Careers360 Logo
RD Sharma Class 12 Exercise 10.3 Differentiation Solutions Maths-Download PDF Free Online

RD Sharma Class 12 Exercise 10.3 Differentiation Solutions Maths-Download PDF Free Online

Updated on Jan 20, 2022 05:22 PM IST

The RD Sharma solution books are the top-rated reference materials used by the students preparing for their public exams. It lends a helping hand in every aspect of doubts that a student might encounter while studying. When the students continuously practice the sums given in this book, mathematics would be simple and easy for them.
Rd Sharma Class 12th Exercise 10.3 has solved every problem of a student regarding Differentiation. This particular exercise has 49 questions, including subparts, that are formatted by a team of experts. The questions will help every student solve the queries regarding differentiating the functions w.r.t to x, Differentiation of inverse trigonometric functions, recapitulation products, Differentiation of constant values are included in Rd Sharma Class 12th Exercise 10.3.

This Story also Contains
  1. RD Sharma Class 12 Solutions Chapter 10 Differentiation - Other Exercise
  2. Differentiation Excercise: 10.3
  3. RD Sharma Chapter-wise Solutions

Also Read - RD Sharma Solution for Class 9 to 12 Maths

RD Sharma Class 12 Solutions Chapter 10 Differentiation - Other Exercise

Differentiation Excercise: 10.3

Differentiation exercise 10.3 question 1

Answer : dydx=21x2
Hint:
cos1(cosθ)=θ  if  θε[0,π]cos1(cosθ)=θ  if  θε[π,0]
Given:
cos1{2x1x2},12<x<1
Solution:
Letsy=cos1{2x1x2}Letsx=cosθθ=cos1xNow  y=cos1{2cosθ1cos2θ}
Usingcos2θ+sin2θ=1,2sinθcosθ=sin2θy=cos1{2cosθsin2θ}
y=cos1(2cosθsinθ]y=cos1(sin2θ)cos(π2θ)sinθy=cos1(cos(π22θ))
Now by considering the limits,
12<x<112<cosθ<10<θ<π4          [cos90=0,cos0=1]0<2θ<π20>2θ>π2π2>π22θ>π2π2
Therefore,
y=cos1(cos(π22θ))y=cos1(cos(π22θ))y=(π22θ)               {cos1(cosθ)=θ}
y=π22cos1x
 if θε[0,π]
Differentiating with Respect to x, we get
dydx=ddx(π22cos1x)ddx(cos1x)11x2ddx (constant) =0dydx=02(11x2)dydx=21x2

Differentiation exercise 10.3 question 2

Answer : dydx=12(11x2)
Hint:
cos1(cosθ)=θif  θε[0,π]cos1(cosθ)=θif   θε[π,0]
Given:
cos1{1+x2},1<x<1
Solution:
Let,y=cos1{1+x2}Letx=cos2θ,θ=12cos1xNow,y=cos1{1+cos2θ2}
By using cos2θ=2cos2θ1y=cos1{2cos2θ2}y=cos1(cosθ)cos1(cosθ)=θ
Nowy=cos1(cosθ)y=θy=12cos1x       cos1(cosθ)=θifθε[0,π]
Differentiating with respect to x, we get
dydx12(11x2)
As we know,
ddx (constants)=0ddx(cos1x)=11x2
Hence, final answer is 12(11x2)

Differentiation exercise 10.3 question 3

Answer : -121x2
Hint:
Use substitution method to differentiate this function
Given:
sin1{1x2}},0<x<1
Solution:
Lety=sin1{1x2}
 let x=cos2θ[θ=12cos1x]  (1)
y=sin1{1cos2θ2}=sin1{2sin2θ2}y=sin1{sin2θ}    [1cos2θ=2sin2θ]=sin1(sinθ)y=θ=12cos1x[ using (i)] 
Now differentiating y w.r.t x then

dydx=12d(cos1x)dx=1211x2=121x2[ddxcos1x=11x2]dydx=121x2

Differentiation exercise 10.3 question 4

Answer :
dydx=11x2
Hint:
ddx(xn)=nxn1;ddx(constant)=0
Given:
sin1{1x2},0<x<1
Solution:
Unknown environment ''
Considering the limits,
Unknown environment ''
differentiating with respects to x, we get
Unknown environment ''

Differentiation exercise 10.3 question 6


Answer :dydx=aa2+x2
Hint:

Given:
sin1{xx2+a2}
Solution:
Let y=sin1{xx2+a2}Let x=atanθNow,y=sin1{atanθa2tan2θ+a2}y=sin1{ atsan θa2(tan2θ+1)} y=sin1{atanθa(tan2θ+1)}y=sin1atanθasec2θ}
 Using :{tanθ=sinθcosθ,cosθ=1secθ}y=sin1{sinθ}y=θ         {sin1θ(sinθ)=θ} if θε[π2,π2]x=atanθx=atanθθ=tan1(xa)y=tan1(xa)
differentiating with respects to x, we get
dydx=ddx(tan1(xa))x(tan1x)=11+x2dydx=(11+(xa)2)×1a
dydx=(11+x2a2)×1adydx=(1a2+x2a2)×1adydx=a2a2+x2×1adydx=aa2+x2

Differentiation exercise 10.3 question 7

Answer:
dydx=21x2
Hint:
ddx(Constant)=0;dx(xn)=nxn1
Given:
sin1(2x21),0<x<1
Solution:
Unknown environment ''
As we know,
sin(n2θ)=cosθ
Considering the limits, 0<x<1
Unknown environment ''
Differentiating with respect ts? x, weget
dydx=dx(n22cos1x)
As we know
Unknown environment ''

Differentiation exercise 10.3 question 8

Answer :dydx=21x2

Hint:
dx(Constant)=0;dx(xn)=nxn1

Given:
sin1(12x2),0<x<1
Solution:
Unknown environment ''
As we know,
Unknown environment ''
Considering the limits,
Unknown environment ''
Now,
Unknown environment ''
Differentiating with respect to x,
dydx=ddx(n22sin1x) As we know ddx( constant )=0ddx(sin1x)=11x2dydx=0211x2dydx=21x2

Differentiation exercise 10.3 question 9

Answer :

dydx=aa2+x2
Hint:
ddx(Constant)=0ddx(xn)=nxn1
Given:
cos1{xx2+a2}
Solution:
Let,
y=cos1{xx2+a2)
Let
x=acotθ
θ=cot1(xa)
 Now y=cos1{acotθa2cot2θ+a2}y=cos1{acotθa2(cot2θ+1)}y=cos1{acotθacot2θ+1} Using 1+cot2θ=cosec2θy=cos1{acotθacosec2θ}y=cos1{acotθacosecθ}y=cos1{cotθcosecθ}
As we Know,
cotθ=cosθsinθ , cosecθ=1sinθy=cos1{cosθsinθ×sinθ}y=cos1(cosθ)y=θy=cot1(xa) Differentiating with respect to x We get dydx=ddx(cot1(xa))dx(cot1x)=11+x2dydx=11+(xa)2×1a
dydx=11+x2a2×1adydx=1a2+x2a2×1adydx=a2a2+x2×1adydx=aa2+x2

Differentiation Exercise 10.3 Question 10

Answer: dydx=1
Hint:
ddx (constants) =0
ddx(xn)=nxn1
Given:
sin1{sinx+cosx2}
3π4<x<π4
Soluton:
Let,y=sin1{sinx+cosx2}
Now,
y=sin1{sinx12+cosx12}
y=sin1{sinxcos(π4)+cosxsin(π4)}
sin(π4)=12&
cos(π4)=12
Using,
sin(A+B)=sinAcosB+cosAsinB
y=sin1{sin(x+π4)}
Considering the limits,
3π4<x<π4
3π4+π4<x+π4<π4+14
π2<x+π4<π2
Now,
y=sin1{sin(x+π4)}
y=x+π4 {sin1(sinθ)=θ, if θε[π2,π2]}
Differentiating with respect to x , We get
dydx=1+0
ddx (constant) =0
dydx=1

Differentiation Exercise 10.3 Question 11

Answer: dy dx=1
Hint:
ddx (constants) =0
ddx(xn)=nxn1
Given:
cos1{cosx+sinx2}
π4<x<π4
Solution:
Let,
y=cos1{cosx+sinx2}
Now
y=cos1{cosx12+sinx12}
y=cos1{cosxcos(π4)+sinxsin(π4)}
sin(π4)=12&
cos(π4)=12
Using,
cos(AB)=cosAcosB+sinAsinB
y=cos1{cos(xπ4)}
Considering the limits,

π4<x<π4
π4π4<xπ4<π4π4
2π4<xπ4<0
π2<xπ4<0
Now,
y=cos1{cos(xπ4)}
y=(xπ4) {cos1(cosθ)=θ if θ[π,0]}
Differentiating with respect to x , We get

dydx=1

ddx( constants )=0

Differentiation Exercise 10.3 Question 12 (i)

Answer:
dydx=121x2
Hint:
ddx(constant)=0
ddx(xn)=nxn1
Given:
tan1{x1+1x2}
1<x<1
Solution:
Let,
y=tan1{x1+1x2}x=sinθθ=sin1x
Now,y=tan1{sinθ1+1sin2θ}
Using sin2θ+cos2θ=1
y=tan1{sinθ1+cos2θ}y=tran1{sinθ1+cosθ} Using 2cos2θ=1+cos2θ2sinθcosθ=sin2θy=tan1{2sinθ2cosθ22cos2θ2}y=tan1{sinθ2cosθ2}tanθ=sinθcosθy=tan1{tanθ2}

Considering the limits,

1<x<11<sinθ<1π2<θ2<π2π4<θ2<π4

Now,

y=tan1{tanθ2}y=θ2 tan1(tanθ)=0 if θ[π2,π2]

y=12sin1x

Differentiating with respect to x , We get

dydx=1ddx( constants )=0dydx=12(12ddx(sin1x)ddx(sin1x)=11x2dydx=1211x2dydx=121x2


1<x<1

Differentiation Exercise 10.3 Question 12 (ii)

Answer:
dydx=12
Hint:
cos2x=2cos2x1
tan(π2θ)=cotθ
Given:
tan1{1+cosxsinx}
Solution:
y=tan1{1+cosxsinx}y=tan1{2cos2x22sinx2cosx2}y=tan1(cotx2)y=tan1(tan(π2x2)) [(π2θ)=cotθ]
y=x2
Differentiating w.r.t x
dydx=12

Differentiation Exercise 10.3 Question 13

Answer:dydx=12a2x2
Hint:
ddx( constants )=0ddx(xn)=nxn1
Given:
tan1{xa+a2x2}a<x<a
Solution:
Let,
x=asinθ
θ=sin1xa
Now,
y=tan1{asinθa+a2a2sin2θ}y=tan1{asinθa+a1sin2θ}
Using
cos2θ+sin2θ=1y=tan1{asinθa+acosθ}y=tan1{asinθa+acosθ}y=tan1{asinθa(1+losθ)}Using2cos2θ=1+cosθy=tan1{sinθ1+cosθ} and 2sinθcosθ=sin2θy=tan1{sinθ1+cosθ}
y=tan1{2sinθ2cosθ22cos2θ2}y=tan1{sinθ2cosθ2}y=tan1(tanθ2) sinθcosθ=tanθ
Considering the limit

a<x<a1<sinθ<1π2<θ<π2π4<θ2<π4 {sinπ2=1}
Now,y==tan1{tanθ2}y=θ2y=12sin1xa

Differentiating with respect to x , We get

dydx=ddx(12sin1xa)ddx(sin1x)=11x2dydx=1211(x)2×1a12×11x2a2×1adydx=12×1a2x2a2×1adydx=12a2x2

Differentiation Exercise 10.3 Question 14


Answer:dydx=11x2
Hint:
ddx( constants )=0ddx(xn)=nxn1
Given:
sin1{x+1x22}1<x<1
Solution:
Let
y=sin1{x+1x22}
Let
x=sinθ
θ=sin1x
Now,
y=sin1{sinθ+1sin2θ2}
Using
sin2θ+cos2θ=1y=sin1{sinθ+cos2θ2]y=sin1{sinθ+cosθ2}
Now,
y=sin1{sinθ12+cosθ12}y=sin1{sinθcos(π4)+cosθsin(π4)}sin(π4)=12&cos(π4)
y=sin1{sin(θ+π4)}

Considering the limits,

1<x<11<sinθ<1π2<θ<π2 {sinπ2=1}

π2+π4<θ+π4<π2+π4π4<θ+π4<3π4

Now,

y=sin1{sin(θ+π4)}y=θ+π4y=sin1x+π4 sin(sinθ)=θifθε[π2,π2]Differentiating with respect to x , We get
ddx(sin1x)=11x2ddx (constant) =0dydx=11x2

Differentiation Exercise 10.3 Question 15

Answer:dydx=11x2
Hint:
ddx( constants )=0ddx(xn)=nxn1
Given:
cos1{x+1x22}1<x<1
Solution:
y=cos1{x+1x22}
Let,
x=sinθ
θ=sin1x
y=cos1{sinθ+1sin2θ2}y=cos1{sinθ+cos2θ2} Using sin2θ+cos2θ=1y=cos1{sinθ+cosθ2}y=cos1{sinθ12+cosθ12}y=cos1{sinθsin(π4)++cosθcos(π4)}
sin(π4)=12
cos(π4)=12
Using,
cos(AB)=cosAcosB+sinAsinBy=cos1{cos(θπ4)}
Considering the limits,
1<x<11<sinθ<1π2<θ<π2π2π4<θπ4<12π43π4<8π4<π4
Now,
y=cos1{cos(θπ4)}y=(θπ4) {cos1(cosθ)=0 if θε[π,0]}
y=(θπ4)y=sin1x+π4 [sincex=sinθ]
Differentiating with respect to x , We get
dydx=ddx(sin1x+π4)ddx( constants )=0ddx(sin1x)=11x2dydx=11x2+0dydx=11x2

Differentiation Exercise 10.3 Question 16

Answer: dydx=41+4x2
Hint:
ddx( constants )=0ddx(xn)=nxn1
Given:
tan1{4x14x2}12<x<12
Solution:
Let,
y=tan1{4x14x2}
Let,
2x=tanθ
θ=tan12x
y=tan1{2tanθ1tan2θ}
Using tan2θ=2tanθ1tan2θy=tan1(tan2θ)

Considering the limits,

12<x<121<2x<11<tanθ<1π4<θ<π4π2<2θ<π2 {tan45=1}

Now,

y=tan1(tan2θ)

y=2θ

y=2tan1(2x) [since,2x=tanθ]

Differentiating with respect to x , We get

dydx=ddx(2tan12x)dydx=2×21+(2x)2dydx=41+4x2 d(tan1x)dx=11+x2

Diffrentiation Exercise 10.3 Question 17

Answer: dydx=2x+1log21+4x
Hint:
ddx( constants )=0ddx(xn)=nxn1
Given:
tan1[2x+114x]<x<0
Solution:
y=tan1[2x+114x]
Let,
2x=tanθ
y=tan1{2x2x1(2x)2}
As we Know
am+namany=tan1{2tanθ1tan2θ}
Using
tan2θ=2tanθ1tan2θy=tan1(tan2θ)

Considering the limits,

<x<02<2x<200<tanθ<10<π4 {20=1,2=0}

0<2θ<π2 {tanπ4=1}

0<2θ<π2

Now

y=tan1(tanθ)

y==2θ

y=2tan1(2x) {since2x=tanθθ=tan1(2x)}

Differentiating with respect to x , We get

dydx=ddx(2tan1(2x))dydx=2×2xlog21+(2x)2dydx=2x+1log21+4x d(tan1x)dx=11+x2ddx(2x)=log2{amanam+h}

Differentiation Exercise 10.3 Question 18

Answer:dydx=2axloga1+a2x
Hint:
dcdx=0;ddx(xn)=nxn1
Given:
tan1{2ax1a2x},a>1,<x<0
Solution:
Let
y=tan1{2ax1a2x},
Let,
ax=tanθy=tan1{2tanθ1tan2θ} Using tan2θ=2tanθ1tan2θy=tan1(tan2θ) Considering the limits, <x<0a<ax<a0
0<tanθ<1 {ao=1}
0<θ<π4 {tan(π4)=1}
Now,y=tan1(tan2θ)
y=2θ
y=2tan1(ax) sinceax=tanθ,θ=tan1(ax)
Differentiating with respect to x, we get
dydx=ddx(2tan1(ax))dydx=2×ax1+(ax)2logaddx(tan1x)=11+x2dydx=2axloga1+a2x

Differentiation Exercise 10.3 Question 19

Answer:dydx=121x2
Hint:
ddx( constants )=0ddx(xn)=nxn1
Given:
sin1{1+x+1x2},0<x<1
Solution:
Let
y=sin1{1+x+1x2}
Let,x=cos2θ
 Now, sin1{1+cos2θ+1cos2θ2} Using 12sin2θ=cos2θ2cos2θ1=cos2θy=sin1{2cos2θ+2sin2θ2}
Now,
y=sin1{2cosθ+2sinθ2}y=sin1{cosθ12+sinθ12}y=sin1{sinθcos(π4)+cosθsin(π4)}sin(π4)=12&cos(π4)=12Usinsin(A+B)=sinAcosB+cosAsinBy=sin1{sin(θ+π4)}
Considering the limits,
0<x<10<cos2θ<10<2θ<π20<θ<π40+π4<(θ+14)<π2+π4π4<(θ+π4)<π2
Now,y=sin1 {sin(θ+π4)}
y=θ+π4 sin1(sinθ)=θ,ifθε[π2,π2]
y=12cos1x+π4 {sincex=cos2θ}
dydx=ddx(12cos1x+π4)
ddx( constant )=0 ddx(cos1x)=11x2dydx=12(11x2)+0dydx121x2

Differentiation Exercise 10.3 Question 20

Answer: dydx=a2(1+a2x2)
Hint:
ddx( constant )=0ddx(xn)=nxn1
Given:
tan1{1+a2x21ax},x0
Solution:
Let,
y=tan1{1+a2x21ax}
Letax=tanθ
Now
y=tan1{1+tan2θ1tanθ}
Using
sec2θ=1+tan2θy=tan1{sec2θ1tanθ}y=tan1{secθ1tanθ}y=tan1{1cosθ1sinθcosθ}
 Using tanθ=sinθcosθ,secθ=1cosθy=tan1{1cosθcosθsindcosθ}y=tan1{1cosθcosθ×cosθsinθ}y=tan1{1cosθsinθ}
 Using 2sin2θ=1cos2θ and 2sinθcosθ=sin2θy=tan1{2sin2θ/22sinθ/2cosθ/2}y=tan1{tanθ2}
y=θ2
y=12tan1ax
Differentiating with respect to x , We get
dydx=ddx(12tan1x) Using ddx(tan1x)11+x2dydx=12×11+(ax)2×1adydx=a2(1+a2x2)

Differentiation Exercise 10.3 Question 21

Answer:dydx=12
Hint:
dydx(xn)=nxn1
dydx(constant)=0
Given:
tan1{sinx1+cosx},π<x<π
Solution:
Let,
y=tan1{sinx1+cosx}
Function y is defined for all the real numbers where cosx1
 Using 2cos2θ=1+cos2θ2sinθcosθ=sin2θy=tan1{2sinx2cosx22cos2x2}y=tan1{sinx/2cosx/2}y=tan1{tanx2}y=x2
Differentiating with respect to x , We get
dydx=ddx(x2)
dydx=12

Differentiation Exercise 10.3 Question 22

Answer: dydx=11+x2
Hint:
ddx( Constant )=0ddx(xn)=nxn1
Given:
sin1{11+x2}
Solution:
Let,
y=sin1{11+x2}
Let
x=cotθ
θ=cot1x
Now,
y=sin1{11+cot2θ}
Using,
1+cot2θ=cosec2θy=sin1{1cosec2θ}y=sin1{1cosecθ} {1cosecθ=sinθ}
y=sin1(sinθ) sin1(sinθ)=sinθ,if θε[π2,π2]
y=θy=cot1x

Differentiating with respect to x , We get

dydx=ddx(cot1x)ddx(cot1x)11+x2dydx=11+x2

Differentiation Exercise 10.3 Question 23

Answer:
dydx=2nxn11+x2n
Hint:
ddx( constsant )=0ddx(xn)=nxn1
Given:
cos1{1x2n1+x2n}0<x<
Solution:
y=cos1{1x2n1+x2n}
Let,
xn=tanθ
θ=tan1(xn)
y=cos1{1tan2θ1+tan2θ}y=cos1{cos2θ}

Using,

1tan2θ1+tan2θ=cos2θ

Considering the limits,

0<x<0<xn<0<θ<π2

Now, {cos1(cosθ)=θ,ifθε[0,π]}

y=cos1(cos2θ)

y=2θ Sincexn=tanθ
Differentiating with respect to x we get
dydx=ddx(2tan1(xn))
Using
ddx(tan1x)=11+x2dydx=2×11+(xn)2×nxn1dydx=2nxn11+x2n

Differentiation Exercise 10.3 Question 24

Answer:dydx=0
Hint:
ddx( constsant )=0ddx(xn)=nxn1
Given:
sin1(1x21+x2)+sec1(1+x21x2)
Solution:
Let,
y=sin1(1x21+x2)+sec1(1+x21x2)
Using
sec1x=cos1(1x)y=sin1(1x21+x2)+cos1(1x21+x2)
Usingsin1x+cos1x=π2y=π2

Differentiating with respect to x we get

dydx=ddx(π2)

dydx=0 {ddx(constant)=0}

Differentiation Exercise 10.3 Question 26

Answer:12x(1+x)
Hint:
ddx(constant)=0;
ddx(xn)=nxn1
Given:
tan1(x+a1xa)
Solution:
Let,
y=tan1(x+a1xa)
Since,tan1x+tan1y=tan1(x+y1xy)
y=tan1x+tan1a
Differentiating it with respect to x using chain qule.
dydx=ddx(tan1x)+ddx(tan1a)
Since ,
ddx(tan1x)=11+x2;ddx(xn)=nxn1dydx=11+(x)2ddx(x)+0dydx=11+(x1/2)2×12(x)121dydx=11+x×12(x)12dydx=11+x×12xdydx=12x(1+x)

Differentiation Exercise 10.3 Question 27

Answer:dydx=1
Hint:
ddx(constant)=0
ddx(xn)=nxn1
Given:
tan1[a+btanxbatanx]
Solution:
Let,
y=tan1[a+btanxbatanx]y=tan1[a+btanxbbatanxb]y=tan1[ab+tanx1abtanx]
y=tan1[tan(tan1ab)+tanx1tan(tan1gb)tanx]y=tan1[tan(tan1ab+x)]tan(A+B)=tanA+tanB1tanAtanBy=tan1(ab)+x
Differentiating it with respect to x , We get
dydx=ddx(tan1(ab))+ddx(x)ddx( constant )=0ddx(tan1x)=11+x2dydx=11+(ab)2×0+1dydx=0+1dydx=1

Differentiation Exercise 10.3 Question 28

Answer:dydx=11+x2
Hint:
ddx( constant )=0;ddx(xn)=nxn1
Given:
tan1(a+bxbax)
Solution:
Let,
y=tan1(a+bxbax)y=tan1[a+bxbbaxb]

Since,tan1x+tan1y=tan1(x+y1xy)

Differentiating it with respect to x , We get

dydx=ddx(tan1(ab)+tan1x Since, ddx(tan1x)=11+x2dydx=11+(ab)2×0+11+x2dydx=0+11+x2dydx=11+x2

Differentiation Exercise 10.3 Question 29

Answer:dydx=aa2+x2
Hint:
ddx( constan t)=0;ddx(xn)=nxn1
Given:
tan1(xax+a)
Solution:
Let,
y=tan1(xax+a)y=tan1(xaxx+ax)y=tan1(xxaxxx+ax)y=tan1(1ax1+1×ax)y=tan1(1)+tan1(ax)

Using,

tan1x+tan1y=tan1(x+y1xy)

Differentiating its with respect to xusing chain tule.

dydx=011+(ax)2ddx(ax)dydx=11+a2x2(ax2)dydx=1x2+a2x2×(ax2)dydx=x2x2+a2×(ax2) Using ddx(xn)=nxn1

ddx=ax2+a2 ddx(constant)=0

Differentiation Exercise 10.3 Question 30

Answer: dydx=31+9x221+4x2
Hint:
ddx( constan t)=0;ddx(xn)=nxn1
Given:
tan1(x1+6x2)
Solution:
Let, y=tan1(x1+6x2)
y=tan1(3x2x1+(3x)(2x))
Since,3x2x=x
y=tan13xtan12x[ Since +tanxtan1y=tan1(xy1+xy)]
Differentiating it with respect tox using chain rule,
dydx=11+(3x2)ddx(3x)11+(2x)2ddx(2x){ Since ddxtan1(x)=11+x2}dydx=11+9x2(3)11+4x2(2)dydx=31+9x221+4x2

Differentiation Exercise 10.3 Question 31


Answer:dydx=31+9x2+21+4x2
Hint:
ddx(constant)=0;
ddx(xn)=nxn1
Given:
tan1(5x16x2)
Solution:
Let,
y=tan1(5x16x2)y=tan1(3x+2x1(3x)(2x))
 By using 5x=3x+2xy=tan1(3x)+tan1(2x)
 Since, tan1x+tan1y=tan1(x+y1xy)
Differentiating it with respect to x using chain rule,
dydx=ddx(tan1(3x))+ddx(tan1(2x))
Using
ddx(tan1x)=11+x2dydx=11+(3x)2ddx(3x)+11+(2x)2ddx(2x)dydx=11+9x2(3)+11+4x2(2)dydx=31+9x2+21+4x2

Differentiation Exercise 10.3 Question 32

Answer: dydx=1
Hint:
ddx( constan t)=0;ddx(xn)=nxn1
Given:
tan1[cosx+sinxcosxsinx]
Solution:
y=tan1[cosx+sinxcosxsinx]y=tan1[cosx+sinxcosxcosxsinxcosx]y=tan1[1+tanx1tanx] since, sinxcosx=tianx
y=tan1[tanπ4+tanx1tanπ4tanx]y=tan1[tan(π4+x)] Since tan(A+B)=tanA+tanB1tantanBy=π4+x
Differentiating it with respect to x,
dydx=0+1 {ddx( constant )=0ddx(x)=1}
dydx=1

Differentiation Exercise 10.3 Question 33

Answer: dydx=13x2(1+x23)
Hint:
ddx( constant )=0;ddx(xn)=nxn1
Given:
tan1[x1/3+a1/31(ax)1/3]
Solution:
Let,
y=tan1[x13+a1/31(ax)1/3]y=tan1(x1/3)+tan1(a1/3) Since, tan1x+tan1y=tan1(x+y1xy)
Differentiating it with respect to x using chain rule,
dydx=11+(x1/3)2ddx(x1/3)+11+(a1/3)2ddx(a1/3)dydx=11+x2/3×(13x131)+11+(a1/3)2×0dydx=11+x2/3×13x2/3dydx=13x2/3(1+x2/3)
Using
ddx(tan1x)=11+x2ddx(xn)=nxn1ddx( constant )=0

Differentiation Exercise 10.3 Question 34

Answer:dydx=2x+1log21+4x
Hint:
ddx(constant)=0
x(xn)=nxn1
Given:
sin1(2x+11+4x)
Solution:
Let
y=sin1(2x+11+4x)
To find the domain we need to find all x such that
12x+11+4x1
Since the quantity in the middle is always positive, we need to find
all such that 2x+11+4x1
ie, all x such that 2x+1=1+4x
212x+2x, which is true for a x
Hence the function is defined at all real numbers
Putting 2x=tanθ
y=sin1(2x+11+4x)y=sin1(2x21+(2x)2)y=sin1(2tanθ1+tan2θ) Using sec2θ=1+tan2θ
y=sin1(2tanθsec2θ)y=sin1(2sinθcosθ×cos2θ)\;Since,tanθ=sinθcosθsecθ,1sec=cosθy=sin1(2sinθcosθ)Usinsin=sin2θ=2sinθcosθ
y=sin1(sinθ) {sin1(sinθ)=θ if θ[12,02]}
y=2θ
y=2tan1(2x) { since 2x=tanθθ=tan1(2x)}
dydxddx(2tan1(2x))dydx=2×11+(2x)2dx(2x)dydx=2×11+4x(2x)log2dydx2x+1log21+4x  Since ddx(tan1x)=11+x2

Differentiation Exercise 10.3 Question 35

Answer: Hence Provedydx=41+x2
Hint:
ddx( constan t)=0;ddx(xn)=nxn1
Given:
y=sin1(2x1+x2)+sec1(1+x21x2)0<x<1
Solution:
Prove :dydx=41+x2
y=sin1(2x1+x2)+cos1(1x21+x2) Since sec1x=cos1(1x)y=sin1(2x1+x2)+cos1(1x21+x2)
Let,
x=tanθ
θ=tan1x
y=sin1(2tanθ1+tan2θ)+cos1(1tan2θ1+tan2θ)y=sin1(2tanθsec2θ)+cos1(cos2θ)
Using
sec2θ=1+tan2θ1secθ=cosθ1tan2θ1+tan2θ=cos2θ
y=sin1(2sinθcosθ×cos2θ)+cos1(Cos2θ)y=sin1(2sinθcosθ)+cos1(cos20)y=sin1(sin2θ)+cos1(cos2θ)(i)using2sinθcosθ=sin2θ
Considering Limits,
0<x<10<tanθ<10<θ<π40<(2θ)<π2
so from ei(i)
y=2θ+2θ
y=4θ
cos1(cosθ) if θ[0,π]y=4tan1x since,x=tanθ,θ=tan1x
Differentiating it with respect to x
dydx=4ddx(tan1x) Using ddx(tan1x)=11+x2dydx=4(11+x2)dydx=41+x2

Differentiation Exercise 10.3 Question 36

Answer: Hence Prove ,dydx=21+x2
Hint:
ddx( constan t)=0;ddx(xn)=nxn1
Given:
y=sin1(x1+x2)+cos1(11+x2)0<x<
Solution:
Let,
x=tanθ,
θ=tan1x
y=sin1(tanθ1+tan2θ)+cos1(11+tan2θ)y=sin1(tanθsec2θ)+cos1(1sec2θ) Using sec2θ=1+tan2θsinθcosθ=tanθ1secθ=θcosθ
y=sin1(tanθsecθ)+cos1(1secθ)y=sin1(sinθcosθ×cosθ)+cos1(cosθ)y=sin1(sinθ)+cos1(cosθ)(i)
Considering limit

0<x<0<tanθ<0<θ<π2
So From eq (i)
y=θ+θ  Since, sin1(sinθ)=θ if θε[π2,π2]
y=2θ cos1(cosθ)=θ if θε[0,π]
y=2tan1x [sincex=tanθ]

Differentiating it with respect to x

ddx(tan1x)=11+x2dydx=2×11+x2dydx=21+x2

Differentiation Exercise 10.3 Question 37(i)

Answer: dydx=1
Hint:
ddx( constan t)=0ddx(xn)=nxn1
Given:
cos1(sinx)
Solution:
Let,
y=cos1(sinx)
We observe that this function is defined for all real numbers
y=cos1(sinx)y=cos1[cos(π2x)]y=π2x {sincecos1(cosθ)=θ if θ[θ,π]}
Differentiating it with respect to x,
dydx=01dydx=1 {Since,d(constant)dx=0}

Differentiation Exercise 10.3 Question 37 (ii)

Answer: dydx=11+x2
Hint:
ddx( constan t)=0ddx(xn)=nxn1
Given:
cos1(1x1+x)
Solution:
y=cos1(1x1+x)
Let,
x=tanθθ=tan1xy=cot1(1tanθ1+tanθ)y=cot1(tann4tanθ1+tann4tanθ)
y=cot1[tan(n4θ)] Using, tan(AB)=tanAtanB1+tanAtanBy=cot1[tan(π4θ)]y=cot1[cots(π2(πθ4θ)] sincecot(π2θ)=tanθ
y=cot1[cot(π2π4+θ)]y=cot1[cot(π4+θ)]y=π4+θ {cot1(cotθ)=θ, if θ<[π2,π2]}
y=π4+tan1x { Since x=tanθθ=tan1x}
Differentiating it with respect to x,
dydx=0+11+x2ddx(tan1x)=11+x2dx( constant )=0dydx=11+x2

Differentiation Exercise 10.3 Question 38

Answer:dydx=12, Hence,dydx is independent of x
Hint:
ddx (constant) =0;ddx(xn)=nxn1
Given:
y=cot1{1+sinx+1sinx1+sinx1sinx}
Solution:
y=cot1{1+sinx+1sinx1+sinx1sinx} Then, 1+sinx+1sinx1+sinx1sinx1+sinx+1sinx1+sinx1sinx×1+sinx+1sinx1+sinx+1sinx
(1+sinx+1+sinx)2(1+sinx)(1sinx) Using (ab)(a+b)=a2b2(a+b)2=a2+b2+2ab(1+sinx)+(00(1sinx)+2(1sinx)(1+sinx)(1+sinx)(1sinx)1+sinx+1sinx+2(1sinx)(1+sinx)1+sinx1+sinx
2+21+sinxsinxsin2x2sinx2+21sin2x2sinx2(1+1sin2x)2sinx1+1sin2xsinx
Using cos2x+sin2x=1
1+cos2xsinx1+cosxsinx Using sin2θ=2sinθcosθ1+Cos2θ=2cos2θ2cos2x22sinx2cosx2cotx2 {cosxsinx=cotx}

Therefore, equation (1) becomes

y=cot1(cotx2)y=x2 {cot1(cotθ)=θifθε[π2,π2]}

Differentiating it with respect to x

dydx=12ddx(x)

dydx=12

Differentiation Exercise 10.3 Question 39

Answer: dydx=41+x2
Hint:
ddx( constiant )=0ddx(xn)=nxn1
Given:
y=tan1(2x1x2)+sec1(1+x21x2)x=0
Prove
dydx=11+x2
Solution:
Here,$y=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)+\sec ^{-1}\left(\frac{1+x^{2}}{1-x^{2}}\right) $
Using sec1
x=cos1(1x)y=tan1(2x1x2)+cos1(1x21+x2)
Put x=tanθy=tan1(2tanθ1tan2θ)+cos1(1tan2θ1+tan2θ)y=tan1(tan2θ)+cos1(cos2θ)(1)

Using,

tan2θ=2tanθ1tan2θ

1tan2θ1+tan2θ=cos2θ Here, 0<x<0<tanθ<0<θ<π20<2θ<π

So From eq(i)

y=2θ+2θ

{ Since, tan1(tanθ)=θ if θ[π2,π2] and cos1(cosθ)=θ if θ[0,π]}

y=4θ

y=4tan1x [Usingx=tanθ,θ=tan1x]

Differentiating it with respect t0 x

dydx=41+x241+x2 Using d(tan1x)dx=11+x2

Differentiation Exercise 10.3 Question 40

Answer: dydx=0
Hint:
ddx(xn)=nxn1;ddx( constant )=0
Given:
y=sec1(x+1x1)+sin1(x1x+1)x>0
Solution:
y=sec1(x+1x1)+sin1(x1x+1)x>0y=cos1(x1x+1)+sin1(x1x+1)
Using sec1x=cos(1x)
Since,cos1x+sin1x=π2
y=π2
Differentiating with respect to x
dydx=0 [ddx(constant)=a]]

Differentiation Exercise 10.3 Question 41


Answer:dydx=x1x2
Hint:
ddx( constant )=0;ddx(xn)=nxn1
Given:
y=sin[2tan1{x1+x}]
Solution:
Put x=cos2θ
y=sin[2tan11cos2θ1+cos2θ]y=sin[2tan12sin2θ2cos2θ] Since 1cos2θ=2sin2θ1+cos2θ=2cos2θ
1+cos2θ=2cos2θy=sin[2tan1tan2θ] Since sinθcosθ=tanθy=sin[2tan1(tanθ)]y=sin[2θ] {tan1(tanθ)=θifθε[π2,π2]}
y=sin(2×12cos1x) [Since,x=cos2θ,θ=12cos1x]
y=sin(cos1x)y=sin(sin11x2)y=1x2 [sin1(sinθ)0 if θ[π2,π2]]
Differentiating it with respect to x
dydx=ddx(1x2)=ddx(1x2)1/2
As we know,
ddx(xn)=nxn1dydx=12(1x2)12dx(1x2)dy=1dx=121x2(2x)dydx=x1x2

Differentiation Exercise 10.3 Question 42

Answer: dydx=214x2
Hint:
ddx (constant) =0ddx(xn)=nx1
Given:
y=cos1(2x)+2cos11+4x2,0<x<12
Solution:
Put 2x=cosθ
So,
y=cos1(cosθ)+2cos11cos2θ Since cos2θ+sin2θ=1y=cos1(cosθ)+2cos1sin2θy=cos1(cosθ)+2cos1(sinθ)y=cos(cosθ)+2cos1(cos(π2θ))(i)
0<x=10<2x<10<cosθ=10<θ<π2 And 0>θ>π2n2>(n2θ)>0
So From eq (i)
y=θ+2(π2θ) {Sincecos1(cosθ)=0ifθε[0,n]}
yθ+π2θyπCy=πcos1(2x) Since, 2x=cosθ
Differentiating it with respect to x
dydx=0[11(2x)2]ddx(2x)
Since,ddx(constant)=0;
ddx(cos1x)=11x2dydx=114x2(2)dydx=214x2

Differentiation Exercise 10.3 Question 43

Answer: Hence Prove ,1+a2=b
Hint:
ddx(xn)=nxn1d( constant) dx=0
Given:
ddx[tan1(a+bx)]=1 at x=0
Solution:
So, using chain rule,
we know ddx(tan1x)=11+x2
[{11+(a+bx)2}ddx(a+bx)]x=0=1[11+(a+bx)2×(b)]x=0=1[b[1+(a+bx)2]x=0=1(a+b)2=a2+b2+2ab
[b1+(a2+b2x2+2abx)]x=0=1b1+(a2+0+0)=1b1+a2=1b=1+a2
Hence Proved,

Differentiation Exercise 10.3 Question 44

Answer:dydx=614x2
Hint:
ddx(xn)=nxn1ddx( Constant )=0
Given:

Solution:
y=cos1(2x)+2cos114x2,12<x<0
Put2x=cosθ
So
y=cos1(cocθ)+2cos11cos2θ
Using,sin2θ+cos2θ=1
y=cos1(cosθ)+2cossin2θy=cos1(cosθ)+2cos(sinθ)y=cos1(cosθ)+2cos(cos1(π2θ))(i)
Considering limit,
12<x<01<2x<01cosθ<0π2<θ<π
And,
π2>θ>π(π2π2)>(π2θ)>(π2π)0>(π2θ)>π2
So, from equation (i)

y=θ+2[(π2θ)]
{Since,cos1(cosθ)=0 if θε[0,π],cos1cos(θ)=θ, if θε[π0]}y=θ2×π2+2θy=π+3θy=π+3cos1(2x)

Differentiating its with respect to xusing chain rule

dydx=0+3[11(2x)2]ddx(2x)

As we Know,

ddx( constant )=0ddx(cos1x)=11x2dydx=314x2(2)dydx=614x2

Differentiation Exercise 10.3 Question 45

Answer:dydx=121x3
Hint:
ddx( constant )=0ddx(xn)=nxn1
Given:
y=tan1{1+x1x1+x+1x}
Solution:
Put,
x=cos2θ
So,
y=tan1[1+cos2θ1cos2θ1+cos2θ+1cos2θ]=tan1(2cos2θ2sin2θ2cos2θ+2sin2θ)
Using1+cos2θ=2cos2θy=tan1(2cosθ2sinθ2cosθ+2sinθ)y=tan1(2(cosθsinθ)2(cosθ+sinθ))

Dividing numerator and denominator by cosθ

y=tan1(cosθcosθsinθcosθcosθcosθ+sinθcosθ)y=tan1(cosθsinθcosθcosθ+sinθcosθ)

Using

tanθ=sinθcosθy=tan1(1tanθ1+tanθ)y=tan1(tann4tanθ1+tanπ4tanθ)y=tan1(tan(n4θ)) Using tan(AB)=tanAtanB1+tanAtanB

y=π04θ [Usingtan1(tanθ)=θifθε[π2,π2]]

y=π412cos1x[ Using x=cos2θ]
Differentiating it with respect to x
dydx=012(11x2){ddx(cos1x)=11x2}
dydx=121x2dydx=11x2

Differentiation Exercise 10.3 Question 47

Answer: dydx=11x2
Hint:
ddx( constsant )=0ddx(xn)=nxn1
Given:
y=cos1{2x31x213)
Solution:
Let,x=cosθ
y=cos1{2cosθ31cos2θ4} Using cos2θ+sin2θ=1y=cos1{213cosθ313sin2θ]y=cos1{213cosθ313sinθ]
cosϕ=213
Let,sinϕ=1cos2ϕ
=1(213)2+1413=13413=913
sinϕ=313
So,
y=cos1{cosϕcosθsinϕsinθ]=cos1[cos(θ+ϕ)] Using, cos(A+B)=cosAcosBsinAsinB
y=ϕ+θ[cos1(cosθ)=θ if 0ε[0,π]]
y=cos1(213)+cos1x since, x=cosθcosϕ=213
Differentiating its with Respect to x,
dydx=11(213)2ddx(213)+(11x2)dydx=11(213)2×0+(11x2)ddx(cos1x)=11x2dydx=011x2

Differentiation Exercise 10.3 Question 48

Answer: dydx=619x2
Hint:
ddx (constant )=0ddx(xn)=nxn1
Given:
y=sin1(6x19x2)132<x<132
Solution:
Let
x=13sinθy=sin1(6×13sinθ19(13)2sin2θ)y=sin1(2sinθ19×19sin2θ)
y=sin1(2sinθ1sin2θ)Usingsin2θ+cos2θ=1y=sin1(2sinθcos2θ)y=sin1(2sinθcosθ)y=sin1(sin2θ)(i)Usingsin2θ=2sinθcosθ
Considering limits here
132<x<13213×132<13sinθ<132×13192<13sinθ<192

From Equation (i)

y=2θ {sin1(sinθ)=θ if θε[π2,π2]}

y=2sin1(3x)

Differentiating it with respect tox

dydx=ddx(2sin13x) As we thow, ddx(sin1x)=11x2dydx=2×11(3x)2ddx(3x)dydx=219x2×3dydx=619x2



Rd Sharma Class 12th Exercise 10.3 solutions are an ideal choice for every student because of the following benefits:

  1. Experts format this exclusive material

Rd Sharma Class 12th Exercise 10.3 solutions are created by a group of experts working day and night to make sure that every student understands the concept properly. Therefore, a student will always be confident about the exam after going for Rd Sharma Class 12 Chapter 10.3 Exercise 10.3 solutions.

  1. Best Solutions for preparation and revision

NEET Highest Scoring Chapters & Topics
This ebook serves as a valuable study guide for NEET exams, specifically designed to assist students in light of recent changes and the removal of certain topics from the NEET exam.
Download E-book

Rd Sharma Class 12th Exercise 10.3 solutions are the best source for preparation and revision because a lot of time is saved when a student studies from this material. Moreover, the students will be ready to face any exam with RD Sharma Class 12 Solutions Differentiation Ex. 10.3.

  1. Questions from the NCERT book are easy to understand:

It is a well-known fact that NCERT is a book that every teacher follows. Keeping this fact in mind, the students are provided with solutions that abide by NCERT and CBSE guidelines. Rd Sharma Class 12th Exercise 10.3 solutions help students achieve good marks in-class exams also.

  1. Alternative ways to solve a question

RD Sharma Class 12 Solutions Chapter 10 ex 10.3 because they are crafted by experts who have many ways to solve a single question. Every expert has a different way to solve a problem, here also a student will find many forms and can choose what suits them best.

  1. Great performance

These solutions help a student cross their benchmark scores in the exams. The Class 12th RD Sharma Chapter 10.3 Exercise 10.3 Solutions includes all the concepts that are present in the textbook.

  1. Free of cost

The students need not pay any kind of monetary fund to attain the book from the Career 360 website. This is the website that has benefited thousands of students all over the country. A student must follow this website and learn from Career360 to score well academically.

RD Sharma Chapter-wise Solutions

Frequently Asked Questions (FAQs)

1. What do you mean by Function Differentiation?

The Differentiation of a function is a mathematical operation in the calculus domain that identifies the instantaneous changes for a universal output.

2. Why should we learn the rule for calculating exponential functions?

The rule for deriving exponential functions should be learned to understand how the exponential expressions in a function change when a differentiation operation is performed. In addition, it will assist you in comprehending the advanced concepts of higher mathematics in higher classes

3. What is the minimum cost of the RD Sharma solution books?

The RD Sharma solution books are available for free of cost at the Career 360 website. The class 12 students can download the reference material to make the most of it. 

4. What are the different rules of Derivatives?

There are five types of rules of derivatives, and these are:

  • Power rule of derivatives

  • Sum rule of derivatives

  • Product rule of derivatives

  • Quotient rule of derivatives

  • Chain rule of derivatives

5. What Is the Best Way to Learn Derivative Functions?

If you follow Career360, you will quickly learn how to perform this set of actions on the functions. Practicing and learning are essential to apply such derivation rules easily.

Articles

Upcoming School Exams

View All School Exams
Back to top