RD Sharma Class 12 Exercise 10.7 Differentiation Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise 10.7 Differentiation Solutions Maths - Download PDF Free Online

Edited By Satyajeet Kumar | Updated on Jan 20, 2022 05:41 PM IST

School students may find it difficult to solve their board exam papers if they don't practice beforehand. This insufficient practice may cause students to panic and lose confidence before their exams. Therefore, high school students should use the RD Sharma class 12th exercise 10.7 for their exam preparations. This book will help them practice at home and clear their doubts well before the exam commences.
The RD Sharma class 12 chapter 10 exercise 10.7 is a trusted NCERT solution that has already helped hundreds of students in their exams. Be it school exams or boards, Chapter 10 of the Class 12 maths book is a crucial part of the syllabus, which needs to be understood well. The 10th chapter of the book is titled Differentiations. RD Sharma class 12th exercise 10.7 covers the concepts of differentiation of inverse trigonometric functions, Differentiation of a function, Differentiation by using trigonometric substitutions, Logarithmic differentiation, etc. Exercise 10.7 includes 29 questions on finding the value of variables in linear trigonometric equations.

Also Read - RD Sharma Solution for Class 9 to 12 Maths

RD Sharma Class 12 Solutions Chapter 10 Differentiation - Other Exercise

Differentiation Excercise: 10.7

Differentiation Exercise 10.7 Question 2

Answer:
\frac{d y}{d x}=\tan \left(\frac{\theta}{2}\right)
Hint:
\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}
Given:
x=a(\theta+\sin x) \ , y=a(1-\cos \theta) \\
Solution:
x=a(\theta+\sin x) \
\ \frac{d x}{d \theta}=a(1+\cos \theta) \\
y=a(1-\cos \theta) \\
\frac{d y}{d \theta}=a(-\sin \theta)=a \sin \theta \\
\begin{aligned} & &\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{dx}{d\theta}}=\frac{a \sin \theta}{a(1+\cos \theta)} \end{aligned}
\frac{d y}{d x}=\frac{\sin \theta}{1+\cos \theta}
\begin{aligned} & \\ &=\frac{2 \sin \frac{\theta}{2} \cdot \cos \frac{\theta}{2}}{2 \cos ^{2} \frac{\theta}{2}} \end{aligned} \left[\begin{array}{l} \sin 2 \theta=2 \sin \theta \cos \theta \\ 1+\cos 2 \theta=2 \cos ^{2} \theta \end{array}\right]
=\frac{\sin \left(\frac{\theta}{2}\right)}{\cos \left(\frac{\theta}{2}\right)} \left[\because \tan \theta=\frac{\sin \theta}{\cos \theta}\right]
\frac{d y}{d x}=\tan \left(\frac{\theta}{2}\right)

Differentiation Exercise 10.7 Question 3

Answer:
\frac{d y}{d x}=\frac{-b}{a} \cot \theta
Hint:
\frac{d(\sin x)}{d x}=\cos x, \frac{d(\cos x)}{d x}=-\sin x
Given:
x=a \cos \theta , y=b \sin \theta \\
Solution:
x=a \cos \theta
\\ \frac{d x}{d \theta}=-a \sin \theta \\
y=b \sin \theta \\
\begin{aligned} & &\frac{d y}{d \theta}=b \cos \theta \end{aligned}
\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{b \cos \theta}{-a \sin \theta}=\frac{-b}{a} \cot \theta \left[\because \cot \theta=\frac{\cos \theta}{\sin \theta}\right]

Differentiation Exercise 10.7 Question 4

Answer:
\frac{dy}{dx}=\cot \theta
Hint:
Use product rule
Given:
x=a e^{\theta}(\sin \theta-\cos \theta)
\begin{aligned}&y=a e^{\theta}(\sin \theta+\cos \theta) \end{aligned}
Solution:
x=a e^{\theta}(\sin \theta-\cos \theta)
\begin{aligned} & \\ &\frac{d x}{d \theta}=a e^{\theta} \frac{d(\sin \theta-\cos \theta)}{d \theta}+(\sin \theta-\cos \theta) \frac{d\left(a e^{\theta}\right)}{d \theta} \end{aligned} [Use product rule]
\begin{aligned} &\frac{d x}{d \theta}=a e^{\theta}(\cos \theta+\sin \theta)+(\sin \theta-\cos \theta) a \cdot \frac{d e^{\theta}}{d \theta} \\ &\frac{d x}{d \theta}=a e^{\theta}(\cos \theta+\sin \theta)+(\sin \theta-\cos \theta) \cdot a \cdot e^{\theta} \\ &\frac{d x}{d \theta}=a e^{\theta}(\cos \theta+\sin \theta+\sin \theta-\cos \theta) \end{aligned}
\begin{aligned} &\frac{d x}{d \theta}=2 a e^{\theta} \sin \theta \\ &y=a e^{\theta}(\sin \theta+\cos \theta) \end{aligned}
\frac{d y}{d \theta}=a e^{\theta} \cdot \frac{d(\sin \theta+\cos \theta)}{d \theta}+(\sin \theta+\cos \theta) \cdot \frac{d\left(a e^{\theta}\right)}{d \theta} [Using product rule]
\begin{aligned} &=a e^{\theta}(\cos \theta-\sin \theta)+(\sin \theta+\cos \theta) a \cdot \frac{d e^{\theta}}{d \theta} \\ &=a e^{\theta}(\cos \theta-\sin \theta)+(\sin \theta+\cos \theta) a e^{\theta} \\ &=a e^{\theta}(\cos \theta-\sin \theta+\sin \theta+\cos \theta) \\ &\frac{d y}{d \theta}=2 a e^{\theta} \cos \theta \end{aligned}
So,
\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{2 a e^{\theta} \cos \theta}{2 a e^{\theta} \sin \theta}=\frac{\cos \theta}{\sin \theta}=\cot \theta

Differentiation Excercise 10.7 Question 5

Answer:
\frac{dy}{dx}=-\frac{a}{b}
Hint:
Use chain rule
Given:
x=b \sin ^{2} \theta \\ , y=a \cos ^{2} \theta \\
Solution:
x=b \sin ^{2} \theta \\
\frac{d x}{d \theta}=b \frac{d\left(\sin ^{2} \theta\right)}{d \theta} \\
\frac{d x}{d \theta}=b \times\left[\frac{d \sin ^{2} \theta}{d \sin \theta} \times \frac{d \sin \theta}{d \theta}\right] \ [Using chain rule]
\ =b \times[2 \sin \theta \times \cos \theta] \\
\begin{aligned} &&\frac{d x}{d \theta}=2 b \sin \theta \cos \theta \end{aligned}
y=a \cos ^{2} \theta \\
\frac{d y}{d \theta}=a \cdot \frac{d\left(\cos ^{2} \theta\right)}{d \theta}
\begin{aligned} &\\ &=a \cdot \frac{d \cos ^{2} \theta}{d \cos \theta} \times \frac{d \cos \theta}{d \theta} \end{aligned} [Using chain rule]
=a(2 \cos \theta)(-\sin \theta) \\
\frac{d y}{d \theta}=-2 a \sin \theta \cos \theta
\begin{aligned} & \\ &\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{-2 a \sin \theta \cos \theta}{2 b \sin \theta \cos \theta}=-\frac{a}{b} \end{aligned}

Differentiation Excercise 10.7 Question 6

Answer:
\frac{dy}{dx}=1 At \theta =\frac{\pi}{2}
Hint:
Use differentiation formula
Given:
x=a(1-\cos \theta) \\ , \begin{aligned} &y=a(\theta+\sin \theta) \end{aligned}
Solution:
x=a(1-\cos \theta) \\
\frac{d x}{d \theta}=a \frac{d(1-\cos \theta)}{d \theta} \\
\begin{aligned} & &=a\left[0-\frac{d \cos \theta}{d \theta}\right] \end{aligned} \left(\frac{d(\operatorname{CONSTANT})}{d \theta}=0\right)
=a(-(-\sin \theta)) \\
\frac{d x}{d \theta}=a \sin \theta \\
\begin{aligned} &y=a(\theta+\sin \theta) \end{aligned}
\frac{d y}{d \theta}=a\left(\frac{d \theta}{d \theta}+\frac{d \sin \theta}{d \theta}\right) \\
\begin{aligned} & &=a(1+\cos \theta) \end{aligned}
\frac{d x}{d \theta} At \quad \theta=\frac{\pi}{2} \\
=a\left(1+\cos \frac{\pi}{2}\right) \\
=a(1+0) \\
\begin{aligned} &=a \end{aligned}
\frac{d x}{d \theta} At \quad \theta=\frac{\pi}{2} \\
=a \sin \frac{\pi}{2} \\
\begin{aligned} &=a \end{aligned}
\frac{d y}{d \theta} At \quad \theta=\frac{\pi}{2} \
\begin{aligned} &\ &\frac{\left(\frac{d y}{d \theta}\right) a t \theta=\frac{\pi}{2}}{\left(\frac{d x}{d \theta}\right) \operatorname{at} \theta=\frac{\pi}{2}}=\frac{a}{a}=1 \end{aligned}

Differentiation Excercise 10.7 Question 7

Answer:
\frac{dy}{dx}=\frac{x}{y}
Hint:
Use \frac{d\left(e^{x}\right)}{d x}=e^{x}
Given:
x=\frac{e^{t}+e^{-t}}{2} \\ , y=\frac{e^{t}-e^{-t}}{2} \
Solution:
x=\frac{e^{t}+e^{-t}}{2} \\
\begin{aligned} & &\frac{d x}{d y}=\frac{1}{2} \frac{d\left(e^{t}+e^{-t}\right)}{d t} \end{aligned}
=\frac{1}{2}\left(e^{t}-e^{-t}\right) \\
\begin{aligned} & &\frac{d y}{d t}=\frac{1}{2} \frac{d\left(e^{t}-e^{-t}\right)}{d t} \end{aligned}
=\frac{1}{2}\left(e^{t}+e^{-t}\right) \\
\begin{aligned} & &\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{\frac{1}{2}\left(e^{t}+e^{-t}\right)}{\frac{1}{2}\left(e^{t}-e^{-t}\right)}=\frac{e^{t}+e^{-t}}{e^{t}-e^{-t}} \end{aligned}
Now
x=\frac{e^{t}+e^{-t}}{2} \\
2 x=e^{t}+e^{-t} \\
\begin{aligned} & &e^{t}+e^{-t}=2 x \end{aligned}
Also
y=\frac{e^{t}-e^{-t}}{2} \
\begin{aligned} &\ &e^{t}-e^{-t}=2 y \end{aligned}
Put these values of \left(e^{t}+e^{-t}\right) \text { and }\left(e^{t}-e^{-t}\right) in \frac{dy}{dx} expression
\frac{d y}{d x}==\frac{e^{t}+e^{-t}}{e^{t}-e^{-t}}=\frac{2 x}{2 y}=\frac{x}{y}

Differentiation Exercise 10.7 question 8

Answer:
\frac{d y}{d x}=\frac{2 t}{1-t^{2}}
Hint:
Use quotient rule
Given:
x=\frac{3 a t}{1+t^{2}} \\ , y=\frac{3 a t^{2}}{1+t^{2}} \\
Solution:
x=\frac{3 a t}{1+t^{2}} \\
\frac{d x}{d y}=\frac{d}{d t}\left(\frac{3 a t}{1+t^{2}}\right) \\
\begin{aligned} & &=\frac{\left(1+t^{2}\right) \frac{d(3 a t)}{d t}-3 a t \frac{d\left(1+t^{2}\right)}{d t}}{\left(1+t^{2}\right)^{2}} \end{aligned} [Using quotient rule]
=\frac{\left(1+t^{2}\right)(3 a)-(3 a t)(2 t)}{\left(1+t^{2}\right)^{2}} \\
\begin{aligned} & &=\frac{3 a\left(1+t^{2}\right)-6 a t^{2}}{\left(1+t^{2}\right)^{2}} \end{aligned}
=\frac{3 a+3 a t^{2}-6 a t^{2}}{\left(1+t^{2}\right)^{2}} \\
=\frac{3 a-3 a t^{2}}{\left(1+t^{2}\right)^{2}} \\
\begin{aligned} & &\frac{d x}{d t}=\frac{3 a\left(1-t^{2}\right)}{\left(1+t^{2}\right)^{2}} \end{aligned} (1)
y=\frac{3 a t^{2}}{1+t^{2}} \\
\frac{d y}{d t}=\frac{d}{d t}\left(\frac{3 a t^{2}}{1+t^{2}}\right)
\begin{aligned} &\\ &=\frac{(1+t) \frac{d\left(3 a t^{2}\right)}{d t}-3 a t^{2} \frac{d\left(1+t^{2}\right)}{d t}}{\left(1+t^{2}\right)^{2}} \end{aligned} [Using quotient rule]
=\frac{\left(1+t^{2}\right)\left(3 a \times \frac{d t^{2}}{d t}\right)-3 a t^{2}\left(\frac{d(1)}{d t}+\frac{d\left(t^{2}\right)}{d t}\right)}{\left(1+t^{2}\right)^{2}}

=\frac{(1+t) \cdot 3 a \cdot(2 t)-3 a t^{2}(0+2 t)}{\left(1+t^{2}\right)} \left[\because \frac{d\left(x^{n}\right)}{d x}=n x^{n-1}\right]
=\frac{6 a t\left(1+t^{2}\right)-6 a t^{3}}{\left(1+t^{2}\right)^{2}} \\
=\frac{6 a t+6 a t^{3}-6 a t^{3}}{\left(1+t^{2}\right)^{2}} \\
\begin{aligned} & &\frac{d y}{d x}=\frac{6 a t}{(1+t)^{2}} \end{aligned} (2)
Now
\frac{d y}{d x}=\frac{\frac{d y}{d x}}{\frac{d x}{d t}}
Put the value of \frac{dy}{dt}\:and\: \frac{dx}{dt} from the equation (2) and (1)
In \frac{dy}{dx}
\frac{d y}{d x}=\frac{\frac{6 a t}{\left(1+t^{2}\right)^{2}}}{\frac{3 a\left(1-t^{2}\right)}{\left(1+t^{2}\right)^{2}}}
=\frac{6 a t}{3 a\left(1-t^{2}\right)}
\begin{aligned} & \\ &\frac{d y}{d x}=\frac{2 t}{1-t^{2}} \end{aligned}

Differentiation Exercise 10.7 question 9

Answer:
\frac{d y}{d x}=\tan \theta
Hint:
Use product rule
Given:
\begin{aligned} &x=a(\cos \theta+\theta \sin \theta) \\ &y=a(\sin \theta-\theta \cos \theta) \end{aligned}
Solution:
x=a(\cos \theta+\theta \sin \theta) \\
\frac{d x}{d \theta}=a \frac{d}{d \theta}(\cos \theta+\theta \sin \theta)
\begin{aligned} &\\ &=a\left[\frac{d \cos \theta}{d \theta}+\frac{d}{d \theta}(\theta \sin \theta)\right] \end{aligned}
=a\left[-\sin \theta+\left(\theta \frac{d \sin \theta}{d \theta}+\sin \theta \cdot \frac{d \theta}{d \theta}\right)\right] [Using product rule]
=a[-\sin \theta+(\theta \cdot \cos \theta+\sin \theta)] \left[\because \frac{d \sin \theta}{d \theta}=\cos \theta\right]
=a(\theta \cos \theta) \\
\begin{aligned} & &\frac{d x}{d \theta}=a \theta \cos \theta \end{aligned} (1)
y=a(\sin \theta-\theta \cos \theta) \\
\frac{d y}{d \theta}=a \frac{d}{d \theta}(\sin \theta-\theta \cos \theta) \\
=a\left[\frac{d \sin \theta}{d \theta}-\frac{d(\theta \cos \theta)}{d \theta}\right] \\
\begin{aligned} & &=a\left[\cos \theta-\left(\theta \cdot \frac{d \cos \theta}{d \theta}+\cos \theta \cdot \frac{d \theta}{d \theta}\right)\right] \end{aligned} [Using product rule]
=a[\cos \theta-(\theta(-\sin \theta)+\cos \theta)] \\ \left[\begin{array}{l} \because \frac{d \cos \theta}{d \theta}=-\sin \theta \\ \frac{d x}{d x}=1 \end{array}\right]
=a[\cos \theta+\theta \sin \theta-\cos \theta] \\
\begin{aligned} & &\frac{d y}{d \theta}=a \theta \sin \theta \end{aligned} (2)
\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}
Put the value of \frac{d y}{d \theta} \text { and } \frac{d x}{d \theta} from equations (2) and (1) respectively
\frac{d y}{d x}=\frac{a \theta \sin \theta}{a \theta \cos \theta}=\tan \theta \\
\begin{aligned} & &\frac{d y}{d x}=\tan \theta \end{aligned}

Differentiation Exercise 10.7 question 10

Answer:
\frac{d y}{d x}=e^{2 \theta}\left[\frac{\theta^{2}-\theta^{3}+\theta+1}{\theta^{3}+\theta^{2}-1}\right]
Hint:
Use product rule
Given:
\begin{aligned} &x=e^{\theta}\left(\theta+\frac{1}{\theta}\right) \\ &y=e^{-\theta}\left(\theta-\frac{1}{\theta}\right) \end{aligned}
Solution:
x=e^{\theta}\left(\theta+\frac{1}{\theta}\right) \\
\frac{d x}{d \theta}=\frac{d}{d \theta}\left[e^{\theta}\left(\theta+\frac{1}{\theta}\right)\right] \\
\begin{aligned} & &=e^{\theta} \frac{d\left(\theta+\frac{1}{\theta}\right)}{d \theta}+\left(\theta+\frac{1}{\theta}\right) \cdot \frac{d\left(e^{\theta}\right)}{d \theta} \end{aligned} [Using product rule]
=e^{\theta}\left[\frac{d \theta}{d \theta}+\frac{d}{d \theta}\left(\frac{1}{\theta}\right)\right]+\left(\theta+\frac{1}{\theta}\right) \cdot e^{\theta} \left[\because \frac{d\left(e^{\theta}\right)}{d \theta}=e^{\theta}\right]
=e^{\theta}\left[1+\left(-\frac{1}{\theta^{2}}\right)\right]+\left(\theta+\frac{1}{\theta}\right) \cdot e^{\theta} \left[\because \frac{d\left(\frac{1}{x}\right)}{d x}=\frac{-1}{x^{2}}\right]
=e^{\theta}\left[1-\frac{1}{\theta^{2}}\right]+\left(\theta+\frac{1}{\theta}\right) \cdot e^{\theta} \\
=e^{\theta}\left[\left(1-\frac{1}{\theta^{2}}\right)+\left(\theta+\frac{1}{\theta}\right)\right] \\
=e^{\theta}\left[\frac{\theta^{2}-1-\theta^{3}+\theta}{\theta^{2}}\right]
\begin{aligned} &\\ &\frac{d y}{d \theta}=e^{\theta}\left(\frac{\theta^{3}+\theta^{2}+\theta-1}{\theta^{2}}\right) \end{aligned} (1)
y=e^{-\theta}\left(\theta-\frac{1}{\theta}\right) \\
\frac{d y}{d \theta}=\frac{d}{d \theta}\left(e^{-\theta} \cdot\left(\theta-\frac{1}{\theta}\right)\right) \\
\begin{aligned} & &=e^{-\theta}\left(\frac{d \theta}{d \theta}-\frac{d\left(\frac{1}{\theta}\right)}{d \theta}\right]+\left(\theta-\frac{1}{\theta}\right)\left(-e^{-\theta}\right) \end{aligned}
=e^{-\theta}\left[1-\left(-\frac{1}{\theta^{2}}\right)\right]-e^{-\theta}\left(\theta-\frac{1}{\theta}\right)
=e^{-\theta}\left[1+\frac{1}{\theta^{2}}\right]-e^{-\theta}\left[\theta-\frac{1}{\theta}\right] \\
\begin{aligned} & &=e^{-\theta}\left[1+\frac{1}{\theta^{2}}-\theta+\frac{1}{\theta}\right] \end{aligned}
=e^{-\theta}\left[\frac{\theta^{2}+1-\theta^{3}+\theta}{\theta^{2}}\right] \left[\because L C M\left(\theta, \theta^{2}\right)=\theta^{2}\right]
=e^{-\theta}\left[\frac{-\theta^{3}+\theta^{2}+\theta+1}{\theta^{2}}\right]
\frac{d y}{d \theta}=e^{-\theta}\left[\frac{-\theta^{3}+\theta^{2}+\theta+1}{\theta^{2}}\right] (2)
Put the values of \frac{d y}{d \theta} \text { and } \frac{d x}{d \theta} from equation (2) and (1)
\frac{d y}{d x}=\frac{e^{\theta}\left(\frac{-\theta^{3}+\theta^{2}+\theta+1}{\theta^{2}}\right)}{e^{-\theta}\left(\frac{\theta^{3}+\theta^{2}+\theta-1}{\theta^{2}}\right)} \\
\begin{aligned} & &=e^{\theta} \cdot e^{\theta} \frac{\left(-\theta^{3}+\theta^{2}+\theta+1\right)}{\left(\theta^{3}+\theta^{2}+\theta-1\right)} \end{aligned}
=e^{2 \theta}\left(\frac{-\theta^{3}+\theta^{2}+\theta+1}{\theta^{3}+\theta^{2}+\theta-1}\right) \\
\begin{aligned} & &\frac{d y}{d x}=e^{2 \theta}\left[\frac{\theta^{2}-\theta^{3}+\theta+1}{\theta^{3}+\theta^{2}+\theta-1}\right] \end{aligned}

Differentiation Exercise 10.7 Question 11

Answer:
\frac{d y}{d x}=-\frac{x}{y}
Hint:
Use quotient rule
Given:
\begin{aligned} x &=\frac{2 t}{1+t^{2}} \\ y &=\frac{1-t^{2}}{1+t^{2}} \end{aligned}
Solution:
x=\frac{2 t}{1+t^{2}}
\begin{aligned} & \\ &\frac{d x}{d t}=\frac{d\left(\frac{2 t}{1+t^{2}}\right)}{d t}=\frac{\left(1+t^{2}\right) \frac{d(2 t)}{d t}-2 t \frac{d\left(1+t^{2}\right)}{d t}}{\left(1+t^{2}\right)^{2}} \end{aligned} [Using quotient rule]
\frac{d x}{d t}=\frac{\left(1+t^{2}\right)^{2} \times 2-2 t(2 t)}{\left(1+t^{2}\right)^{2}} \\
=\frac{2\left(1+t^{2}\right)-4 t^{2}}{\left(1+t^{2}\right)^{2}} \\
=\frac{2+2 t^{2}-4 t^{2}}{\left(1+t^{2}\right)^{2}} \\
\begin{aligned} & &\frac{d x}{d t}=\frac{2-2 t^{2}}{\left(1+t^{2}\right)^{2}} \end{aligned} (1)
y=\frac{1-t^{2}}{1+t^{2}} \\
\begin{aligned} & &\frac{d y}{d x}=\frac{d}{d x}\left(\frac{1-t^{2}}{1+t^{2}}\right) \end{aligned}
=\frac{\left(1+t^{2}\right) \cdot \frac{d\left(1-t^{2}\right)}{d t}-\left(1-t^{2}\right) \cdot \frac{d\left(1+t^{2}\right)}{1+t}}{\left(1+t^{2}\right)} [Use quotient rule]
=\frac{\left(1+t^{2}\right)(-2 t)-\left(1-t^{2}\right)(2 t)}{\left(1+t^{2}\right)^{2}} \\
\frac{d y}{d x}=\frac{-2 t-2 t^{3}-2 t+2 t^{3}}{\left(1+t^{2}\right)^{2}} \\
\begin{aligned} &\frac{d y}{d t}=\frac{-4 t}{\left(1+t^{2}\right)^{2}} \end{aligned} (2)
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}
Put the values of \frac{d y}{d t} \text { and } \frac{d y}{d t} from the equation (2) and (1) respectively
\frac{d y}{d x}=\frac{\frac{-4 t}{\left(1+t^{2}\right)^{2}}}{\frac{\left(2-2 t^{2}\right)}{\left(1+t^{2}\right)^{2}}}
=\frac{-4 t}{2\left(1-t^{2}\right)}
\begin{aligned} &\\ &=\frac{-2 t}{1-t^{2}} \end{aligned}
\frac{d y}{d x}=-\frac{x}{y} \left[\frac{x}{y}=\frac{\frac{2 t}{1+t^{2}}}{\frac{1-t^{2}}{1+t^{2}}}=\frac{2 t}{1-t^{2}}\right]

Differentiation Exercise 10.7 Question 12

Answer:
\frac{d y}{d x}=-1
Hint:
Use chain rule
Given:
\begin{aligned} &x=\cos ^{-1} \frac{1}{\sqrt{1+t^{2}}} \\ &y=\sin ^{-1} \frac{1}{\sqrt{1+t^{2}}} \\ &t \in R \end{aligned}
Solution:
x=\cos ^{-1}\left(\frac{1}{\sqrt{1+t^{2}}}\right) \\
\begin{aligned} & &\frac{d x}{d t}=\frac{d \cos ^{-1}\left(\frac{1}{\sqrt{1+t^{2}}}\right)}{d t} \end{aligned}
=\frac{d \cos ^{-1}\left(\frac{1}{\sqrt{1+t^{2}}}\right)}{d\left(\frac{1}{\sqrt{1+t^{2}}}\right)} \times \frac{d\left(\frac{1}{\sqrt{1+t^{2}}}\right)}{d\left(1+t^{2}\right)} \times \frac{d\left(1+t^{2}\right)}{d t} [Using chain rule]
=\frac{-1}{\sqrt{1-\left(\frac{1}{\sqrt{1+t^{2}}}\right)^{2}}} \times \frac{-1}{2\left(1+t^{2}\right)^{\frac{3}{2}}} \times 2 t \\
\begin{aligned} & &=\frac{1}{\sqrt{\frac{1+t^{2}-1}{1+t^{2}}}} \times \frac{1}{2 \sqrt{1+t^{2}} \times\left(1+t^{2}\right)} \times 2 t \end{aligned}
=\frac{\sqrt{1+t^{2}}}{t} \times \frac{1}{\sqrt{1+t^{2}}\left(1+t^{2}\right)} \times(t) \\
\begin{aligned} & &\frac{d x}{d t}=\frac{1}{1+t^{2}} \end{aligned} (1)
Now
y=\sin ^{-1}\left(\frac{1}{\sqrt{1+t^{2}}}\right) \\
\begin{aligned} & &\frac{d y}{d t}=\frac{d \sin ^{-1}\left(\frac{1}{\sqrt{1+t^{2}}}\right)}{d t} \end{aligned}
=\frac{d \sin ^{-1}\left(\frac{1}{\sqrt{1+t^{2}}}\right)}{d\left(\frac{1}{\sqrt{1+t^{2}}}\right)} \times \frac{d\left(\frac{1}{\sqrt{1+t^{2}}}\right)}{d\left(1+t^{2}\right)} \times \frac{d\left(1+t^{2}\right)}{d t} [Using chain rule]
\frac{d y}{d x}=\frac{1}{\sqrt{1-\left(\frac{1}{\sqrt{1+t^{2}}}\right)^{2}}} \times \frac{-1}{2\left(1+t^{2}\right)^{\frac{3}{2}}} \times 2 t
=\frac{1}{\sqrt{1-\frac{1}{1+t^{2}}}} \times \frac{-1}{2 \sqrt{1+t^{2}} \cdot\left(1+t^{2}\right)} \times 2 t \\
\begin{aligned} & &=\frac{\sqrt{1+t^{2}}}{\sqrt{1+t^{2}-1}} \times \frac{-1}{2 \sqrt{1+t^{2}} \cdot\left(1+t^{2}\right)} \times 2 t \end{aligned}
=\frac{-1}{t\left(1+t^{2}\right)} \times t \
\begin{aligned} &\ &\frac{d y}{d t}=\frac{-1}{\left(1+t^{2}\right)} \end{aligned} (2)
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}
So put the values of \frac{d x}{d t} \text { and } \frac{d y}{d t} from the equation (1) and (2) respectively
\frac{d y}{d x}=\frac{\frac{-1}{\left(1+t^{2}\right)}}{\frac{1}{\left(1+t^{2}\right)}}=-1 \\
\begin{aligned} & &\frac{d y}{d x}=-1 \end{aligned}

Differentiation Exercise 10.7 Question 13

Answer:
\frac{d y}{d x}=\frac{t^{2}-1}{2 t}
Hint:
Use quotient rule
Given:
\begin{aligned} x &=\frac{1-t^{2}}{1+t^{2}} \\\\ \end{aligned}
y =\frac{2 t}{1+t^{2}}
Solution:
x=\frac{1-t^{2}}{1+t^{2}} \\
\frac{d x}{d t}=\frac{d}{d t}\left(\frac{1-t^{2}}{1+t^{2}}\right) \\
\begin{aligned} & &=\frac{\left(1+t^{2}\right) \frac{d\left(1-t^{2}\right)}{d t}-\left(1-t^{2}\right) \frac{d\left(1+t^{2}\right)}{d t}}{\left(1+t^{2}\right)^{2}} \end{aligned} [Using quotient rule]
\frac{d x}{d t}=\frac{\left(1+t^{2}\right)(-2 t)-\left(1-t^{2}\right)(2 t)}{\left(1+t^{2}\right)^{2}}
\begin{aligned} &\\ &=\frac{-2 t-2 t^{3}-2 t+2 t^{3}}{\left(1+t^{2}\right)^{2}} \end{aligned}
\frac{d x}{d t}=\frac{-4 t}{\left(1+t^{2}\right)^{2}} (1)
y=\frac{2 t}{1+t^{2}} \\
\begin{aligned} & &\frac{d y}{d t}=\frac{\left(1+t^{2}\right) \frac{d(2 t)}{d t}-2 t \frac{d\left(1+t^{2}\right)}{d t}}{\left(1+t^{2}\right)^{2}} \end{aligned} [Using quotient rule]
=\frac{\left(1+t^{2}\right)(2 t)-2 t(2 t)}{\left(1+t^{2}\right)^{2}} \\
\frac{d y}{d t}=\frac{2+2 t^{2}-4 t^{2}}{\left(1+t^{2}\right)^{2}} \\
\begin{aligned} & &\frac{d y}{d t}=\frac{2-2 t}{\left(1+t^{2}\right)^{2}} \end{aligned} (2)
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}
So put the values of \frac{d x}{d t} \text { and } \frac{d y}{d t} from equation (1) and (2) respectively
\frac{d y}{d x}=\frac{\left[\frac{2-2 t^{2}}{\left(1+t^{2}\right)^{2}}\right]}{\left[\frac{-4 t}{\left(1+t^{2}\right)^{2}}\right]}=\frac{2\left(1-t^{2}\right)}{-4 t}=-\frac{\left(1-t^{2}\right)}{2 t}
\frac{d y}{d x}=\frac{t^{2}-1}{2 t} \
\begin{aligned} &\ &\frac{d y}{d x}=\frac{t^{2}-1}{2 t} \end{aligned}

Differentiation Exercise 10.7 question 14

Answer:
\frac{d y}{d x}=\tan \left(\frac{3 \theta}{2}\right)
Hint:
Use chain rule
Given:
\begin{aligned} &x=2 \cos \theta-\cos 2 \theta \\ &y=2 \sin \theta-\sin 2 \theta \end{aligned}
Solution:
=2 \cos \theta-\cos 2 \theta \\
\frac{d x}{d \theta}=\frac{d(2 \cos \theta)}{d \theta}-\frac{d(\cos 2 \theta)}{d \theta} \\
\begin{aligned} &x &=2(-\sin \theta) \cdot \frac{d \cos 2 \theta}{d(2 \theta)} \times \frac{d(2 \theta)}{d \theta} \end{aligned} [Using chain rule]
=-\sin \theta-(-\sin 2 \theta) \times 2 \\
=-2 \sin \theta+2 \sin 2 \theta \\
\begin{aligned} & &\frac{d x}{d \theta}=2 \sin 2 \theta-2 \sin \theta \end{aligned} (1)
y=2 \sin \theta-\sin 2 \theta \\
\frac{d y}{d \theta}=\frac{d(2 \sin \theta)}{d \theta}-\frac{d(\sin 2 \theta)}{d \theta} \\
\begin{aligned} & &=2 \cos \theta-\left[\frac{d(\sin 2 \theta)}{d(2 \theta)} \times \frac{d(2 \theta)}{d \theta}\right] \end{aligned} [Using chain rule]
=2 \cos \theta-[\cos 2 \theta \times 2] \\
\begin{aligned} & &\frac{d y}{d \theta}=2 \cos \theta-2 \cos 2 \theta \end{aligned} (2)
\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}
So, put the values of \frac{d x}{d \theta} \text { and } \frac{d y}{d \theta} from the equation (1) and (2)
\frac{d y}{d x}=\frac{2(\cos \theta-\cos 2 \theta)}{2(\sin 2 \theta-\sin \theta)}
\begin{aligned} &\\ &\frac{d y}{d x}=\frac{\cos \theta-\cos 2 \theta}{\sin 2 \theta-\sin \theta} \end{aligned}
=\frac{-2 \sin \left(\frac{\theta+2 \theta}{2}\right) \cdot \sin \left(\frac{\theta-2 \theta}{2}\right)}{2 \cos \left(\frac{2 \theta+\theta}{2}\right) \cdot \sin \left(\frac{2 \theta-\theta}{2}\right)} \left[\begin{array}{l} \cos A-\cos B=-2 \sin \left(\frac{A+B}{2}\right) \cdot \sin \left(\frac{A-B}{2}\right) \\ \sin A-\sin B=2 \cos \left(\frac{A+B}{2}\right) \cdot \sin \left(\frac{A-B}{2}\right) \end{array}\right]
=\frac{-\sin \left(\frac{3 \theta}{2}\right) \cdot \sin \left(\frac{-\theta}{2}\right)}{\cos \left(\frac{3 \theta}{2}\right) \cdot \sin \left(\frac{\theta}{2}\right)} \\
\begin{aligned} & &=\frac{-\sin \left(\frac{3 \theta}{2}\right) \cdot\left(-\sin \frac{\theta}{2}\right)}{\cos \left(\frac{3 \theta}{2}\right) \cdot \sin \frac{\theta}{2}} \end{aligned}
=\frac{\sin \left(\frac{3 \theta}{2}\right)}{\cos \left(\frac{3 \theta}{2}\right)} \\
\begin{aligned} & &\frac{d y}{d x}=\tan \left(\frac{3 \theta}{2}\right) \end{aligned} \left[\because \tan \theta=\frac{\sin \theta}{\cos \theta}\right]

Differentiation Exercise 10.7 question 15

Answer:
\frac{d y}{d x}=-\frac{y \log x}{x \log y}
Hint:
Use chain rule and properties of logarithm
Given:
\begin{aligned} &x=e^{\cos 2 t} \\ &y=e^{\sin 2 t} \end{aligned}
Solution:
x=e^{\cos 2 t} \\
\frac{d x}{d t}=\frac{d\left(e^{\cos 2 t}\right)}{d t} \\
\begin{aligned} &=\frac{d\left(e^{\cos 2 t}\right)}{d(\cos 2 t)} \times \frac{d(\cos 2 t)}{d(2 t)} \times \frac{d(2 t)}{d t} \end{aligned} [Using chain rule]
=e^{\cos 2 t} \times(-\sin 2 t) \times 2 \\ \left[\because \frac{d\left(e^{x}\right)}{d x}=e^{x} \frac{d(\cos \theta)}{d \theta}=-\sin \theta\right]
\begin{aligned} & &\frac{d x}{d t}=-2 \sin 2 t e^{\cos 2 t} \end{aligned} (1)
y=e^{\sin 2 t} \\
\frac{d y}{d t}=\frac{d\left(e^{\sin 2 t}\right)}{d t} \\
\begin{aligned} & &=\frac{d\left(e^{\sin 2 t}\right)}{d(\sin 2 t)} \times \frac{d(\sin 2 t)}{d(2 t)} \times \frac{d(2 t)}{d t} \end{aligned} [Using chain rule]
=e^{\sin 2 t} \times \cos 2 t \times 2 \\ \left[\because \frac{d e^{x}}{d x}=e^{x}, \frac{d \sin \theta}{d \theta}=\cos \theta\right]
\frac{d y}{d t}=2 \cos 2 t e^{\sin 2 t} \\ (2)
\begin{aligned} & &\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}} \end{aligned}
Putting the value of \frac{d x}{d t} \text { and } \frac{d y}{d t} from the equation (1) and (2) respectively
=\frac{2 \cos 2 t \cdot e^{\sin 2 t}}{-2 \sin 2 t \cdot e^{\sin 2 t}}
\begin{aligned} &\frac{d y}{d x}=-\frac{\cos 2 t \cdot e^{\sin 2 t}}{\sin 2 t \cdot e^{\cos 2 t}} \\ & \end{aligned} (3)
x=e^{\cos 2 t}
Take log on both sides
\log x=\log \left(e^{\cos 2 t}\right) \\
\log x=\cos 2 t \cdot \log e \\ \left[\because \log a^{m}=m \log a\right]
\begin{aligned} & &\log x=\cos 2 t \end{aligned} [\because \log e=1]
Also
y=e^{\sin 2 t}
Take log on both side
\begin{aligned} &\log y=\log \left(e^{\sin 2 t}\right) \\ &\log y=\sin 2 t \cdot \log e \\ &\log y=\sin 2 t \end{aligned}
Put e^{\cos 2 t}=x, \cos 2 t=\log x, e^{\sin 2 t}=y, \sin 2 t=\log y in equation (3)
\frac{d y}{d x}=\frac{-y \log x}{x \log y}
\begin{aligned} & \\ &\frac{d y}{d x}=\frac{-y \log x}{x \log y} \end{aligned}

Differentiation Exercise 10.7 question 16

Answer:
\frac{d y}{d x}=\frac{1}{\sqrt{3}} \; \; \text { At }\; \; t=\frac{2 \pi}{3}
Hint:
Use [\tan (\pi-\theta)=-\tan \theta] and \frac{d(\sin t)}{d t}=\cos t
Given:
\begin{aligned} &x=\cos t \\ &y=\sin t \end{aligned}
Solution:
x=\cos t \\
\begin{aligned} & &\frac{d x}{d t}=\frac{d \cos t}{d t}=-\sin t \end{aligned} (1)
y=\sin t
\\ \frac{d y}{d t}=\frac{d \sin t}{d t} \\
\begin{aligned} & &\frac{d y}{d t}=\cos t \end{aligned} (2)
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}
Putting the value of \frac{d x}{d t} \text { and } \frac{d y}{d t} from equation (1) and (2) respectively
=\frac{\cos t}{-\sin t}
\frac{d y}{d x}\; \; At\; \; \left(x=\frac{2 \pi}{3}\right)
\begin{aligned} &=-\cot \left(\frac{2 \pi}{3}\right) \\ &=-\cot \left(\pi-\frac{\pi}{3}\right) \\ &=-\left(-\cot \frac{\pi}{3}\right) \\ &=\cot \frac{\pi}{3} \end{aligned}
\frac{d y}{d x}\;\; At\; \; \left(x=\frac{2 \pi}{3}\right)=\frac{1}{\sqrt{3}}
Hence proved

Differentiation Exercise 10.7 Question 17

Answer:
\frac{d y}{d x}=\frac{x}{y}
Hint:
Use \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}
Given:
\begin{aligned} &x=a\left(t+\frac{1}{t}\right) \\ &y=a\left(t-\frac{1}{t}\right) \end{aligned}
Solution:
x=a\left(t+\frac{1}{t}\right) \\
\begin{aligned} & &\frac{d x}{d t}=a \frac{d\left(t+\frac{1}{t}\right)}{d t} \end{aligned}
\begin{aligned} &=a\left[\frac{d t}{d t}+\frac{d\left(\frac{1}{t}\right)}{d t}\right] \\ &=a\left[1+\frac{d(t)^{-1}}{d t}\right] \end{aligned}
=a\left[1+\left\{(-1) t^{-1-1}\right\}\right] \\ \left[\because \frac{d x^{n}}{d x}=n x^{n-1}\right]
\begin{aligned} & &\frac{d x}{d t}=a\left(1-t^{2}\right) \end{aligned} (1)
y=a\left(t-\frac{1}{t}\right) \\
\frac{d y}{d t}=a \frac{d\left(t-\frac{1}{t}\right)}{d t} \\
\begin{aligned} & &=a\left[\frac{d t}{d t}-\frac{d\left(\frac{1}{t}\right)}{d t}\right] \end{aligned}
=a\left[1-\frac{d t^{-1}}{d t}\right] \\
=a\left[1-(-1) t^{-1-1}\right] \\
\begin{aligned} & &\frac{d y}{d t}=a\left(1+t^{-2}\right) \end{aligned} (2)
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}
Put the values of \frac{d x}{d t} \text { and } \frac{d y}{d t} from the equation (1) and (2) respectively
\frac{d y}{d x}=\frac{t^{2}+1}{t^{2}-1} \\
\begin{aligned} & &=\frac{t\left(t+\frac{1}{t}\right)}{t\left(t-\frac{1}{t}\right)} \end{aligned}
=\frac{\left(t+\frac{1}{t}\right)}{\left(t-\frac{1}{t}\right)} \\
\begin{aligned} & &=\frac{a\left(t+\frac{1}{t}\right)}{a\left(t-\frac{1}{t}\right)} \end{aligned} [Multiply and divide by a]
=\frac{x}{y} \left[\because x=a\left(t+\frac{1}{t}\right) \& y=a\left(t-\frac{1}{t}\right)\right]
Hence proved

Differentiation Exercise 10.7 Question 18

Answer:
\frac{d y}{d x}=1
Hint:
Use chain rule, product rule and \frac{d y}{d x}=\frac{\frac{d x}{d t}}{\frac{d x}{d t}}
Given:
x=\sin ^{-1}\left(\frac{2 t}{1+t^{2}}\right), y=\tan ^{-1}\left(\frac{2 t}{1-t^{2}}\right) ;-1<t<1
Solution:
x=\sin ^{-1}\left(\frac{2 t}{1+t^{2}}\right) \\
\begin{aligned} & &\frac{d x}{d t}=\frac{d \sin ^{-1}\left(\frac{2 t}{1+t^{2}}\right)}{d t} \end{aligned}
=\frac{d \sin ^{-1}\left(\frac{2 t}{1+t^{2}}\right)}{d\left(\frac{2 t}{1+t^{2}}\right)} \times \frac{d\left(\frac{2 t}{1+t^{2}}\right)}{d t} [Using chain rule]
=\frac{1}{\sqrt{1-\left(\frac{2 t}{1+t^{2}}\right)^{2}}} \times \frac{\left(1+t^{2}\right) \frac{d(2 t)}{d t}-2 t \frac{d\left(1+t^{2}\right)}{d t}}{\left(1+t^{2}\right)^{2}} [Using quotient rule]
=\frac{1+t^{2}}{\sqrt{\left(1+t^{2}\right)^{2}-4 t^{2}}} \times \frac{\left(1+t^{2}\right)(2)-(2 t)(2 t)}{\left(1+t^{2}\right)^{2}} \\
\begin{aligned} & &=\frac{2+2 t^{2}-4 t^{2}}{\sqrt{1+t^{4}+2 t^{2}-4 t^{2}} \times\left(1+t^{2}\right)} \end{aligned}
=\frac{2-2 t^{2}}{\sqrt{1+t^{4}-2 t^{2}} \times\left(1+t^{2}\right)} \\
\begin{aligned} & &=\frac{2\left(1-t^{2}\right)}{\sqrt{\left(1-t^{2}\right)^{2}}\left(1+t^{2}\right)} \end{aligned}
\frac{d x}{d t}=\frac{2}{1+t^{2}} \\
\begin{aligned} & &y=\tan ^{-1}\left(\frac{2 t}{1-t^{2}}\right) \end{aligned} (1)
\frac{d y}{d t}=\frac{d \tan ^{-1}\left(\frac{2 t}{1-t^{2}}\right)}{d t} \\
\begin{aligned} & &\frac{d y}{d t}=\frac{d \tan ^{-1}\left(\frac{2 t}{1-t^{2}}\right)}{d\left(\frac{2 t}{1-t^{2}}\right)} \times \frac{d\left(\frac{2 t}{1-t^{2}}\right)}{d t} \end{aligned}
=\frac{1}{1+\left(\frac{2 t}{1-t}\right)} \times \frac{\left(1-t^{2}\right) \frac{d(2 t)}{d t}-(2 t) \frac{d\left(1-t^{2}\right)}{d t}}{\left(1-t^{2}\right)^{2}} [Using chain rule]
=\frac{1}{1+\frac{4 t^{2}}{\left(1-t^{2}\right)^{2}}} \times \frac{\left(1-t^{2}\right) \times 2-(2 t)(-2 t)}{\left(1-t^{2}\right)^{2}} \\
\begin{aligned} & &=\frac{\left(1-t^{2}\right)^{2}}{\left(1-t^{2}\right)^{2}+4 t^{2}} \times \frac{2-2 t^{2}+4 t^{2}}{\left(1-t^{2}\right)^{2}} \end{aligned}
=\frac{2+2 t^{2}}{1+t^{4}-2 t^{2}+4 t^{2}} \\
\begin{aligned} & &=\frac{2(1+(-2))}{1+t^{4}+2 t^{2}} \end{aligned}
=\frac{2\left(1+t^{2}\right)}{\left(1+t^{2}\right)^{2}} \\
\begin{aligned} & &\frac{d y}{d t}=\frac{2}{\left(1+t^{2}\right)} \end{aligned} (2)
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}
So putting the value of \frac{d x}{d t} \text { and } \frac{d y}{d t} from the equation (1) and (2) respectively
\frac{d y}{d x}=\frac{\frac{2}{\left(1+t^{2}\right)}}{\frac{2}{\left(1+t^{2}\right)}} \\
=\frac{2\left(1+t^{2}\right)}{2\left(1+t^{2}\right)} \\
\begin{aligned} &\ &\frac{d y}{d x}=1 \end{aligned}

Differentiation Exercise 10.7 Question 19

Answer:
\frac{d y}{d x}=-\cot 3 t
Hint:
Use chain rule, product rule and \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}
Given:
\begin{aligned} &x=\frac{\sin ^{3} t}{\sqrt{\cos 2 t}} \\ &y=\frac{\cos ^{3} t}{\sqrt{\cos 2 t}} \end{aligned}
Solution:
x=\frac{\sin ^{3} t}{\sqrt{\cos 2 t}} \\
x=\sin ^{3} t(\cos 2 t)^{\frac{-1}{2}}\\ \left[\because \frac{1}{x^{n}}=(x)^{-n}\right]
\begin{aligned} & &\frac{d x}{d t}=(\cos 2 t)^{\frac{-1}{2}} \frac{d \sin ^{3} t}{d t}+\sin ^{3} t \times \frac{d(\cos 2 t)^{\frac{-1}{2}}}{d t} \end{aligned} [Using product rule]
=\left[(\cos 2 t)^{\frac{-1}{2}} \times \frac{d \sin ^{3} t}{d \sin t} \times \frac{d \sin t}{d t}\right]+\left[\sin ^{3} t \times \frac{d(\cos 2 t)^{\frac{-1}{2}}}{d \cos 2 t} \times \frac{d \cos 2 t}{d t}\right] [Using chain rule]
\frac{d x}{d t}=\left[\frac{1}{\sqrt{\cos 2 t}} \times 3 \sin ^{2} t\right]+\left[\sin ^{3} t \times\left(\frac{-1}{2}(\cos 2 t)^{\frac{-1}{2}-1}\right) \times(-2 \sin 2 t)\right]
\frac{d x}{d t}=\frac{3 \sin ^{2} t \cos t}{\sqrt{\cos 2 t}}+\frac{\sin ^{3} t \cdot \sin 2 t}{(\cos 2 t)^{\frac{3}{2}}} \\
\begin{aligned} & &\frac{d x}{d t}=\frac{3 \sin ^{2} t \cos t}{\sqrt{\cos 2 t}}+\frac{\sin ^{3} t \cdot \sin 2 t}{(\cos 2 t)^{\frac{3}{2}}} \end{aligned} (1)
=\frac{3 \sin ^{2} t \cos t \cdot \cos 2 t+\sin ^{3} t \cdot \sin 2 t}{(\cos 2 t)^{\frac{3}{2}}} \\
\begin{aligned} &=\frac{3 \sin ^{2} t \cos t\left(1-2 \sin ^{2} t\right)+\sin ^{3} t(2 \sin t \cdot \cos t)}{(\cos 2 t)^{\frac{3}{2}}} \end{aligned} \left[\begin{array}{l} \because \cos 2 \theta=1-2 \sin ^{2} \theta \\ \sin 2 \theta=2 \sin \theta \cos \theta \end{array}\right]
=\frac{3 \sin ^{2} t \cos t-4 \sin ^{4} t \cos t+2 \sin ^{4} t \cdot \cos t}{(\cos 2 t)^{\frac{3}{2}}} \\
\frac{d x}{d t}=\frac{3 \sin ^{2} t \cos t-4 \sin ^{4} t \cos t}{(\cos 2 t)^{\frac{3}{2}}} \\
\begin{aligned} & &=\frac{\sin t \cos t\left(3 \sin t-4 \sin ^{3} t\right)}{(\cos 2 t)^{\frac{3}{2}}} \end{aligned}
=\frac{\sin t \cos t \cdot \sin 3 t}{(\cos 2 t)^{\frac{3}{2}}} \left[\because \sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta\right]
Multiply and divide by 2
\frac{d x}{d t}=\frac{2 \sin t \cos t \sin 3 t}{2(\cos 2 t)^{\frac{3}{2}}} \\
\begin{aligned} & &\frac{d x}{d t}=\frac{\sin 2 t \cdot \sin 3 t}{2(\cos 2 t)^{\frac{3}{2}}} \end{aligned}
\frac{d x}{d t}=\frac{\sin 2 t \cdot \sin 3 t}{2(\cos 2 t)^{\frac{3}{2}}} \\ (2)
\begin{aligned} & &y=\frac{\cos ^{3} t}{\sqrt{\cos 2 t}} \end{aligned}
y=\cos ^{3} t(\cos 2 t)^{\frac{-1}{2}} \left[\because \frac{1}{x^{n}}=(x)^{-n}\right]
\begin{aligned} & \\ &y=\cos ^{3} t(\cos 2 t)^{\frac{-1}{2}} \end{aligned}
\frac{d y}{d x}=\cos ^{3} t \times \frac{d(\cos 2 t)^{\frac{-1}{2}}}{d t}+(\cos 2 t)^{\frac{-1}{2}} \frac{d \cos ^{3} t}{d t} [Using product rule]
=\left[\cos ^{3} t \times \frac{d(\cos 2 t)^{\frac{-1}{2}}}{d \cos 2 t} \times \frac{d \cos 2 t}{d(2 t)} \times \frac{d(2 t)}{d t}\right]+\left[(\cos 2 t)^{\frac{-1}{2}} \times \frac{\cos ^{3} t}{d \cos t} \times \frac{d \cos t}{d t}\right] [Using chain rule]
=\left[\cos ^{3} t \times\left(\frac{-1}{2}(\cos 2 t)^{\frac{-3}{2}}\right) \times(-\sin 2 t) \times 2\right]+\left[\frac{1}{\sqrt{\cos 2 t}} \times 3 \cos ^{2} t \times(-\sin t)\right]
=\frac{-3 \cos ^{2} t \sin t}{\sqrt{\cos 2 t}}+\frac{\cos ^{3} t \times \sin 2 t}{(\cos 2 t)^{\frac{3}{2}}} \\
\begin{aligned} & &=\frac{-3 \cos ^{2} t \sin t(\cos 2 t)+\cos ^{3} t \times \sin 2 t}{(\cos 2 t)^{\frac{3}{2}}} \end{aligned}
=\frac{-3 \cos ^{2} t \cdot \sin t\left(2 \cos ^{2} t-1\right)+\cos ^{3} t \times 2 \sin t \times \cos t}{(\cos 2 t)^{\frac{3}{2}}} \left[\begin{array}{l} \because \cos 2 \theta=2 \cos ^{2} \theta-1 \\ \sin 2 \theta=2 \sin \theta \cos \theta \end{array}\right]
\frac{d y}{d t}=\frac{-3 \cos ^{2} t\left(2 \sin t \cos ^{2} t\right)+3 \cos ^{2} t \sin t+2 \cos ^{4} t \sin t}{(\cos 2 t)^{\frac{3}{2}}}
=\frac{\left(-6 \cos ^{4} t \sin t+2 \cos ^{4} t \sin t\right)+3 \cos ^{2} t \sin t}{(\cos 2 t)^{\frac{3}{2}}} \\
\begin{aligned} & &=\frac{-4 \cos ^{4} t \sin t+3 \cos ^{2} t \sin t}{(\cos 2 t)^{\frac{3}{2}}} \end{aligned}
=\frac{-\sin t \cos t\left(4 \cos ^{3} t-3 \cos t\right)}{(\cos 2 t)^{\frac{3}{2}}} \\
\begin{aligned} & &=\frac{-\sin t \cos t(\cos 3 t)}{(\cos 2 t)^{\frac{3}{2}}} \end{aligned} \left[\because \cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta\right]
=\frac{-2 \sin (-\cos t \cdot \cos 3 t)}{2(\cos 2 t)^{\frac{3}{2}}} \\
\begin{aligned} & &\frac{d y}{d t}=\frac{-\sin 2 t \cdot \cos 3 t}{2(\cos 2 t)^{\frac{3}{2}}} \end{aligned} (3)
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}
Put the values of \frac{d y}{d t} \text { and } \frac{d x}{d t} from equation (2) and (1) respectively
\frac{d y}{d x}=\frac{\frac{(-\sin 2 t \times \cos 3 t)}{2(\cos 2 t)^{\frac{3}{2}}}}{\frac{(\sin 2 t \times \sin 3 t)}{2(\cos 2 t)^{\frac{3}{2}}}}
=\frac{(-\sin 2 t \times \cos 3 t) \times 2(\cos 2 t)^{\frac{3}{2}}}{(\sin 2 t \times \cos 3 t) \times(2 \cos 2 t)^{\frac{3}{2}}} \\
=\frac{-\cos 3 t}{\sin 3 t} \\
\begin{aligned} & &\frac{d y}{d x}=-\cot 3 t \end{aligned}

Differentiation Exercise 10.7 Question 20

Answer:
\frac{d y}{d x}=\frac{(a)^{t+\frac{1}{t}} \cdot \log a}{a\left(t+\frac{1}{t}\right)^{a-1}}
Hint:
Use chain rule and \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}
Given:
\begin{aligned} &x=\left(t+\frac{1}{t}\right)^{a} \\ &y=(a)^{t+\frac{1}{t}} \end{aligned}
Solution:
x=\left(t+\frac{1}{t}\right)^{a} \\
\begin{aligned} & &\frac{d x}{d t}=\frac{d\left(t+\frac{1}{t}\right)}{d t} \end{aligned}
=\frac{d\left(t+\frac{1}{t}\right)^{a}}{d\left(t+\frac{1}{t}\right)} \times \frac{d\left(t+\frac{1}{t}\right)}{d t} [Using chain rule]
=a\left(t+\frac{1}{t}\right)^{a-1} \times\left(\frac{d t}{d t}+\frac{d\left(\frac{1}{t}\right)}{d t}\right) \left[\because \frac{d x^{n}}{d x}=n x^{n-1}\right]
=a\left(t+\frac{1}{t}\right)^{a-1} \times\left(1+\left(\frac{-1}{t^{2}}\right)\right) \\
\begin{aligned} & &\frac{d x}{d t}=a\left(t+\frac{1}{t}\right)^{a-1} \times\left(1-\frac{1}{t^{2}}\right) \end{aligned} (1)
y=a^{t+\frac{1}{t}} \\
\frac{d y}{d x}=\frac{d\left(a^{1+\frac{1}{t}}\right)}{d t} \\
\begin{aligned} & &=\frac{d\left(a^{t+\frac{1}{t}}\right)}{d\left(t+\frac{1}{t}\right)} \times \frac{d\left(t+\frac{1}{t}\right)}{d t} \end{aligned}
=\left(a^{t+\frac{1}{t}}\right) \log a \times\left(\frac{d t}{d t}+\frac{d\left(\frac{1}{t}\right)}{d t}\right) \quad\left[\because \frac{d\left(a^{x}\right)}{d x}=a^{x} \log a\right]
\frac{d y}{d t}=(a)^{t+\frac{1}{t}} \log a \times\left[1-\frac{1}{t^{2}}\right] (2)
\begin{aligned} & \\ &\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}} \end{aligned}
Put the values of \frac{d x}{d t} \text { and } \frac{d y}{d t} from equation (1) and (2) respectively
\frac{d y}{d x}=\frac{(a)^{r+\frac{1}{1}} \times \log a \times\left(1-\frac{1}{t^{2}}\right)}{a\left(t+\frac{1}{t}\right)^{a-1} \times\left(1-\frac{1}{t^{2}}\right)} \\
\begin{aligned} & &\frac{d y}{d x}=\frac{(a)^{t+\frac{1}{t}} \log a}{a\left(t+\frac{1}{t}\right)^{a-1}} \end{aligned}

Differentiation Exercise 10.7 Question 21

Answer:
\frac{d y}{d x}=\frac{1+t^{2}}{2 a t}
Hint:
Use quotient rule and \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}
Given:
\begin{aligned} &x=a\left(\frac{1+t^{2}}{1-t^{2}}\right) \\ &y=\frac{2 t}{1-t^{2}} \end{aligned}
Solution:
x=a\left(\frac{1+t^{2}}{1-t^{2}}\right) \\
\frac{d x}{d t}=a \frac{d\left(\frac{1+t^{2}}{1-t^{2}}\right)}{d t} \
\begin{aligned} &\ &=a \times \frac{\left(1-t^{2}\right) \frac{d\left(1+t^{2}\right)}{d t}-\left(1+t^{2}\right) \frac{d\left(1-t^{2}\right)}{d t}}{\left(1-t^{2}\right)^{2}} \end{aligned} [using quotient rule]
=a\left[\frac{\left(1-t^{2}\right) \cdot(2 t)-\left(1+t^{2}\right) \cdot(-2 t)}{\left(1-t^{2}\right)^{2}}\right] \\
\begin{aligned} & &=a\left[\frac{2 t-2 t^{3}+2 t+2 t^{3}}{\left(1-t^{2}\right)^{2}}\right] \end{aligned}
=a\left[\frac{4 t}{\left(1-t^{2}\right)^{2}}\right] \\
=\frac{4 a t}{\left(1-t^{2}\right)^{2}} \\ (1)
\begin{aligned} &y=\frac{2 t}{\left(1-t^{2}\right)} \end{aligned}
\frac{d y}{d t}=\frac{\left(1-t^{2}\right) \frac{d(2 t)}{d t}-2 t \cdot \frac{\left(1-t^{2}\right)}{d t}}{\left(1-t^{2}\right)^{2}} [Using quotient rule]
=\frac{\left(1-t^{2}\right)(2)-2 t(-2 t)}{\left(1-t^{2}\right)^{2}} \\
\begin{aligned} &\\ &=\frac{2-2 t^{2}+4 t^{2}}{\left(1-t^{2}\right)^{2}} \end{aligned}
\frac{d y}{d x}=\frac{2+2 t^{2}}{\left(1-t^{2}\right)^{2}} (2)
\begin{aligned} &\\ &\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}} \end{aligned}
Put the values of \frac{d y}{d x} \text { and } \frac{d x}{d t} from equation (2) and (1) respectively
\frac{d y}{d x}=\frac{\frac{\left(2+2 t^{2}\right)}{\left(1-t^{2}\right)^{2}}}{\frac{4 a t}{\left(1-t^{2}\right)^{2}}}=\frac{\left(2+2 t^{2}\right) \times\left(1-t^{2}\right)^{2}}{4 a t \times\left(1-t^{2}\right)^{2}} \\
=\frac{2\left(1+t^{2}\right)}{4 a t} \\
\begin{aligned} & &\frac{d y}{d x}=\frac{1+t^{2}}{2 a t} \end{aligned}

Differentiation Exercise 10.7 Question 22

Answer:
\frac{d y}{d x}=\frac{6}{5} \cot \left(\frac{t}{2}\right)
Hint:
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}
Given:
\begin{aligned} &x=10(t-\sin t) \\ &y=12(1-\cos t) \end{aligned}
Solution:
x=10(t-\sin t) \\
\begin{aligned} & &\frac{d x}{d t}=10\left(\frac{d t}{d t}-\frac{d \sin t}{d t}\right) \end{aligned} \left[\frac{d \sin t}{d t}=\cos t\right]
\frac{d x}{d t}=10(1-\cos t) \\ (1)
y=12(1-\cos t) \\
\frac{d y}{d t}=12\left(\frac{d(1)}{d t}-\frac{d \cos t}{d t}\right) \\
\begin{aligned} & &=12(0-(-\sin t)) \end{aligned} \left[\because \frac{d \cos t}{t}=-\sin t\right]
\frac{d y}{d t}=12 \sin t \\ (2)
\begin{aligned} & &\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}} \end{aligned}
Put the values of \frac{d y}{d t} \text { and } \frac{d x}{d t} from equation (2) and (1) respectively
\frac{d y}{d x}=\frac{12 \sin t}{10(1-\cos t)}=\frac{6 \sin t}{5(1-\cos t)} \\
\begin{aligned} & &=\frac{6}{5} \times \frac{2 \sin \frac{t}{2} \cdot \cos \frac{t}{2}}{2 \sin ^{2} \frac{t}{2}} \end{aligned}
=\frac{6}{5} \times \frac{2 \times \sin \frac{t}{2} \cdot \cos \frac{t}{2}}{2 \times \sin \frac{t}{2} \cdot \sin \frac{t}{2}} \\
\begin{aligned} & &=\frac{6}{5} \cot \frac{t}{2} \end{aligned} \left[\because \cot \theta=\frac{\cos \theta}{\sin \theta}\right]

Differentiation Exercise 10.7 Question 23

Answer:
\frac{d y}{d x}\; \: \mathrm{At}\; \; \left(\theta=\frac{\pi}{3}\right)=-\sqrt{3}
Hint:
Use chain rule and \frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}
Given:
\begin{aligned} &x=a(\theta-\sin \theta) \\ &y=a(1+\cos \theta) \end{aligned}
Solution:
x=a(\theta-\sin \theta) \\
\frac{d x}{d \theta}=a\left[\frac{d \theta}{d \theta}-\frac{d \sin \theta}{d \theta}\right] \\ \left[\frac{d \sin \theta}{d \theta}=\cos \theta\right]
\frac{d x}{d \theta}=a(1-\cos \theta) \\ (1)
\begin{aligned} & &y=a(1+\cos \theta) \end{aligned}
\frac{d y}{d \theta}=a\left(\frac{d 1}{d \theta}+\frac{d \cos \theta}{d \theta}\right) \\
=a(0+(-\sin \theta)) \\ \left[\because \frac{d \cos \theta}{d \theta}=-\sin \theta\right]
\begin{aligned} & &\frac{d y}{d \theta}=-a \sin \theta \end{aligned} (2)
\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}
Put the values of \frac{d y}{d \theta} \text { and } \frac{d x}{d \theta} from the equation (2) and (1) respectively
\frac{d y}{d x}=\frac{-a \sin \theta}{a(1-\cos \theta)} \\
\frac{d y}{d x}=\frac{-\sin \theta}{1-\cos \theta} \\
\begin{aligned} &\text { At } \theta=\frac{\pi}{3} \end{aligned}
\frac{d y}{d x}=-\left(\frac{\sin \frac{\pi}{3}}{1-\cos \frac{\pi}{3}}\right)
=-\left(\frac{\frac{\sqrt{3}}{2}}{1-\frac{1}{2}}\right) \left[\begin{array}{rl} \because \sin \frac{\pi}{3} & =\frac{\sqrt{3}}{2} \\\\ \cos \frac{\pi}{3} & =\frac{1}{2} \end{array}\right]
=-\left(\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}\right) \\
\begin{aligned} & &\frac{d y}{d x} a t \theta=\frac{\pi}{3}=-\sqrt{3} \end{aligned}

Differentiation Excercise 10.7 Question 24


Answer:
\frac{d y}{d x}\; {\mathrm{At}}\; \left(t=\frac{\pi}{4}\right)=\frac{b}{a}
Hint:
Use product rule and \frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}
Given:
\begin{aligned} &x=a \sin 2 t(1+\cos 2 t) \\ &y=b \cos 2 t(1-\cos 2 t) \end{aligned}
Solution:
x=a \sin 2 t(1+\cos 2 t) \\
\begin{aligned} & &\frac{d x}{d t}=a\left[\sin 2 t \times \frac{d(1+\cos 2 t)}{d t}+(1+\cos 2 t) \frac{d(\sin 2 t)}{d t}\right] \end{aligned} [Using product rule]
=a[\sin 2 t \times(0+(-2 \sin 2 t))+(1+\cos 2 t)(2 \cos 2 t)] \\
=a\left[-2 \sin ^{2} 2 t+2 \cos 2 t+2 \cos ^{2} 2 t\right] \\
=a\left[2 \cos 2 t+2 \cos ^{2} 2 t-2 \sin ^{2} 2 t\right] \\
=a\left[2 \cos 2 t+2\left(\cos ^{2} 2 t-\sin ^{2} 2 t\right)\right] \
\begin{aligned} &\ &=2 a[\cos 2 t+\cos 4 t] \end{aligned} \left[\because \cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta\right]
\frac{d x}{d t}=2 a(\cos t+\cos 4 t) (1)
y=b \cos 2 t(1-\cos 2 t) \\
\begin{aligned} & &\frac{d y}{d t}=b\left[\cos 2 t \times \frac{d(1-\cos 2 t)}{d t}+(1-\cos 2 t) \frac{d \cos 2 t}{d t}\right] \end{aligned} [Using product rule]
=b[\cos 2 t(0+2 \sin 2 t)]+(1-\cos 2 t)(-2 \sin 2 t) \quad\left[\because \frac{d \cos \theta}{d \theta}=-\sin \theta\right]
=b[2 \sin 2 t \cos 2 t-2 \sin 2 t+2 \sin 2 t \cos 2 t] \\
=b[4 \sin 2 t \cos 2 t-2 \sin t 2 t] \\
=b[2(2 \sin 2 t \cos 2 t)-2 \sin 2 t] \\
\begin{aligned} & &=2 b[\sin 4 t-\sin 2 t] \end{aligned} [\because \sin 2 \theta=2 \sin \theta \cos \theta]
\frac{d y}{d t}=2 b(\sin 4 t-\sin 2 t) \\ (2)
\begin{aligned} & &\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}} \end{aligned}
Put the values of \frac{d y}{d t} \text { and } \frac{d x}{d t} from the equations (2) and (1) respectively
\frac{d y}{d x}=\frac{2 b(\sin 4 t-\sin 2 t)}{2 a(\cos 2 t+\cos 4 t)} \\
\frac{d y}{d x}=\frac{b}{a} \times\left(\frac{\sin 4 t-\sin 2 t}{\cos 2 t+\cos 4 t}\right) \\
\begin{aligned} & &\text { At } t=\frac{\pi}{4} \end{aligned}
\frac{d y}{d x}=\frac{b}{a} \times \frac{\left(\sin \left(4 \times \frac{\pi}{4}\right)-\sin \left(2 \times \frac{\pi}{4}\right)\right)}{\cos \left(2 \times \frac{\pi}{4}\right)+\cos \left(4 \times \frac{\pi}{4}\right)} \\
=\frac{b}{a}\left(\frac{\sin \pi-\sin \frac{\pi}{2}}{\cos \frac{\pi}{2}+\cos \pi}\right) \\
\begin{aligned} & &\because \sin \frac{\pi}{2}=1, \cos \frac{\pi}{2}=0, \sin \pi=0, \cos \pi=-1 \end{aligned}
=\frac{b}{a}\left[\frac{0-1}{0+(-1)}\right] \\
=\frac{b}{a}\left(\frac{-1}{-1}\right) \\
\begin{aligned} & &\frac{d y}{d x}_{\mathrm{At}}\left(t=\frac{\pi}{4}\right)=\left(\frac{b}{a}\right) \end{aligned}
Hence proved

Differentiation Excercise 10.7 Question 25

Answer:
\frac{d y}{d x}\; {\mathrm{At}}\; \left(t=\frac{\pi}{4}\right)=1
Hint:
Use product rule and \frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}
Given:
\begin{aligned} &x=\cos t\left(3-2 \cos ^{2} t\right) \\ &y=\sin t\left(3-2 \sin ^{2} t\right) \end{aligned}
Solution:
x=\cos t\left(3-2 \cos ^{2} t\right)
\frac{d x}{d t}=\cos t \cdot \frac{d\left(3-2 \cos ^{2} t\right)}{d t}+\left(3-2 \cos ^{2} t\right) \frac{d \cos t}{d t} [Using product rule]
\frac{d x}{d t}=\cos t[0-4 \cos t(-\sin t)]+\left(3-2 \cos ^{2} t\right) \times(-\sin t) \quad\left[\because \frac{d(\cos \theta)}{d \theta}=-\sin \theta\right]
\frac{d x}{d t}=4 \cos ^{2} t \sin t-3 \sin t+2 \cos ^{2} t \sin t \\
=6 \cos ^{2} t \sin t-3 \sin t \\
\begin{aligned} &\frac{d x}{d t}=3 \sin t\left(2 \cos ^{2} t-1\right) \end{aligned} (1)
y=\sin t\left(3-2 \sin ^{2} t\right) \\
\begin{aligned} &\frac{d y}{d t}=\sin t \frac{\left(3-2 \sin ^{2} t\right)}{d t}+\left(3-2 \sin ^{2} t\right) \frac{d \sin t}{d t} \end{aligned} [Using product rule]
=\sin t \times\left[\frac{d 3}{d t}-\frac{d\left(\sin ^{2} t\right)}{d t}\right]+\left(3-2 \sin ^{2} t\right) \cos t \left[\because \frac{d \sin \theta}{d \theta}=\cos \theta\right]
=\sin t[0-4 \sin t \cos t]+3 \cos t-2 \sin ^{2} t \cos t \\
=-4 \sin ^{2} t \cos t+3 \cos t-2 \sin ^{2} t \cos t \\
=-6 \sin ^{2} t \cos t+3 \cos t \\
\begin{aligned} & &\therefore \frac{d y}{d t}=3 \cos t\left(-2 \sin ^{2} t+1\right) \end{aligned} (2)
\because \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}
Put the values of \frac{d y}{d t} \text { and } \frac{d x}{d t} from the equation (2) and (1) respectively
\frac{d y}{d x}=\frac{3 \cos t\left(1-\sin ^{2} t\right)}{3 \sin t\left(2 \cos ^{2} t-1\right)} \\
\begin{aligned} &\frac{d y}{d x}=\cot t \frac{\left(1-2 \sin ^{2} t\right)}{\left(2 \cos ^{2} t-1\right)} \end{aligned} \left[\because \tan \theta=\frac{\sin \theta}{\cos \theta}\right]
\frac{d y}{d x}=\cot t \frac{\left(1-2\left(1-\cos ^{2} t\right)\right)}{\left(2 \cos ^{2} t-1\right)} \left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]
\frac{d y}{d x}=\cot t \times \frac{\left(1-2+2 \cos ^{2} t\right)}{\left(2 \cos ^{2} t-1\right)} \\
=\cot t \times \frac{\left(2 \cos ^{2} t-1\right)}{\left(2 \cos ^{2} t-1\right)} \\
=\cot t \\
\begin{aligned} & &\frac{d y}{d x}=\cot t \end{aligned}
\text { At } t=\frac{\pi}{4}, \frac{d y}{d x}=\cot \frac{\pi}{4}=1 \\
\begin{aligned} & &\frac{d y}{d x}\; {\mathrm{At}}\; \left(t=\frac{\pi}{4}\right)=1 \end{aligned}

Differentiation Excercise 10.7 Question 26

Answer:
\frac{d y}{d x}=t
Hint:
Use quotient rule and \frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}
Given:
\begin{aligned} &x=\frac{1+\log t}{t^{2}} \\ &y=\frac{3+2 \log t}{t} \end{aligned}
Solution:
x=\frac{1+\log t}{t^{2}} \\
\frac{d x}{d t}=\frac{d\left(\frac{1+\log t}{t^{2}}\right)}{d t} \\
\begin{aligned} &=\frac{t^{2} \frac{d(1+\log t)}{d t}-(1+\log t) \frac{d t^{2}}{d t}}{\left(t^{2}\right)^{2}} \end{aligned} [Using quotient rule]
\frac{d x}{d t}=\frac{t\left[\frac{d(1)}{d t}+\frac{d \log t}{d t}\right]-(1+\log t) \cdot 2 t}{t^{4}} \\
=\frac{t^{2}\left(0+\frac{1}{t}\right)-2 t-2 t \log t}{t^{4}} \\
=\frac{t-2 t-2 t \log t}{t^{4}} \\
\begin{aligned} & &=\frac{-t-2 t \log t}{t^{4}} \end{aligned}
\frac{d x}{d t}=\frac{-(1+2 \log t)}{t^{3}} \\ (1)
\begin{aligned} & &y=\frac{3+2 \log t}{t} \end{aligned}
\frac{d y}{d t}=\frac{d\left(\frac{3+2 \log t}{t}\right)}{d t} \\
\begin{aligned} &=\frac{t \cdot \frac{d(3+2 \log t)}{d t}-(3+2 \log t) \frac{d t}{d t}}{t^{2}} \end{aligned} [Using quotient rule]
=\frac{t\left(\frac{2}{t}\right)-(3+2 \log t)}{t^{2}} \\
\frac{d y}{d t}=\frac{2-3-2 \log t}{t^{2}} \\
=\frac{-1-2 \log t}{t^{2}} \\
\begin{aligned} & &\frac{d y}{d t}=\frac{-(1+2 \log t)}{t^{2}} \end{aligned} (2)
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}
So put \frac{d x}{d t} \text { and } \frac{d y}{d t} from equation (1) and (2) respectively
\frac{d y}{d x}=\frac{\frac{-(1+2 \log t)}{t^{2}}}{\frac{-(1+2 \log t)}{t^{3}}}=\frac{-(1+2 \log t) \times t^{3}}{-(1+2 \log t) \times t^{2}}
\\ =\frac{t^{3}}{t^{2}}=t \\
\begin{aligned} & &\frac{d y}{d x}=t \end{aligned}

Differentiation Exercise 10.7 question 27

Answer:
\frac{d y}{d x}\; {\mathrm{At}}\; \left(t=\frac{\pi}{3}\right)=\frac{-1}{\sqrt{3}}
Hint:
Use \frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}
Given:
\begin{aligned} &x=3 \sin t-\sin 3 t \\ &y=3 \cos t-\cos 3 t \end{aligned}
Solution:
x=3 \sin t-\sin 3 t
\begin{aligned} &\\ &\frac{d x}{d t}=3 \frac{d(\sin t)}{d t}-\frac{d(\sin 3 t)}{d t} \end{aligned}
\frac{d x}{d t}=3 \cos t-3 \cos 3 t \\ \left[\because \frac{d \sin x}{d x}=\cos x\right]
\begin{aligned} & &\frac{d x}{d t}=3(\cos t-\cos 3 t) \end{aligned} (1)
\therefore y=3 \cos t-\cos 3 t \\
\begin{aligned} & &\frac{d y}{d t}=\frac{d(3 \cos t)}{d t}-\frac{d(\cos 3 t)}{d t} \end{aligned} \left[\because \frac{d \cos x}{d x}=-\sin x\right]
=-3 \sin t-(-3 \sin 3 t) \\
\frac{d y}{d t}=-3 \sin t+3 \sin 3 t \\
\frac{d y}{d t}=3(\sin 3 t-\sin t) \\ (2)
\begin{aligned} &\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}} \end{aligned}
Putting the value of \frac{d x}{d t} \text { and } \frac{d y}{d t} from the equation (1) and (2) respectively
\frac{d y}{d x}=\frac{3(\sin 3 t-\sin t)}{3(\cos t-\cos 3 t)} \\
\begin{aligned} & &\frac{d y}{d x}=\frac{\sin 3 t-\sin t}{\cos t-\cos 3 t} \end{aligned}
\text { At } t=\frac{\pi}{3} \\
\begin{aligned} & &\frac{d y}{d x}=\frac{\sin \left(3 \times \frac{\pi}{3}\right)-\sin \frac{\pi}{3}}{\cos \frac{\pi}{3}-\cos \left(3 \times \frac{\pi}{3}\right)} \end{aligned}
=\frac{\sin \pi-\sin \frac{\pi}{3}}{\cos \frac{\pi}{3}-\cos \pi} \\
\begin{aligned} & &=\frac{0-\frac{\sqrt{3}}{2}}{\frac{1}{2}-(-1)} \end{aligned}
=\frac{\frac{-\sqrt{3}}{2}}{\frac{3}{2}}=\frac{-\sqrt{3} \times 2}{3 \times 2}=\frac{-1}{\sqrt{3}}
\frac{d y}{d x} \text { At }\left(t=\frac{\pi}{3}\right)=\frac{-1}{\sqrt{3}}

Differentiation Exercise 10.7 question 28

Answer:
\frac{d y}{d x}=1
Hint:
Use product rule, quotient rule and \frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}
Given:
\begin{aligned} &\sin x=\frac{2 t}{1+t^{2}} \\\\ &\tan y=\frac{2 t}{1-t^{2}} \end{aligned}
Solution:
\begin{aligned} &\sin x=\frac{2 t}{1+t^{2}} \\\\ &x=\sin ^{-1}\left(\frac{2 t}{1+t^{2}}\right) \end{aligned}
Differentiate w.r.t t
\frac{d x}{d t}=\frac{d \sin ^{-1}\left(\frac{2 t}{1+t^{2}}\right)}{d t} \\
\begin{aligned} & &=\frac{d \sin ^{-1}\left(\frac{2 t}{1+t^{2}}\right)}{d\left(\frac{2 t}{1+t^{2}}\right)} \times \frac{d\left(\frac{2 t}{1+t^{2}}\right)}{d t} \end{aligned} [Using chain rule]
=\frac{1}{\sqrt{1-\left(\frac{2 t}{1+t^{2}}\right)^{2}}} \times \frac{\left(1+t^{2}\right) \frac{d(2 t)}{d t}-2 t \frac{d\left(1+t^{2}\right)}{d t}}{\left(1+t^{2}\right)^{2}} [Using quotient rule]
\frac{d x}{d t}=\frac{\left(1+t^{2}\right)}{\sqrt{\left(1+t^{2}\right)^{2}-(2 t)^{2}}} \times \frac{\left(1+t^{2}\right)(2)-2 t(2 t)}{\left(1+t^{2}\right)^{2}} \\
=\frac{2+2 t^{2}-4 t^{2}}{\sqrt{1+t^{4}+2 t^{2}-4 t^{2}} \cdot\left(1+t^{2}\right)} \\
=\frac{2-2 t^{2}}{\sqrt{1+t^{4}-2 t^{2}} \cdot\left(1+t^{2}\right)} \\
\begin{aligned} & &=\frac{2\left(1-t^{2}\right)}{\left(1-t^{2}\right)\left(1+t^{2}\right)} \end{aligned}
\frac{d x}{d t}=\frac{2}{1+t^{2}} \\ (1)
\tan y=\frac{2 t}{1-t^{2}} \\
\begin{aligned} & &y=\tan ^{-1}\left(\frac{2 t}{1-t^{2}}\right) \end{aligned}
Differentiate w.r.t t
\frac{d y}{d t}=\frac{d\left(\tan ^{-1}\left(\frac{2 t}{1-t^{2}}\right)\right)}{d t} \\
\begin{aligned} & &=\frac{d\left(\tan ^{-1}\left(\frac{2 t}{1-t^{2}}\right)\right)}{d\left(\frac{2 t}{1-t^{2}}\right)} \times \frac{d\left(\frac{2 t}{1-t^{2}}\right)}{d t} \end{aligned} [Using chain rule]
=\frac{1}{1+\left(\frac{2 t}{1-t^{2}}\right)^{2}} \times \frac{\left(1-t^{2}\right) \frac{d(2 t)}{d t}-2 t \frac{d\left(1-t^{2}\right)}{d t}}{\left(1-t^{2}\right)^{2}} \\
\begin{aligned} & &=\frac{1}{1+\frac{4 t^{2}}{\left(1-t^{2}\right)^{2}}} \times \frac{\left(1-t^{2}\right) \cdot 2-2 t(-2 t)}{\left(1-t^{2}\right)^{2}} \end{aligned}
=\frac{\left(1-t^{2}\right)^{2}}{\left(1-t^{2}\right)^{2}+4 t^{2}} \times \frac{2-2 t^{2}+4 t^{2}}{\left(1-t^{2}\right)^{2}} \\
\begin{aligned} & &=\frac{2+2 t^{2}}{1+t^{4}-2 t^{2}+4 t^{2}} \end{aligned}
\frac{d y}{d t}=\frac{2\left(1+t^{2}\right)}{\left(1+t^{4}+2 t^{2}\right)} \\
=\frac{2\left(1+t^{2}\right)}{\left(1+t^{2}\right)^{2}} \\
\begin{aligned} &\frac{d y}{d t}=\frac{2}{\left(1+t^{2}\right)} \end{aligned} (2)
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}
Put \frac{d x}{d t} \text { and } \frac{d y}{d t} from the equation (1) and (2) respectively
\frac{d y}{d x}=\frac{\left(\frac{2}{1+t^{2}}\right)}{\left(\frac{2}{1+t^{2}}\right)}=1 \\
\begin{aligned} & &\frac{d y}{d x}=1 \end{aligned}

Differentiation Exercise 10.7 Question 29

Answer:
\frac{d y}{d x} \text { At }\left(t=\frac{\pi}{3}\right)=\frac{1}{\sqrt{3}}
Hint:
Use \frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}
Given:
\begin{aligned} &x=a(2 \theta-\sin 2 \theta) \\ &y=a(1-\cos 2 \theta) \end{aligned}
Solution:
x=a(2 \theta-\sin 2 \theta) \\
\frac{d x}{d \theta}=a \frac{d(2 \theta-\sin 2 \theta)}{d \theta} \\
\begin{aligned} & &=a \times\left[\frac{d(2 \theta)}{d \theta}-\frac{d(\sin 2 \theta)}{d \theta}\right] \end{aligned}
=a \times[2-2 \cos 2 \theta] \quad\left[ \because \frac{d(\sin \theta)}{d \theta}=\cos \theta\right]
=a \times 2(1-\cos 2 \theta) \\
\begin{aligned} & &\frac{d x}{d \theta}=2 a(1-\cos 2 \theta) \end{aligned} (1)
y=a(1-\cos 2 \theta) \\
\frac{d y}{d \theta}=a \frac{d(1-\cos 2 \theta)}{d \theta} \\
\begin{aligned} & &=a \times\left[\frac{d 1}{d \theta}-\frac{d \cos 2 \theta}{d \theta}\right] \end{aligned}
\begin{aligned} &=a[0+2 \sin 2 \theta] \\ & \end{aligned} \left[\because \frac{d \cos \theta}{d \theta}=-\sin \theta\right]
\frac{d y}{d \theta}=2 a \sin 2 \theta (2)
\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}
So, put the value of \frac{d y}{d \theta} \text { and } \frac{d x}{d \theta} from equation (2) and (1) respectively
\frac{d y}{d x}=\frac{2 a \sin 2 \theta}{2 a(1-\cos 2 \theta)} \\
\begin{aligned} & &\frac{d y}{d x}=\frac{\sin 2 \theta}{1-\cos 2 \theta} \end{aligned}
\text { At } \theta=\frac{\pi}{3} \\
\begin{aligned} & &\frac{d y}{d x}=\frac{\sin \left(2 \times \frac{\pi}{3}\right)}{1-\cos \left(2 \times \frac{\pi}{3}\right)} \end{aligned}
=\frac{\sin \frac{2 \pi}{3}}{1-\cos \frac{2 \pi}{3}} \\
=\frac{\sin \left(\pi-\frac{\pi}{3}\right)}{1-\cos \left(\pi-\frac{\pi}{3}\right)} \\
\begin{aligned} & =& \frac{\sin \frac{\pi}{3}}{1-\left(-\cos \frac{\pi}{3}\right)} \end{aligned} \left[\begin{array}{c} \sin (\pi-\theta)=\sin \theta \\ \cos (\pi-\theta)=-\cos \theta \end{array}\right]
=\frac{\sin \frac{\pi}{3}}{1+\cos \frac{\pi}{3}} \\
\begin{aligned} & &=\frac{\frac{\sqrt{3}}{2}}{1+\frac{1}{2}} \end{aligned} \left[\because \sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}, \cos \frac{\pi}{3}=\frac{1}{2}\right]
=\frac{\frac{\sqrt{3}}{2}}{\frac{(2+1)}{2}} \\
=\frac{\sqrt{3} \times 2}{3 \times 2} \\
\begin{aligned} & &\frac{d y}{d x} \text { at }\left(\theta=\frac{\pi}{3}\right)=\frac{1}{\sqrt{3}} \end{aligned}

The class 12 RD Sharma chapter 10 exercise 10.7 solution book can act as a guide book to students who want to enhance their maths skills through self-practice. There are many other benefits of using RD Sharma solutions for exam preparations that we will discuss below:-

  • The RD Sharma class 12 solutions Differentiation ex 10.7 comes with the latest and updated syllabus, so all answers will correspond to the questions in the NCERT textbooks.

  • RD Sharma class 12 solutions chapter 10 ex 10.7 is an essential chapter which is why teachers like to give questions from this part. Students who use RD Sharma solutions will find it easy to solve their homework.

  • RD Sharma class 12th exercise 10.7 has answers crafted by skilled authors who know plenty of modern methods to solve complex questions quickly. Students will gain a lot of knowledge from these methods and use them to get accurate answers.

  • Hundreds of students in India have used the class RD Sharma class 12th exercise 10.7 solution book for their exams, so you can trust these answers. They have even found common questions in their board paper.

  • Students who are not very confident about their maths skills can use the answers in the RD Sharma class 12 chapter 10 exercise 10.7 solution to check their answers and correct their mistakes.

  • RD Sharma class 12th exercise 10.7 is readily available online for free of cost on the Career360 website. This website is the one-stop destination for all RD solutions.

RD Sharma Chapter-wise Solutions

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download E-book

Frequently Asked Questions (FAQs)

1. Where can I download RD Sharma solutions?

The RD Sharma solutions pdfs can be downloaded online from the Career360 website. You will be able to download the free pdf without any financial investment.

2. Is RD Sharma class 12th exercise 10.7 useful for JEE mains preparations?

RD Sharma class 12th exercise 10.7 solutions can be highly beneficial for students who are appearing for JEE mains exams as the chapter is included in the syllabus. If they practice the book well, they might even find some common questions.

3. Who writes the RD Sharma class 12 solutions Differentiation ex 10.7 solutions?

The RD Sharma class 12 solutions Differentiation ex 10.7 books is crafted by experts in mathematics. They have immense knowledge and expertise in maths.

4. Can I use RD Sharma Solutions for homework?

School teachers often give questions from RD Sharma Solutions to test students. Students can easily find the answers to their homework questions in the RD Sharma solutions.

5. What are the concepts covered in chapter 10 of the class 12 maths book?

The 10th chapter of the NCERT maths book, class 12, contains concepts under the topic Differentiation. The chapter includes differentiation of inverse trigonometric functions, differentiation of a function, differentiation by using trigonometric substitutions, logarithmic differentiation, etc.

Articles

Upcoming School Exams

Application Date:07 October,2024 - 22 November,2024

Application Date:07 October,2024 - 22 November,2024

Application Correction Date:08 October,2024 - 27 November,2024

View All School Exams
Get answers from students and experts
Back to top