Careers360 Logo
RD Sharma Class 12 Exercise 10.7 Differentiation Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise 10.7 Differentiation Solutions Maths - Download PDF Free Online

Updated on Jan 20, 2022 05:41 PM IST

School students may find it difficult to solve their board exam papers if they don't practice beforehand. This insufficient practice may cause students to panic and lose confidence before their exams. Therefore, high school students should use the RD Sharma class 12th exercise 10.7 for their exam preparations. This book will help them practice at home and clear their doubts well before the exam commences.
The RD Sharma class 12 chapter 10 exercise 10.7 is a trusted NCERT solution that has already helped hundreds of students in their exams. Be it school exams or boards, Chapter 10 of the Class 12 maths book is a crucial part of the syllabus, which needs to be understood well. The 10th chapter of the book is titled Differentiations. RD Sharma class 12th exercise 10.7 covers the concepts of differentiation of inverse trigonometric functions, Differentiation of a function, Differentiation by using trigonometric substitutions, Logarithmic differentiation, etc. Exercise 10.7 includes 29 questions on finding the value of variables in linear trigonometric equations.

This Story also Contains
  1. RD Sharma Class 12 Solutions Chapter 10 Differentiation - Other Exercise
  2. Differentiation Excercise: 10.7
  3. RD Sharma Chapter-wise Solutions

Also Read - RD Sharma Solution for Class 9 to 12 Maths

RD Sharma Class 12 Solutions Chapter 10 Differentiation - Other Exercise

Differentiation Excercise: 10.7

Differentiation Exercise 10.7 Question 2

Answer:
dydx=tan(θ2)
Hint:
dydx=dydtdxdt
Given:
$x=a(\theta+\sin x) $ , y=a(1cosθ)
Solution:
$x=a(\theta+\sin x) $
 dxdθ=a(1+cosθ)
y=a(1cosθ)
dydθ=a(sinθ)=asinθ
dydx=dydθdxdθ=asinθa(1+cosθ)
dydx=sinθ1+cosθ
=2sinθ2cosθ22cos2θ2 [sin2θ=2sinθcosθ1+cos2θ=2cos2θ]
=sin(θ2)cos(θ2) [tanθ=sinθcosθ]
dydx=tan(θ2)

Differentiation Exercise 10.7 Question 3

Answer:
dydx=bacotθ
Hint:
d(sinx)dx=cosx,d(cosx)dx=sinx
Given:
x=acosθ , y=bsinθ
Solution:
x=acosθ
dxdθ=asinθ
y=bsinθ
dydθ=bcosθ
dydx=dydθdxdθ=bcosθasinθ=bacotθ [cotθ=cosθsinθ]

Differentiation Exercise 10.7 Question 4

Answer:
dydx=cotθ
Hint:
Use product rule
Given:
x=aeθ(sinθcosθ)
y=aeθ(sinθ+cosθ)
Solution:
x=aeθ(sinθcosθ)
dxdθ=aeθd(sinθcosθ)dθ+(sinθcosθ)d(aeθ)dθ [Use product rule]
dxdθ=aeθ(cosθ+sinθ)+(sinθcosθ)adeθdθdxdθ=aeθ(cosθ+sinθ)+(sinθcosθ)aeθdxdθ=aeθ(cosθ+sinθ+sinθcosθ)
dxdθ=2aeθsinθy=aeθ(sinθ+cosθ)
dydθ=aeθd(sinθ+cosθ)dθ+(sinθ+cosθ)d(aeθ)dθ [Using product rule]
=aeθ(cosθsinθ)+(sinθ+cosθ)adeθdθ=aeθ(cosθsinθ)+(sinθ+cosθ)aeθ=aeθ(cosθsinθ+sinθ+cosθ)dydθ=2aeθcosθ
So,
dydx=dydθdxdθ=2aeθcosθ2aeθsinθ=cosθsinθ=cotθ

Differentiation Excercise 10.7 Question 5

Answer:
dydx=ab
Hint:
Use chain rule
Given:
x=bsin2θ , y=acos2θ
Solution:
x=bsin2θ
dxdθ=bd(sin2θ)dθ
$\frac{d x}{d \theta}=b \times\left[\frac{d \sin ^{2} \theta}{d \sin \theta} \times \frac{d \sin \theta}{d \theta}\right] $ [Using chain rule]
 =b×[2sinθ×cosθ]
dxdθ=2bsinθcosθ
y=acos2θ
dydθ=ad(cos2θ)dθ
=adcos2θdcosθ×dcosθdθ [Using chain rule]
=a(2cosθ)(sinθ)
dydθ=2asinθcosθ
dydx=dydθdxdθ=2asinθcosθ2bsinθcosθ=ab

Differentiation Excercise 10.7 Question 6

Answer:
dydx=1 At θ=π2
Hint:
Use differentiation formula
Given:
x=a(1cosθ) , y=a(θ+sinθ)
Solution:
x=a(1cosθ)
dxdθ=ad(1cosθ)dθ
=a[0dcosθdθ] (d(CONSTANT)dθ=0)
=a((sinθ))
dxdθ=asinθ
y=a(θ+sinθ)
dydθ=a(dθdθ+dsinθdθ)
=a(1+cosθ)
dxdθ At θ=π2
=a(1+cosπ2)
=a(1+0)
=a
dxdθ At θ=π2
=asinπ2
=a
dydθ At $\quad \theta=\frac{\pi}{2} $
 (dydθ)atθ=π2(dxdθ)atθ=π2=aa=1

Differentiation Excercise 10.7 Question 7

Answer:
dydx=xy
Hint:
Use d(ex)dx=ex
Given:
x=et+et2 , $y=\frac{e^{t}-e^{-t}}{2} $
Solution:
x=et+et2
dxdy=12d(et+et)dt
=12(etet)
dydt=12d(etet)dt
=12(et+et)
dydx=dydtdxdt=12(et+et)12(etet)=et+etetet
Now
x=et+et2
2x=et+et
et+et=2x
Also
$y=\frac{e^{t}-e^{-t}}{2} $
 etet=2y
Put these values of (et+et) and (etet) in dydx expression
dydx==et+etetet=2x2y=xy

Differentiation Exercise 10.7 question 8

Answer:
dydx=2t1t2
Hint:
Use quotient rule
Given:
x=3at1+t2 , y=3at21+t2
Solution:
x=3at1+t2
dxdy=ddt(3at1+t2)
=(1+t2)d(3at)dt3atd(1+t2)dt(1+t2)2 [Using quotient rule]
=(1+t2)(3a)(3at)(2t)(1+t2)2
=3a(1+t2)6at2(1+t2)2
=3a+3at26at2(1+t2)2
=3a3at2(1+t2)2
dxdt=3a(1t2)(1+t2)2 (1)
y=3at21+t2
dydt=ddt(3at21+t2)
=(1+t)d(3at2)dt3at2d(1+t2)dt(1+t2)2 [Using quotient rule]
=(1+t2)(3a×dt2dt)3at2(d(1)dt+d(t2)dt)(1+t2)2

=(1+t)3a(2t)3at2(0+2t)(1+t2) [d(xn)dx=nxn1]
=6at(1+t2)6at3(1+t2)2
=6at+6at36at3(1+t2)2
dydx=6at(1+t)2 (2)
Now
dydx=dydxdxdt
Put the value of dydtanddxdt from the equation (2) and (1)
In dydx
dydx=6at(1+t2)23a(1t2)(1+t2)2
=6at3a(1t2)
dydx=2t1t2

Differentiation Exercise 10.7 question 9

Answer:
dydx=tanθ
Hint:
Use product rule
Given:
x=a(cosθ+θsinθ)y=a(sinθθcosθ)
Solution:
x=a(cosθ+θsinθ)
dxdθ=addθ(cosθ+θsinθ)
=a[dcosθdθ+ddθ(θsinθ)]
=a[sinθ+(θdsinθdθ+sinθdθdθ)] [Using product rule]
=a[sinθ+(θcosθ+sinθ)] [dsinθdθ=cosθ]
=a(θcosθ)
dxdθ=aθcosθ (1)
y=a(sinθθcosθ)
dydθ=addθ(sinθθcosθ)
=a[dsinθdθd(θcosθ)dθ]
=a[cosθ(θdcosθdθ+cosθdθdθ)] [Using product rule]
=a[cosθ(θ(sinθ)+cosθ)] [dcosθdθ=sinθdxdx=1]
=a[cosθ+θsinθcosθ]
dydθ=aθsinθ (2)
dydx=dydθdxdθ
Put the value of dydθ and dxdθ from equations (2) and (1) respectively
dydx=aθsinθaθcosθ=tanθ
dydx=tanθ

Differentiation Exercise 10.7 question 10

Answer:
dydx=e2θ[θ2θ3+θ+1θ3+θ21]
Hint:
Use product rule
Given:
x=eθ(θ+1θ)y=eθ(θ1θ)
Solution:
x=eθ(θ+1θ)
dxdθ=ddθ[eθ(θ+1θ)]
=eθd(θ+1θ)dθ+(θ+1θ)d(eθ)dθ [Using product rule]
=eθ[dθdθ+ddθ(1θ)]+(θ+1θ)eθ [d(eθ)dθ=eθ]
=eθ[1+(1θ2)]+(θ+1θ)eθ [d(1x)dx=1x2]
=eθ[11θ2]+(θ+1θ)eθ
=eθ[(11θ2)+(θ+1θ)]
=eθ[θ21θ3+θθ2]
dydθ=eθ(θ3+θ2+θ1θ2) (1)
y=eθ(θ1θ)
dydθ=ddθ(eθ(θ1θ))
=eθ(dθdθd(1θ)dθ]+(θ1θ)(eθ)
=eθ[1(1θ2)]eθ(θ1θ)
=eθ[1+1θ2]eθ[θ1θ]
=eθ[1+1θ2θ+1θ]
=eθ[θ2+1θ3+θθ2] [LCM(θ,θ2)=θ2]
=eθ[θ3+θ2+θ+1θ2]
dydθ=eθ[θ3+θ2+θ+1θ2] (2)
Put the values of dydθ and dxdθ from equation (2) and (1)
dydx=eθ(θ3+θ2+θ+1θ2)eθ(θ3+θ2+θ1θ2)
=eθeθ(θ3+θ2+θ+1)(θ3+θ2+θ1)
=e2θ(θ3+θ2+θ+1θ3+θ2+θ1)
dydx=e2θ[θ2θ3+θ+1θ3+θ2+θ1]

Differentiation Exercise 10.7 Question 11

Answer:
dydx=xy
Hint:
Use quotient rule
Given:
x=2t1+t2y=1t21+t2
Solution:
x=2t1+t2
dxdt=d(2t1+t2)dt=(1+t2)d(2t)dt2td(1+t2)dt(1+t2)2 [Using quotient rule]
dxdt=(1+t2)2×22t(2t)(1+t2)2
=2(1+t2)4t2(1+t2)2
=2+2t24t2(1+t2)2
dxdt=22t2(1+t2)2 (1)
y=1t21+t2
dydx=ddx(1t21+t2)
=(1+t2)d(1t2)dt(1t2)d(1+t2)1+t(1+t2) [Use quotient rule]
=(1+t2)(2t)(1t2)(2t)(1+t2)2
dydx=2t2t32t+2t3(1+t2)2
dydt=4t(1+t2)2 (2)
dydx=dydtdxdt
Put the values of dydt and dydt from the equation (2) and (1) respectively
dydx=4t(1+t2)2(22t2)(1+t2)2
=4t2(1t2)
=2t1t2
dydx=xy [xy=2t1+t21t21+t2=2t1t2]

Differentiation Exercise 10.7 Question 12

Answer:
dydx=1
Hint:
Use chain rule
Given:
x=cos111+t2y=sin111+t2tR
Solution:
x=cos1(11+t2)
dxdt=dcos1(11+t2)dt
=dcos1(11+t2)d(11+t2)×d(11+t2)d(1+t2)×d(1+t2)dt [Using chain rule]
=11(11+t2)2×12(1+t2)32×2t
=11+t211+t2×121+t2×(1+t2)×2t
=1+t2t×11+t2(1+t2)×(t)
dxdt=11+t2 (1)
Now
y=sin1(11+t2)
dydt=dsin1(11+t2)dt
=dsin1(11+t2)d(11+t2)×d(11+t2)d(1+t2)×d(1+t2)dt [Using chain rule]
dydx=11(11+t2)2×12(1+t2)32×2t
=1111+t2×121+t2(1+t2)×2t
=1+t21+t21×121+t2(1+t2)×2t
$=\frac{-1}{t\left(1+t^{2}\right)} \times t $
 dydt=1(1+t2) (2)
dydx=dydtdxdt
So put the values of dxdt and dydt from the equation (1) and (2) respectively
dydx=1(1+t2)1(1+t2)=1
dydx=1

Differentiation Exercise 10.7 Question 13

Answer:
dydx=t212t
Hint:
Use quotient rule
Given:
x=1t21+t2
y=2t1+t2
Solution:
x=1t21+t2
dxdt=ddt(1t21+t2)
=(1+t2)d(1t2)dt(1t2)d(1+t2)dt(1+t2)2 [Using quotient rule]
dxdt=(1+t2)(2t)(1t2)(2t)(1+t2)2
=2t2t32t+2t3(1+t2)2
dxdt=4t(1+t2)2 (1)
y=2t1+t2
dydt=(1+t2)d(2t)dt2td(1+t2)dt(1+t2)2 [Using quotient rule]
=(1+t2)(2t)2t(2t)(1+t2)2
dydt=2+2t24t2(1+t2)2
dydt=22t(1+t2)2 (2)
dydx=dydtdxdt
So put the values of dxdt and dydt from equation (1) and (2) respectively
dydx=[22t2(1+t2)2][4t(1+t2)2]=2(1t2)4t=(1t2)2t
$\frac{d y}{d x}=\frac{t^{2}-1}{2 t} $
 dydx=t212t

Differentiation Exercise 10.7 question 14

Answer:
dydx=tan(3θ2)
Hint:
Use chain rule
Given:
x=2cosθcos2θy=2sinθsin2θ
Solution:
=2cosθcos2θ
dxdθ=d(2cosθ)dθd(cos2θ)dθ
x=2(sinθ)dcos2θd(2θ)×d(2θ)dθ [Using chain rule]
=sinθ(sin2θ)×2
=2sinθ+2sin2θ
dxdθ=2sin2θ2sinθ (1)
y=2sinθsin2θ
dydθ=d(2sinθ)dθd(sin2θ)dθ
=2cosθ[d(sin2θ)d(2θ)×d(2θ)dθ] [Using chain rule]
=2cosθ[cos2θ×2]
dydθ=2cosθ2cos2θ (2)
dydx=dydθdxdθ
So, put the values of dxdθ and dydθ from the equation (1) and (2)
dydx=2(cosθcos2θ)2(sin2θsinθ)
dydx=cosθcos2θsin2θsinθ
=2sin(θ+2θ2)sin(θ2θ2)2cos(2θ+θ2)sin(2θθ2) [cosAcosB=2sin(A+B2)sin(AB2)sinAsinB=2cos(A+B2)sin(AB2)]
=sin(3θ2)sin(θ2)cos(3θ2)sin(θ2)
=sin(3θ2)(sinθ2)cos(3θ2)sinθ2
=sin(3θ2)cos(3θ2)
dydx=tan(3θ2) [tanθ=sinθcosθ]

Differentiation Exercise 10.7 question 15

Answer:
dydx=ylogxxlogy
Hint:
Use chain rule and properties of logarithm
Given:
x=ecos2ty=esin2t
Solution:
x=ecos2t
dxdt=d(ecos2t)dt
=d(ecos2t)d(cos2t)×d(cos2t)d(2t)×d(2t)dt [Using chain rule]
=ecos2t×(sin2t)×2 [d(ex)dx=exd(cosθ)dθ=sinθ]
dxdt=2sin2tecos2t (1)
y=esin2t
dydt=d(esin2t)dt
=d(esin2t)d(sin2t)×d(sin2t)d(2t)×d(2t)dt [Using chain rule]
=esin2t×cos2t×2 [dexdx=ex,dsinθdθ=cosθ]
dydt=2cos2tesin2t (2)
dydx=dydtdxdt
Putting the value of dxdt and dydt from the equation (1) and (2) respectively
=2cos2tesin2t2sin2tesin2t
dydx=cos2tesin2tsin2tecos2t (3)
x=ecos2t
Take log on both sides
logx=log(ecos2t)
logx=cos2tloge [logam=mloga]
logx=cos2t [loge=1]
Also
y=esin2t
Take log on both side
logy=log(esin2t)logy=sin2tlogelogy=sin2t
Put ecos2t=x,cos2t=logx,esin2t=y,sin2t=logy in equation (3)
dydx=ylogxxlogy
dydx=ylogxxlogy

Differentiation Exercise 10.7 question 16

Answer:
dydx=13 At t=2π3
Hint:
Use [tan(πθ)=tanθ] and d(sint)dt=cost
Given:
x=costy=sint
Solution:
x=cost
dxdt=dcostdt=sint (1)
y=sint
dydt=dsintdt
dydt=cost (2)
dydx=dydtdxdt
Putting the value of dxdt and dydt from equation (1) and (2) respectively
=costsint
dydxAt(x=2π3)
=cot(2π3)=cot(ππ3)=(cotπ3)=cotπ3
dydxAt(x=2π3)=13
Hence proved

Differentiation Exercise 10.7 Question 17

Answer:
dydx=xy
Hint:
Use dydx=dydtdxdt
Given:
x=a(t+1t)y=a(t1t)
Solution:
x=a(t+1t)
dxdt=ad(t+1t)dt
=a[dtdt+d(1t)dt]=a[1+d(t)1dt]
=a[1+{(1)t11}] [dxndx=nxn1]
dxdt=a(1t2) (1)
y=a(t1t)
dydt=ad(t1t)dt
=a[dtdtd(1t)dt]
=a[1dt1dt]
=a[1(1)t11]
dydt=a(1+t2) (2)
dydx=dydtdxdt
Put the values of dxdt and dydt from the equation (1) and (2) respectively
dydx=t2+1t21
=t(t+1t)t(t1t)
=(t+1t)(t1t)
=a(t+1t)a(t1t) [Multiply and divide by a]
=xy [x=a(t+1t)&y=a(t1t)]
Hence proved

Differentiation Exercise 10.7 Question 18

Answer:
dydx=1
Hint:
Use chain rule, product rule and dydx=dxdtdxdt
Given:
x=sin1(2t1+t2),y=tan1(2t1t2);1<t<1
Solution:
x=sin1(2t1+t2)
dxdt=dsin1(2t1+t2)dt
=dsin1(2t1+t2)d(2t1+t2)×d(2t1+t2)dt [Using chain rule]
=11(2t1+t2)2×(1+t2)d(2t)dt2td(1+t2)dt(1+t2)2 [Using quotient rule]
=1+t2(1+t2)24t2×(1+t2)(2)(2t)(2t)(1+t2)2
=2+2t24t21+t4+2t24t2×(1+t2)
=22t21+t42t2×(1+t2)
=2(1t2)(1t2)2(1+t2)
dxdt=21+t2
y=tan1(2t1t2) (1)
dydt=dtan1(2t1t2)dt
dydt=dtan1(2t1t2)d(2t1t2)×d(2t1t2)dt
=11+(2t1t)×(1t2)d(2t)dt(2t)d(1t2)dt(1t2)2 [Using chain rule]
=11+4t2(1t2)2×(1t2)×2(2t)(2t)(1t2)2
=(1t2)2(1t2)2+4t2×22t2+4t2(1t2)2
=2+2t21+t42t2+4t2
=2(1+(2))1+t4+2t2
=2(1+t2)(1+t2)2
dydt=2(1+t2) (2)
dydx=dydtdxdt
So putting the value of dxdt and dydt from the equation (1) and (2) respectively
dydx=2(1+t2)2(1+t2)
=2(1+t2)2(1+t2)
 dydx=1

Differentiation Exercise 10.7 Question 19

Answer:
dydx=cot3t
Hint:
Use chain rule, product rule and dydx=dydtdxdt
Given:
x=sin3tcos2ty=cos3tcos2t
Solution:
x=sin3tcos2t
x=sin3t(cos2t)12 [1xn=(x)n]
dxdt=(cos2t)12dsin3tdt+sin3t×d(cos2t)12dt [Using product rule]
=[(cos2t)12×dsin3tdsint×dsintdt]+[sin3t×d(cos2t)12dcos2t×dcos2tdt] [Using chain rule]
dxdt=[1cos2t×3sin2t]+[sin3t×(12(cos2t)121)×(2sin2t)]
dxdt=3sin2tcostcos2t+sin3tsin2t(cos2t)32
dxdt=3sin2tcostcos2t+sin3tsin2t(cos2t)32 (1)
=3sin2tcostcos2t+sin3tsin2t(cos2t)32
=3sin2tcost(12sin2t)+sin3t(2sintcost)(cos2t)32 [cos2θ=12sin2θsin2θ=2sinθcosθ]
=3sin2tcost4sin4tcost+2sin4tcost(cos2t)32
dxdt=3sin2tcost4sin4tcost(cos2t)32
=sintcost(3sint4sin3t)(cos2t)32
=sintcostsin3t(cos2t)32 [sin3θ=3sinθ4sin3θ]
Multiply and divide by 2
dxdt=2sintcostsin3t2(cos2t)32
dxdt=sin2tsin3t2(cos2t)32
dxdt=sin2tsin3t2(cos2t)32 (2)
y=cos3tcos2t
y=cos3t(cos2t)12 [1xn=(x)n]
y=cos3t(cos2t)12
dydx=cos3t×d(cos2t)12dt+(cos2t)12dcos3tdt [Using product rule]
=[cos3t×d(cos2t)12dcos2t×dcos2td(2t)×d(2t)dt]+[(cos2t)12×cos3tdcost×dcostdt] [Using chain rule]
=[cos3t×(12(cos2t)32)×(sin2t)×2]+[1cos2t×3cos2t×(sint)]
=3cos2tsintcos2t+cos3t×sin2t(cos2t)32
=3cos2tsint(cos2t)+cos3t×sin2t(cos2t)32
=3cos2tsint(2cos2t1)+cos3t×2sint×cost(cos2t)32 [cos2θ=2cos2θ1sin2θ=2sinθcosθ]
dydt=3cos2t(2sintcos2t)+3cos2tsint+2cos4tsint(cos2t)32
=(6cos4tsint+2cos4tsint)+3cos2tsint(cos2t)32
=4cos4tsint+3cos2tsint(cos2t)32
=sintcost(4cos3t3cost)(cos2t)32
=sintcost(cos3t)(cos2t)32 [cos3θ=4cos3θ3cosθ]
=2sin(costcos3t)2(cos2t)32
dydt=sin2tcos3t2(cos2t)32 (3)
dydx=dydtdxdt
Put the values of dydt and dxdt from equation (2) and (1) respectively
dydx=(sin2t×cos3t)2(cos2t)32(sin2t×sin3t)2(cos2t)32
=(sin2t×cos3t)×2(cos2t)32(sin2t×cos3t)×(2cos2t)32
=cos3tsin3t
dydx=cot3t

Differentiation Exercise 10.7 Question 20

Answer:
dydx=(a)t+1tlogaa(t+1t)a1
Hint:
Use chain rule and dydx=dydtdxdt
Given:
x=(t+1t)ay=(a)t+1t
Solution:
x=(t+1t)a
dxdt=d(t+1t)dt
=d(t+1t)ad(t+1t)×d(t+1t)dt [Using chain rule]
=a(t+1t)a1×(dtdt+d(1t)dt) [dxndx=nxn1]
=a(t+1t)a1×(1+(1t2))
dxdt=a(t+1t)a1×(11t2) (1)
y=at+1t
dydx=d(a1+1t)dt
=d(at+1t)d(t+1t)×d(t+1t)dt
=(at+1t)loga×(dtdt+d(1t)dt) [d(ax)dx=axloga]
dydt=(a)t+1tloga×[11t2] (2)
dydx=dydtdxdt
Put the values of dxdt and dydt from equation (1) and (2) respectively
dydx=(a)r+11×loga×(11t2)a(t+1t)a1×(11t2)
dydx=(a)t+1tlogaa(t+1t)a1

Differentiation Exercise 10.7 Question 21

Answer:
dydx=1+t22at
Hint:
Use quotient rule and dydx=dydtdxdt
Given:
x=a(1+t21t2)y=2t1t2
Solution:
x=a(1+t21t2)
$\frac{d x}{d t}=a \frac{d\left(\frac{1+t^{2}}{1-t^{2}}\right)}{d t} $
 =a×(1t2)d(1+t2)dt(1+t2)d(1t2)dt(1t2)2 [using quotient rule]
=a[(1t2)(2t)(1+t2)(2t)(1t2)2]
=a[2t2t3+2t+2t3(1t2)2]
=a[4t(1t2)2]
=4at(1t2)2 (1)
y=2t(1t2)
dydt=(1t2)d(2t)dt2t(1t2)dt(1t2)2 [Using quotient rule]
=(1t2)(2)2t(2t)(1t2)2
=22t2+4t2(1t2)2
dydx=2+2t2(1t2)2 (2)
dydx=dydtdxdt
Put the values of dydx and dxdt from equation (2) and (1) respectively
dydx=(2+2t2)(1t2)24at(1t2)2=(2+2t2)×(1t2)24at×(1t2)2
=2(1+t2)4at
dydx=1+t22at

Differentiation Exercise 10.7 Question 22

Answer:
dydx=65cot(t2)
Hint:
dydx=dydtdxdt
Given:
x=10(tsint)y=12(1cost)
Solution:
x=10(tsint)
dxdt=10(dtdtdsintdt) [dsintdt=cost]
dxdt=10(1cost) (1)
y=12(1cost)
dydt=12(d(1)dtdcostdt)
=12(0(sint)) [dcostt=sint]
dydt=12sint (2)
dydx=dydtdxdt
Put the values of dydt and dxdt from equation (2) and (1) respectively
dydx=12sint10(1cost)=6sint5(1cost)
=65×2sint2cost22sin2t2
=65×2×sint2cost22×sint2sint2
=65cott2 [cotθ=cosθsinθ]

Differentiation Exercise 10.7 Question 23

Answer:
dydxAt(θ=π3)=3
Hint:
Use chain rule and dydx=dydθdxdθ
Given:
x=a(θsinθ)y=a(1+cosθ)
Solution:
x=a(θsinθ)
dxdθ=a[dθdθdsinθdθ] [dsinθdθ=cosθ]
dxdθ=a(1cosθ) (1)
y=a(1+cosθ)
dydθ=a(d1dθ+dcosθdθ)
=a(0+(sinθ)) [dcosθdθ=sinθ]
dydθ=asinθ (2)
dydx=dydθdxdθ
Put the values of dydθ and dxdθ from the equation (2) and (1) respectively
dydx=asinθa(1cosθ)
dydx=sinθ1cosθ
 At θ=π3
dydx=(sinπ31cosπ3)
=(32112) [sinπ3=32cosπ3=12]
=(3212)
dydxatθ=π3=3

Differentiation Excercise 10.7 Question 24


Answer:
dydxAt(t=π4)=ba
Hint:
Use product rule and dydx=dydθdxdθ
Given:
x=asin2t(1+cos2t)y=bcos2t(1cos2t)
Solution:
x=asin2t(1+cos2t)
dxdt=a[sin2t×d(1+cos2t)dt+(1+cos2t)d(sin2t)dt] [Using product rule]
=a[sin2t×(0+(2sin2t))+(1+cos2t)(2cos2t)]
=a[2sin22t+2cos2t+2cos22t]
=a[2cos2t+2cos22t2sin22t]
$=a\left[2 \cos 2 t+2\left(\cos ^{2} 2 t-\sin ^{2} 2 t\right)\right] $
 =2a[cos2t+cos4t] [cos2θ=cos2θsin2θ]
dxdt=2a(cost+cos4t) (1)
y=bcos2t(1cos2t)
dydt=b[cos2t×d(1cos2t)dt+(1cos2t)dcos2tdt] [Using product rule]
=b[cos2t(0+2sin2t)]+(1cos2t)(2sin2t) [dcosθdθ=sinθ]
=b[2sin2tcos2t2sin2t+2sin2tcos2t]
=b[4sin2tcos2t2sint2t]
=b[2(2sin2tcos2t)2sin2t]
=2b[sin4tsin2t] [sin2θ=2sinθcosθ]
dydt=2b(sin4tsin2t) (2)
dydx=dydtdxdt
Put the values of dydt and dxdt from the equations (2) and (1) respectively
dydx=2b(sin4tsin2t)2a(cos2t+cos4t)
dydx=ba×(sin4tsin2tcos2t+cos4t)
 At t=π4
dydx=ba×(sin(4×π4)sin(2×π4))cos(2×π4)+cos(4×π4)
=ba(sinπsinπ2cosπ2+cosπ)
sinπ2=1,cosπ2=0,sinπ=0,cosπ=1
=ba[010+(1)]
=ba(11)
dydxAt(t=π4)=(ba)
Hence proved

Differentiation Excercise 10.7 Question 25

Answer:
dydxAt(t=π4)=1
Hint:
Use product rule and dydx=dydθdxdθ
Given:
x=cost(32cos2t)y=sint(32sin2t)
Solution:
x=cost(32cos2t)
dxdt=costd(32cos2t)dt+(32cos2t)dcostdt [Using product rule]
dxdt=cost[04cost(sint)]+(32cos2t)×(sint) [d(cosθ)dθ=sinθ]
dxdt=4cos2tsint3sint+2cos2tsint
=6cos2tsint3sint
dxdt=3sint(2cos2t1) (1)
y=sint(32sin2t)
dydt=sint(32sin2t)dt+(32sin2t)dsintdt [Using product rule]
=sint×[d3dtd(sin2t)dt]+(32sin2t)cost [dsinθdθ=cosθ]
=sint[04sintcost]+3cost2sin2tcost
=4sin2tcost+3cost2sin2tcost
=6sin2tcost+3cost
dydt=3cost(2sin2t+1) (2)
dydx=dydtdxdt
Put the values of dydt and dxdt from the equation (2) and (1) respectively
dydx=3cost(1sin2t)3sint(2cos2t1)
dydx=cott(12sin2t)(2cos2t1) [tanθ=sinθcosθ]
dydx=cott(12(1cos2t))(2cos2t1) [sin2θ+cos2θ=1]
dydx=cott×(12+2cos2t)(2cos2t1)
=cott×(2cos2t1)(2cos2t1)
=cott
dydx=cott
 At t=π4,dydx=cotπ4=1
dydxAt(t=π4)=1

Differentiation Excercise 10.7 Question 26

Answer:
dydx=t
Hint:
Use quotient rule and dydx=dydθdxdθ
Given:
x=1+logtt2y=3+2logtt
Solution:
x=1+logtt2
dxdt=d(1+logtt2)dt
=t2d(1+logt)dt(1+logt)dt2dt(t2)2 [Using quotient rule]
dxdt=t[d(1)dt+dlogtdt](1+logt)2tt4
=t2(0+1t)2t2tlogtt4
=t2t2tlogtt4
=t2tlogtt4
dxdt=(1+2logt)t3 (1)
y=3+2logtt
dydt=d(3+2logtt)dt
=td(3+2logt)dt(3+2logt)dtdtt2 [Using quotient rule]
=t(2t)(3+2logt)t2
dydt=232logtt2
=12logtt2
dydt=(1+2logt)t2 (2)
dydx=dydtdxdt
So put dxdt and dydt from equation (1) and (2) respectively
dydx=(1+2logt)t2(1+2logt)t3=(1+2logt)×t3(1+2logt)×t2
=t3t2=t
dydx=t

Differentiation Exercise 10.7 question 27

Answer:
dydxAt(t=π3)=13
Hint:
Use dydx=dydθdxdθ
Given:
x=3sintsin3ty=3costcos3t
Solution:
x=3sintsin3t
dxdt=3d(sint)dtd(sin3t)dt
dxdt=3cost3cos3t [dsinxdx=cosx]
dxdt=3(costcos3t) (1)
y=3costcos3t
dydt=d(3cost)dtd(cos3t)dt [dcosxdx=sinx]
=3sint(3sin3t)
dydt=3sint+3sin3t
dydt=3(sin3tsint) (2)
dydx=dydtdxdt
Putting the value of dxdt and dydt from the equation (1) and (2) respectively
dydx=3(sin3tsint)3(costcos3t)
dydx=sin3tsintcostcos3t
 At t=π3
dydx=sin(3×π3)sinπ3cosπ3cos(3×π3)
=sinπsinπ3cosπ3cosπ
=03212(1)
=3232=3×23×2=13
dydx At (t=π3)=13

Differentiation Exercise 10.7 question 28

Answer:
dydx=1
Hint:
Use product rule, quotient rule and dydx=dydθdxdθ
Given:
sinx=2t1+t2tany=2t1t2
Solution:
sinx=2t1+t2x=sin1(2t1+t2)
Differentiate w.r.t t
dxdt=dsin1(2t1+t2)dt
=dsin1(2t1+t2)d(2t1+t2)×d(2t1+t2)dt [Using chain rule]
=11(2t1+t2)2×(1+t2)d(2t)dt2td(1+t2)dt(1+t2)2 [Using quotient rule]
dxdt=(1+t2)(1+t2)2(2t)2×(1+t2)(2)2t(2t)(1+t2)2
=2+2t24t21+t4+2t24t2(1+t2)
=22t21+t42t2(1+t2)
=2(1t2)(1t2)(1+t2)
dxdt=21+t2 (1)
tany=2t1t2
y=tan1(2t1t2)
Differentiate w.r.t t
dydt=d(tan1(2t1t2))dt
=d(tan1(2t1t2))d(2t1t2)×d(2t1t2)dt [Using chain rule]
=11+(2t1t2)2×(1t2)d(2t)dt2td(1t2)dt(1t2)2
=11+4t2(1t2)2×(1t2)22t(2t)(1t2)2
=(1t2)2(1t2)2+4t2×22t2+4t2(1t2)2
=2+2t21+t42t2+4t2
dydt=2(1+t2)(1+t4+2t2)
=2(1+t2)(1+t2)2
dydt=2(1+t2) (2)
dydx=dydtdxdt
Put dxdt and dydt from the equation (1) and (2) respectively
dydx=(21+t2)(21+t2)=1
dydx=1

Differentiation Exercise 10.7 Question 29

Answer:
dydx At (t=π3)=13
Hint:
Use dydx=dydθdxdθ
Given:
x=a(2θsin2θ)y=a(1cos2θ)
Solution:
x=a(2θsin2θ)
dxdθ=ad(2θsin2θ)dθ
=a×[d(2θ)dθd(sin2θ)dθ]
=a×[22cos2θ] [d(sinθ)dθ=cosθ]
=a×2(1cos2θ)
dxdθ=2a(1cos2θ) (1)
y=a(1cos2θ)
dydθ=ad(1cos2θ)dθ
=a×[d1dθdcos2θdθ]
=a[0+2sin2θ] [dcosθdθ=sinθ]
dydθ=2asin2θ (2)
dydx=dydθdxdθ
So, put the value of dydθ and dxdθ from equation (2) and (1) respectively
dydx=2asin2θ2a(1cos2θ)
dydx=sin2θ1cos2θ
 At θ=π3
dydx=sin(2×π3)1cos(2×π3)
=sin2π31cos2π3
=sin(ππ3)1cos(ππ3)
=sinπ31(cosπ3) [sin(πθ)=sinθcos(πθ)=cosθ]
=sinπ31+cosπ3
=321+12 [sinπ3=32,cosπ3=12]
=32(2+1)2
=3×23×2
dydx at (θ=π3)=13

The class 12 RD Sharma chapter 10 exercise 10.7 solution book can act as a guide book to students who want to enhance their maths skills through self-practice. There are many other benefits of using RD Sharma solutions for exam preparations that we will discuss below:-

  • The RD Sharma class 12 solutions Differentiation ex 10.7 comes with the latest and updated syllabus, so all answers will correspond to the questions in the NCERT textbooks.

  • RD Sharma class 12 solutions chapter 10 ex 10.7 is an essential chapter which is why teachers like to give questions from this part. Students who use RD Sharma solutions will find it easy to solve their homework.

  • RD Sharma class 12th exercise 10.7 has answers crafted by skilled authors who know plenty of modern methods to solve complex questions quickly. Students will gain a lot of knowledge from these methods and use them to get accurate answers.

  • Hundreds of students in India have used the class RD Sharma class 12th exercise 10.7 solution book for their exams, so you can trust these answers. They have even found common questions in their board paper.

  • Students who are not very confident about their maths skills can use the answers in the RD Sharma class 12 chapter 10 exercise 10.7 solution to check their answers and correct their mistakes.

  • RD Sharma class 12th exercise 10.7 is readily available online for free of cost on the Career360 website. This website is the one-stop destination for all RD solutions.

RD Sharma Chapter-wise Solutions

NEET Highest Scoring Chapters & Topics
This ebook serves as a valuable study guide for NEET exams, specifically designed to assist students in light of recent changes and the removal of certain topics from the NEET exam.
Download E-book

Frequently Asked Questions (FAQs)

1. Where can I download RD Sharma solutions?

The RD Sharma solutions pdfs can be downloaded online from the Career360 website. You will be able to download the free pdf without any financial investment.

2. Is RD Sharma class 12th exercise 10.7 useful for JEE mains preparations?

RD Sharma class 12th exercise 10.7 solutions can be highly beneficial for students who are appearing for JEE mains exams as the chapter is included in the syllabus. If they practice the book well, they might even find some common questions.

3. Who writes the RD Sharma class 12 solutions Differentiation ex 10.7 solutions?

The RD Sharma class 12 solutions Differentiation ex 10.7 books is crafted by experts in mathematics. They have immense knowledge and expertise in maths.

4. Can I use RD Sharma Solutions for homework?

School teachers often give questions from RD Sharma Solutions to test students. Students can easily find the answers to their homework questions in the RD Sharma solutions.

5. What are the concepts covered in chapter 10 of the class 12 maths book?

The 10th chapter of the NCERT maths book, class 12, contains concepts under the topic Differentiation. The chapter includes differentiation of inverse trigonometric functions, differentiation of a function, differentiation by using trigonometric substitutions, logarithmic differentiation, etc.

Articles

Back to top