Careers360, RD Sharma class 12 chapter 10 exercise FBQ Solutions help students who seek to get a decent scholarly score in the exam.
Also Read - RD Sharma Solution for Class 9 to 12 Maths
RD Sharma Class 12 Solutions Chapter 10 FBQ Differentiation - Other Exercise
Differentiation Excercise: FBQ
Differentiation exercise Fill in the blanks question 1
Answer: $\left(\frac{d y}{d u}\right)_{u=-1}=2$Hint: $y=\left(\begin{array}{cc} u^{2} & u \geq 0 \\ -u^{2} & u<0 \end{array}\right)$Given: $\mathrm{y}=\mathrm{u}|\mathrm{u}|$Solution: $\begin{aligned} &y=\left(\begin{array}{cc} u^{2} & u \geq 0 \\ -u^{2} & u<0 \end{array}\right) \\\\ &\frac{d y}{d u}=\left(\begin{array}{cc} 2 u^{2} & u \geq \ 0 \\\\ -2 u^{2} & u<0 \end{array}\right) \end{aligned}$$\begin{aligned} &\left(\frac{d y}{d u}\right)_{-1}=(-2(-1)\\ \end{aligned}$$=2$Differentiation exercise Fill in the blanks question 2
Answer: $\left(\frac{d y}{d x}\right)_{-1}=1 \text { and }\left(\frac{d y}{d x}\right)_{x=1}=3$Hint: $y=\left(\begin{array}{cc} 3 x & x \geq 0 \\ x & x<0 \end{array}\right)$Given: $y=2 x+|x|$Solution: $\begin{aligned} &y=\left(\begin{array}{ll} 2 x+x & x \geq 0 \\ 2 x-x & x<0 \end{array}\right) \\\\ &y=\left(\begin{array}{cc} 3 x & x \geq 0 \\ x & x<0 \end{array}\right) \\\\ &\frac{d y}{d x}=\left(\begin{array}{ll} 3 & x>0 \\ 1 & x<0 \end{array}\right) \end{aligned}$$\left(\frac{d y}{d x}\right)_{-1}=1 \text { and }\left(\frac{d y}{d x}\right)_{1}=3$Differentiation exercise Fill in the blanks question 3
Answer: $f^{1}(2)=3$Hint: $f(x)=\left(\begin{array}{ll} x-x^{2} & x^{2}-x \leq 0 \\ x^{2}-x & x^{2}-x \geq 0 \end{array}\right)$Given: $f(x)=\left|x^{2}-x\right|$Solution:
$f(x)=\left|x^{2}-x\right|$$f(x)=\left(\begin{array}{cc} -\left(x^{2}-x\right) & x^{2}-x<0 \\ x^{2}-x & x^{2}-x \geq 0 \end{array}\right)$$\begin{aligned} &f(x)=\left(\begin{array}{cc} \left(x-x^{2}\right) & x^{2}-x<0 \\ x^{2}-x & x^{2}-x \geq 0 \end{array}\right) \\\\ &f^{{}'}(x)=\left(\begin{array}{cc} (1-2 x) & x^{2}-x<0 \\ 2 x-1 & x^{2}-x \geq 0 \end{array}\right) \end{aligned}$$\begin{aligned} &f^{{}'}(2)=2 x-1 \\\\ &=2(2)-1 \\\\ &=3 \end{aligned}$Differentiation exercise Fill in the blanks question 4
Answer: $k=1$Hint: $\frac{d y}{d x}=\cos x^{0}$Given: $y=\sin x^{0} \quad \text { and } \frac{d y}{d x}=k \cos x^{0}$Solution: $y=\sin x^{0}$ $\because \hspace{1cm}x^{0}=\frac{\pi}{180}x$Differentiating y.u.1 to x
$\begin{aligned} &\frac{d y}{d x}= \frac{\pi}{180}\cos x^{0}\ldots \ldots\ldots(i)\\ &\text { And } \frac{d y}{d x}=k \cos x^{0}\ldots\ldots(ii) \end{aligned}$By (i) and (ii)
$k=\frac{\pi}{180}$Differentiation exercise Fill in the blanks question 5
Answer: $f^{1}(0)=0$Hint: $f^{1}(x)=g^{1}(x)>g^{1}(x)$Solution: $f(x)=e^{x} g(x)$Differentiating
$f(x)$ we get
$\begin{aligned} &f^{1}(x)=e^{x} g^{1}(x)+e^{x} g(x) \\\\ &f^{1}(0)=e^{0} g^{1}(0)+e^{0} g(0) \end{aligned}$$\begin{aligned} &=1(1)+1(2) \\\\ &=1+2 \\\\ &=3 \end{aligned}$Differentiation exercise Fill in the blanks question 6
Answer:$f(-3)=3$Hint:$\begin{aligned} &|x+2|=\left(\begin{array}{ll} (x+2) & x \geq-2 \\ -x>2 & x < 2 \end{array}\right) \\\\ =& f(x)=3|x+2| \end{aligned}$Solution: $f(x)=3|x+2|$$\begin{aligned} &f(x)=\left(\begin{array}{cc} 3(x+2) & x \geq-2 \\ -3(x+2) & x < -2 \end{array}\right) \\\\ &f^{1}(x)=\left(\begin{array}{cc} 3 & x \geq-2 \\ -3 & x < -2 \end{array}\right) \\\\ &f^{1}(-3)=-3 \end{aligned}$Differentiation exercise Fill in the blanks question 7
Answer: 2
Hint: using chain rule
Given:$f(1)=3$Solution: $\frac{d}{d x}=\ln {f(e^{x}+2x)}$$\begin{aligned} &=\frac{1}{f\left(e^{x}+2 x\right)}f^{{}'}\left(e^{x}+2 x\right)\times(e^{x}+2) \\\\ &=\left(e^{x}+2 \right) \frac{f^{{}'}\left(e^{0}+2 x\right)}{f\left(e^{0}+2 x\right)} \end{aligned}$$\begin{aligned} &=3 \frac{f^{{}'}(1)}{f(1)} \\\\ &=3 \times \frac{2}{3}=2 \end{aligned}$Differentiation exercise Fill in the blanks question 8
Answer: $f^{{}'}(x)=\left(\begin{array}{cc} 2 x & x \geq 0 \\ -2 x & x^{2} \leq 0 \end{array}\right)$Hint:$x|x|=\left(\begin{array}{cc} x^{2} & x\geq 0 \\ -x^{2} & x < 0 \end{array}\right)$Given:$f|x|=x|x|$Solution: $f|x|=x|x|$$\begin{aligned} &f(x)=\left(\begin{array}{cc} x^{2} & x\geq 0 \\ -x^{2} & x < 0 \end{array}\right) \\\\ &f^{1}(x)=\left(\begin{array}{cc} 2 x & x\geq 0 \\ -2 x & x < 0 \end{array}\right) \end{aligned}$Differentiation exercise Fill in the blanks question 9
Answer: $f^{1}(2)=0$Hint: the mod function
Given: $f(x)=|x-1|+|x-3|$Solution: $\begin{aligned} &|x-1|=\left(\begin{array}{cc} u-1 & u>1 \\ -(u-1) & u<1 \end{array}\right) \\\\ &|x-3|=\left(\begin{array}{cc} x-3 & x>3 \\ -(x-3) & x \leq 3 \end{array}\right) \end{aligned}$$\begin{aligned} &\text { Case- } 1: x<1 \\ &\begin{aligned} f(x)=&|x-1|+|x-3| \\ &=-x+1-x>3 \\ &=-2 x>4 \end{aligned} \end{aligned}$$\begin{aligned} &\text { Case- } 2: 1 \leq \mathrm{x}<3 \\ &\begin{aligned} f(x)=&|x-1|-(x-3) \\ &=x-1-x+3=2 \end{aligned} \end{aligned}$$\begin{aligned} &\text { Case. } 3\\ &f(x)=x-1>x+3=2 x-4\\\\ &f(x)=\left(\begin{array}{cc} -2 x+4 & x<1 \\ 2 & 1 \leq x<3 \\ -(x-3) & x \leq 3 \end{array}\right) \end{aligned}$$\begin{aligned} &f^{{}'}(x)=\left(\begin{array}{cc} -2 & x<1 \\ 0 & 1 \leq x<3 \\ 2 & x \geq 3 \end{array}\right) \\ &f^{{}'}(x)=0 \end{aligned}$Differentiation exercise Fill in the blanks question 10
Answer: $\frac{1+\sqrt{3}}{2}$Hint: $\cos x<\sin x \text { where } 0 \leq x \leq \frac{\pi}{4}$Given: $f(x)=|\cos x-\sin x|$Solution: $f(x)=|\cos x-\sin x|$$\begin{array}{ll} f(x)=\cos x-\sin x & 0 \leq x \leq \pi / 4 \\\\ f(x)=-(\cos x-\sin x) & \frac{\pi}{4} \leq x \leq \frac{\pi}{2} \end{array}$$\begin{aligned} &f(x)=-\cos x-\sin x \quad 0 \leq x \leq \pi / 4 \\\\ &f(x)=\cos x+\sin x \quad \frac{\pi}{4} \leq x \leq \frac{\pi}{2} \end{aligned}$$\begin{aligned} &=\frac{1}{\sqrt{2}}+\frac{\sqrt{3}}{2} \\\\ &=\frac{1+\sqrt{3}}{2} \end{aligned}$Differentiation exercise Fill in the blanks question 11
Answer: $f^{{}'}\left(\frac{\pi}{x}\right)=\left(\frac{1}{\sqrt{2}}\right)$Hint: $f(x)=\left(\begin{array}{cc} \cos x & 0 \leq x \leq \frac{\pi}{2} \\\\ -\cos x & \frac{\pi}{2}<x<\pi \end{array}\right)$Given:$f(x)=|\cos x|$Solution: $f(x)=|\cos x|$$f(x)=\left(\begin{array}{cc} \cos x & 0 \leq u \leq \frac{\pi}{2} \\\\ -\cos x & \frac{\pi}{2}<u<\pi \end{array}\right)$$\begin{aligned} f^{{}'}(x) &=\left(\begin{array}{cc} -\sin x & 0 \leq x \leq \frac{\pi}{2} \\\\ \sin x & \frac{\pi}{2}<x<\pi \end{array}\right) \\\\ f^{1}\left(\frac{\pi}{2}\right) &=-\sin \frac{\pi}{2} \\ &=-\frac{1}{\sqrt{2}} \end{aligned}$Differentiation exercise Fill in the blanks question 12
Answer: $\frac{2}{3 x}$Hint: $\text { take } u=x^{2} \text { and } v=x^{3}$Given:The derivative of
$x^{2}$ and
$x^{3}$Solution: $\begin{aligned} &\text { Let } u=x^{2} \\\\ &\frac{d u}{d x}=2 x \\\\ &\text { And let } v=x^{3} \end{aligned}$$\begin{aligned} &\frac{d v}{d x}=3 x^{2} \\\\ &\frac{d u}{d v}=\frac{d u / d x}{d v / d x}=\frac{2 x}{3 x^{2}}=\frac{2}{3 x} \end{aligned}$Differentiation exercise Fill in the blanks question 14
Answer: $f^{1}\left(\frac{\pi}{4}\right)=\left(\frac{1}{\sqrt{2}}\right)$Hint:$f^{1}(x)=\left(\begin{array}{cc} \sin x & 0 \leq x \leq \frac{\pi}{2} \\\\ -\sin x & \frac{\pi}{2}<x<\pi \end{array}\right)$Given: $f(x)=|\sin x|$Solution: $\begin{aligned} &f(x)=\left(\begin{array}{cc} \sin x & 0 \leq x \leq \frac{\pi}{2} \\\\ -\sin x & \frac{\pi}{2}<x<\pi \end{array}\right) \\\\ &f^{{}'}(x)=\left(\begin{array}{cc} \cos x & 0 \leq x \leq \frac{\pi}{2} \\\\ -\cos x & \frac{\pi}{2}<x<\pi \end{array}\right) \end{aligned}$$\begin{aligned} f^{{}'} \frac{\pi}{2}=& \cos \frac{\pi}{4} \\\\ &=\frac{1}{\sqrt{2}} \end{aligned}$Differentiation exercise Fill in the blanks question 15
Answer: $f^{1}\left(\frac{\pi}{6}\right)=\frac{1+\sqrt{3}}{2}$Hint:Given: $f(x)=|\sin x-\cos x|$Solution: $f(x)=|\sin x-\cos x|$$\begin{aligned} &f(x)=\left(\begin{array}{cc} \sin x-\cos x & 0 \leq x \leq \frac{\pi}{4} \\\\ -(\sin x-\cos x) & \frac{\pi}{4}<x \leq \frac{\pi}{4} \end{array}\right) \\\\ &f^{{}'}(x)=\left(\begin{array}{cc} \sin x+\cos x & 0 \leq x \leq \frac{\pi}{4} \\\\ -(\sin x+\cos x) & \frac{\pi}{4}<x \leq \frac{\pi}{4} \end{array}\right) \end{aligned}$$\begin{aligned} f^{{}'}\left(\frac{\pi}{6}\right)=& \sin \frac{\pi}{6}+\cos \frac{\pi}{6} \\\\ &=\frac{1}{2}+\frac{\sqrt{3}}{2} \\\\ \end{aligned}$$=\frac{\sqrt{3}+1}{2}$Differentiation exercise Fill in the blanks question 16
Answer: 2
Hint: $\frac{d(\tan x)}{d x}=\sec ^{2} x$Given: $y=\tan x^{0}$$\\ \\ \because x^{0}=\frac{\pi}{180}x\\ \\ \therefore \frac{\mathrm{d} y}{\mathrm{d} x}= \frac{\pi}{180} \cdot\sec^{2}\frac{\pi}{180}x=\frac{\pi}{180}\sec^{2}x^{0}$Differentiation exercise Fill in the blanks question 17
Answer: $\frac{d y}{d x}=0$Hint: $\frac{d}{d x}=\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}}$Given: $y=\sin ^{-1}\left(e^{x}\right)+\cos ^{-1}\left(e^{x}\right)$Solution: $y=\sin ^{-1}\left(e^{x}\right)+\cos ^{-1}\left(e^{x}\right)$Differentiating (i) we get;
$\begin{aligned} \frac{d y}{d x} &=\frac{1}{\sqrt{1+e^{2x}}} e^{x}-\frac{1}{\sqrt{1+e^{2x}}} e^{x} \\\\ &=0 \end{aligned}$Differentiation exercise Fill in the blanks question 18
Answer: $\frac{3}{\sqrt{1-x^{2}}}$Hint: $\text { put } x=\sin \theta$Given: $y=\sin ^{-1}\left(3 x-4 x^{3}\right)$Solution: By putting
$x=\sin \theta \text { in } \mathrm{y}$$\begin{aligned} &y=\sin ^{-1}(3 \sin \theta-4 \sin \theta) \\\\ &y=\sin ^{-1}(\sin 3 \theta) \end{aligned}$$\begin{aligned} &=3 \theta \\\\ &=3 \sin ^{-1} x \end{aligned}$$\frac{d y}{d x}=\frac{3}{\sqrt{1-x^{2}}}$Differentiation exercise Fill in the blanks question 19
Answer: 0
Hint: $\cos ^{-1} x+\sin ^{-1} x=\frac{\pi}{2}$Given: $y=\sec ^{-1}\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}\right)+\sin ^{-1}\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)$Solution:$y=\cos ^{-1}\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)+\sin ^{-1}\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)$$\begin{aligned} &=\frac{\pi}{2} \\\\ &=0 \end{aligned}$Differentiation exercise Fill in the blanks question 20
Answer: $\text { tan } u$Hint: $\text { put } u=\cos x \text { and } v=\sin x$Given: The derivative of
$\cos \; x$ w.r.t
$\sin x$Solution: $\begin{aligned} &\text { Let } u=\cos x \text { and } v=\sin x \\\\ &\frac{d u}{d v}=-\sin x &\frac{d v}{d u}=\cos x \end{aligned}$Therefore:
$\begin{aligned} &\frac{d u}{d v}=\frac{d u \mid d v}{d v \mid d u}=\frac{-\sin x}{\cos x} \\\\ &=-\tan x \end{aligned}$Differentiation exercise Fill in the blanks question 21
Answer: $\frac{\log _{10} e}{x}$Hint: $\text { use: }\left[\frac{d}{d x} \log _{e} x=\frac{1}{x}\right]$Given: $\text { If } \quad y=\log _{10} x$Solution: $\log _{10} x$$\begin{aligned} &y=\log _{10} e \cdot \log _{e} x \\\\ &\frac{d y}{d x}=\log _{10} e\times \frac{1}{x} \end{aligned}$So the answer is
$\frac{\log _{10} e}{x}$Differentiation exercise Fill in the blanks question 22
Answer: the correct answer is
$\frac{3 x^{2}}{1+x^{6}}$Hint: integrate the function.
Given: $\frac{d}{\mathrm{dx}} f(x)=\frac{1}{1+x^{2}}$Solution: integrating we get
$\begin{aligned} &\int \frac{d}{d x}(f(x)) d x=\int\left[\frac{1}{1+x^{2}}\right] d x \\\\ &f(x)=\tan ^{-1} x+e \end{aligned}$$\begin{aligned} &f\left(x^{3}\right)=\tan ^{-1}\left(x^{3}\right)+c \\\\ &f^{1}\left(x^{3}\right)=\frac{3 x^{2}}{1+x^{6}} \end{aligned}$So the answer is
$\frac{3 x^{2}}{1+x^{6}}$Differentiation exercise Fill in the blanks question 23
Answer: the correct answer is ='0'
Hint: $y=\cos \left(\sin x^{2}\right) \frac{d}{d x} \sin x=-\cos x$$\frac{dy}{d x}=-\sin \left(\sin x^{2}\right)-\cos x^{2} \cdot 2 x$Given: $y=\cos \left(\sin x^{2}\right)$Solution: using
$\frac{dy}{dx}$ to get the value at
$\frac{\lambda }{2}$Now at
$x=\sqrt{\pi / 2}$$\frac{d}{d x}=-\sin \left(\sin \sqrt{\frac{\pi}{2}}\right) \cdot \cos \sqrt{\frac{\pi}{2}} \cdot 2 \sqrt{\frac{\pi}{2}}=0$So the correct answer is ‘0'
Differentiation exercise Fill in the blanks question 24
Answer: The correct answer is
$\frac{1}{x}$Hint: Differentiate the function but u should not be equal to zero
Given: $\mathrm{y}=\log _{\mathrm{e}}|\mathrm{x}|$Solution: $\mathrm{y}=\log |\mathrm{x}|=\left(\begin{array}{cc} \log (-x), & x<0 \\ \log (x), & x>0 \end{array}\right)$$\frac{d y}{d x}=\left(\begin{array}{cc} \frac{-1}{-x}=\frac{1}{x},, & x<0 \\ \frac{1}{x}, & x>0 \end{array}\right)$Which means it is equal to
$\frac{1}{x}$ when
$x\neq 0$$\frac{d}{d x} \log |x|=\frac{1}{x}, x \neq 0$So the answer is
$\frac{1}{x}$Differentiation exercise Fill in the blanks question 25
Answer: the correct answer is =0
Hint: put 1,4,5 in the equation to get the respective value the use
$f^{1}(1)+f^{1}(u)-f^{1}(5)$ Given: $y=a x^{2}+b x+c$Solution: $\begin{aligned} &y=a x^{2}+b x+c \\\\ &f^{1}(x)=\frac{d y}{d x}=2 a x+b \\\\ &f^{1}(1)=2 a+b \text { and } \end{aligned}$$\begin{aligned} &f^{1}(x)=3 a+4 b \\\\ &f^{1}(5)=10 a+5 b \\\\ &f^{1}(1)+f^{1}(u)-f^{1}(5) \end{aligned}$$=2 a+b+8 a+4 b-10 a-5 b$So the correct answer is 0
Differentiation exercise Fill in the blanks question 26
Answer: the correct answer is
$\frac{1}{\sqrt{2}}$Hint:Given: $f^{1}(1)=2 \text { and } g^{1}(\sqrt{2})=4$Solution: $\begin{aligned} &y=f(\tan x) \text { and } z=g(\sec x) \\\\ &\frac{d y}{d x}=f^{\prime}(\tan x) \sec ^{2} x \text { and } \frac{d z}{d x}=g^{\prime}(\sec x) \cdot \sec x+\tan x \end{aligned}$$\begin{aligned} &\frac{d y}{d z}=\frac{f^{1}(\tan x) \cdot \sec ^{2} x}{g^{1}(\sec x) \cdot \sec x \tan x} \\\\ &\frac{d y}{d z}=\frac{f^{\prime}(1) \cdot(\sqrt{2})^{2}}{g^{\prime}(\sqrt{2}) \cdot(\sqrt{2})}=\frac{1}{\sqrt{2}} \end{aligned}$So the answer is
$\frac{1}{\sqrt{2}}$This chapter of RD Sharma class 12 exercise FBQ evolves around the possibility of lucidness. Students can download the RD Sharma class 12 solutions FBQ Chapter 10 Differentiation to find out with regards to this topic.
The RD Sharma class 12 solution Differentiation exercise FBQ reference book is the most purchased book by the students. It is not a simple task to answer FBQs that too in a complex chapter like the Differentiation. The students must be clear about all the concepts to give the answers quickly by not wasting time.
Moreover, the Class 12 RD Sharma chapter 10 exercise FBQ solution book has many shortcuts and tricks that can be followed to arrive at the solution effortlessly. This Class 12 RD Sharma chapter 10 exercise FBQ material has around 26 solved questions.
Some important concepts used in chapter 10 FBQ:-
Questions related to Differentiation of a function.
Questions related to the Differentiation of inverse trigonometric functions by the chain rule.
Questions related to Differentiation by using trigonometric substitutions.
Solutions on Differentiation of implicit functions.
Questions related to Logarithmic differentiation.
Differentiation of infinite series.
Differentiation of parametric functions.
Differentiation of determinants.