RD Sharma Class 12 Exercise 10.3 Differentiation Solutions Maths-Download PDF Free Online

RD Sharma Class 12 Exercise 10.3 Differentiation Solutions Maths-Download PDF Free Online

Edited By Satyajeet Kumar | Updated on Jan 20, 2022 05:22 PM IST

The RD Sharma solution books are the top-rated reference materials used by the students preparing for their public exams. It lends a helping hand in every aspect of doubts that a student might encounter while studying. When the students continuously practice the sums given in this book, mathematics would be simple and easy for them.
Rd Sharma Class 12th Exercise 10.3 has solved every problem of a student regarding Differentiation. This particular exercise has 49 questions, including subparts, that are formatted by a team of experts. The questions will help every student solve the queries regarding differentiating the functions w.r.t to x, Differentiation of inverse trigonometric functions, recapitulation products, Differentiation of constant values are included in Rd Sharma Class 12th Exercise 10.3.

This Story also Contains
  1. RD Sharma Class 12 Solutions Chapter 10 Differentiation - Other Exercise
  2. Differentiation Excercise: 10.3
  3. RD Sharma Chapter-wise Solutions

Also Read - RD Sharma Solution for Class 9 to 12 Maths

RD Sharma Class 12 Solutions Chapter 10 Differentiation - Other Exercise

Differentiation Excercise: 10.3

Differentiation exercise 10.3 question 1

Answer : \frac{d y}{d x}=\frac{2}{\sqrt{1-x^{2}}}
Hint:
\begin {array} {l}\cos ^{-1}(\cos \theta)=\theta\ \ if \ \ \theta \varepsilon[0, \pi]\\\\ \cos ^{-1}(\cos \theta)=-\theta \ \ if \ \ \theta \varepsilon[-\pi, 0] \end{array}
Given:
\cos ^{-1}\left\{2 x \sqrt{1-x^{2}}\right\}, \frac{1}{\sqrt{2}}<x<1
Solution:
\begin {array}{ll} Lets\: y=\cos ^{-1}\left\{2 x \sqrt{1-x^{2}}\right\} \\\\ Lets \: \mathrm{x}=\cos \theta \Rightarrow \theta=\cos ^{-1} \mathrm{x} \\\\ Now \ \ y=\cos ^{-1}\left\{2 \cos \theta \sqrt{1-\cos ^{2} \theta}\right\}\end{array}
\begin {array}{ll} Using \therefore \cos ^{2} \theta+\sin ^{2} \theta=1,2 \sin \theta \cos \theta=\sin 2 \theta\\\\ \mathrm{y}=\cos ^{-1}\left\{2 \cos \theta \sqrt{\sin ^{2} \theta}\right\}\\\\ \end{array}
\begin {array}{ll} y=\cos ^{-1}(2 \cos \theta \sin \theta]\\\\ y=\cos ^{-1}(\sin 2 \theta)\\\\ \therefore \cos \left(\frac{\pi}{2}-\theta\right) \Rightarrow \sin \theta\\\\ y=\cos ^{-1}\left(\cos \left(\frac{\pi}{2}-2 \theta\right)\right)\\\\ \end{array}
Now by considering the limits,
\begin{array}{l} \frac{1}{\sqrt{2}}<x<1\\\\ \Rightarrow \frac{1}{\sqrt{2}}<\cos \theta<1\\\\ \Rightarrow 0<\theta<\frac{\pi}{4} \ \ \ \ \ \ \ \ \ \ \therefore\left[\cos 90^{\circ}=0, \cos 0^{\circ}=1\right]\\\\ \Rightarrow 0<2 \theta<\frac{\pi}{2}\\\\ \Rightarrow 0>-2 \theta>-\frac{\pi}{2}\\\\ \Rightarrow \frac{\pi}{2}>\frac{\pi}{2}-2 \theta>\frac{\pi}{2}-\frac{\pi}{2} \end{array}
Therefore,
\begin{array}{l} y=\cos ^{-1}\left(\cos \left(\frac{\pi}{2}-2 \theta\right)\right)\\\\ y=\cos ^{-1}\left(\cos \left(\frac{\pi}{2}-2 \theta\right)\right)\\\\ y=\left(\frac{\pi}{2}-2 \theta\right) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \end{array} \left\{\cos ^{-1}(\cos \theta)=\theta\right\}
y=\frac{\pi}{2}-2 \cos ^{-1} x
\text { if } \theta \varepsilon[0, \pi]
Differentiating with Respect to x, we get
\begin{array}{l} \frac{d y}{d x}=\frac{d}{d x}\left(\frac{\pi}{2}-2 \cos ^{-1} x\right)\\\\ \therefore \frac{d}{d x}\left(\cos ^{-1} x\right) \Rightarrow \frac{-1}{\sqrt{1-x^{2}}}\\\\ \therefore \frac{\mathrm{d}}{\mathrm{dx}} \text { (constant) }=0\\\\ \frac{d y}{d x}=0-2\left(\frac{-1}{\sqrt{1-x^{2}}}\right)\\\\ \frac{d y}{d x}=\frac{2}{\sqrt{1-x^{2}}} \end{array}

Differentiation exercise 10.3 question 2

Answer : \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2}\left(\frac{-1}{\sqrt{1-\mathrm{x}^{2}}}\right)
Hint:
\begin {array} {ll}\cos ^{-1}(\cos \theta)=\theta \quad if \ \ \theta \varepsilon[0, \mathrm{\pi}] \\\\ \cos ^{-1}(\cos \theta)=-\theta \quad if \ \ \ \theta \varepsilon[-\mathrm{\pi}, 0] \end{array}
Given:
\begin {array} {ll}\cos ^{-1}\left\{\sqrt{\frac{1+x}{2}}\right\},-1<x<1\end{array}
Solution:
\begin {array} {ll}Let, y=\cos ^{-1}\left\{\sqrt{\frac{1+x}{2}}\right\} \\\\ Let \: \,x=\cos 2 \theta, \theta=\frac{1}{2} \cos ^{-1} x \\\\ Now, y=\cos ^{-1}\left\{\sqrt{\frac{1+\cos 2 \theta}{2}}\right\}\end{array}
\begin {array} {ll}By \ using\ \cos 2 \theta=2 \cos ^{2} \theta-1\\\\ y=\cos ^{-1}\left\{\sqrt{\frac{2 \cos ^{2} \theta}{2}}\right\}\\\\ y=\cos ^{-1}(\cos \theta)\\\\ \therefore \cos ^{-1}(\cos \theta)=\theta\\\\\end{array}
\begin {array} {ll} Now\\\\ y=\cos ^{-1}(\cos \theta)\\\\ y=\theta\\\\ y=\frac{1}{2} \cos ^{-1} x \ \ \ \ \ \ \ \therefore \cos ^{-1}(\cos \theta)=\theta \quad if \theta \varepsilon[0, \pi] \end{array}
Differentiating with respect to x, we get
\begin {array} {ll} \frac{\mathrm{dy}}{\mathrm{dx}} \Rightarrow \frac{1}{2}\left(\frac{-1}{\sqrt{1-\mathrm{x}^{2}}}\right) \end{array}
As we know,
\begin {array} {ll} \frac{\mathrm{d}}{\mathrm{dx}} \ (constants) =0 \\\\ \frac{d}{d x}\left(\cos ^{-1} x\right)=\frac{-1}{\sqrt{1-x^{2}}} \end{array}
Hence, final answer is \begin {array} {ll} \frac{1}{2}\left(\frac{-1}{\sqrt{1-x^{2}}}\right) \end{array}

Differentiation exercise 10.3 question 3

Answer : -\frac{-1}{2 \sqrt{1-x^{2}}}
Hint:
Use substitution method to differentiate this function
Given:
\sin ^{-1}\left\{\sqrt{ \left.\frac{1-x}{2}\right\}}\right\}, 0<x<1
Solution:
\begin{array}{l} \operatorname{Let} y=\sin ^{-1}\left\{\sqrt{\frac{1-x}{2}}\right\}\\\\ \end{array}
\begin{array}{l} \text { let } x =\cos 2 \theta \\\\ \left[\theta=\frac{1}{2} \cos ^{-1} x\right] \ \ - (1) \\ \end{array}
\begin{array}{l} \therefore y=\sin ^{-1}\left\{\sqrt{\frac{1-\cos 2 \theta}{2}}\right\} \\\\ =\sin ^{-1}\left\{\sqrt{\frac{2 \sin ^{2} \theta}{2}}\right\} \\\\ y =\sin ^{-1}\left\{\sqrt{\sin ^{2} \theta}\right\} \ \ \ \ \left[\because 1-\cos 2 \theta=2 \sin ^{2} \theta\right] \\\\ =\sin ^{-1}(\sin \theta) \\\\ y =\theta=\frac{1}{2} \cos ^{-1} x[\text { using (i)] } \end{array}
Now differentiating y w.r.t x then

\begin{array}{l} \frac{d y}{d x}=\frac{1}{2} \frac{d\left(\cos ^{-1} x\right)}{d x} \\\\ \quad=\frac{1}{2} \cdot \frac{-1}{\sqrt{1-x^{2}}} \\\\ \quad=\frac{-1}{2 \sqrt{1-x^{2}}} \quad\left[\because \frac{d}{d x} \cos ^{-1} x=\frac{-1}{\sqrt{1-x^{2}}}\right] \\\\ \therefore \frac{d y}{d x}=\frac{-1}{2 \sqrt{1-x^{2}}} \end{array}

Differentiation exercise 10.3 question 4

Answer :
\frac{d y}{d x}=-\frac{1}{\sqrt{1-x^{2}}}
Hint:
\frac{d}{d x}\left(x^{n}\right)=n x^{n-1} ; \frac{d}{d x} (constant) = 0
Given:
\sin ^{-1}\left\{\sqrt{1-\mathrm{x}^{2}}\right\}, 0<\mathrm{x}<1
Solution:
\begin {array}{l} Let \ \ x=\cos \theta\\\\ \theta=\cos ^{-1} x\\\\ y=\sin ^{-1}\left\{\sqrt{ \left.1-\cos ^{2} \theta\right\}}\right.\\\\ \therefore \cos ^{2} \theta+\sin ^{2} \theta=1\\\\ y=\sin ^{-1}\left\{\sqrt{\sin ^{2} \theta}\right\}\\\\ \mathrm{y}=\sin ^{-1}\{\sin \theta\} \end{}
Considering the limits,
\begin {array}{l} 0<\cos \theta<1 \\\\ 0<\theta<\frac{\pi}{2} \ \ \ \ \ \ \ \ \ \ \left\{\cos \frac{1}{2}=1\right\}\\\\ Now, y=\sin ^{-1}(\sin \theta)\\\\ \mathrm{y}=\theta\\\\ \left\{\sin ^{-1}(\sin \theta)=\theta\right\}\\\\ if \theta \varepsilon\left[\frac{-\pi}{2}, \frac{\pi}{2}\right] \\\\ y=\cos ^{-1} x \end{}
differentiating with respects to x, we get
\begin {array}{l} \frac{d y}{d x}=\frac{\mathrm{d} (\cos^{-1}x)}{\mathrm{d} x}\\\\ \therefore \frac{\mathrm{d}}{\mathrm{dx}}\left(\cos ^{-1} \mathrm{x}\right) \Rightarrow \frac{-1}{\sqrt{1-\mathrm{x}^{2}}}\\\\ \frac{\mathrm{d} y}{\mathrm{dx}}=\frac{-1}{\sqrt{1-\mathrm{x}^{2}}} \end{}

Differentiation exercise 10.3 question 6


Answer :\frac{d y}{d x}=\frac{a}{a^{2}+x^{2}}
Hint:

Given:
\sin ^{-1}\left\{\frac{\mathrm{x}}{\sqrt{\mathrm{x}^{2}+\mathrm{a}^{2}}}\right\}
Solution:
\begin {array} {ll} Let \ y=\sin ^{-1}\left\{-\frac{x}{\sqrt{x^{2}+a^{2}}}\right\}\\\\ Let \ \mathrm{x}=\operatorname{atan} \theta\\\\ Now,\\ \mathrm{y}=\sin ^{-1}\left\{\frac{\operatorname{atan} \theta}{\sqrt{a^{2} \tan ^{2} \theta+a^{2}}}\right\}\\\\ \mathrm{y}=\sin ^{-1}\left\{\frac{\text { atsan } \theta}{\sqrt{a^{2}\left(\tan ^{2} \theta+1\right)}}\right\}\\\\\ \mathrm{y}=\sin ^{-1}\left\{\frac{\operatorname{atan} \theta}{\mathrm{a}\left(\tan ^{2} \theta+1\right)}\right\}\\\\ \left.\mathrm{y}=\sin ^{-1} \int \frac{\operatorname{atan} \theta}{\mathrm{a} \sqrt{\sec ^{2} \theta}}\right\} \end{array}
\begin{array}{l} \text { Using }:\left\{\tan \theta=\frac{\sin \theta}{\cos \theta}, \cos \theta=\frac{1}{\sec \theta}\right\}\\\\ \mathrm{y}=\sin ^{-1}\{\sin \theta\}\\\\ \mathrm{y}=\theta \quad \ \ \ \ \ \ \ \ \ \therefore\left\{\sin ^{-1} \theta(\sin \theta)=\theta\right\} \quad \text { if } \theta \varepsilon\left[\frac{-\pi}{2}, \frac{\mathrm{\pi}}{2}\right]\\\\ \mathrm{x}=\operatorname{atan} \theta\\\\ \mathrm{x}=\operatorname{atan} \theta\\\\ \theta=\tan ^{-1}\left(\frac{x}{a}\right)\\\\ y=\tan ^{-1}\left(\frac{x}{a}\right)\\\\ \end{array}
differentiating with respects to x, we get
\begin{array}{l} \frac{d y}{d x}=\frac{d}{d x}\left(\tan ^{-1}\left(\frac{x}{a}\right)\right) \\\\ \frac{\partial}{\partial x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}} \\\\ \frac{d y}{d x}=\left(\frac{1}{1+\left(\frac{x}{a}\right)^{2}}\right) \times \frac{1}{a} \\\\ \end{array}
\begin{array}{l} \frac{d y}{d x}=\left(\frac{1}{1+\frac{x^{2}}{a^{2}}}\right) \times \frac{1}{a} \\\\ \frac{d y}{d x}=\left(\frac{1}{\frac{a^{2}+x^{2}}{a^2}}\right) \times \frac{1}{a} \\\\ \frac{d y}{d x}=\frac{a^{2}}{a^{2}+x^{2}} \times \frac{1}{a} \\\\ \frac{d y}{d x}=\frac{a}{a^{2}+x^{2}} \end{array}

Differentiation exercise 10.3 question 7

Answer:
\frac{d y}{d x}=\frac{2}{\sqrt{1-x^{2}}}
Hint:
\frac{\mathrm{d}}{\mathrm{dx}}( Constant )=0 ; \frac{\partial}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}-\mathbf{1}}
Given:
\sin ^{-1}\left(2 x^{2}-1\right), 0<x<1
Solution:
\begin {array}{l} Let,\\ y=\sin ^{-1}\left(2 x^{2}-1\right)\\\\ Let \\ \mathrm{x}=\cos \theta\\\\ Now,\\ y=\sin ^{-1}\left\{2 \cos ^{2} \theta-1\right\}\\\\ Using\\\\ 2 \cos ^{2} \theta-1=\cos 2 \theta\\\\ y=\sin ^{-1}(\cos 2 \theta)\\\\ y=\sin ^{-1}\left\{\sin \left(\frac{n}{2}-2 \theta\right)\right\} \end{}
As we know,
\sin \left(\frac{n}{2}-\theta\right)=\cos \theta
Considering the limits, 0<\mathrm{x}<1
\begin {array}{l} 0<\cos \theta<1\\\\ 0<\theta<\frac{n}{2} \ \ \ \ \ \ \left\{\cos \frac{\pi}{2}=0, \cos 0=1\right\}\\\\ 0>-2 \theta>-\pi\\\\ \frac{n}{2}>\frac{n}{2}-2 \theta>-\frac{\pi}{2}\\\\ \text { Now, } \mathrm{y}=\sin ^{-1}\left\{\sin \left(\frac{\mathrm{n}-20}{2}\right)\right\}\\\\ \mathrm{y}=\frac{\mathrm{n}}{2}-2 \theta \ \ \ \ \ \ \ \ \ \left\{\sin ^{-1}(\sin \theta)=\theta\right\} \text { if } \theta \in\left[-\frac{n}{2}, \frac{n}{2}\right]\\\\ \therefore \mathrm{x}=\cos \theta, \theta=\cos ^{-1} \mathrm{x}\\\\ y=\frac{n}{2}-2 \cos ^{-1} x \end{}
Differentiating with respect ts? x, weget
\frac{d y}{d x}=\frac{d}{\partial x}\left(\frac{n}{2}-2 \cos ^{-1} x\right)
As we know
\begin {array}{l} \frac{d}{d x}(constant)=0, \frac{\partial}{d x}\left(\cos ^{-1} x\right)=\frac{-1}{\sqrt{1-x^{2}}}\\\\ \frac{\mathrm{dy}}{\mathrm{dx}}=0-2\left(-\frac{1}{\sqrt{1-\mathrm{x}^{2}}}\right)\\\\ \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{2}{\sqrt{1-\mathrm{x}^{2}}} \end{}

Differentiation exercise 10.3 question 8

Answer :\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-2}{\sqrt{1-\mathrm{x}^{2}}}

Hint:
\frac{\partial}{\mathrm{d} \mathrm{x}}( Constant )=0 ; \frac{\partial}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}-\mathbf{1}}

Given:
\sin ^{-1}\left(1-2 x^{2}\right), 0<x<1
Solution:
\begin {array} {ll}Let \ y=\sin ^{-1}\left\{1-2 x^{2}\right\}\\\\ Let \ x=\sin \theta\\\\ Then,\\ 0=\sin ^{-1} x\\\\ y=\sin ^{-1}\left\{-2 \sin ^{2} \theta\right\}\\\\ Using,\\ 1=2 \sin ^{2} \theta=\cos 2 \theta\\\\ \mathrm{y}=\sin ^{-1}\{\cos 2 \theta\}\\\\ \mathrm{y}=\sin ^{-1}\left\{\sin \left(\frac{\mathrm{n}}{2}-2 \theta\right)\right\} \end{}
As we know,
\begin {array} {ll}\sin \left(\frac{n-\theta}{2}-\theta\right)=\cos \theta \end{}
Considering the limits,
\begin {array} {ll}0<x<1\\\\ 0<\sin \theta<1\\\\ 0<\theta<\frac{n}{2}\ \ \ \ \ \ \ \left\{\sin \frac{1}{2}=1, \sin \theta=0\right\}\\\\ 0 \angle 2 \theta=\pi\\\\ 0>-2 \theta>-\pi\\\\ \frac{1}{2}>\frac{\pi}{2}-2 \theta>-\frac{n}{2}\\\\ \end{}
Now,
\begin {array} {ll}\mathrm{y}=\sin ^{-1}\left\{\sin \left(\frac{\mathrm{n}}{2}-2 \theta\right)\right\} \\\\ y=\frac{n}{2}-2 \theta \\\\ y=\frac{n}{2}=2 \sin ^{-1} x \end{}
Differentiating with respect to x,
\begin{array}{l} \frac{d y}{d x}=\frac{d}{d x}\left(\frac{n}{2}-2 \sin ^{-1} x\right) \\\\ \text { As we know } \\\\ \frac{d}{d x}(\text { constant })=0 \\\\ \frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}} \\\\ \frac{d y}{d x}=0-2 \frac{1}{\sqrt{1-x^{2}}} \\\\ \frac{d y}{d x}=\frac{-2}{\sqrt{1-x^{2}}} \end{array}

Differentiation exercise 10.3 question 9

Answer :

\frac{d y}{d x}=\frac{-a}{a^{2}+x^{2}}
Hint:
\frac{\mathrm{d}}{\mathrm{d} \mathrm{x}}(Constant )=0 \frac{d}{dx}\left(x^{n}\right)=n x^{n-1}
Given:
\cos ^{-1}\left\{\frac{x}{\sqrt{x^{2}+a^{2}}}\right\}
Solution:
Let,\\\\
\mathrm{y}=\cos ^{-1}\left\{\frac{\mathrm{x}}{\sqrt{\mathrm{x}^{2}+\mathrm{a}^{2}}}\right)\\\\
Let\\\\
\mathrm{x}=\operatorname{acot} \theta\\\\
\theta=\cot ^{-1}\left(\frac{x}{a}\right)\\\\
\begin{array}{l} \text { Now }\\ y=\cos ^{-1}\left\{\frac{\operatorname{acot} \theta}{\sqrt{a^{2} \cot ^{2} \theta+a^{2}}}\right\}\\\\ y=\cos ^{-1}\left\{\frac{\operatorname{acot} \theta}{\sqrt{a^{2}\left(\cot ^{2} \theta+1\right)}}\right\}\\\\ y=\cos ^{-1}\left\{\frac{\operatorname{acot} \theta}{a \sqrt{\cot ^{2} \theta+1}}\right\}\\\\ \text { Using } 1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta\\\\ y=\cos ^{-1}\left\{\frac{\operatorname{acot} \theta}{a \sqrt{\operatorname{cosec}^{2} \theta}}\right\}\\\\ \mathrm{y}=\cos ^{-1}\left\{\frac{\operatorname{acot} \theta}{\mathrm{acosec} \theta}\right\}\\\\ \mathrm{y}=\cos ^{-1}\left\{\frac{\cot \theta}{\operatorname{cosec} \theta}\right\} \end{array}
As we Know,
\begin{array}{l} \cot \theta=\frac{\cos \theta}{\sin \theta} \text { , }\\\\ \operatorname{cosec} \theta=\frac{1}{\sin \theta}\\\\ \mathrm{y}=\cos ^{-1}\left\{\frac{\cos \theta}{\sin \theta} \times \sin \theta\right\}\\\\ y=\cos ^{-1}(\cos \theta)\\\\ \mathrm{y}=\theta\\\\ \mathrm{y}=\cot ^{-1}\left(\frac{\mathrm{x}}{\mathrm{a}}\right)\\\\ \text { Differentiating with respect to } x \text { We get }\\\\ \frac{d y}{d x}=\frac{d}{d x}\left(\cot ^{-1}\left(\frac{x}{a}\right)\right)\\\\ \therefore \frac{\partial}{d x}\left(\cot ^{-1} x\right)=\frac{-1}{1+x^{2}}\\\\ \frac{\mathrm{d} y}{\mathrm{dx}}=\frac{-1}{1+\left(\frac{\mathrm{x}}{\mathrm{a}}\right)^{2}} \times \frac{1}{\mathrm{a}} \end{array}
\begin{array}{l} \frac{d y}{d x}=\frac{-1}{1+\frac{x^{2}}{a^{2}}} \times \frac{1}{a} \\\\ \frac{d y}{d x}=\frac{-1}{\frac{a^{2}+x^{2}}{a^{2}}} \times \frac{1}{a} \\\\ \frac{d y}{d x}=\frac{a^{2}}{a^{2}+x^{2}} \times \frac{1}{a} \\\\ \frac{d y}{d x}=\frac{-a}{a^{2}+x^{2}} \end{array}

Differentiation Exercise 10.3 Question 10

Answer: \frac{d y}{d x}=1
Hint:
\frac{\mathrm{d}}{\mathrm{d} \mathrm{x}} \text { (constants) }=0
\frac{d}{d\mathrm{x}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx}^{\mathrm{n}-1}
Given:
\sin ^{-1}\left\{\frac{\sin x+\cos x}{\sqrt{2}}\right\}
\frac{-3 \mathrm{\pi}}{4}<\mathrm{x}<\frac{\pi}{4}
Soluton:
Let,y=\sin ^{-1}\left\{\frac{\sin x+\cos x}{\sqrt{2}}\right\}
Now,
\mathrm{y}=\sin ^{-1}\left\{\sin \mathrm{x} \frac{1}{\sqrt{2}}+\cos \mathrm{x} \frac{1}{\sqrt{2}}\right\}
\mathrm{y}=\sin ^{-1}\left\{\sin \mathrm{x} \cos \left(\frac{\mathrm{\pi}}{4}\right)+\cos \mathrm{xsin}\left(\frac{\mathrm{\pi}}{4}\right)\right\}
\sin \left(\frac{\mathrm{\pi}}{4}\right)=\frac{1}{\sqrt{2}} \&
\cos \left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}
Using,
\sin (A+B)=\sin A \cos B+\cos A \sin B
\mathrm{y}=\sin ^{-1}\left\{\sin \left(\mathrm{x}+\frac{\pi}{4}\right)\right\}
Considering the limits,
-\frac{3 \pi}{4}<x<\frac{\pi}{4}
-\frac{3 \pi}{4}+\frac{\pi}{4}<x+\frac{\pi}{4}<\frac{\pi}{4}+\frac{1}{4}
-\frac{\mathrm{\pi}}{2}<\mathrm{x}+\frac{\mathrm{\pi}}{4}<\frac{\pi}{2}
Now,
\mathrm{y}=\sin ^{-1}\left\{\sin \left(\mathrm{x}+\frac{\mathrm{\pi}}{4}\right)\right\}
y=x+\frac{\pi}{4} \left\{\sin ^{-1}(\sin \theta)=\theta, \text { if } \theta \varepsilon\left[\frac{\pi}{2}, \frac{\pi}{2}\right]\right\}
Differentiating with respect to x , We get
\frac{d y}{d x}=1+0
\frac{\mathrm{d}}{\mathrm{dx}} \text { (constant) }=0
\frac{d y}{d x}=1

Differentiation Exercise 10.3 Question 11

Answer: \frac{\mathrm{d} y}{\mathrm{~d} \mathrm{x}}=-1
Hint:
\frac{\mathrm{d}}{\mathrm{dx}} \text { (constants) }=0
\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}
Given:
\cos ^{-1}\left\{\frac{\cos x+\sin x}{\sqrt{2}}\right\}
-\frac{\mathrm{\pi}}{4}<\mathrm{x}<\frac{\mathrm{\pi}}{4}
Solution:
Let,
y=\cos ^{-1}\left\{\frac{\cos x+\sin x}{\sqrt{2}}\right\}
Now
\mathrm{y}=\cos ^{-1}\left\{\cos \mathrm{x} \frac{1}{\sqrt{2}}+\sin \mathrm{x} \frac{1}{\sqrt{2}}\right\}
y=\cos ^{-1}\left\{\cos x \cos \left(\frac{\pi}{4}\right)+\sin x \sin \left(\frac{\pi}{4}\right)\right\}
\sin \left(\frac{\mathrm{\pi}}{4}\right)=\frac{1}{\sqrt{2}} \&
\cos \left(\frac{\mathrm{\pi}}{4}\right)=\frac{1}{\sqrt{2}}
Using,
\cos (A-B)=\cos A \cos B+\sin A \sin B
y=\cos ^{-1}\left\{\cos \left(x-\frac{\pi}{4}\right)\right\}
Considering the limits,

\frac{-\pi}{4}<\mathrm{x}<\frac{\mathrm{\pi}}{4}
-\frac{\pi}{4}-\frac{\pi}{4}<x-\frac{\pi}{4}<\frac{\pi}{4}-\frac{\pi}{4}
-\frac{2 \pi}{4}<x-\frac{\pi}{4}<0
\frac{-\pi}{2}<x-\frac{\pi}{4}<0
Now,
y=\cos ^{-1}\left\{\cos \left(x-\frac{\pi}{4}\right)\right\}
\mathrm{y}=-\left(\mathrm{x}-\frac{\mathrm{\pi}}{4}\right) \left\{\begin{array}{l} \cos ^{-1}(\cos \theta)=-\theta \\ \text { if } \theta \in[-\pi, 0] \end{array}\right\}
Differentiating with respect to x , We get

\frac{d y}{d x}=-1

\frac{\mathrm{d}}{\mathrm{d} \mathrm{x}}(\text { constants })=0

Differentiation Exercise 10.3 Question 12 (i)

Answer:
\frac{dy}{dx}=\frac{1}{2\sqrt{1-x^{2}}}
Hint:
\frac{d}{dx}(constant)=0
\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}
Given:
\tan ^{-1}\left \{ \frac{x}{1+\sqrt{1-x^{2}}} \right \}
-1< x< 1
Solution:
Let,
\begin{aligned} &\mathrm{y}=\tan ^{-1}\left\{\frac{\mathrm{x}}{1+\sqrt{1-\mathrm{x}^{2}}}\right\} \\ &\mathrm{x}=\sin \theta \\ &\theta=\sin ^{-1} \mathrm{x} \end{aligned}
Now,y=\tan ^{-1}\left \{ \frac{\sin \theta }{1+\sqrt{1\sin ^{2}\theta }} \right \}
Using \sin ^{2}\theta +\cos ^{2}\theta =1
\begin{aligned} &\mathrm{y}=\tan ^{-1}\left\{\frac{\sin \theta}{1+\sqrt{\cos ^{2} \theta}}\right\} \\ &\mathrm{y}=\operatorname{tran}^{-1}\left\{\frac{\sin \theta}{1+\cos \theta}\right\} \\ &\text { Using } 2 \cos ^{2} \theta=1+\cos 2 \theta \\ &2 \sin \theta \cos \theta=\sin 2 \theta \end{aligned}\begin{aligned} &\mathrm{y}=\tan ^{-1}\left\{\frac{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{2 \cos ^{2} \frac{\theta}{2}}\right\} \\ &\mathrm{y}=\tan ^{-1}\left\{\frac{\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}}\right\} \\ &\tan \theta=\frac{\sin \theta}{\cos \theta} \\ &\mathrm{y}=\tan ^{-1}\left\{\tan \frac{\theta}{2}\right\} \end{aligned}

Considering the limits,

\begin{aligned} &-1<x<1 \\ &-1<\sin \theta<1 \\ &-\frac{\pi}{2}<\frac{\theta}{2}<\frac{\pi}{2} \\ &\frac{-\pi}{4}<\frac{\theta}{2}<\frac{\pi}{4} \end{aligned}

Now,

\begin{aligned} &\mathrm{y}=\tan ^{-1}\left\{\tan \frac{\theta}{2}\right\} \\ &\mathrm{y}=\frac{\theta}{2} \end{aligned} \tan ^{-1}(\tan \theta)=0 \text { if } \theta \in\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]

y=\frac{1}{2}\sin ^{-1}x

Differentiating with respect to x , We get

\begin{aligned} &\frac{d y}{d x}=-1 \\ &\frac{d}{d x}(\text { constants })=0 \\ &\frac{d y}{d x}=\frac{1}{2}\left(\frac{1}{2} \frac{d}{d x}\left(\sin ^{-1} x\right)\right. \\ &\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}} \\ &\frac{d y}{d x}=\frac{1}{2} \frac{1}{\sqrt{1-x^{2}}} \\ &\frac{d y}{d x}=\frac{1}{2 \sqrt{1-x^{2}}} \end{aligned}


-1< x< 1

Differentiation Exercise 10.3 Question 12 (ii)

Answer:
\frac{dy}{dx}=\frac{1}{2}
Hint:
\cos 2x=2\cos ^{2}x-1
\tan \left ( \frac{\pi }{2} -\theta \right )=\cot \theta
Given:
\tan ^{-1}\left \{ \frac{1+\cos x}{sinx} \right \}
Solution:
\begin{aligned} &y=\tan ^{-1}\left\{\frac{1+\cos x}{\sin x}\right\} \\ &y=\tan ^{-1}\left\{\frac{2 \cos ^{2} \frac{x}{2}}{2 \sin \frac{x}{2} \cos \frac{x}{2}}\right\} \\ &y=\tan ^{-1}\left(\cot \frac{x}{2}\right) \\ &y=\tan ^{-1}\left(\tan \left(\frac{\pi}{2}-\frac{x}{2}\right)\right) \end{aligned} \left [ \left ( \frac{\pi }{2} -\theta \right )=\cot \theta \right ]
y=\frac{x}{2}
Differentiating w.r.t x
\frac{dy}{dx}=\frac{1}{2}

Differentiation Exercise 10.3 Question 13

Answer:\frac{dy}{dx}=\frac{1}{2\sqrt{a^{2}-x^{2}}}
Hint:
\begin{aligned} &\frac{\mathrm{d}}{\mathrm{dx}}(\text { constants })=0 \\ &\frac{d}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}-1} \end{aligned}
Given:
\begin{aligned} &\tan ^{-1}\left\{\frac{\mathrm{x}}{\mathrm{a}+\sqrt{\mathrm{a}^{2}-\mathrm{x}^{2}}}\right\} \\ &-\mathrm{a}<\mathrm{x}<-\mathrm{a} \end{aligned}
Solution:
Let,
x=a\sin \theta
\theta =\sin ^{-1}\frac{x}{a}
Now,
\begin{aligned} &y=\tan ^{-1}\left\{\frac{\operatorname{asin} \theta}{a+\sqrt{a^{2}-a^{2} \sin ^{2} \theta}}\right\} \\ &y=\tan ^{-1}\left\{\frac{\operatorname{asin} \theta}{a+a \sqrt{1-\sin ^{2} \theta}}\right\} \end{aligned}
Using
\begin{aligned} &\cos ^{2} \theta+\sin ^{2} \theta=1 \\ &y=\tan ^{-1}\left\{\frac{\operatorname{asin} \theta}{a+a \sqrt{\cos \theta}}\right\} \\ &y=\tan ^{-1}\left\{\frac{\operatorname{asin} \theta}{a+\operatorname{acos} \theta}\right\} \\ &y=\tan ^{-1}\left\{\frac{\operatorname{asin} \theta}{a(1+\operatorname{los} \theta)}\right\} \\ &U \operatorname{sing} 2 \cos ^{2} \theta=1+\cos \theta \\ &y=\tan ^{-1}\left\{\frac{\sin \theta}{1+\cos \theta}\right\} \text { and } \\ &2 \sin \theta \cos \theta=\sin 2 \theta \\ &y=\tan ^{-1}\left\{\frac{\sin \theta}{1+\cos \theta}\right\} \end{aligned}
\begin{aligned} &y=\tan ^{-1}\left\{\frac{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{2 \cos ^{2} \frac{\theta}{2}}\right\} \\ &y=\tan ^{-1}\left\{\frac{\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}}\right\} \\ &y=\tan ^{-1}\left(\tan \frac{\theta}{2}\right) \end{aligned} \therefore \frac{\sin \theta }{\cos \theta }=\tan \theta
Considering the limit

\begin{aligned} &-a<x<a \\ &-1<\sin \theta<1 \\ &\frac{-\pi}{2}<\theta<\frac{\pi}{2} \\ &-\frac{\pi}{4}<\frac{\theta}{2}<\frac{\pi}{4} \end{aligned} \left \{ \sin \frac{\pi}{2}=1 \right \}
Now,\begin{aligned} &y==\tan ^{-1}\left\{\tan \frac{\theta}{2}\right\} \\ &y=\frac{\theta}{2} \\ &y=\frac{1}{2} \sin ^{-1} \frac{x}{a} \end{aligned}

Differentiating with respect to x , We get

\begin{aligned} &\frac{d y}{d x}=\frac{d}{d x}\left(\frac{1}{2} \sin ^{-1} \frac{x}{a}\right) \\ &\therefore \frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}} \\ &\frac{d y}{d x}=\frac{1}{2} \frac{1}{\sqrt{1-(x)^{2}}} \times \frac{1}{a} \\ &\Rightarrow \frac{1}{2} \times \frac{1}{\sqrt{1-\frac{x^{2}}{a^{2}}}} \times \frac{1}{a} \\ &\Rightarrow \frac{d y}{d x}=\frac{1}{2} \times \frac{1}{\sqrt{\frac{a^{2}-x^{2}}{a^{2}}}} \times \frac{1}{a} \\ &\frac{d y}{d x}=\frac{1}{2 \sqrt{a^{2}-x^{2}}} \end{aligned}

Differentiation Exercise 10.3 Question 14


Answer:\frac{dy}{dx}=\frac{1}{\sqrt{1-x^{2}}}
Hint:
\begin{aligned} &\frac{\mathrm{d}}{\mathrm{dx}}(\text { constants })=0 \\ &\frac{d}{d x}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx}^{\mathrm{n}-1} \end{aligned}
Given:
\begin{aligned} &\sin ^{-1}\left\{\frac{\mathrm{x}+\sqrt{1-\mathrm{x}^{2}}}{\sqrt{2}}\right\} \\ &-1<\mathrm{x}<1 \end{aligned}
Solution:
Let
y=\sin ^{-1}\left\{\frac{\mathrm{x}+\sqrt{1-\mathrm{x}^{2}}}{\sqrt{2}}\right\}
Let
x=\sin \theta
\theta =\sin ^{-1}x
Now,
\mathrm{y}=\sin ^{-1}\left\{\frac{\sin \theta+\sqrt{1-\sin ^{2} \theta}}{\sqrt{2}}\right\}
Using
\begin{aligned} &\sin ^{2} \theta+\cos ^{2} \theta=1 \\ &y=\sin ^{-1}\left\{\frac{\sin \theta+\sqrt{\cos ^{2} \theta}}{\sqrt{2}}\right] \\ &y=\sin ^{-1}\left\{\frac{\sin \theta+\cos \theta}{\sqrt{2}}\right\} \end{aligned}
Now,
\begin{aligned} &\mathrm{y}=\sin ^{-1}\left\{\sin \theta \frac{1}{\sqrt{2}}+\cos \theta \frac{1}{\sqrt{2}}\right\} \\ &\mathrm{y}=\sin ^{-1}\left\{\sin \theta \cos \left(\frac{\mathrm{\pi}}{4}\right)+\cos \theta \sin \left(\frac{\mathrm{\pi}}{4}\right)\right\} \\ &\sin \left(\frac{\mathrm{\pi}}{4}\right)=\frac{1}{\sqrt{2}} \& \cos \left(\frac{\mathrm{\pi}}{4}\right) \end{aligned}
y=\sin ^{-1}\left\{\sin \left(\theta+\frac{\pi}{4}\right)\right\}

Considering the limits,

\begin{aligned} &-1<x<1 \\ &-1<\sin \theta<1 \\ &-\frac{\pi}{2}<\theta<\frac{\pi}{2} \end{aligned} \left \{ \sin \frac{\pi}{2}=1 \right \}

\begin{aligned} &\frac{-\pi}{2}+\frac{\pi}{4}<\theta+\frac{\pi}{4}<\frac{\pi}{2}+\frac{\pi}{4} \\ &-\frac{\pi}{4}<\theta+\frac{\pi}{4}<\frac{3 \pi}{4} \end{aligned}

Now,

\begin{aligned} &\mathrm{y}=\sin ^{-1}\left\{\sin \left(\theta+\frac{\mathrm{\pi}}{4}\right)\right\} \\ &\mathrm{y}=\theta+\frac{\mathrm{\pi}}{4} \\ &\mathrm{y}=\sin ^{-1} \mathrm{x}+\frac{\mathrm{\pi}}{4} \end{aligned} sin^{-}\left ( \sin \theta \right )=\theta if\theta \varepsilon \left [ \frac{-\pi}{2} ,\frac{\pi}{2}\right ]Differentiating with respect to x , We get
\begin{aligned} &\frac{\mathrm{d}}{\mathrm{dx}}\left(\sin ^{-1} \mathrm{x}\right)=\frac{1}{\sqrt{1-\mathrm{x}^{2}}} \\ &\frac{\mathrm{d}}{d \mathrm{x}} \text { (constant) }=0 \\ &\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{\sqrt{1-\mathrm{x}^{2}}} \end{aligned}

Differentiation Exercise 10.3 Question 15

Answer:\frac{dy}{dx}=\frac{-1}{\sqrt{1-x^{2}}}
Hint:
\begin{aligned} &\frac{\mathrm{d}}{\mathrm{dx}}(\text { constants })=0 \\ &\frac{d}{d \mathrm{x}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}-1} \end{aligned}
Given:
\begin{aligned} &\cos ^{-1}\left\{\frac{x+\sqrt{1-x^{2}}}{\sqrt{2}}\right\} \\ &-1<x<1 \end{aligned}
Solution:
y=\cos ^{-1}\left\{\frac{x+\sqrt{1-x^{2}}}{\sqrt{2}}\right\} \\
Let,
x=\sin \theta
\theta =\sin ^{-1}x
\begin{aligned} &\mathrm{y}=\cos ^{-1}\left\{\frac{\sin \theta+\sqrt{1-\sin ^{2} \theta}}{\sqrt{2}}\right\} \\ &\mathrm{y}=\cos ^{-1}\left\{\frac{\sin \theta+\sqrt{\cos ^{2} \theta}}{\sqrt{2}}\right\} \\ &\text { Using } \sin ^{2} \theta+\cos ^{2} \theta=1 \\ &\mathrm{y}=\cos ^{-1}\left\{\frac{\sin \theta+\cos \theta}{\sqrt{2}}\right\} \\ &\mathrm{y}=\cos ^{-1}\left\{\sin \theta \frac{1}{\sqrt{2}}+\cos \theta \frac{1}{\sqrt{2}}\right\} \\ &\mathrm{y}=\cos ^{-1}\left\{\sin \theta \sin \left(\frac{\mathrm{\pi}}{4}\right)++\cos \theta \cos \left(\frac{\mathrm{\pi}}{4}\right)\right\} \end{aligned}
\therefore \sin \left ( \frac{\pi}{4} \right )=\frac{1}{\sqrt{2}}
\cos \left ( \frac{\pi}{4} \right )=\frac{1}{\sqrt{2}}
Using,
\begin{aligned} &\cos (A-B)=\cos A \cos B+\sin A \sin B \\ &y=\cos ^{-1}\left\{\cos \left(\theta-\frac{\pi}{4}\right)\right\} \end{aligned}
Considering the limits,
\begin{aligned} &-1<x<1 \\ &-1<\sin \theta<1 \\ &-\frac{\pi}{2}<\theta<\frac{\pi}{2} \\ &-\frac{\pi}{2}-\frac{\pi}{4}<\theta-\frac{\pi}{4}<\frac{1}{2}-\frac{\pi}{4} \\ &-\frac{3 \pi}{4}<8-\frac{\pi}{4}<\frac{\pi}{4} \end{aligned}
Now,
\begin{aligned} &y=\cos ^{-1}\left\{\cos \left(\theta-\frac{\pi}{4}\right)\right\} \\ &y=-\left(\theta-\frac{\pi}{4}\right) \end{aligned} \left\{\therefore \cos ^{-1}(\cos \theta)=-0 \text { if } \theta \varepsilon[-\pi, 0]\right\}
\begin{aligned} &y=-\left(\theta-\frac{\pi}{4}\right) \\ &y=-\sin ^{-1} x+\frac{\pi}{4} \end{aligned} \left [ since\: x=\sin \theta \right ]
Differentiating with respect to x , We get
\begin{aligned} &\frac{d y}{d x}=\frac{d}{d x}\left(-\sin ^{-1} x+\frac{\pi}{4}\right) \\ &\therefore \frac{d}{d x}(\text { constants })=0 \\ &\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}} \\ &\frac{d y}{d x}=-\frac{1}{\sqrt{1-x^{2}}}+0 \\ &\frac{d y}{d x}=\frac{-1}{\sqrt{1-x^{2}}} \end{aligned}

Differentiation Exercise 10.3 Question 16

Answer: \frac{dy}{dx}=\frac{4}{1+4x^{2}}
Hint:
\begin{aligned} &\frac{d}{d x}(\text { constants })=0 \\ &\frac{d}{d x}\left(x^{n}\right)=n x^{n-1} \end{aligned}
Given:
\begin{aligned} &\tan ^{-1}\left\{\frac{4 x}{1-4 x^{2}}\right\} \\ &\frac{-1}{2}<x<\frac{1}{2} \end{aligned}
Solution:
Let,
y=\tan ^{-1}\left\{\frac{4 x}{1-4 x^{2}}\right\}
Let,
2x=\tan \theta
\theta =\tan ^{-1}2x
y =\tan ^{-1}\left \{ \frac{2\tan \theta }{1-\tan ^{2}\theta } \right \}
Using \tan 2\theta =\frac{2\tan \theta }{1-\tan ^{2}\theta }y=\tan ^{-1}\left ( \tan 2\theta \right )

Considering the limits,

\begin{aligned} &\frac{-1}{2}<x<\frac{1}{2} \\ &-1<2 x<1 \\ &-1<\tan \theta<1 \\ &-\frac{\pi}{4}<\theta<\frac{\pi}{4} \\ &-\frac{\pi}{2}<2 \theta<\frac{\pi}{2} \end{aligned} \left \{ \tan 45^{\circ}=1 \right \}

Now,

y=\tan ^{-1}\left ( \tan 2\theta \right )

y=2\theta

y=2\tan ^{-1}\left ( 2x \right ) \left [ since,2x=\tan \theta \right ]

Differentiating with respect to x , We get

\begin{aligned} &\frac{d y}{d x}=\frac{d}{d x}\left(2 \tan ^{-1} 2 x\right) \\ &\frac{d y}{d x}=2 \times \frac{2}{1+(2 x)^{2}} \\ &\frac{d y}{d x}=\frac{4}{1+4 x^{2}} \end{aligned} \frac{d\left ( tan^{-1}x \right )}{dx}=\frac{1}{1+x^{2}}

Diffrentiation Exercise 10.3 Question 17

Answer: \frac{dy}{dx}=\frac{2^{x+1}log2}{1+4x}
Hint:
\begin{aligned} &\frac{\mathrm{d}}{\mathrm{dx}}(\text { constants })=0 \\ &\frac{d}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}-1} \end{aligned}
Given:
\begin{aligned} &\tan ^{-1}\left[\frac{2^{x+1}}{1-4^{x}}\right] \\ &-\infty<x<0 \end{aligned}
Solution:
y=\tan ^{-1}\left[\frac{2^{x+1}}{1-4^{x}}\right]
Let,
2^{x}=\tan \theta
y=\tan ^{-1}\left \{ \frac{2x2^{x}}{1-\left ( 2x \right )^{2}} \right \}
As we Know
\begin{aligned} &a^{m+n} \rightarrow a^{m} \cdot a^{n} \\ &y=\tan ^{-1}\left\{\frac{2 \tan \theta}{1-\tan ^{2} \theta}\right\} \end{aligned}
Using
\tan 2\theta =\frac{2\tan \theta }{1-\tan ^{2}\theta }y=\tan ^{-1}\left ( \tan 2\theta \right )

Considering the limits,

\begin{aligned} &-\infty<x<0 \\ &2^{-\infty}<2^{x}<2^{0} \\ &0<\tan \theta<1 \\ &0<\frac{\pi}{4} \end{aligned} \left\{2^{0}=1,2^{-\infty}=0\right\}

0< 2\theta < \frac{\pi}{2} \left \{ \tan \frac{\pi}{4} =1\right \}

0< 2\theta < \frac{\pi}{2}

Now

y=\tan ^{-1}\left ( \tan \theta \right )

y==2\theta

y=2\tan ^{-1}\left ( 2^{x} \right ) \left\{\begin{array}{r} \sin c e 2^{x}=\tan \theta \\ \theta=\tan ^{-1}\left(2^{x}\right) \end{array}\right\}

Differentiating with respect to x , We get

\begin{aligned} &\frac{d y}{d x}=\frac{d}{d x}\left(2 \tan ^{-1}\left(2^{x}\right)\right) \\ &\frac{d y}{d x}=2 \times \frac{2^{x} \log 2}{1+\left(2^{x}\right)^{2}} \\ &\frac{d y}{d x}=\frac{2^{x+1} \log 2}{1+4^{x}} \end{aligned} \begin{gathered} \therefore \frac{\mathrm{d}\left(\tan ^{-1} \mathbf{x}\right)}{\mathrm{dx}}=\frac{1}{1+\mathrm{x}^{2}} \\ \frac{\mathrm{d}}{\mathrm{dx}}\left(2^{\mathrm{x}}\right)=\log 2 \\ \left\{\mathrm{a}^{\mathrm{m}} \cdot \mathbf{a}^{\mathrm{n}} \Rightarrow \mathbf{a}^{\mathrm{m}+\mathrm{h}}\right\} \end{gathered}

Differentiation Exercise 10.3 Question 18

Answer:\frac{d y}{d x}=\frac{2 a^{x} l o g a}{1+a^{2 x}}
Hint:
\frac{d c}{d x}=0;\frac{d}{dx}(x^{n})=nx^{n-1}
Given:
\tan ^{-1}\left\{\frac{2 \mathrm{a}^{x}}{1-\mathrm{a}^{2 x}}\right\}, \mathrm{a}>1,-\infty<\mathrm{x}<0
Solution:
Let
y=\tan ^{-1}\left\{\frac{2 \mathrm{a}^{x}}{1-\mathrm{a}^{2 x}}\right\},
Let,
\begin{aligned} &\begin{aligned} &\mathrm{a}^{\mathrm{x}}=\tan \theta \\ &\mathrm{y}=\tan ^{-1}\left\{\frac{2 \tan \theta}{1-\tan ^{2} \theta}\right\} \\ &\text { Using } \tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta} \\ &\mathrm{y}=\tan ^{-1}(\tan 2 \theta) \end{aligned}\\ &\text { Considering the limits, }\\ &-\infty<\mathrm{x}<0\\ &a^{-\infty}<a^{x}<a^{0} \end{aligned}
0< \tan \theta < 1 \left \{ a^{o} =1\right \}
0< \theta < \frac{\pi}{4} \left \{ \tan \left ( \frac{\pi}{4} \right )=1 \right \}
Now,y=\tan ^{-1}\left ( \tan 2\theta \right )
y=2\theta
y=2\tan ^{-1}\left ( a^{x} \right ) since\: a^{x}=\tan \theta ,\theta =\tan ^{-1}\left ( a^{x} \right )
Differentiating with respect to x, we get
\begin{aligned} &\frac{d y}{d x}=\frac{d}{d x}\left(2 \tan ^{-1}\left(a^{x}\right)\right) \\ &\frac{d y}{d x}=2 \times \frac{a^{x}}{1+\left(a^{x}\right)^{2}} \log a \\ &\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}} \\ &\frac{d y}{d x}=\frac{2 a^{x} \log a}{1+a^{2 x}} \end{aligned}

Differentiation Exercise 10.3 Question 19

Answer:\frac{dy}{dx}=\frac{-1}{2\sqrt{1-x^{2}}}
Hint:
\begin{aligned} &\frac{\mathrm{d}}{\mathrm{dx}}(\text { constants })=0 \\ &\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx}^{\mathrm{n}-1} \end{aligned}
Given:
\sin ^{-1}\left\{\frac{\sqrt{1+x}+\sqrt{1-x}}{2}\right\}, 0<x<1
Solution:
Let
y=\sin ^{-1}\left\{\frac{\sqrt{1+x}+\sqrt{1-x}}{2}\right\}
Let,x=\cos 2\theta
\begin{aligned} &\text { Now, } \sin ^{-1}\left\{\frac{\sqrt{1+\cos 2 \theta}+\sqrt{1-\cos 2 \theta}}{2}\right\} \\ &\text { Using } 1-2 \sin ^{2} \theta=\cos 2 \theta \\ &2 \cos ^{2} \theta-1=\cos 2 \theta \\ &y=\sin ^{-1}\left\{\frac{\sqrt{2 \cos ^{2} \theta}+\sqrt{2 \sin ^{2} \theta}}{2}\right\} \end{aligned}
Now,
\begin{aligned} &\mathrm{y}=\sin ^{-1}\left\{\frac{\sqrt{2} \cos \theta+\sqrt{2} \sin \theta}{2}\right\} \\ &\mathrm{y}=\sin ^{-1}\left\{ \cos \theta \frac{1}{\sqrt{2}}+\sin \theta \frac{1}{\sqrt{2}}\right\} \\ &\mathrm{y}=\sin ^{-1}\left\{\sin \theta \cos \left(\frac{\mathrm{\pi}}{4}\right)+\cos \theta \sin \left(\frac{\mathrm{\pi}}{4}\right)\right\} \\ &\therefore \sin \left(\frac{\mathrm{\pi}}{4}\right)=\frac{1}{\sqrt{2}} \& \cos \left(\frac{\mathrm{\pi}}{4}\right)=\frac{1}{\sqrt{2}} \\ &\mathrm{U} \sin \mathrm{sin}(\mathrm{A}+\mathrm{B})=\sin \mathrm{A} \cos \mathrm{B}+\cos \mathrm{Asin} \mathrm{B} \\ &\mathrm{y}=\sin ^{-1}\left\{\sin \left(\theta+\frac{\mathrm{\pi}}{4}\right)\right\} \end{aligned}
Considering the limits,
\begin{aligned} &0<\mathrm{x}<1 \\ &0<\cos 2 \theta<1 \\ &0<2 \theta<\frac{\mathrm{\pi}}{2} \\ &0<\theta<\frac{\mathrm{\pi}}{4} \\ &0+\frac{\mathrm{\pi}}{4}<\left(\theta+\frac{1}{4}\right)<\frac{\mathrm{\pi}}{2}+\frac{\pi}{4} \\ &\frac{\mathrm{\pi}}{4}<\left(\theta+\frac{\pi}{4}\right)<\frac{\mathrm{\pi}}{2} \end{aligned}
Now,y=\sin ^{-1} \left \{ \sin \left ( \theta +\frac{\pi}{4} \right ) \right \}
y=\theta +\frac{\pi }{4} \sin ^{-1}\left ( \sin \theta \right )=\theta ,\: if\: \theta \varepsilon \left [ -\frac{\pi}{2},\frac{\pi}{2} \right ]
y=\frac{1}{2} \cos ^{-1} x+\frac{\pi}{4} \left \{ since\: x=\cos 2\theta \right \}
\frac{d y}{d x}=\frac{d}{d x}\left(\frac{1}{2} \cos ^{-1} x+\frac{\pi}{4}\right)
\begin{aligned} &\frac{\mathrm{d}}{\mathrm{dx}}(\text { constant })=0 \ \\ &\frac{d}{\mathrm{dx}}\left(\cos ^{-1} \mathrm{x}\right)=\frac{-1}{\sqrt{1-\mathrm{x}^{2}}} \\ &\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2}\left(\frac{-1}{\sqrt{1-\mathrm{x}^{2}}}\right)+0 \\ &\frac{\mathrm{dy}}{\mathrm{dx}} \Rightarrow \frac{-1}{2 \sqrt{1-\mathrm{x}^{2}}} \end{aligned}

Differentiation Exercise 10.3 Question 20

Answer: \frac{dy}{dx}=\frac{a}{2\left ( 1+a^{2}x^{2} \right )}
Hint:
\begin{aligned} &\frac{d}{d \mathrm{x}}(\text { constant })=0 \\ &\frac{d}{d \mathrm{x}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}-1} \end{aligned}
Given:
\begin{aligned} &\tan ^{-1}\left\{\frac{\sqrt{1+a^{2} x^{2}}-1}{a x}\right\}, \\ &x \neq 0 \end{aligned}
Solution:
Let,
y=\tan ^{-1}\left\{\frac{\sqrt{1+a^{2} x^{2}}-1}{a x}\right\}
Let\: ax=\tan \theta
Now
y=\tan ^{-1}\left \{ \frac{\sqrt{1+\tan ^{2}\theta -1}}{\tan \theta } \right \}
Using
\begin{aligned} &\sec ^{2} \theta=1+\tan ^{2} \theta \\ &\mathrm{y}=\tan ^{-1}\left\{\frac{\sqrt{\sec ^{2} \theta}-1}{\tan \theta}\right\} \\ &\mathrm{y}=\tan ^{-1}\left\{\frac{\sec \theta-1}{\tan \theta}\right\} \\ &\mathrm{y}=\tan ^{-1}\left\{\frac{\frac{1}{\cos \theta}-1}{\frac{\sin \theta}{\cos \theta}}\right\} \end{aligned}
\begin{aligned} &\text { Using } \tan \theta=\frac{\sin \theta}{\cos \theta}, \sec \theta=\frac{1}{\cos \theta} \\ &y=\tan ^{-1}\left\{\frac{\frac{1-\cos \theta}{\cos \theta}}{\frac{\sin d}{\cos \theta}}\right\} \\ &y=\tan ^{-1}\left\{\frac{1-\cos \theta}{\cos \theta} \times \frac{\cos \theta}{\sin \theta}\right\} \\ &y=\tan ^{-1}\left\{\frac{1-\cos \theta}{\sin \theta}\right\} \end{aligned}
\begin{aligned} &\text { Using } 2 \sin ^{2} \theta=1-\cos 2 \theta \\ &\text { and } 2 \sin \theta \cos \theta=\sin 2 \theta \\ &y=\tan ^{-1}\left\{\frac{2 \sin ^{2} \theta / 2}{2 \sin \theta / 2 \cos \theta / 2}\right\} \\ &y=\tan ^{-1}\left\{\tan \frac{\theta}{2}\right\} \end{aligned}
y=\frac{\theta }{2}
y=\frac{1}{2}tan^{-1}ax
Differentiating with respect to x , We get
\begin{aligned} &\frac{dy}{d x}=\frac{d}{d x}\left(\frac{1}{2} \operatorname{tan}^{-1} x\right)\\ &\text { Using }\\ &\frac{d}{dx}\left(\operatorname{tan}^{-1} x\right) \Rightarrow \frac{1}{1+x^{2}}\\ &\frac{d y}{d x}=\frac{1}{2} \times \frac{1}{1+(a x)^{2}} \times \frac{1}{a}\\ &\frac{d y}{d x}=\frac{a}{2\left(1+a^{2} x^{2}\right)} \end{aligned}

Differentiation Exercise 10.3 Question 21

Answer:\frac{dy}{dx}=\frac{1}{2}
Hint:
\frac{dy}{dx}\left ( x^{n} \right )=nx^{n-1}
\frac{dy}{dx}\left (constant\right )=0
Given:
\tan ^{-1}\left\{\frac{\sin x}{1+\cos x}\right\},-\pi<x<\pi
Solution:
Let,
y=\tan ^{-1}\left\{\frac{\sin x}{1+\cos x}\right\}
Function y is defined for all the real numbers where \cos x\neq -1
\begin{aligned} &\text { Using } 2 \cos ^{2} \theta=1+\cos 2 \theta \\ &2 \sin \theta \cos \theta=\sin 2 \theta \\ &y=\tan ^{-1}\left\{\frac{2 \sin \frac{x}{2} \cos \frac{x}{2}}{2 \cos ^{2} \frac{x}{2}}\right\} \\ &y=\tan ^{-1}\left\{-\frac{\sin x / 2}{\cos x / 2}\right\} \\ &y=\tan ^{-1}\left\{\tan \frac{x}{2}\right\} \\ &y=\frac{x}{2} \end{aligned}
Differentiating with respect to x , We get
\frac{dy}{dx}=\frac{d}{dx}\left ( \frac{x}{2} \right )
\frac{dy}{dx}=\frac{1}{2}

Differentiation Exercise 10.3 Question 22

Answer: \frac{dy}{dx}=\frac{-1}{1+x^{2}}
Hint:
\begin{aligned} &\frac{d}{d x}(\text { Constant })=0 \\ &\frac{d}{d x}\left(\mathrm{x}^{n}\right)=n x^{n-1} \end{aligned}
Given:
\sin ^{-1}\left \{ \frac{1}{\sqrt{1+x^{2}}} \right \}
Solution:
Let,
y=\sin ^{-1}\left \{ \frac{1}{\sqrt{1+x^{2}}} \right \}
Let
x=\cot \theta
\theta =\cot ^{-1}x
Now,
y=\sin ^{-1}\left \{ \frac{1}{\sqrt{1+\cot ^{2}\theta }} \right \}
Using,
\begin{aligned} &1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta \\ &y=\sin ^{-1}\left\{\frac{1}{\sqrt{\operatorname{cosec}^{2} \theta}}\right\} \\ &y=\sin ^{-1}\left\{\frac{1}{\operatorname{cosec} \theta}\right\} \end{aligned} \left \{ \frac{1}{cosec\theta }=\sin \theta \right \}
y=\sin ^{-1}\left ( \sin \theta \right ) \sin ^{-1}(\sin \theta)=\sin \theta \text {,if } \theta \varepsilon\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]
y=\thetay=\cot ^{-1}x

Differentiating with respect to x , We get

\begin{aligned} &\frac{d y}{d x}=\frac{d}{d x}\left(\cot ^{-1} x\right) \\ &\therefore \frac{d}{d x}\left(\cot ^{-1} x\right) \Rightarrow \frac{-1}{1+x^{2}} \\ &\frac{d y}{d x}=-\frac{1}{1+x^{2}} \end{aligned}

Differentiation Exercise 10.3 Question 23

Answer:
\frac{dy}{dx}=\frac{2nx^{n-1}}{1+x^{2n}}
Hint:
\begin{aligned} &\frac{\mathrm{d}}{\mathrm{dx}}(\text { constsant })=0 \\ &\frac{d}{d \mathrm{x}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}-1} \end{aligned}
Given:
\begin{aligned} &\cos ^{-1}\left\{\frac{1-x^{2 n}}{1+x^{2 n}}\right\} \\ &0<x<\infty \end{aligned}
Solution:
y=cos ^{-1}\left\{\frac{1-x^{2 n}}{1+x^{2 n}}\right\}
Let,
x^{n}=\tan \theta
\theta =\tan ^{-1}\left ( x^{n} \right )
y=\cos ^{-1}\left \{ \frac{1-\tan ^{2}\theta }{1+\tan ^{2}\theta } \right \}y=\cos ^{-1}\left \{ \cos 2\theta \right \}

Using,

\frac{1-\tan ^{2}\theta }{1+\tan ^{2}\theta }=\cos 2\theta

Considering the limits,

\begin{aligned} &0<x<\infty \\ &0<x^{n}<\infty \\ &0<\theta<\frac{\pi}{2} \end{aligned}

Now, \left \{ \cos ^{-1}\left ( \cos \theta \right )=\theta ,if\: \theta \varepsilon \left [ 0,\pi \right ] \right \}

y=\cos ^{-1}\left ( \cos 2\theta \right )

y=2\theta Since\hspace{0.2cm}x^{n}=\tan \theta
Differentiating with respect to x we get
\frac{dy}{dx}=\frac{d}{dx}\left ( 2\tan ^{-1}\left ( x^{n} \right ) \right )
Using
\begin{aligned} &\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}} \\ &\frac{d y}{d x}=\frac{2 \times 1}{1+\left(x^{n}\right)^{2}} \times n x^{n-1} \\ &\frac{d y}{d x}=\frac{2 n x^{n-1}}{1+x^{2 n}} \end{aligned}

Differentiation Exercise 10.3 Question 24

Answer:\frac{dy}{dx}=0
Hint:
\begin{aligned} &\frac{\mathrm{d}}{\mathrm{dx}}(\text { constsant })=0 \\ &\frac{d}{d \mathrm{x}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}-1} \end{aligned}
Given:
\sin ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)+\sec ^{-1}\left(\frac{1+x^{2}}{1-x^{2}}\right)
Solution:
Let,
y=\sin ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)+\sec ^{-1}\left(\frac{1+x^{2}}{1-x^{2}}\right)
Using
\begin{aligned} &\sec ^{-1} x=\cos ^{-1}\left(\frac{1}{x}\right) \\ &y=\sin ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)+\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right) \end{aligned}
Using\begin{aligned} &\sin ^{-1} \mathrm{x}+\cos ^{-1} \mathrm{x}=\frac{\pi}{2} \\ &\mathrm{y}=\frac{\pi}{2} \end{aligned}

Differentiating with respect to x we get

\frac{dy}{dx}=\frac{d}{dx}\left ( \frac{\pi }{2} \right )

\frac{dy}{dx}=0 \left \{ \frac{d}{dx}\left ( constant \right )=0 \right \}

Differentiation Exercise 10.3 Question 26

Answer:\frac{1}{2\sqrt{x}\left ( 1+x \right )}
Hint:
\frac{d}{dx}\left ( constant \right )=0;
\frac{d}{d x}\left ( x^{n} \right )=nx^{n-1}
Given:
\tan ^{-1}\left ( \frac{\sqrt{x}+\sqrt{a}}{1-\sqrt{xa}} \right )
Solution:
Let,
y=\tan ^{-1}\left ( \frac{\sqrt{x}+\sqrt{a}}{1-\sqrt{xa}} \right )
Since,\tan ^{-1} \mathrm{x}+\tan ^{-1} \mathrm{y}=\tan ^{-1}\left(\frac{\mathrm{x}+\mathrm{y}}{1-\mathrm{xy}}\right)
y=\tan ^{-1}\sqrt{x}+\tan ^{-1}\sqrt{a}
Differentiating it with respect to x using chain qule.
\frac{dy}{dx}=\frac{d}{dx}\left ( \tan ^{-1}\sqrt{x} \right )+\frac{d}{dx}\left ( \tan ^{-1}\sqrt{a} \right )
Since ,
\begin{aligned} &\frac{\mathrm{d}}{\mathrm{dx}}\left(\tan ^{-1} \mathrm{x}\right)=\frac{1}{1+\mathrm{x}^{2}} ; \frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}-1} \\ &\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{1+(\sqrt{\mathrm{x}})^{2}} \frac{\mathrm{d}}{\mathrm{dx}}(\sqrt{\mathrm{x}})+0 \\ &\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{1+\left(\mathrm{x}^{1 / 2}\right)^{2}} \times \frac{1}{2}(\mathrm{x})^{\frac{1}{2}-1} \\ &\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{1+\mathrm{x}} \times \frac{1}{2}(\mathrm{x})^{-\frac{1}{2}} \\ &\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{1+\mathrm{x}} \times \frac{1}{2 \sqrt{\mathrm{x}}} \\ &\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2 \sqrt{\mathrm{x}}(1+\mathrm{x})} \end{aligned}

Differentiation Exercise 10.3 Question 27

Answer:\frac{dy}{dx}=1
Hint:
\frac{d}{dx}\left ( constant \right )=0
\frac{d }{dx}\left (x^{n} \right )=nx^{n-1}
Given:
\tan ^{-1}\left[\frac{a+\operatorname{btan} x}{b-\operatorname{atan} x}\right]
Solution:
Let,
\begin{aligned} &y=\tan ^{-1}\left[\frac{a+b \tan x}{b-\operatorname{atan} x}\right] \\ &y=\tan ^{-1}\left[\frac{\frac{a+b \tan x}{b}}{\frac{b-a t a n x}{b}}\right] \\ &y=\tan ^{-1}\left[\frac{\frac{a}{b}+\tan x}{1-\frac{a}{b} \tan x}\right] \end{aligned}
\begin{aligned} &y=\tan ^{-1}\left[\frac{\tan \left(\tan ^{-1} \frac{a}{b}\right)+\tan x}{1-\tan \left(\tan ^{-1} \cdot \frac{g}{b}\right) \tan x}\right] \\ &y=\tan ^{-1}\left[\tan \left(\tan ^{-1} \frac{a}{b}+x\right)\right] \\ &\therefore \tan (A+B)=\frac{\tan A+\tan \vec{B}}{1-\tan A \tan B} \\ &y=\tan ^{-1}\left(\frac{a}{b}\right)+x \end{aligned}
Differentiating it with respect to x , We get
\begin{aligned} &\frac{d y}{d x}=\frac{d}{d x}\left(\tan ^{-1}\left(\frac{a}{b}\right)\right)+\frac{d}{d x}(x) \\ &\frac{d}{d x}(\text { constant })=0 \\ &\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}} \\ &\frac{d y}{d x}=\frac{1}{1+\left(\frac{a}{b}\right)^{2}} \times 0+1 \\ &\frac{d y}{d x}=0+1 \\ &\frac{d y}{d x}=1 \end{aligned}

Differentiation Exercise 10.3 Question 28

Answer:\frac{dy}{dx}=\frac{1}{1+x^{2}}
Hint:
\begin{aligned} &\frac{d}{d x}(\text { constant })=0 ; \\ &\frac{d}{d x}\left(x^{n}\right)=n x^{n-1} \end{aligned}
Given:
\tan ^{-1}\left ( \frac{a+bx}{b-ax} \right )
Solution:
Let,
\begin{aligned} &y=\tan ^{-1}\left(\frac{a+b x}{b-a x}\right) \\ &y=\tan ^{-1}\left[\frac{\frac{a+b x}{b}}{\frac{b-a x}{b}}\right] \end{aligned}

Since,\tan ^{-1}x+\tan ^{-1}y=\tan ^{-1}\left ( \frac{x+y}{1-xy} \right )

Differentiating it with respect to x , We get

\begin{aligned} &\frac{d y}{d x}=\frac{d}{d x}\left(\tan ^{-1}\left(\frac{a}{b}\right)+\tan ^{-1} x\right. \\ &\text { Since, } \frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}} \\ &\frac{d y}{d x}=\frac{1}{1+\left(\frac{a}{b}\right)^{2}} \times 0+\frac{1}{1+x^{2}} \\ &\frac{d y}{d x}=0+\frac{1}{1+x^{2}} \\ &\frac{d y}{d x}=\frac{1}{1+x^{2}} \end{aligned}

Differentiation Exercise 10.3 Question 29

Answer:\frac{dy}{dx}=\frac{a}{a^{2}+x^{2}}
Hint:
\begin{aligned} &\frac{d}{d x}(\text { constan } t)=0 ; \\ &\frac{d}{d x}\left(x^{n}\right)=n x^{n-1} \end{aligned}
Given:
\tan ^{-1}\left ( \frac{x-a}{x+a} \right )
Solution:
Let,
\begin{aligned} &y=\tan ^{-1}\left(\frac{x-a}{x+a}\right) \\ &y=\tan ^{-1}\left(\frac{\frac{x-a}{x}}{\frac{x+a}{x}}\right) \end{aligned}\begin{aligned} &y=\tan ^{-1}\left(\frac{\frac{x}{x}-\frac{a}{x}}{\frac{x}{x}+\frac{a}{x}}\right) \\ &y=\tan ^{-1}\left(\frac{1-\frac{a}{x}}{1+1 \times \frac{a}{x}}\right) \\ &y=\tan ^{-1}(1)+\tan ^{-1}\left(\frac{a}{x}\right) \end{aligned}

Using,

\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)

Differentiating its with respect to xusing chain tule.

\begin{aligned} &\frac{d y}{d x}=0-\frac{1}{1+\left(\frac{a}{x}\right)^{2}} \frac{d}{d x}\left(\frac{a}{x}\right) \\ &\frac{d y}{d x}=\frac{-1}{1+\frac{a^{2}}{x^{2}}}\left(-\frac{a}{x^{2}}\right) \\ &\frac{d y}{d x}=\frac{-1}{\frac{x^{2}+a^{2}}{x^{2}}} \times\left(\frac{-a}{x^{2}}\right) \\ &\frac{d y}{d x}=\frac{-x^{2}}{x^{2}+a^{2}} \times\left(\frac{-a}{x^{2}}\right) \end{aligned} Using \frac{d}{dx}\left ( x^{n} \right )=nx^{n-1}

\frac{d}{dx}=\frac{a}{x^{2}+a^{2}} \frac{d}{dx}\left ( constant \right )=0

Differentiation Exercise 10.3 Question 30

Answer: \frac{dy}{dx}=\frac{3}{1+9x^{2}}-\frac{2}{1+4x^{2}}
Hint:
\begin{aligned} &\frac{\mathrm{d}}{\mathrm{dx}}(\text { constan } \mathrm{t})=0 ; \\ &\frac{d}{d \mathrm{x}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}-1} \end{aligned}
Given:
\tan ^{-1}\left(\frac{x}{1+6 x^{2}}\right)
Solution:
Let, y=\tan ^{-1}\left(\frac{x}{1+6 x^{2}}\right)
y=\tan ^{-1}\left(\frac{3 x-2 x}{1+(3 x)(2 x)}\right)
Since,3x-2x=x
\begin{aligned} &y=\tan ^{-1} 3 x-\tan ^{-1} 2 x \\ &{\left[\text { Since }+\tan x-\tan ^{-1} y=\tan ^{-1}\left(\frac{x-y}{1+x y}\right)\right]} \end{aligned}
Differentiating it with respect tox using chain rule,
\begin{aligned} &\frac{d y}{d x}=\frac{1}{1+\left(3 x^{2}\right)} \frac{d}{d x}(3 x)-\frac{1}{1+(2 x)^{2}} \frac{d}{d x}(2 x) \\ &\left\{\text { Since } \Rightarrow \frac{\mathrm{d} }{\mathrm{d} x}\tan ^{-1}(x)=\frac{1}{1+x^{2}}\right\} \\ &\frac{d y}{d x}=\frac{1}{1+9 x^{2}}(3)-\frac{1}{1+4 x^{2}}(2) \\ &\frac{d y}{d x}=\frac{3}{1+9 x^{2}}-\frac{2}{1+4 x^{2}} \end{aligned}

Differentiation Exercise 10.3 Question 31


Answer:\frac{dy}{dx}=\frac{3}{1+9x^{2}}+\frac{2}{1+4x^{2}}
Hint:
\frac{d}{dx}\left ( constant \right )=0;
\frac{d }{dx}\left (x^{n}\right )=nx^{n-1}
Given:
\tan ^{-1}\left ( \frac{5x}{1-6x^{2}} \right )
Solution:
Let,
\begin{aligned} &y=\tan ^{-1}\left(\frac{5 x}{1-6 x^{2}}\right) \\ &y=\tan ^{-1}\left(\frac{3 x+2 x}{1-(3 x)(2 x)}\right) \end{aligned}
\begin{aligned} &\text { By using } 5 x=3 x+2 x \\ &y=\tan ^{-1}(3 x)+\tan ^{-1}(2 x) \end{aligned}
\text { Since, } \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)
Differentiating it with respect to x using chain rule,
\frac{d y}{d x}=\frac{d}{d x}\left(\tan ^{-1}(3 x)\right)+\frac{d}{d x}\left(\tan ^{-1}(2 x)\right)
Using
\begin{aligned} &\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}} \\ &\frac{d y}{d x}=\frac{1}{1+(3 x)^{2}} \frac{d}{d x}(3 x)+\frac{1}{1+(2 x)^{2}} \frac{d}{d x}(2 x) \\ &\frac{d y}{d x}=\frac{1}{1+9 x^{2}}(3)+\frac{1}{1+4 x^{2}}(2) \\ &\frac{d y}{d x}=\frac{3}{1+9 x^{2}}+\frac{2}{1+4 x^{2}} \end{aligned}

Differentiation Exercise 10.3 Question 32

Answer: \frac{dy}{dx}=1
Hint:
\begin{aligned} &\frac{\mathrm{d}}{\mathrm{dx}}(\text { constan } \mathrm{t})=0 ; \\ &\frac{d}{d \mathrm{x}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}-1} \end{aligned}
Given:
\tan ^{-1}\left[\frac{\cos x+\sin x}{\cos x-\sin x}\right]
Solution:
\begin{aligned} &y=\tan ^{-1}\left[\frac{\cos x+\sin x}{\cos x-\sin x}\right] \\ &y=\tan ^{-1}\left[\frac{\frac{\cos x+\sin x}{\cos x}}{\frac{\cos x-\sin x}{\cos x}}\right] \\ &y=\tan ^{-1}\left[\frac{1+\tan x}{1-\tan x}\right] \\ &\text { since, } \frac{\sin x}{\cos x}=\operatorname{tian} x \end{aligned}
\begin{aligned} &y=\tan ^{-1}\left[\frac{\tan \frac{\pi}{4}+\tan x}{1-\frac{\tan \pi}{4} \tan x}\right] \\ &y=\tan ^{-1}\left[\tan \left(\frac{\pi}{4}+x\right)\right] \\ &\text { Since } \tan (A+B)=\frac{\tan A+\tan B}{1-\tan \tan B} \\ &y=\frac{\pi}{4}+x \end{aligned}
Differentiating it with respect to x,
\frac{dy}{dx}=0+1 \left\{\begin{array}{l} \frac{\mathrm{d}}{\mathrm{dx}}(\text { constant })=0 \\ \frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x})=1 \end{array}\right\}
\frac{dy}{dx}=1

Differentiation Exercise 10.3 Question 33

Answer: \frac{dy}{dx}=\frac{1}{3x^{2}\left ( 1+x^{2}3 \right )}
Hint:
\begin{aligned} &\frac{d}{d x}(\text { constant })=0 ; \\ &\frac{d}{d x}\left(x^{n}\right)=n x^{n-1} \end{aligned}
Given:
\tan ^{-1}\left[\frac{\mathrm{x}^{1 / 3}+\mathrm{a}^{1 / 3}}{1-(\mathrm{ax})^{1 / 3}}\right]
Solution:
Let,
\begin{aligned} &y=\tan ^{-1}\left[\frac{x^{13}+a^{1 / 3}}{1-(a x)^{1 / 3}}\right] \\ &y=\tan ^{-1}\left(x^{1 / 3}\right)+\tan ^{-1}\left(a^{1 / 3}\right) \\ &\text { Since, } \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right) \end{aligned}
Differentiating it with respect to x using chain rule,
\begin{aligned} &\frac{d y}{d x}=\frac{1}{1+\left(x^{1 / 3}\right)^{2}} \frac{d}{d x}\left(x^{1 / 3}\right)+\frac{1}{1+\left(a^{1 / 3}\right)^{2}} \frac{d}{d x}\left(a^{1 / 3}\right) \\ &\frac{d y}{d x}=\frac{1}{1+x^{2 / 3}} \times\left(\frac{1}{3} x^{\frac{1}{3}-1}\right)+\frac{1}{1+\left(a^{1 / 3}\right)^{2}} \times 0 \\ &\frac{d y}{d x}=\frac{1}{1+x^{2 / 3}} \times \frac{1}{3} x^{-2 / 3} \\ &\frac{d y}{d x}=\frac{1}{3 x^{2 / 3}\left(1+x^{2 / 3}\right)} \end{aligned}
Using
\begin{aligned} &\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}} \\ &\frac{d}{d x}\left(x^{n}\right)=n x^{n-1} \\ &\frac{d}{d x}(\text { constant })=0 \end{aligned}

Differentiation Exercise 10.3 Question 34

Answer:\frac{dy}{dx}=\frac{2^{x+1}log2}{1+4^{x}}
Hint:
\frac{d}{dx}\left ( constant \right )=0
\frac{\partial }{\partial x}\left ( x^{n} \right )=nx^{n-1}
Given:
\sin ^{-1}\left ( \frac{2^{x+1}}{1+4^{x}} \right )
Solution:
Let
y=\sin ^{-1}\left ( \frac{2^{x+1}}{1+4^{x}} \right )
To find the domain we need to find all x such that
-1 \leq \frac{2^{x+1}}{1+4 x} \leq 1
Since the quantity in the middle is always positive, we need to find
all such that \frac{2^{x+1}}{1+4 x} \leq 1
ie, all x such that 2^{x+1}=1+4^{x}
2\leq \frac{1}{2^{x}}+2^{x}, which is true for a x
Hence the function is defined at all real numbers
Putting 2^{x}=\tan \theta
\begin{aligned} &y=\sin ^{-1}\left(\frac{2^{x+1}}{1+4 x}\right) \\ &y=\sin ^{-1}\left(\frac{2^{x} \cdot 2}{1+\left(2^{x}\right)^{2}}\right) \\ &y=\sin ^{-1}\left(\frac{2 \tan \theta}{1+\tan ^{2} \theta}\right) \\ &\text { Using } \sec ^{2} \theta=1+\tan ^{2} \theta \end{aligned}
\begin{aligned} &\mathrm{y}=\sin ^{-1}\left(\frac{2 \tan \theta}{\sec ^{2} \theta}\right) \\ &\mathrm{y}=\sin ^{-1}\left(2 \frac{\sin \theta}{\cos \theta} \times \cos ^{2} \theta\right) \quad \text \; \; \; \; \; \; \; \; \; \; \; { Since, } \tan \theta=\frac{\sin \theta}{\cos \theta^{\prime} \sec \theta}, \frac{1}{\sec }=\cos \theta \\ &\mathrm{y}=\sin ^{-1}(2 \sin \theta \cos \theta) \\ &\mathrm{U} \sin \mathrm{sin}=\sin 2 \theta=2 \sin \theta \cos \theta \end{aligned}
y=\sin ^{-1}\left ( \sin \theta \right ) \left\{\begin{array}{l} \sin ^{-1}(\sin \theta)=\theta \\ \text { if } \theta \in\left[\frac{-1}{2}, \frac{0}{2}\right] \end{array}\right\}
y=2\theta
y=2\tan ^{-1}\left ( 2^{x} \right ) \left\{\begin{array}{l} \text { since } 2^{\mathrm{x}} \quad=\tan \theta \\ \boldsymbol{\theta}=\tan ^{-1}\left(2^{\mathrm{x}}\right) \end{array}\right\}
\begin{aligned} &\frac{d y}{d x} \Rightarrow \frac{d}{d x}\left(2 \tan ^{-1}\left(2^{x}\right)\right) \\ &\frac{d y}{d x}=2 \times \frac{1}{1+\left(2^{x}\right)^{2}} \frac{\partial}{d x}\left(2^{x}\right) \\ &\frac{d y}{d x}=2 \times \frac{1}{1+4^{x}} \cdot\left(2^{x}\right) \log 2 \\ &\frac{d y}{d x} \Rightarrow \frac{2^{x+1} \log 2}{1+4^{x}} \end{aligned} \text { Since } \frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}}

Differentiation Exercise 10.3 Question 35

Answer: Hence Prove\frac{dy}{dx}=\frac{4}{1+x^{2}}
Hint:
\begin{aligned} &\frac{\mathrm{d}}{d \mathrm{x}}(\text { constan } \mathrm{t})=0 ; \\ &\frac{d}{d \mathrm{x}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx}^{\mathrm{n}-1} \end{aligned}
Given:
\begin{aligned} &y=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)+\sec ^{-1}\left(\frac{1+x^{2}}{1-x^{2}}\right) \\ &0<x<1 \end{aligned}
Solution:
Prove :\frac{dy}{dx}=\frac{4}{1+x^{2}}
\begin{aligned} &y=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)+\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right) \\ &\text { Since } \sec ^{-1} x=\cos ^{-1}\left(\frac{1}{x}\right) \\ &y=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)+\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right) \end{aligned}
Let,
x=\tan \theta
\theta =\tan ^{-1}x
\begin{aligned} &y=\sin ^{-1}\left(\frac{2 \tan \theta}{1+\tan ^{2} \theta}\right)+\cos ^{-1}\left(\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}\right) \\ &y=\sin ^{-1}\left(\frac{2 \tan \theta}{\sec ^{2} \theta}\right)+\cos ^{-1}(\cos 2 \theta) \end{aligned}
Using
\begin{aligned} &\sec ^{2} \theta=1+\tan ^{2} \theta \\ &\frac{1}{\sec \theta}=\cos \theta \\ &\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}=\cos 2 \theta \end{aligned}
\begin{aligned} &\mathrm{y}=\sin ^{-1}\left(2 \frac{\sin \theta}{\cos \theta} \times \cos ^{2} \theta\right)+\cos ^{-1}(\operatorname{Cos} 2 \theta) \\ &\mathrm{y}=\sin ^{-1}(2 \sin \theta \cos \theta)+\cos ^{-1}(\cos 20) \\ &\mathrm{y}=\sin ^{-1}(\sin 2 \theta)+\cos ^{-1}(\cos 2 \theta)-(\mathrm{i}) \\ &\mathrm{u} \operatorname{sing} 2 \sin \theta \cos \theta=\sin 2 \theta \end{aligned}
Considering Limits,
\begin{aligned} &0<\mathrm{x}<1 \\ &0<\tan \theta<1 \\ &0<\theta<\frac{\mathrm{\pi}}{4} \\ &0<(2 \theta)<\frac{\mathrm{\pi}}{2} \end{aligned}
so from e_{i}\: \: \left ( i \right )
y=2\theta +2\theta
y=4\theta
\begin{aligned} &\cos ^{-1}(\cos \theta) \Rightarrow \text { if } \theta \in[0, \pi] \\ &y=4 \tan ^{-1} x \end{aligned} since,x=\tan \theta ,\theta =\tan ^{-1}x
Differentiating it with respect to x
\begin{aligned} &\frac{d y}{d x}=4 \frac{d}{d x}\left(\tan ^{-1} x\right) \\ &\text { Using } \frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}} \\ &\frac{d y}{d x}=4\left(-\frac{1}{1+x^{2}}\right) \\ &\frac{d y}{d x}=\frac{4}{1+x^{2}} \end{aligned}

Differentiation Exercise 10.3 Question 36

Answer: Hence Prove ,\frac{dy}{dx}=\frac{2}{1+x^{2}}
Hint:
\begin{aligned} &\frac{d}{d x}(\text { constan } t)=0 ; \\ &\frac{d}{d x}\left(x^{n}\right)=n x^{n-1} \end{aligned}
Given:
\begin{aligned} &\mathrm{y}=\sin ^{-1}\left(\frac{\mathrm{x}}{\sqrt{1+\mathrm{x}^{2}}}\right)+\cos ^{-1}\left(\frac{1}{\sqrt{1+\mathrm{x}^{2}}}\right) \\ &0<\mathrm{x}<\infty \end{aligned}
Solution:
Let,
x=\tan \theta ,
\theta =\tan ^{-1}x
\begin{aligned} &y=\sin ^{-1}\left(\frac{\tan \theta}{\sqrt{1+\tan ^{2} \theta}}\right)+\cos ^{-1}\left(\frac{1}{\sqrt{1+\tan ^{2} \theta}}\right) \\ &y=\sin ^{-1}\left(\frac{\tan \theta}{\sqrt{\sec ^{2} \theta}}\right)+\cos ^{-1}\left(\frac{1}{\sqrt{\sec ^{2} \theta}}\right) \\ &\text { Using } \sec ^{2} \theta=1+\tan ^{2} \theta \\ &\frac{\sin \theta}{\cos \theta}=\tan \theta \\ &\frac{1}{\sec \theta}=\theta \cos \theta \end{aligned}
\begin{aligned} &y=\sin ^{-1}\left(\frac{\tan \theta}{\sec \theta}\right)+\cos ^{-1}\left(\frac{1}{\sec \theta}\right) \\ &y=\sin ^{-1}\left(\frac{\sin \theta}{\cos \theta} \times \cos \theta\right)+\cos ^{-1}(\cos \theta) \\ &y=\sin ^{-1}(\sin \theta)+\cos ^{-1}(\cos \theta)-(i) \end{aligned}
Considering limit

\begin{aligned} &0<\mathrm{x}<\infty \\ &0<\tan \theta<\infty \\ &0<\theta<\frac{\mathrm{\pi}}{2} \end{aligned}
So From eq (i)
y=\theta +\theta \text { Since, } \sin ^{-1}(\sin \theta)=\theta \text { if } \theta \varepsilon\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]
y=2\theta \cos ^{-1}(\cos \theta)=\theta \text { if } \theta \varepsilon[0, \pi]
y=2\tan ^{-1}x \left [ since x=\tan \theta \right ]

Differentiating it with respect to x

\begin{aligned} &\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}} \\ &\frac{d y}{d x}=2 \times \frac{1}{1+x^{2}} \\ &\frac{d y}{d x}=\frac{2}{1+x^{2}} \end{aligned}

Differentiation Exercise 10.3 Question 37(i)

Answer: \frac{dy}{dx}=-1
Hint:
\begin{aligned} &\frac{\mathrm{d}}{\mathrm{dx}}(\text { constan } \mathrm{t})=0 \\ &\frac{d}{d \mathrm{x}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}-1} \end{aligned}
Given:
\cos ^{-1}\left ( \sin x \right )
Solution:
Let,
y=\cos ^{-1}\left ( \sin x \right )
We observe that this function is defined for all real numbers
\begin{aligned} &y=\cos ^{-1}(\sin x) \\ &y=\cos ^{-1}\left[\cos \left(\frac{\pi}{2}-x\right)\right] \\ &y=\frac{\pi}{2}-x \end{aligned} \left\{\begin{array}{r} \operatorname{since} \cos ^{-1}(\cos \theta)=\theta \\ \text { if } \theta \in[\theta, \mathbf{\pi}] \end{array}\right\}
Differentiating it with respect to x,
\begin{aligned} &\frac{d y}{d x}=0-1 \\ &\frac{d y}{d x}=-1 \end{aligned} \left \{ Since,\frac{d\left ( constant \right )}{dx}=0 \right \}

Differentiation Exercise 10.3 Question 37 (ii)

Answer: \frac{dy}{dx}=\frac{1}{1+x^{2}}
Hint:
\begin{aligned} &\frac{d}{d x}(\text { constan } t)=0 \\ &\frac{d}{d x}\left(x^{n}\right)=n x^{n-1} \end{aligned}
Given:
\cos ^{-1}\left ( \frac{1-x}{1+x} \right )
Solution:
y=\cos ^{-1}\left ( \frac{1-x}{1+x} \right )
Let,
\begin{aligned} &\mathrm{x}=\tan \theta \\ &\theta=\tan ^{-1} \mathrm{x} \\ &\mathrm{y}=\cot ^{-1}\left(\frac{1-\tan \theta}{1+\tan \theta}\right) \\ &\mathrm{y}=\cot ^{-1}\left(\frac{\tan \frac{\mathrm{n}}{4}-\tan \theta}{1+\tan \frac{\mathrm{n}}{4} \tan \theta}\right) \end{aligned}
\begin{aligned} &y=\cot ^{-1}\left[\tan \left(\frac{n}{4}-\theta\right)\right]\\ &\text { Using, }\\ &\tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}\\ &y=\cot ^{-1}\left[\tan \left(\frac{\pi}{4}-\theta\right)\right]\\ &\mathrm{y}=\cot ^{-1}\left[\operatorname{cots}\left(\frac{\mathrm{\pi}}{2}-\left(\frac{\mathrm{\pi}-\theta}{4}-\theta\right)\right]\right. \end{aligned} \therefore since\: \cot \left ( \frac{\pi}{2}-\theta \right )=\tan \theta
\begin{aligned} &y=\cot ^{-1}\left[\cot \left(\frac{\pi}{2}-\frac{\pi}{4}+\theta\right)\right] \\ &y=\cot ^{-1}\left[\cot \left(\frac{\pi}{4}+\theta\right)\right] \\ &y=\frac{\pi}{4}+\theta \end{aligned} \left\{\cot ^{-1}(\cot \theta)=\theta, \text { if } \theta<\left[-\frac{\mathbf{\pi}}{2}, \frac{\pi}{2}\right]\right\}
y=\frac{\pi}{4}+\tan ^{-1}x \left\{\begin{array}{c} \text { Since } \mathrm{x}=\tan \theta \\ \theta=\tan ^{-1} \mathrm{x} \end{array}\right\}
Differentiating it with respect to x,
\begin{aligned} &\frac{d y}{d x}=0+\frac{1}{1+x^{2}} \\ &\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}} \\ &\frac{\partial}{d x}(\text { constant })=0 \\ &\frac{d y}{d x}=\frac{1}{1+x^{2}} \end{aligned}

Differentiation Exercise 10.3 Question 38

Answer:\frac{dy}{dx}=\frac{1}{2}, Hence,\frac{dy}{dx} is independent of x
Hint:
\begin{aligned} &\frac{d}{d x} \text { (constant) }=0 ; \\ &\frac{d}{dx}\left(x^{n}\right)=n x^{n-1} \end{aligned}
Given:
y=\cot ^{-1}\left\{\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right\}
Solution:
\begin{aligned} &y=\cot ^{-1}\left\{\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right\} \\ &\text { Then, } \frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}} \\ &\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}} \times \frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}+\sqrt{1-\sin x}} \end{aligned}
\begin{aligned} &\frac{(\sqrt{1+\sin x}+\sqrt{1+\sin x})^{2}}{(1+\sin x)-(1-\sin x)} \\ &\begin{array}{l} \text { Using }(a-b)(a+b)=a^{2}-b^{2} \\ (a+b)^{2}=a^{2}+b^{2}+2 a b \\ \frac{(1+\sin x)+(00(1-\sin x)+2 \sqrt{(1-\sin x)(1+\sin x)}}{(1+\sin x)-(1-\sin x)} \\ \frac{1+\sin x+1-\sin x+2 \sqrt{(1-\sin x)(1+\sin x)}}{1+\sin x-1+\sin x} \end{array} \end{aligned}
\begin{aligned} &\Rightarrow \frac{2+2 \sqrt{1+\sin x-\sin x-\sin ^{2} x}}{2 \sin x} \\ &\Rightarrow \frac{2+2 \sqrt{1-\sin ^{2} x}}{2 \sin x} \\ &\Rightarrow \frac{2\left(1+\sqrt{1-\sin ^{2} x}\right)}{2 \sin x} \\ &\Rightarrow \frac{1+\sqrt{1 \sin ^{2} x}}{\sin x} \end{aligned}
Using \cos ^{2}x+\sin ^{2}x=1
\begin{aligned} &\Rightarrow \frac{1+\sqrt{\cos ^{2} x}}{\sin x} \\ &\Rightarrow \frac{1+\cos x}{\sin x} \\ &\text { Using } \sin 2 \theta=2 \sin \theta \cos \theta \\ &1+\operatorname{Cos} 2 \theta=2 \cos ^{2} \theta \\ &\Rightarrow \frac{2 \cos ^{2} \frac{x}{2}}{2 \sin \frac{x}{2} \cos \frac{x}{2}} \\ &\Rightarrow \cot \frac{x}{2} \end{aligned} \left \{ \frac{\cos x}{\sin x}=\cot x\right \}

Therefore, equation (1) becomes

\begin{aligned} &y=\cot ^{-1}\left(\cot \frac{x}{2}\right) \\ &y=\frac{x}{2} \end{aligned} \left\{\cot ^{-1}(\cot \theta)=\theta \operatorname{if} \theta^{\varepsilon}\left[\frac{-\pi}{2}, \frac{\mathbf{\pi}}{2}\right]\right\}

Differentiating it with respect to x

\frac{dy}{dx}=\frac{1}{2}\frac{d}{dx}\left ( x \right )

\frac{dy}{dx}=\frac{1}{2}

Differentiation Exercise 10.3 Question 39

Answer: \frac{dy}{dx}=\frac{4}{1+x^{2}}
Hint:
\begin{aligned} &\frac{\mathrm{d}}{\mathrm{dx}}(\text { constiant })=0 \\ &\frac{d}{d \mathrm{x}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx}^{\mathrm{n}-1} \end{aligned}
Given:
\begin{aligned} &y=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)+\sec ^{-1}\left(\frac{1+x^{2}}{1-x^{2}}\right) \\ &x=0 \end{aligned}
Prove
\frac{dy}{dx}=\frac{1}{1+x^{2}}
Solution:
Here,y=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)+\sec ^{-1}\left(\frac{1+x^{2}}{1-x^{2}}\right) \
Using \sec ^{-1}
\begin{aligned} &\mathrm{x}=\cos ^{-1}\left(\frac{1}{\mathrm{x}}\right) \\ &\mathrm{y}=\tan ^{-1}\left(\frac{2 \mathrm{x}}{1-\mathrm{x}^{2}}\right)+\cos ^{-1}\left(\frac{1-\mathrm{x}^{2}}{1+\mathrm{x}^{2}}\right) \end{aligned}
Put x=\tan \theta\begin{aligned} &y=\tan ^{-1}\left(\frac{2 \tan \theta}{1-\tan ^{2} \theta}\right)+\cos ^{-1}\left(\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}\right) \\ &y=\tan ^{-1}(\tan 2 \theta)+\cos ^{-1}(\cos 2 \theta)-(1) \end{aligned}

Using,

\tan 2\theta =\frac{2\tan \theta }{1-\tan ^{2}\theta }

\begin{aligned} &\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}=\cos 2 \theta \\ &\text { Here, } 0<\mathrm{x}<\infty \\ &0<\tan \theta<\infty \\ &0<\theta<\frac{\mathrm{\pi}}{2} \\ &0<2 \theta<\mathrm{\pi} \end{aligned}

So From eq(i)

y=2\theta +2\theta

\left\{\text { Since, } \tan ^{-1}(\tan \theta)=\theta \text { if } \theta \in\left[\frac{-\pi}{2}, \frac{\pi}{2}\right] \text { and } \cos ^{-1}(\cos \theta)=\theta \text { if } \theta[0, \pi]\right\}

y=4\theta

y=4\tan ^{-1}x \left [ Using\: x=\tan \theta ,\theta =\tan ^{-1}x \right ]

Differentiating it with respect t0 x

\begin{aligned} &\frac{d y}{d x}=\frac{4}{1+ x^{2}} \\ &\Rightarrow \frac{4}{1+x^{2}} \\ &\text { Using } \frac{d\left(\tan ^{-1} x\right)}{d x}=\frac{1}{1+x^{2}} \end{aligned}

Differentiation Exercise 10.3 Question 40

Answer: \frac{dy}{dx}=0
Hint:
\frac{\mathrm{d}}{\mathrm{d} \mathrm{x}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}-1} ; \frac{d}{\mathrm{dx}}(\text { constant })=0
Given:
y=\sec ^{-1}\left(\frac{x+1}{x-1}\right)+\sin ^{-1}\left(\frac{x-1}{x+1}\right) x>0
Solution:
\begin{aligned} &\mathrm{y}=\sec ^{-1}\left(\frac{\mathrm{x}+1}{\mathrm{x}-1}\right)+\sin ^{-1}\left(\frac{\mathrm{x}-1}{\mathrm{x}+1}\right) \mathrm{x}>0 \\ &\mathrm{y}=\cos ^{-1}\left(\frac{\mathrm{x}-1}{\mathrm{x}+1}\right)+\sin ^{-1}\left(\frac{\mathrm{x}-1}{\mathrm{x}+1}\right) \end{aligned}
Using \sec ^{-1}x=\cos \left ( \frac{1}{x} \right )
Since,\cos ^{-1}x+\sin ^{-1}x=\frac{\pi}{2}
y=\frac{\pi}{2}
Differentiating with respect to x
\frac{dy}{dx}=0 \left [ \frac{d }{dx} \left ( constant \right )=a]\right ]

Differentiation Exercise 10.3 Question 41


Answer:\frac{dy}{dx}=\frac{-x}{\sqrt{1-x^{2}}}
Hint:
\begin{aligned} &\frac{\mathrm{d}}{\mathrm{dx}}(\text { constant })=0 ; \\ &\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}-1} \end{aligned}
Given:
\mathrm{y}=\sin \left[2 \tan ^{-1}\left\{\sqrt{\frac{\mathrm{x}}{1+\mathrm{x}}}\right\}\right]
Solution:
Put x=\cos 2\theta
\begin{aligned} &y=\sin \left[2 \tan ^{-1} \sqrt{\frac{1-\cos 2 \theta}{1+\cos 2 \theta}}\right] \\ &y=\sin \left[2 \tan ^{-1} \sqrt{\frac{2 \sin ^{2} \theta}{2 \cos ^{2} \theta}}\right] \\ &\text { Since } 1-\cos 2 \theta=2 \sin ^{2} \theta \\ &1+\cos 2 \theta=2 \cos ^{2} \theta \end{aligned}
\begin{aligned} &1+\cos 2 \theta=2 \cos ^{2} \theta \\ &y=\sin \left[2 \tan ^{-1} \sqrt{\tan ^{2} \theta}\right] \\ &\text { Since } \frac{\sin \theta}{\cos \theta}=\tan \theta \\ &y=\sin \left[2 \tan ^{-1}(\tan \theta)\right] \\ &y=\sin [2 \theta] \end{aligned} \left \{ \tan ^{-1}\left ( \tan \theta \right )=\theta \: if\: \theta \varepsilon \left [ \frac{-\pi}{2},\frac{\pi}{2} \right ] \right \}
y=\sin \left(2 \times \frac{1}{2} \cos ^{-1} x\right) \left [ Since,x=\cos 2\theta ,\theta =\frac{1}{2}\cos ^{-1}x \right ]
\begin{aligned} &y=\sin \left(\cos ^{-1} x\right) \\ &y=\sin \left(\sin ^{-1} \sqrt{1-x^{2}}\right) \\ &y=\sqrt{1-x^{2}} \end{aligned} \left[\sin ^{-1}(\sin \theta) \Rightarrow 0 \text { if } \theta \in\left[\frac{-\pi}{2},\frac{\mathrm{\pi}}{2}\right]\right]
Differentiating it with respect to x
\begin{aligned} \frac{d y}{d x} &=\frac{d}{d x}\left(\sqrt{1-x^{2}}\right) \\ &=\frac{d}{d x}\left(1-x^{2}\right)^{1 / 2} \end{aligned}
As we know,
\begin{aligned} &\frac{d}{d x}\left(x^{n}\right)=n x^{n-1} \\ &\qquad \begin{aligned} \frac{d y}{d x} &=\frac{1}{2}\left(1-x^{2}\right)^{\frac{1}{2}} \frac{d}{\partial x}\left(1-x^{2}\right) \\ d y &=\frac{1}{d x} \\ &=\frac{1}{2 \sqrt{1-x^{2}}}(-2 x) \\ \frac{d y}{d x} &=\frac{-x}{\sqrt{1-x^{2}}} \end{aligned} \end{aligned}

Differentiation Exercise 10.3 Question 42

Answer: \frac{dy}{dx}=\frac{2}{\sqrt{1-4x^{2}}}
Hint:
\begin{aligned} &\frac{d}{d \mathrm{x}} \text { (constant) }=0 \\ &\frac{d}{d\mathrm{x}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx}^{-1} \end{aligned}
Given:
y=\cos ^{-1}(2 x)+2 \cos ^{-1} \sqrt{1+4 x^{2}}, 0<x<\frac{1}{2}
Solution:
Put 2x=\cos \theta
So,
\begin{aligned} &y=\cos ^{-1}(\cos \theta)+2 \cos ^{-1} \sqrt{1-\cos ^{2} \theta} \\ &\text { Since } \cos ^{2} \theta+\sin ^{2} \theta=1 \\ &y=\cos ^{-1}(\cos \theta)+2 \cos ^{-1} \sqrt{\sin ^{2} \theta} \\ &y=\cos ^{-1}(\cos \theta)+2 \cos ^{-1}(\sin \theta) \\ &y=\cos (\cos \theta)+2 \cos ^{-1}\left(\cos \left(\frac{\pi}{2}-\theta\right)\right)-(i) \end{aligned}
\begin{aligned} &0<x=1 \\ &0<2 x<1 \\ &0<\cos \theta=1 \\ &0<\theta<\frac{\pi}{2} \\ &\text { And } 0>-\theta>-\frac{\pi}{2} \\ &\frac{n}{2}>\left(\frac{n}{2}-\theta\right)>0 \end{aligned}
So From eq (i)
y=\theta +2\left ( \frac{\pi}{2}-\theta \right ) \left \{ Since \cos ^{-1}\left ( \cos \theta \right )=0\: if\: \theta \varepsilon \left [ 0,n \right ] \right \}
\begin{aligned} &y \Rightarrow \theta+\pi-2 \theta \\ &y \Rightarrow \pi-C \\ &y=\pi-\cos ^{-1}(2 x) \\ &\text { Since, } 2 x=\cos \theta \end{aligned}
Differentiating it with respect to x
\frac{d y}{d x}=0-\left[\frac{-1}{\sqrt{1-(2 x)^{2}}}\right] \frac{d}{d x}(2 x)
Since,\frac{d}{dx}\left ( constant \right )=0;
\begin{aligned} &\frac{d}{d x}\left(\cos ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}} \\ &\frac{d y}{d x}=\frac{1}{\sqrt{1-4 x^{2}}}(2) \\ &\frac{d y}{d x}=\frac{2}{\sqrt{1-4 x^{2}}} \end{aligned}

Differentiation Exercise 10.3 Question 43

Answer: Hence Prove ,1+a^{2}=b
Hint:
\begin{aligned} &\frac{d}{d x}\left(x^{n}\right)=n x^{n-1} \\ &\frac{d(\text { constant) }}{d x}=0 \end{aligned}
Given:
\frac{d}{\mathrm{dx}}\left[\tan ^{-1}(\mathrm{a}+\mathrm{bx})\right]=1 \text { at } \mathrm{x}=0
Solution:
So, using chain rule,
we know \frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}}
\begin{aligned} &{\left[\left\{\frac{1}{1+(a+b x)^{2}}\right\} \frac{d}{dx}(a+b x)\right]_{x=0}=1} \\ &{\left[\frac{1}{1+(a+b x)^{2}} \times(b)\right]_{x=0}=1} \\ &{\left[\frac{b}{\left[1+(a+b x)^{2}\right.}\right]_{x=0}=1} \\ &\therefore(a+b)^{2}=a^{2}+b^{2}+2 a b \end{aligned}
\begin{aligned} &{\left[\frac{b}{1+\left(a^{2}+b^{2} x^{2}+2 a b x\right)}\right]_{x=0}=1} \\ &\frac{b}{1+\left(a^{2}+0+0\right)}=1 \\ &\frac{b}{1+a^{2}}=1 \\ &b=1+a^{2} \end{aligned}
Hence Proved,

Differentiation Exercise 10.3 Question 44

Answer:\frac{dy}{dx}=\frac{-6}{\sqrt{1-4x^{2}}}
Hint:
\begin{aligned} &\frac{d}{d x}\left(x^{n}\right)=n x^{n-1} \\ &\frac{d}{d x}(\text { Constant })=0 \end{aligned}
Given:

Solution:
\begin{aligned} &y=\cos ^{-1}(2 x)+2 \cos ^{-1} \sqrt{1-4 x^{2}}, \\ &-\frac{1}{2}<x<0 \end{aligned}
Put2x=\cos \theta
So
y=\cos ^{-1}(\operatorname{coc} \theta)+2 \cos ^{-1} \sqrt{1-\cos ^{2} \theta}
Using,\sin ^{2}\theta +\cos ^{2}\theta =1
\begin{aligned} &y=\cos ^{-1}(\cos \theta)+2 \cos \sqrt{\sin ^{2} \theta} \\ &y=\cos ^{-1}(\cos \theta)+2 \cos ^{-}(\sin \theta) \\ &y=\cos ^{-1}(\cos \theta)+2 \cos \left(\cos ^{-1}\left(\frac{\pi}{2}-\theta\right)\right)-(i) \end{aligned}
Considering limit,
\begin{aligned} &-\frac{1}{2}<\mathrm{x}<0 \\ &-1<2 \mathrm{x}<0 \\ &-1-\cos \theta<0 \\ &\frac{\mathrm{\pi}}{2}<\theta<\mathrm{\pi} \end{aligned}
And,
\begin{aligned} &-\frac{\mathrm{\pi}}{2}>-\theta>-\mathrm{\pi} \\ &\left(\frac{\pi}{2}-\frac{\pi}{2}\right)>\left(\frac{\pi}{2}-\theta\right)>\left(\frac{\mathrm{\pi}}{2}-\pi\right) \\ &0>\left(\frac{\pi}{2}-\theta\right)>-\frac{\pi}{2} \end{aligned}
So, from equation (i)

\mathrm{y}=\theta+2\left[-\left(\frac{\pi}{2}-\theta\right)\right]
\left\{\operatorname{Since}, \cos ^{-1}(\cos \theta)=0 \text { if } \theta \varepsilon[0, \pi], \cos ^{-1} \cos (\theta)=-\theta, \text { if } \theta \varepsilon[-\pi \cdot 0]\right\}\begin{aligned} &\mathrm{y}=\theta-2 \times \frac{\pi}{2}+2 \theta \\ &\mathrm{y}=-\pi+3 \theta \\ &\mathrm{y}=-\pi+3 \cos ^{-1}(2 \mathrm{x}) \end{aligned}

Differentiating its with respect to xusing chain rule

\frac{d y}{d x}=0+3\left[\frac{-1}{\sqrt{1-(2 x)^{2}}}\right] \frac{d}{d x}(2 x)

As we Know,

\begin{aligned} &\frac{\mathrm{d}}{\mathrm{dx}}(\text { constant })=0 \\ &\frac{\mathrm{d}}{\mathrm{dx}}\left(\cos ^{-1} \mathrm{x}\right)=\frac{-1}{\sqrt{1-\mathrm{x}^{2}}} \\ &\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-3}{\sqrt{1-4 \mathrm{x}^{2}}}-(2) \\ &\frac{\mathrm{dy}}{\mathrm{dx}}=-\frac{6}{\sqrt{1-4 \mathrm{x}^{2}}} \end{aligned}

Differentiation Exercise 10.3 Question 45

Answer:\frac{dy}{dx}=\frac{1}{2\sqrt{1-x^{3}}}
Hint:
\begin{aligned} &\frac{d}{d x}(\text { constant })=0 \\ &\frac{d}{d x}\left(x^{n}\right)=n x^{n-1} \end{aligned}
Given:
y=\tan ^{-1}\left\{\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right\}
Solution:
Put,
x=\cos 2\theta
So,
\begin{aligned} y &=\tan ^{-1}\left[\frac{\sqrt{1+\cos 2 \theta}-\sqrt{1-\cos 2 \theta}}{\sqrt{1+\cos 2 \theta}+\sqrt{1-\cos 2 \theta}}\right] \\ &=\tan ^{-1}\left(\frac{\sqrt{2 \cos ^{2} \theta}-\sqrt{2 \sin ^{2} \theta}}{\sqrt{2 \cos ^{2} \theta}+\sqrt{2 \sin ^{2} \theta}}\right) \end{aligned}
Using\begin{aligned} &1+\cos 2 \theta=2 \cos ^{2} \theta \\ &y=\tan ^{-1}\left(\frac{\sqrt{2} \cos \theta-\sqrt{2} \sin \theta}{\sqrt{2} \cos \theta+\sqrt{2} \sin \theta}\right) \\ &y=\tan ^{-1}\left(\frac{\sqrt{2}(\cos \theta-\sin \theta)}{\sqrt{2}(\cos \theta+\sin \theta)}\right) \end{aligned}

Dividing numerator and denominator by \cos \theta

\begin{aligned} &y=\tan ^{-1}\left(\frac{\frac{\cos \theta}{\cos \theta}-\frac{\sin \theta}{\cos \theta}}{\frac{\cos \theta}{\cos \theta}+\frac{\sin \theta}{\cos \theta}}\right) \\ &y=\tan ^{-1}\left(\frac{\cos \theta-\sin \theta}{\frac{\cos \theta}{\cos \theta+\sin \theta}} \cos \theta\right) \end{aligned}

Using

\begin{aligned} &\tan \theta=\frac{\sin \theta}{\cos \theta} \\ &y=\tan ^{-1}\left(\frac{1-\tan \theta}{1+\tan \theta}\right) \\ &y=\tan ^{-1}\left(\frac{\tan \frac{n}{4}-\tan \theta}{1+\tan \frac{\pi}{4} \tan \theta}\right) \\ &y=\tan ^{-1}\left(\tan \left(\frac{n}{4}-\theta\right)\right) \\ &\text { Using } \tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B} \end{aligned}

y=\frac{\pi-0}{4}-\theta \left [ Using\: \tan ^{-1}\left ( \tan \theta \right ) =\theta \: if\: \theta \varepsilon \left [ -\frac{\pi}{2},\frac{\pi}{2} \right ]\right ]

y=\frac{\pi}{4}-\frac{1}{2} \cos ^{-1} x \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \; \; \; \; \; \; \; \; \; \; \; \; \; \; \quad[\text { Using } x=\cos 2 \theta]
Differentiating it with respect to x
\frac{\mathrm{dy}}{\mathrm{d} x}=0-\frac{1}{2}\left(\frac{-1}{\sqrt{1-\mathrm{x}^{2}}}\right) \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \quad\left\{\frac{\mathrm{d}}{\mathrm{d} \mathrm{x}}\left(\cos ^{-1} \mathrm{x}\right)=\frac{-1}{\sqrt{1-\mathrm{x}}^{2}}\right\}
\begin{aligned} &\frac{d y}{d x}=\frac{1}{2 \sqrt{1-x^{2}}} \\ &\frac{d y}{d x}=\frac{-1}{\sqrt{1-x^{2}}} \end{aligned}

Differentiation Exercise 10.3 Question 47

Answer: \frac{dy}{dx}=\frac{-1}{\sqrt{1-x^{2}}}
Hint:
\begin{aligned} &\frac{d}{\mathrm{dx}}(\text { constsant })=0 \\ &\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}}-1 \end{aligned}
Given:
y=\cos ^{-1}\left\{\frac{2 x-3 \sqrt{1-x^{2}}}{\sqrt{13}}\right)
Solution:
Let,x=\cos \theta
\begin{aligned} &\mathrm{y}=\cos ^{-1}\left\{\frac{2 \cos \theta-3 \sqrt{1-\cos ^{2} \theta}}{\sqrt{4}}\right\} \\ &\text { Using } \cos ^{2} \theta+\sin ^{2} \theta=1 \\ &\mathrm{y}=\cos ^{-1}\left\{\frac{2}{\sqrt{13}} \cos \theta-\frac{3}{\sqrt{13}} \sqrt{\sin ^{2} \theta}\right] \\ &\mathrm{y}=\cos ^{-1}\left\{\frac{2}{\sqrt{13}} \cos \theta-\frac{3}{\sqrt{13}} \sin \theta\right] \end{aligned}
\cos \phi=\frac{2}{\sqrt{13}}
Let,\sin \phi=\sqrt{1-\cos ^{2}\phi}
\begin{aligned} &=\sqrt{1-\left(\frac{2}{\sqrt{13}}\right)^{2}}+\sqrt{1-\frac{4}{13}} \\ &=\sqrt{\frac{13-4}{13}}=\sqrt{\frac{9}{13}} \end{aligned}
\sin \phi=\frac{3}{\sqrt{13}}
So,
\begin{aligned} &\begin{aligned} \mathrm{y} &=\cos ^{-1}\{\cos \phi \cos \theta-\sin \phi \sin \theta] \\ &=\cos ^{-1}[\cos (\theta+\phi)] \end{aligned} \\ &\text { Using, } \cos (A+B)=\cos A \cos B-\sin A \sin B \end{aligned}
\mathrm{y}=\phi+\theta \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \quad\left[\cos ^{-1}(\cos \theta)=\theta \text { if } 0 \varepsilon[0, \pi]\right]
\begin{aligned} &\mathrm{y}=\cos ^{-1}\left(\frac{2}{\sqrt{13}}\right)+\cos ^{-1} \mathrm{x} \\ &\text { since, } \mathrm{x}=\cos \theta \\ &\cos \phi=\frac{2}{\sqrt{13}} \end{aligned}
Differentiating its with Respect to x,
\begin{aligned} &\frac{d y}{d x}=\frac{-1}{\sqrt{1-\left(\frac{2}{\sqrt{13}}\right)^{2}}} \frac{d}{d x}\left(\frac{2}{\sqrt{13}}\right)+\left(\frac{-1}{\sqrt{1-x^{2}}}\right) \\ &\frac{d y}{d x}=\frac{-1}{\sqrt{1-\left(\frac{2}{\sqrt{13}}\right)^{2}} \times 0+\left(\frac{-1}{\sqrt{1-x^{2}}}\right)} \\ &\frac{d}{d x}\left(\cos ^{-1} x\right)=\frac{-1}{\sqrt{1-x^{2}}} \\ &\frac{d y}{d x}=0-\frac{1}{\sqrt{1-x^{2}}} \end{aligned}

Differentiation Exercise 10.3 Question 48

Answer: \frac{dy}{dx}=\frac{6}{\sqrt{1-9x^{2}}}
Hint:
\begin{aligned} &\left.\frac{\mathrm{d}}{\mathrm{dx}} \text { (constant }\right)=0 \\ &\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}-1} \end{aligned}
Given:
\begin{aligned} &y=\sin ^{-1}\left(6 x \sqrt{1-9 x^{2}}\right) \\ &\frac{1}{3 \sqrt{2}}<x<\frac{1}{3 \sqrt{2}} \end{aligned}
Solution:
Let
\begin{aligned} &\mathrm{x}=\frac{1}{3} \sin \theta \\ &\mathrm{y}=\sin ^{-1}\left(6 \times \frac{1}{3} \sin \theta \sqrt{\left.1-9\left(\frac{1}{3}\right)^{2} \sin ^{2} \theta\right)}\right. \\ &\mathrm{y}=\sin ^{-1}\left(2 \sin \theta \sqrt{1-9 \times \frac{1}{9} \sin ^{2} \theta}\right) \end{aligned}
\begin{aligned} &\mathrm{y}=\sin ^{-1}\left(2 \sin \theta \sqrt{1-\sin ^{2} \theta}\right) \\ &\mathrm{U} \sin g \sin ^{2} \theta+\cos ^{2} \theta=1 \\ &\mathrm{y}=\sin ^{-1}\left(2 \sin \theta \sqrt{\cos ^{2} \theta}\right) \\ &\mathrm{y}=\sin ^{-1}(2 \sin \theta \cos \theta) \\ &\mathrm{y}=\sin ^{-1}(\sin 2 \theta)-(\mathrm{i}) \\ &\mathrm{U} \sin g \sin 2 \theta=2 \sin \theta \cos \theta \end{aligned}
Considering limits here
\begin{aligned} &\frac{1}{3 \sqrt{2}}<\mathrm{x}<\frac{1}{3 \sqrt{2}} \\ &\frac{1}{3} \times \frac{1}{3 \sqrt{2}}<\frac{1}{3} \sin \theta<\frac{1}{3 \sqrt{2}} \times \frac{1}{3} \\ &\frac{1}{9 \sqrt{2}}<\frac{1}{3} \sin \theta<\frac{1}{9 \sqrt{2}} \end{aligned}

From Equation (i)

y=2\theta \left\{\begin{array}{l} \sin ^{-1}(\sin \theta)=\theta \\ \text { if } \theta \varepsilon\left[\frac{-\pi}{2}, \frac{\pi}{2}\right] \end{array}\right\}

y=2\sin ^{-1}\left ( 3x \right )

Differentiating it with respect tox

\begin{aligned} &\frac{d y}{d x}=\frac{d}{d x}\left(2 \sin ^{-1} 3 x\right) \\ &\text { As we thow, } \frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}} \\ &\frac{d y}{d x}=2 \times \frac{1}{\sqrt{1-(3 x)^{2}}} \frac{d}{d x}(3 x) \\ &\frac{d y}{d x}=\frac{2}{\sqrt{1-9 x^{2}}} \times 3 \\ &\frac{d y}{d x}=\frac{6}{\sqrt{1-9 x^{2}}} \end{aligned}



Rd Sharma Class 12th Exercise 10.3 solutions are an ideal choice for every student because of the following benefits:

  1. Experts format this exclusive material

Rd Sharma Class 12th Exercise 10.3 solutions are created by a group of experts working day and night to make sure that every student understands the concept properly. Therefore, a student will always be confident about the exam after going for Rd Sharma Class 12 Chapter 10.3 Exercise 10.3 solutions.

  1. Best Solutions for preparation and revision

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download E-book

Rd Sharma Class 12th Exercise 10.3 solutions are the best source for preparation and revision because a lot of time is saved when a student studies from this material. Moreover, the students will be ready to face any exam with RD Sharma Class 12 Solutions Differentiation Ex. 10.3.

  1. Questions from the NCERT book are easy to understand:

It is a well-known fact that NCERT is a book that every teacher follows. Keeping this fact in mind, the students are provided with solutions that abide by NCERT and CBSE guidelines. Rd Sharma Class 12th Exercise 10.3 solutions help students achieve good marks in-class exams also.

  1. Alternative ways to solve a question

RD Sharma Class 12 Solutions Chapter 10 ex 10.3 because they are crafted by experts who have many ways to solve a single question. Every expert has a different way to solve a problem, here also a student will find many forms and can choose what suits them best.

  1. Great performance

These solutions help a student cross their benchmark scores in the exams. The Class 12th RD Sharma Chapter 10.3 Exercise 10.3 Solutions includes all the concepts that are present in the textbook.

  1. Free of cost

The students need not pay any kind of monetary fund to attain the book from the Career 360 website. This is the website that has benefited thousands of students all over the country. A student must follow this website and learn from Career360 to score well academically.

RD Sharma Chapter-wise Solutions

Frequently Asked Questions (FAQs)

1. What do you mean by Function Differentiation?

The Differentiation of a function is a mathematical operation in the calculus domain that identifies the instantaneous changes for a universal output.

2. Why should we learn the rule for calculating exponential functions?

The rule for deriving exponential functions should be learned to understand how the exponential expressions in a function change when a differentiation operation is performed. In addition, it will assist you in comprehending the advanced concepts of higher mathematics in higher classes

3. What is the minimum cost of the RD Sharma solution books?

The RD Sharma solution books are available for free of cost at the Career 360 website. The class 12 students can download the reference material to make the most of it. 

4. What are the different rules of Derivatives?

There are five types of rules of derivatives, and these are:

  • Power rule of derivatives

  • Sum rule of derivatives

  • Product rule of derivatives

  • Quotient rule of derivatives

  • Chain rule of derivatives

5. What Is the Best Way to Learn Derivative Functions?

If you follow Career360, you will quickly learn how to perform this set of actions on the functions. Practicing and learning are essential to apply such derivation rules easily.

Articles

Get answers from students and experts
Back to top