The RD Sharma solution books are the top-rated reference materials used by the students preparing for their public exams. It lends a helping hand in every aspect of doubts that a student might encounter while studying. When the students continuously practice the sums given in this book, mathematics would be simple and easy for them. Rd Sharma Class 12th Exercise 10.3 has solved every problem of a student regarding Differentiation. This particular exercise has 49 questions, including subparts, that are formatted by a team of experts. The questions will help every student solve the queries regarding differentiating the functions w.r.t to x, Differentiation of inverse trigonometric functions, recapitulation products, Differentiation of constant values are included in Rd Sharma Class 12th Exercise 10.3.
This Story also Contains
RD Sharma Class 12 Solutions Chapter 10 Differentiation - Other Exercise Differentiation Excercise: 10.3 RD Sharma Chapter-wise Solutions Also Read - RD Sharma Solution for Class 9 to 12 Maths
RD Sharma Class 12 Solutions Chapter 10 Differentiation - Other Exercise Differentiation Excercise: 10.3 Answer :
d y d x = 2 1 − x 2 Hint:
cos − 1 ( cos θ ) = θ i f θ ε [ 0 , π ] cos − 1 ( cos θ ) = − θ i f θ ε [ − π , 0 ] Given:
cos − 1 { 2 x 1 − x 2 } , 1 2 < x < 1 Solution:
L e t s y = cos − 1 { 2 x 1 − x 2 } L e t s x = cos θ ⇒ θ = cos − 1 x N o w y = cos − 1 { 2 cos θ 1 − cos 2 θ } U s i n g ∴ cos 2 θ + sin 2 θ = 1 , 2 sin θ cos θ = sin 2 θ y = cos − 1 { 2 cos θ sin 2 θ } y = cos − 1 ( 2 cos θ sin θ ] y = cos − 1 ( sin 2 θ ) ∴ cos ( π 2 − θ ) ⇒ sin θ y = cos − 1 ( cos ( π 2 − 2 θ ) ) Now by considering the limits,
1 2 < x < 1 ⇒ 1 2 < cos θ < 1 ⇒ 0 < θ < π 4 ∴ [ cos 90 ∘ = 0 , cos 0 ∘ = 1 ] ⇒ 0 < 2 θ < π 2 ⇒ 0 > − 2 θ > − π 2 ⇒ π 2 > π 2 − 2 θ > π 2 − π 2 Therefore,
y = cos − 1 ( cos ( π 2 − 2 θ ) ) y = cos − 1 ( cos ( π 2 − 2 θ ) ) y = ( π 2 − 2 θ ) { cos − 1 ( cos θ ) = θ } y = π 2 − 2 cos − 1 x if θ ε [ 0 , π ] Differentiating with Respect to x, we get
d y d x = d d x ( π 2 − 2 cos − 1 x ) ∴ d d x ( cos − 1 x ) ⇒ − 1 1 − x 2 ∴ d dx (constant) = 0 d y d x = 0 − 2 ( − 1 1 − x 2 ) d y d x = 2 1 − x 2 Differentiation exercise 10.3 question 2
Answer :
dy dx = 1 2 ( − 1 1 − x 2 ) Hint:
cos − 1 ( cos θ ) = θ i f θ ε [ 0 , π ] cos − 1 ( cos θ ) = − θ i f θ ε [ − π , 0 ] Given:
cos − 1 { 1 + x 2 } , − 1 < x < 1 Solution:
L e t , y = cos − 1 { 1 + x 2 } L e t x = cos 2 θ , θ = 1 2 cos − 1 x N o w , y = cos − 1 { 1 + cos 2 θ 2 } B y u s i n g cos 2 θ = 2 cos 2 θ − 1 y = cos − 1 { 2 cos 2 θ 2 } y = cos − 1 ( cos θ ) ∴ cos − 1 ( cos θ ) = θ N o w y = cos − 1 ( cos θ ) y = θ y = 1 2 cos − 1 x ∴ cos − 1 ( cos θ ) = θ i f θ ε [ 0 , π ] Differentiating with respect to x, we get
dy dx ⇒ 1 2 ( − 1 1 − x 2 ) As we know,
d dx ( c o n s t a n t s ) = 0 d d x ( cos − 1 x ) = − 1 1 − x 2 Hence, final answer is
1 2 ( − 1 1 − x 2 ) Differentiation exercise 10.3 question 3
Answer : -
− 1 2 1 − x 2 Hint:
Use substitution method to differentiate this function
Given:
sin − 1 { 1 − x 2 } } , 0 < x < 1 Solution:
Let y = sin − 1 { 1 − x 2 } let x = cos 2 θ [ θ = 1 2 cos − 1 x ] − ( 1 ) ∴ y = sin − 1 { 1 − cos 2 θ 2 } = sin − 1 { 2 sin 2 θ 2 } y = sin − 1 { sin 2 θ } [ ∵ 1 − cos 2 θ = 2 sin 2 θ ] = sin − 1 ( sin θ ) y = θ = 1 2 cos − 1 x [ using (i)] Now differentiating y w.r.t x then
d y d x = 1 2 d ( cos − 1 x ) d x = 1 2 ⋅ − 1 1 − x 2 = − 1 2 1 − x 2 [ ∵ d d x cos − 1 x = − 1 1 − x 2 ] ∴ d y d x = − 1 2 1 − x 2 Differentiation exercise 10.3 question 4
Answer :
d y d x = − 1 1 − x 2 Hint:
d d x ( x n ) = n x n − 1 ; d d x ( c o n s t a n t ) = 0 Given:
sin − 1 { 1 − x 2 } , 0 < x < 1 Solution:
Unknown environment '' Unknown environment '' Considering the limits,
Unknown environment '' Unknown environment '' differentiating with respects to x, we get
Unknown environment '' Unknown environment '' Differentiation exercise 10.3 question 6
Answer :
d y d x = a a 2 + x 2 Hint:
Given:
sin − 1 { x x 2 + a 2 } Solution:
L e t y = sin − 1 { − x x 2 + a 2 } L e t x = atan θ N o w , y = sin − 1 { atan θ a 2 tan 2 θ + a 2 } y = sin − 1 { atsan θ a 2 ( tan 2 θ + 1 ) } y = sin − 1 { atan θ a ( tan 2 θ + 1 ) } y = sin − 1 ∫ atan θ a sec 2 θ } Using : { tan θ = sin θ cos θ , cos θ = 1 sec θ } y = sin − 1 { sin θ } y = θ ∴ { sin − 1 θ ( sin θ ) = θ } if θ ε [ − π 2 , π 2 ] x = atan θ x = atan θ θ = tan − 1 ( x a ) y = tan − 1 ( x a ) differentiating with respects to x, we get
d y d x = d d x ( tan − 1 ( x a ) ) ∂ ∂ x ( tan − 1 x ) = 1 1 + x 2 d y d x = ( 1 1 + ( x a ) 2 ) × 1 a d y d x = ( 1 1 + x 2 a 2 ) × 1 a d y d x = ( 1 a 2 + x 2 a 2 ) × 1 a d y d x = a 2 a 2 + x 2 × 1 a d y d x = a a 2 + x 2 Differentiation exercise 10.3 question 7
Answer:
d y d x = 2 1 − x 2 Hint:
d dx ( C o n s t a n t ) = 0 ; ∂ dx ( x n ) = n x n − 1 Given:
sin − 1 ( 2 x 2 − 1 ) , 0 < x < 1 Solution:
Unknown environment '' Unknown environment '' As we know,
sin ( n 2 − θ ) = cos θ Considering the limits,
0 < x < 1 Unknown environment '' Unknown environment '' Differentiating with respect ts? x, weget
d y d x = d ∂ x ( n 2 − 2 cos − 1 x ) As we know
Unknown environment '' Unknown environment '' Differentiation exercise 10.3 question 8 Answer : dy dx = − 2 1 − x 2
Hint:
∂ d x ( C o n s t a n t ) = 0 ; ∂ dx ( x n ) = n x n − 1 Given:
sin − 1 ( 1 − 2 x 2 ) , 0 < x < 1 Solution:
Unknown environment '' Unknown environment '' As we know,
Unknown environment '' Unknown environment '' Considering the limits,
Unknown environment '' Unknown environment '' Now,
Unknown environment '' Unknown environment '' Differentiating with respect to x,
d y d x = d d x ( n 2 − 2 sin − 1 x ) As we know d d x ( constant ) = 0 d d x ( sin − 1 x ) = 1 1 − x 2 d y d x = 0 − 2 1 1 − x 2 d y d x = − 2 1 − x 2 Differentiation exercise 10.3 question 9
Answer :
d y d x = − a a 2 + x 2 Hint:
d d x ( C o n s t a n t ) = 0 d d x ( x n ) = n x n − 1 Given:
cos − 1 { x x 2 + a 2 } Solution:
L e t , y = cos − 1 { x x 2 + a 2 ) L e t x = acot θ θ = cot − 1 ( x a ) Now y = cos − 1 { acot θ a 2 cot 2 θ + a 2 } y = cos − 1 { acot θ a 2 ( cot 2 θ + 1 ) } y = cos − 1 { acot θ a cot 2 θ + 1 } Using 1 + cot 2 θ = cosec 2 θ y = cos − 1 { acot θ a cosec 2 θ } y = cos − 1 { acot θ acosec θ } y = cos − 1 { cot θ cosec θ } As we Know,
cot θ = cos θ sin θ , cosec θ = 1 sin θ y = cos − 1 { cos θ sin θ × sin θ } y = cos − 1 ( cos θ ) y = θ y = cot − 1 ( x a ) Differentiating with respect to x We get d y d x = d d x ( cot − 1 ( x a ) ) ∴ ∂ d x ( cot − 1 x ) = − 1 1 + x 2 d y dx = − 1 1 + ( x a ) 2 × 1 a d y d x = − 1 1 + x 2 a 2 × 1 a d y d x = − 1 a 2 + x 2 a 2 × 1 a d y d x = a 2 a 2 + x 2 × 1 a d y d x = − a a 2 + x 2 Differentiation Exercise 10.3 Question 10
Answer:
d y d x = 1 Hint:
d d x (constants) = 0 d d x ( x n ) = nx n − 1 Given:
sin − 1 { sin x + cos x 2 } − 3 π 4 < x < π 4 Soluton:
Let,
y = sin − 1 { sin x + cos x 2 } Now,
y = sin − 1 { sin x 1 2 + cos x 1 2 } y = sin − 1 { sin x cos ( π 4 ) + cos xsin ( π 4 ) } sin ( π 4 ) = 1 2 & cos ( π 4 ) = 1 2 Using,
sin ( A + B ) = sin A cos B + cos A sin B y = sin − 1 { sin ( x + π 4 ) } Considering the limits, − 3 π 4 < x < π 4 − 3 π 4 + π 4 < x + π 4 < π 4 + 1 4 − π 2 < x + π 4 < π 2 Now, y = sin − 1 { sin ( x + π 4 ) } y = x + π 4 { sin − 1 ( sin θ ) = θ , if θ ε [ π 2 , π 2 ] } Differentiating with respect to x , We get
d y d x = 1 + 0 d dx (constant) = 0 d y d x = 1 Differentiation Exercise 10.3 Question 11
Answer:
d y d x = − 1 Hint:
d dx (constants) = 0 d d x ( x n ) = n x n − 1 Given:
cos − 1 { cos x + sin x 2 } − π 4 < x < π 4 Solution:
Let,
y = cos − 1 { cos x + sin x 2 } Now
y = cos − 1 { cos x 1 2 + sin x 1 2 } y = cos − 1 { cos x cos ( π 4 ) + sin x sin ( π 4 ) } sin ( π 4 ) = 1 2 & cos ( π 4 ) = 1 2 Using,
cos ( A − B ) = cos A cos B + sin A sin B y = cos − 1 { cos ( x − π 4 ) } Considering the limits,
− π 4 < x < π 4 − π 4 − π 4 < x − π 4 < π 4 − π 4 − 2 π 4 < x − π 4 < 0 − π 2 < x − π 4 < 0 Now,
y = cos − 1 { cos ( x − π 4 ) } y = − ( x − π 4 ) { cos − 1 ( cos θ ) = − θ if θ ∈ [ − π , 0 ] } Differentiating with respect to x , We get
d y d x = − 1
d d x ( constants ) = 0
Differentiation Exercise 10.3 Question 12 (i)
Answer:
d y d x = 1 2 1 − x 2 Hint:
d d x ( c o n s t a n t ) = 0 d d x ( x n ) = n x n − 1 Given:
tan − 1 { x 1 + 1 − x 2 } − 1 < x < 1 Solution:
Let,
y = tan − 1 { x 1 + 1 − x 2 } x = sin θ θ = sin − 1 x Now,
y = tan − 1 { sin θ 1 + 1 sin 2 θ } Using
sin 2 θ + cos 2 θ = 1 y = tan − 1 { sin θ 1 + cos 2 θ } y = tran − 1 { sin θ 1 + cos θ } Using 2 cos 2 θ = 1 + cos 2 θ 2 sin θ cos θ = sin 2 θ y = tan − 1 { 2 sin θ 2 cos θ 2 2 cos 2 θ 2 } y = tan − 1 { sin θ 2 cos θ 2 } tan θ = sin θ cos θ y = tan − 1 { tan θ 2 } Considering the limits,
− 1 < x < 1 − 1 < sin θ < 1 − π 2 < θ 2 < π 2 − π 4 < θ 2 < π 4
Now,
y = tan − 1 { tan θ 2 } y = θ 2 tan − 1 ( tan θ ) = 0 if θ ∈ [ − π 2 , π 2 ]
y = 1 2 sin − 1 x
Differentiating with respect to x , We get
d y d x = − 1 d d x ( constants ) = 0 d y d x = 1 2 ( 1 2 d d x ( sin − 1 x ) d d x ( sin − 1 x ) = 1 1 − x 2 d y d x = 1 2 1 1 − x 2 d y d x = 1 2 1 − x 2
− 1 < x < 1
Differentiation Exercise 10.3 Question 12 (ii)
Answer:
d y d x = 1 2 Hint:
cos 2 x = 2 cos 2 x − 1 tan ( π 2 − θ ) = cot θ Given:
tan − 1 { 1 + cos x s i n x } Solution:
y = tan − 1 { 1 + cos x sin x } y = tan − 1 { 2 cos 2 x 2 2 sin x 2 cos x 2 } y = tan − 1 ( cot x 2 ) y = tan − 1 ( tan ( π 2 − x 2 ) ) [ ( π 2 − θ ) = cot θ ] y = x 2 Differentiating w.r.t x d y d x = 1 2 Differentiation Exercise 10.3 Question 13
Answer:
d y d x = 1 2 a 2 − x 2 Hint:
d dx ( constants ) = 0 d dx ( x n ) = n x n − 1 Given:
tan − 1 { x a + a 2 − x 2 } − a < x < − a Solution:
Let,
x = a sin θ θ = sin − 1 x a Now,
y = tan − 1 { asin θ a + a 2 − a 2 sin 2 θ } y = tan − 1 { asin θ a + a 1 − sin 2 θ } Using
cos 2 θ + sin 2 θ = 1 y = tan − 1 { asin θ a + a cos θ } y = tan − 1 { asin θ a + acos θ } y = tan − 1 { asin θ a ( 1 + los θ ) } U sing 2 cos 2 θ = 1 + cos θ y = tan − 1 { sin θ 1 + cos θ } and 2 sin θ cos θ = sin 2 θ y = tan − 1 { sin θ 1 + cos θ } y = tan − 1 { 2 sin θ 2 cos θ 2 2 cos 2 θ 2 } y = tan − 1 { sin θ 2 cos θ 2 } y = tan − 1 ( tan θ 2 ) ∴ sin θ cos θ = tan θ Considering the limit − a < x < a − 1 < sin θ < 1 − π 2 < θ < π 2 − π 4 < θ 2 < π 4 { sin π 2 = 1 } Now,
y == tan − 1 { tan θ 2 } y = θ 2 y = 1 2 sin − 1 x a Differentiating with respect to x , We get
d y d x = d d x ( 1 2 sin − 1 x a ) ∴ d d x ( sin − 1 x ) = 1 1 − x 2 d y d x = 1 2 1 1 − ( x ) 2 × 1 a ⇒ 1 2 × 1 1 − x 2 a 2 × 1 a ⇒ d y d x = 1 2 × 1 a 2 − x 2 a 2 × 1 a d y d x = 1 2 a 2 − x 2
Differentiation Exercise 10.3 Question 14
Answer:
d y d x = 1 1 − x 2 Hint:
d dx ( constants ) = 0 d d x ( x n ) = nx n − 1 Given:
sin − 1 { x + 1 − x 2 2 } − 1 < x < 1 Solution:
Let
y = sin − 1 { x + 1 − x 2 2 } Let
x = sin θ θ = sin − 1 x Now,
y = sin − 1 { sin θ + 1 − sin 2 θ 2 } Using
sin 2 θ + cos 2 θ = 1 y = sin − 1 { sin θ + cos 2 θ 2 ] y = sin − 1 { sin θ + cos θ 2 } Now,
y = sin − 1 { sin θ 1 2 + cos θ 1 2 } y = sin − 1 { sin θ cos ( π 4 ) + cos θ sin ( π 4 ) } sin ( π 4 ) = 1 2 & cos ( π 4 ) y = sin − 1 { sin ( θ + π 4 ) } Considering the limits,
− 1 < x < 1 − 1 < sin θ < 1 − π 2 < θ < π 2 { sin π 2 = 1 }
− π 2 + π 4 < θ + π 4 < π 2 + π 4 − π 4 < θ + π 4 < 3 π 4
Now,
y = sin − 1 { sin ( θ + π 4 ) } y = θ + π 4 y = sin − 1 x + π 4 s i n − ( sin θ ) = θ i f θ ε [ − π 2 , π 2 ] Differentiating with respect to x , We getd dx ( sin − 1 x ) = 1 1 − x 2 d d x (constant) = 0 dy dx = 1 1 − x 2
Differentiation Exercise 10.3 Question 15
Answer:
d y d x = − 1 1 − x 2 Hint:
d dx ( constants ) = 0 d d x ( x n ) = n x n − 1 Given:
cos − 1 { x + 1 − x 2 2 } − 1 < x < 1 Solution:
y = cos − 1 { x + 1 − x 2 2 } Let,
x = sin θ θ = sin − 1 x y = cos − 1 { sin θ + 1 − sin 2 θ 2 } y = cos − 1 { sin θ + cos 2 θ 2 } Using sin 2 θ + cos 2 θ = 1 y = cos − 1 { sin θ + cos θ 2 } y = cos − 1 { sin θ 1 2 + cos θ 1 2 } y = cos − 1 { sin θ sin ( π 4 ) + + cos θ cos ( π 4 ) } ∴ sin ( π 4 ) = 1 2 cos ( π 4 ) = 1 2 Using,
cos ( A − B ) = cos A cos B + sin A sin B y = cos − 1 { cos ( θ − π 4 ) } Considering the limits, − 1 < x < 1 − 1 < sin θ < 1 − π 2 < θ < π 2 − π 2 − π 4 < θ − π 4 < 1 2 − π 4 − 3 π 4 < 8 − π 4 < π 4 Now, y = cos − 1 { cos ( θ − π 4 ) } y = − ( θ − π 4 ) { ∴ cos − 1 ( cos θ ) = − 0 if θ ε [ − π , 0 ] } y = − ( θ − π 4 ) y = − sin − 1 x + π 4 [ s i n c e x = sin θ ] Differentiating with respect to x , We get d y d x = d d x ( − sin − 1 x + π 4 ) ∴ d d x ( constants ) = 0 d d x ( sin − 1 x ) = 1 1 − x 2 d y d x = − 1 1 − x 2 + 0 d y d x = − 1 1 − x 2 Differentiation Exercise 10.3 Question 16
Answer:
d y d x = 4 1 + 4 x 2 Hint:
d d x ( constants ) = 0 d d x ( x n ) = n x n − 1 Given:
tan − 1 { 4 x 1 − 4 x 2 } − 1 2 < x < 1 2 Solution:
Let,
y = tan − 1 { 4 x 1 − 4 x 2 } Let,
2 x = tan θ θ = tan − 1 2 x y = tan − 1 { 2 tan θ 1 − tan 2 θ } Using
tan 2 θ = 2 tan θ 1 − tan 2 θ y = tan − 1 ( tan 2 θ ) Considering the limits,
− 1 2 < x < 1 2 − 1 < 2 x < 1 − 1 < tan θ < 1 − π 4 < θ < π 4 − π 2 < 2 θ < π 2 { tan 45 ∘ = 1 }
Now,
y = tan − 1 ( tan 2 θ )
y = 2 θ
y = 2 tan − 1 ( 2 x ) [ s i n c e , 2 x = tan θ ]
Differentiating with respect to x , We get
d y d x = d d x ( 2 tan − 1 2 x ) d y d x = 2 × 2 1 + ( 2 x ) 2 d y d x = 4 1 + 4 x 2 d ( t a n − 1 x ) d x = 1 1 + x 2
Diffrentiation Exercise 10.3 Question 17
Answer:
d y d x = 2 x + 1 l o g 2 1 + 4 x Hint:
d dx ( constants ) = 0 d dx ( x n ) = n x n − 1 Given:
tan − 1 [ 2 x + 1 1 − 4 x ] − ∞ < x < 0 Solution:
y = tan − 1 [ 2 x + 1 1 − 4 x ] Let,
2 x = tan θ y = tan − 1 { 2 x 2 x 1 − ( 2 x ) 2 } As we Know
a m + n → a m ⋅ a n y = tan − 1 { 2 tan θ 1 − tan 2 θ } Using
tan 2 θ = 2 tan θ 1 − tan 2 θ y = tan − 1 ( tan 2 θ ) Considering the limits,
− ∞ < x < 0 2 − ∞ < 2 x < 2 0 0 < tan θ < 1 0 < π 4 { 2 0 = 1 , 2 − ∞ = 0 }
0 < 2 θ < π 2 { tan π 4 = 1 }
0 < 2 θ < π 2
Now
y = tan − 1 ( tan θ )
y == 2 θ
y = 2 tan − 1 ( 2 x ) { sin c e 2 x = tan θ θ = tan − 1 ( 2 x ) }
Differentiating with respect to x , We get
d y d x = d d x ( 2 tan − 1 ( 2 x ) ) d y d x = 2 × 2 x log 2 1 + ( 2 x ) 2 d y d x = 2 x + 1 log 2 1 + 4 x ∴ d ( tan − 1 x ) dx = 1 1 + x 2 d dx ( 2 x ) = log 2 { a m ⋅ a n ⇒ a m + h }
Differentiation Exercise 10.3 Question 18
Answer:
d y d x = 2 a x l o g a 1 + a 2 x Hint:
d c d x = 0 ; d d x ( x n ) = n x n − 1 Given:
tan − 1 { 2 a x 1 − a 2 x } , a > 1 , − ∞ < x < 0 Solution:
Let
y = tan − 1 { 2 a x 1 − a 2 x } , Let,
a x = tan θ y = tan − 1 { 2 tan θ 1 − tan 2 θ } Using tan 2 θ = 2 tan θ 1 − tan 2 θ y = tan − 1 ( tan 2 θ ) Considering the limits, − ∞ < x < 0 a − ∞ < a x < a 0 0 < tan θ < 1 { a o = 1 } 0 < θ < π 4 { tan ( π 4 ) = 1 } Now,
y = tan − 1 ( tan 2 θ ) y = 2 θ y = 2 tan − 1 ( a x ) s i n c e a x = tan θ , θ = tan − 1 ( a x ) Differentiating with respect to x , we get d y d x = d d x ( 2 tan − 1 ( a x ) ) d y d x = 2 × a x 1 + ( a x ) 2 log a d d x ( tan − 1 x ) = 1 1 + x 2 d y d x = 2 a x log a 1 + a 2 x Differentiation Exercise 10.3 Question 19
Answer:
d y d x = − 1 2 1 − x 2 Hint:
d dx ( constants ) = 0 d dx ( x n ) = nx n − 1 Given:
sin − 1 { 1 + x + 1 − x 2 } , 0 < x < 1 Solution:
Let
y = sin − 1 { 1 + x + 1 − x 2 } Let,
x = cos 2 θ Now, sin − 1 { 1 + cos 2 θ + 1 − cos 2 θ 2 } Using 1 − 2 sin 2 θ = cos 2 θ 2 cos 2 θ − 1 = cos 2 θ y = sin − 1 { 2 cos 2 θ + 2 sin 2 θ 2 } Now,
y = sin − 1 { 2 cos θ + 2 sin θ 2 } y = sin − 1 { cos θ 1 2 + sin θ 1 2 } y = sin − 1 { sin θ cos ( π 4 ) + cos θ sin ( π 4 ) } ∴ sin ( π 4 ) = 1 2 & cos ( π 4 ) = 1 2 U sin sin ( A + B ) = sin A cos B + cos Asin B y = sin − 1 { sin ( θ + π 4 ) } Considering the limits, 0 < x < 1 0 < cos 2 θ < 1 0 < 2 θ < π 2 0 < θ < π 4 0 + π 4 < ( θ + 1 4 ) < π 2 + π 4 π 4 < ( θ + π 4 ) < π 2 Now,y = sin − 1 { sin ( θ + π 4 ) } y = θ + π 4 sin − 1 ( sin θ ) = θ , i f θ ε [ − π 2 , π 2 ] y = 1 2 cos − 1 x + π 4 { s i n c e x = cos 2 θ } d y d x = d d x ( 1 2 cos − 1 x + π 4 ) d dx ( constant ) = 0 d dx ( cos − 1 x ) = − 1 1 − x 2 dy dx = 1 2 ( − 1 1 − x 2 ) + 0 dy dx ⇒ − 1 2 1 − x 2 Differentiation Exercise 10.3 Question 20
Answer:
d y d x = a 2 ( 1 + a 2 x 2 ) Hint:
d d x ( constant ) = 0 d d x ( x n ) = n x n − 1 Given:
tan − 1 { 1 + a 2 x 2 − 1 a x } , x ≠ 0 Solution:
Let,
y = tan − 1 { 1 + a 2 x 2 − 1 a x } L e t a x = tan θ Now
y = tan − 1 { 1 + tan 2 θ − 1 tan θ } Using
sec 2 θ = 1 + tan 2 θ y = tan − 1 { sec 2 θ − 1 tan θ } y = tan − 1 { sec θ − 1 tan θ } y = tan − 1 { 1 cos θ − 1 sin θ cos θ } Using tan θ = sin θ cos θ , sec θ = 1 cos θ y = tan − 1 { 1 − cos θ cos θ sin d cos θ } y = tan − 1 { 1 − cos θ cos θ × cos θ sin θ } y = tan − 1 { 1 − cos θ sin θ } Using 2 sin 2 θ = 1 − cos 2 θ and 2 sin θ cos θ = sin 2 θ y = tan − 1 { 2 sin 2 θ / 2 2 sin θ / 2 cos θ / 2 } y = tan − 1 { tan θ 2 } y = θ 2 y = 1 2 t a n − 1 a x Differentiating with respect to x , We get d y d x = d d x ( 1 2 tan − 1 x ) Using d d x ( tan − 1 x ) ⇒ 1 1 + x 2 d y d x = 1 2 × 1 1 + ( a x ) 2 × 1 a d y d x = a 2 ( 1 + a 2 x 2 ) Differentiation Exercise 10.3 Question 21
Answer:
d y d x = 1 2 Hint:
d y d x ( x n ) = n x n − 1 d y d x ( c o n s t a n t ) = 0 Given:
tan − 1 { sin x 1 + cos x } , − π < x < π Solution:
Let,
y = tan − 1 { sin x 1 + cos x } Function y is defined for all the real numbers where cos x ≠ − 1 Using 2 cos 2 θ = 1 + cos 2 θ 2 sin θ cos θ = sin 2 θ y = tan − 1 { 2 sin x 2 cos x 2 2 cos 2 x 2 } y = tan − 1 { − sin x / 2 cos x / 2 } y = tan − 1 { tan x 2 } y = x 2 Differentiating with respect to x , We get d y d x = d d x ( x 2 ) d y d x = 1 2 Differentiation Exercise 10.3 Question 22
Answer:
d y d x = − 1 1 + x 2 Hint:
d d x ( Constant ) = 0 d d x ( x n ) = n x n − 1 Given:
sin − 1 { 1 1 + x 2 } Solution:
Let,
y = sin − 1 { 1 1 + x 2 } Let
x = cot θ θ = cot − 1 x Now,
y = sin − 1 { 1 1 + cot 2 θ } Using,
1 + cot 2 θ = cosec 2 θ y = sin − 1 { 1 cosec 2 θ } y = sin − 1 { 1 cosec θ } { 1 c o s e c θ = sin θ } y = sin − 1 ( sin θ ) sin − 1 ( sin θ ) = sin θ ,if θ ε [ − π 2 , π 2 ] y = θ y = cot − 1 x Differentiating with respect to x , We get
d y d x = d d x ( cot − 1 x ) ∴ d d x ( cot − 1 x ) ⇒ − 1 1 + x 2 d y d x = − 1 1 + x 2
Differentiation Exercise 10.3 Question 23
Answer:
d y d x = 2 n x n − 1 1 + x 2 n Hint:
d dx ( constsant ) = 0 d d x ( x n ) = n x n − 1 Given:
cos − 1 { 1 − x 2 n 1 + x 2 n } 0 < x < ∞ Solution:
y = c o s − 1 { 1 − x 2 n 1 + x 2 n } Let,
x n = tan θ θ = tan − 1 ( x n ) y = cos − 1 { 1 − tan 2 θ 1 + tan 2 θ } y = cos − 1 { cos 2 θ } Using,
1 − tan 2 θ 1 + tan 2 θ = cos 2 θ
Considering the limits,
0 < x < ∞ 0 < x n < ∞ 0 < θ < π 2
Now, { cos − 1 ( cos θ ) = θ , i f θ ε [ 0 , π ] }
y = cos − 1 ( cos 2 θ )
y = 2 θ S i n c e x n = tan θ Differentiating with respect to x we getd y d x = d d x ( 2 tan − 1 ( x n ) ) Usingd d x ( tan − 1 x ) = 1 1 + x 2 d y d x = 2 × 1 1 + ( x n ) 2 × n x n − 1 d y d x = 2 n x n − 1 1 + x 2 n
Differentiation Exercise 10.3 Question 24
Answer:
d y d x = 0 Hint:
d dx ( constsant ) = 0 d d x ( x n ) = n x n − 1 Given:
sin − 1 ( 1 − x 2 1 + x 2 ) + sec − 1 ( 1 + x 2 1 − x 2 ) Solution:
Let,
y = sin − 1 ( 1 − x 2 1 + x 2 ) + sec − 1 ( 1 + x 2 1 − x 2 ) Using
sec − 1 x = cos − 1 ( 1 x ) y = sin − 1 ( 1 − x 2 1 + x 2 ) + cos − 1 ( 1 − x 2 1 + x 2 ) Using
sin − 1 x + cos − 1 x = π 2 y = π 2 Differentiating with respect to x we get
d y d x = d d x ( π 2 )
d y d x = 0 { d d x ( c o n s t a n t ) = 0 }
Differentiation Exercise 10.3 Question 26
Answer:
1 2 x ( 1 + x ) Hint:
d d x ( c o n s t a n t ) = 0 ; d d x ( x n ) = n x n − 1 Given:
tan − 1 ( x + a 1 − x a ) Solution:
Let,
y = tan − 1 ( x + a 1 − x a ) Since,
tan − 1 x + tan − 1 y = tan − 1 ( x + y 1 − xy ) y = tan − 1 x + tan − 1 a Differentiating it with respect to x using chain qule. d y d x = d d x ( tan − 1 x ) + d d x ( tan − 1 a ) Since , d dx ( tan − 1 x ) = 1 1 + x 2 ; d dx ( x n ) = n x n − 1 dy dx = 1 1 + ( x ) 2 d dx ( x ) + 0 dy dx = 1 1 + ( x 1 / 2 ) 2 × 1 2 ( x ) 1 2 − 1 dy dx = 1 1 + x × 1 2 ( x ) − 1 2 dy dx = 1 1 + x × 1 2 x dy dx = 1 2 x ( 1 + x ) Differentiation Exercise 10.3 Question 27
Answer:
d y d x = 1 Hint:
d d x ( c o n s t a n t ) = 0 d d x ( x n ) = n x n − 1 Given:
tan − 1 [ a + btan x b − atan x ] Solution:
Let,
y = tan − 1 [ a + b tan x b − atan x ] y = tan − 1 [ a + b tan x b b − a t a n x b ] y = tan − 1 [ a b + tan x 1 − a b tan x ] y = tan − 1 [ tan ( tan − 1 a b ) + tan x 1 − tan ( tan − 1 ⋅ g b ) tan x ] y = tan − 1 [ tan ( tan − 1 a b + x ) ] ∴ tan ( A + B ) = tan A + tan B → 1 − tan A tan B y = tan − 1 ( a b ) + x Differentiating it with respect to x , We get d y d x = d d x ( tan − 1 ( a b ) ) + d d x ( x ) d d x ( constant ) = 0 d d x ( tan − 1 x ) = 1 1 + x 2 d y d x = 1 1 + ( a b ) 2 × 0 + 1 d y d x = 0 + 1 d y d x = 1 Differentiation Exercise 10.3 Question 28
Answer:
d y d x = 1 1 + x 2 Hint:
d d x ( constant ) = 0 ; d d x ( x n ) = n x n − 1 Given:
tan − 1 ( a + b x b − a x ) Solution:
Let,
y = tan − 1 ( a + b x b − a x ) y = tan − 1 [ a + b x b b − a x b ] Since,
tan − 1 x + tan − 1 y = tan − 1 ( x + y 1 − x y ) Differentiating it with respect to x , We get
d y d x = d d x ( tan − 1 ( a b ) + tan − 1 x Since, d d x ( tan − 1 x ) = 1 1 + x 2 d y d x = 1 1 + ( a b ) 2 × 0 + 1 1 + x 2 d y d x = 0 + 1 1 + x 2 d y d x = 1 1 + x 2
Differentiation Exercise 10.3 Question 29
Answer:
d y d x = a a 2 + x 2 Hint:
d d x ( constan t ) = 0 ; d d x ( x n ) = n x n − 1 Given:
tan − 1 ( x − a x + a ) Solution:
Let,
y = tan − 1 ( x − a x + a ) y = tan − 1 ( x − a x x + a x ) y = tan − 1 ( x x − a x x x + a x ) y = tan − 1 ( 1 − a x 1 + 1 × a x ) y = tan − 1 ( 1 ) + tan − 1 ( a x ) Using,
tan − 1 x + tan − 1 y = tan − 1 ( x + y 1 − x y )
Differentiating its with respect to x using chain tule.
d y d x = 0 − 1 1 + ( a x ) 2 d d x ( a x ) d y d x = − 1 1 + a 2 x 2 ( − a x 2 ) d y d x = − 1 x 2 + a 2 x 2 × ( − a x 2 ) d y d x = − x 2 x 2 + a 2 × ( − a x 2 ) Using d d x ( x n ) = n x n − 1
d d x = a x 2 + a 2 d d x ( c o n s t a n t ) = 0
Differentiation Exercise 10.3 Question 30
Answer:
d y d x = 3 1 + 9 x 2 − 2 1 + 4 x 2 Hint:
d dx ( constan t ) = 0 ; d d x ( x n ) = n x n − 1 Given:
tan − 1 ( x 1 + 6 x 2 ) Solution:
Let,
y = tan − 1 ( x 1 + 6 x 2 ) y = tan − 1 ( 3 x − 2 x 1 + ( 3 x ) ( 2 x ) ) Since,
3 x − 2 x = x y = tan − 1 3 x − tan − 1 2 x [ Since + tan x − tan − 1 y = tan − 1 ( x − y 1 + x y ) ] Differentiating it with respect tox using chain rule, d y d x = 1 1 + ( 3 x 2 ) d d x ( 3 x ) − 1 1 + ( 2 x ) 2 d d x ( 2 x ) { Since ⇒ d d x tan − 1 ( x ) = 1 1 + x 2 } d y d x = 1 1 + 9 x 2 ( 3 ) − 1 1 + 4 x 2 ( 2 ) d y d x = 3 1 + 9 x 2 − 2 1 + 4 x 2 Differentiation Exercise 10.3 Question 31
Answer:
d y d x = 3 1 + 9 x 2 + 2 1 + 4 x 2 Hint:
d d x ( c o n s t a n t ) = 0 ; d d x ( x n ) = n x n − 1 Given:
tan − 1 ( 5 x 1 − 6 x 2 ) Solution:
Let,
y = tan − 1 ( 5 x 1 − 6 x 2 ) y = tan − 1 ( 3 x + 2 x 1 − ( 3 x ) ( 2 x ) ) By using 5 x = 3 x + 2 x y = tan − 1 ( 3 x ) + tan − 1 ( 2 x ) Since, tan − 1 x + tan − 1 y = tan − 1 ( x + y 1 − x y ) Differentiating it with respect to x using chain rule, d y d x = d d x ( tan − 1 ( 3 x ) ) + d d x ( tan − 1 ( 2 x ) ) Using d d x ( tan − 1 x ) = 1 1 + x 2 d y d x = 1 1 + ( 3 x ) 2 d d x ( 3 x ) + 1 1 + ( 2 x ) 2 d d x ( 2 x ) d y d x = 1 1 + 9 x 2 ( 3 ) + 1 1 + 4 x 2 ( 2 ) d y d x = 3 1 + 9 x 2 + 2 1 + 4 x 2 Differentiation Exercise 10.3 Question 32
Answer:
d y d x = 1 Hint:
d dx ( constan t ) = 0 ; d d x ( x n ) = n x n − 1 Given:
tan − 1 [ cos x + sin x cos x − sin x ] Solution:
y = tan − 1 [ cos x + sin x cos x − sin x ] y = tan − 1 [ cos x + sin x cos x cos x − sin x cos x ] y = tan − 1 [ 1 + tan x 1 − tan x ] since, sin x cos x = tian x y = tan − 1 [ tan π 4 + tan x 1 − tan π 4 tan x ] y = tan − 1 [ tan ( π 4 + x ) ] Since tan ( A + B ) = tan A + tan B 1 − tan tan B y = π 4 + x Differentiating it with respect to x, d y d x = 0 + 1 { d dx ( constant ) = 0 d dx ( x ) = 1 } d y d x = 1 Differentiation Exercise 10.3 Question 33
Answer:
d y d x = 1 3 x 2 ( 1 + x 2 3 ) Hint:
d d x ( constant ) = 0 ; d d x ( x n ) = n x n − 1 Given:
tan − 1 [ x 1 / 3 + a 1 / 3 1 − ( ax ) 1 / 3 ] Solution:
Let,
y = tan − 1 [ x 13 + a 1 / 3 1 − ( a x ) 1 / 3 ] y = tan − 1 ( x 1 / 3 ) + tan − 1 ( a 1 / 3 ) Since, tan − 1 x + tan − 1 y = tan − 1 ( x + y 1 − x y ) Differentiating it with respect to x using chain rule, d y d x = 1 1 + ( x 1 / 3 ) 2 d d x ( x 1 / 3 ) + 1 1 + ( a 1 / 3 ) 2 d d x ( a 1 / 3 ) d y d x = 1 1 + x 2 / 3 × ( 1 3 x 1 3 − 1 ) + 1 1 + ( a 1 / 3 ) 2 × 0 d y d x = 1 1 + x 2 / 3 × 1 3 x − 2 / 3 d y d x = 1 3 x 2 / 3 ( 1 + x 2 / 3 ) Using d d x ( tan − 1 x ) = 1 1 + x 2 d d x ( x n ) = n x n − 1 d d x ( constant ) = 0 Differentiation Exercise 10.3 Question 34
Answer:
d y d x = 2 x + 1 l o g 2 1 + 4 x Hint:
d d x ( c o n s t a n t ) = 0 ∂ ∂ x ( x n ) = n x n − 1 Given:
sin − 1 ( 2 x + 1 1 + 4 x ) Solution:
Let
y = sin − 1 ( 2 x + 1 1 + 4 x ) To find the domain we need to find all x such that − 1 ≤ 2 x + 1 1 + 4 x ≤ 1 Since the quantity in the middle is always positive, we need to find
all such that
2 x + 1 1 + 4 x ≤ 1 ie, all
x such that
2 x + 1 = 1 + 4 x 2 ≤ 1 2 x + 2 x , which is true for a
x Hence the function is defined at all real numbers
Putting
2 x = tan θ y = sin − 1 ( 2 x + 1 1 + 4 x ) y = sin − 1 ( 2 x ⋅ 2 1 + ( 2 x ) 2 ) y = sin − 1 ( 2 tan θ 1 + tan 2 θ ) Using sec 2 θ = 1 + tan 2 θ y = sin − 1 ( 2 tan θ sec 2 θ ) y = sin − 1 ( 2 sin θ cos θ × cos 2 θ ) \; S i n c e , tan θ = sin θ cos θ ′ sec θ , 1 sec = cos θ y = sin − 1 ( 2 sin θ cos θ ) U sin sin = sin 2 θ = 2 sin θ cos θ y = sin − 1 ( sin θ ) { sin − 1 ( sin θ ) = θ if θ ∈ [ − 1 2 , 0 2 ] } y = 2 θ y = 2 tan − 1 ( 2 x ) { since 2 x = tan θ θ = tan − 1 ( 2 x ) } d y d x ⇒ d d x ( 2 tan − 1 ( 2 x ) ) d y d x = 2 × 1 1 + ( 2 x ) 2 ∂ d x ( 2 x ) d y d x = 2 × 1 1 + 4 x ⋅ ( 2 x ) log 2 d y d x ⇒ 2 x + 1 log 2 1 + 4 x Since d d x ( tan − 1 x ) = 1 1 + x 2 Differentiation Exercise 10.3 Question 35
Answer: Hence Prove
d y d x = 4 1 + x 2 Hint:
d d x ( constan t ) = 0 ; d d x ( x n ) = nx n − 1 Given:
y = sin − 1 ( 2 x 1 + x 2 ) + sec − 1 ( 1 + x 2 1 − x 2 ) 0 < x < 1 Solution:
Prove :
d y d x = 4 1 + x 2 y = sin − 1 ( 2 x 1 + x 2 ) + cos − 1 ( 1 − x 2 1 + x 2 ) Since sec − 1 x = cos − 1 ( 1 x ) y = sin − 1 ( 2 x 1 + x 2 ) + cos − 1 ( 1 − x 2 1 + x 2 ) Let,
x = tan θ θ = tan − 1 x y = sin − 1 ( 2 tan θ 1 + tan 2 θ ) + cos − 1 ( 1 − tan 2 θ 1 + tan 2 θ ) y = sin − 1 ( 2 tan θ sec 2 θ ) + cos − 1 ( cos 2 θ ) Using
sec 2 θ = 1 + tan 2 θ 1 sec θ = cos θ 1 − tan 2 θ 1 + tan 2 θ = cos 2 θ y = sin − 1 ( 2 sin θ cos θ × cos 2 θ ) + cos − 1 ( Cos 2 θ ) y = sin − 1 ( 2 sin θ cos θ ) + cos − 1 ( cos 20 ) y = sin − 1 ( sin 2 θ ) + cos − 1 ( cos 2 θ ) − ( i ) u sing 2 sin θ cos θ = sin 2 θ Considering Limits, 0 < x < 1 0 < tan θ < 1 0 < θ < π 4 0 < ( 2 θ ) < π 2 so from e i ( i ) y = 2 θ + 2 θ y = 4 θ cos − 1 ( cos θ ) ⇒ if θ ∈ [ 0 , π ] y = 4 tan − 1 x s i n c e , x = tan θ , θ = tan − 1 x Differentiating it with respect to x d y d x = 4 d d x ( tan − 1 x ) Using d d x ( tan − 1 x ) = 1 1 + x 2 d y d x = 4 ( − 1 1 + x 2 ) d y d x = 4 1 + x 2 Differentiation Exercise 10.3 Question 36
Answer: Hence Prove ,
d y d x = 2 1 + x 2 Hint:
d d x ( constan t ) = 0 ; d d x ( x n ) = n x n − 1 Given:
y = sin − 1 ( x 1 + x 2 ) + cos − 1 ( 1 1 + x 2 ) 0 < x < ∞ Solution:
Let,
x = tan θ , θ = tan − 1 x y = sin − 1 ( tan θ 1 + tan 2 θ ) + cos − 1 ( 1 1 + tan 2 θ ) y = sin − 1 ( tan θ sec 2 θ ) + cos − 1 ( 1 sec 2 θ ) Using sec 2 θ = 1 + tan 2 θ sin θ cos θ = tan θ 1 sec θ = θ cos θ y = sin − 1 ( tan θ sec θ ) + cos − 1 ( 1 sec θ ) y = sin − 1 ( sin θ cos θ × cos θ ) + cos − 1 ( cos θ ) y = sin − 1 ( sin θ ) + cos − 1 ( cos θ ) − ( i ) Considering limit 0 < x < ∞ 0 < tan θ < ∞ 0 < θ < π 2 So From eq (i)
y = θ + θ Since, sin − 1 ( sin θ ) = θ if θ ε [ − π 2 , π 2 ] y = 2 θ cos − 1 ( cos θ ) = θ if θ ε [ 0 , π ] y = 2 tan − 1 x [ s i n c e x = tan θ ] Differentiating it with respect to x
d d x ( tan − 1 x ) = 1 1 + x 2 d y d x = 2 × 1 1 + x 2 d y d x = 2 1 + x 2
Differentiation Exercise 10.3 Question 37(i)
Answer:
d y d x = − 1 Hint:
d dx ( constan t ) = 0 d d x ( x n ) = n x n − 1 Given:
cos − 1 ( sin x ) Solution:
Let,
y = cos − 1 ( sin x ) We observe that this function is defined for all real numbers y = cos − 1 ( sin x ) y = cos − 1 [ cos ( π 2 − x ) ] y = π 2 − x { since cos − 1 ( cos θ ) = θ if θ ∈ [ θ , π ] } Differentiating it with respect to x, d y d x = 0 − 1 d y d x = − 1 { S i n c e , d ( c o n s t a n t ) d x = 0 } Differentiation Exercise 10.3 Question 37 (ii)
Answer:
d y d x = 1 1 + x 2 Hint:
d d x ( constan t ) = 0 d d x ( x n ) = n x n − 1 Given:
cos − 1 ( 1 − x 1 + x ) Solution:
y = cos − 1 ( 1 − x 1 + x ) Let,
x = tan θ θ = tan − 1 x y = cot − 1 ( 1 − tan θ 1 + tan θ ) y = cot − 1 ( tan n 4 − tan θ 1 + tan n 4 tan θ ) y = cot − 1 [ tan ( n 4 − θ ) ] Using, tan ( A − B ) = tan A − tan B 1 + tan A tan B y = cot − 1 [ tan ( π 4 − θ ) ] y = cot − 1 [ cots ( π 2 − ( π − θ 4 − θ ) ] ∴ s i n c e cot ( π 2 − θ ) = tan θ y = cot − 1 [ cot ( π 2 − π 4 + θ ) ] y = cot − 1 [ cot ( π 4 + θ ) ] y = π 4 + θ { cot − 1 ( cot θ ) = θ , if θ < [ − π 2 , π 2 ] } y = π 4 + tan − 1 x { Since x = tan θ θ = tan − 1 x } Differentiating it with respect to x, d y d x = 0 + 1 1 + x 2 d d x ( tan − 1 x ) = 1 1 + x 2 ∂ d x ( constant ) = 0 d y d x = 1 1 + x 2 Differentiation Exercise 10.3 Question 38
Answer:
d y d x = 1 2 , Hence,
d y d x is independent of x
Hint:
d d x (constant) = 0 ; d d x ( x n ) = n x n − 1 Given:
y = cot − 1 { 1 + sin x + 1 − sin x 1 + sin x − 1 − sin x } Solution:
y = cot − 1 { 1 + sin x + 1 − sin x 1 + sin x − 1 − sin x } Then, 1 + sin x + 1 − sin x 1 + sin x − 1 − sin x 1 + sin x + 1 − sin x 1 + sin x − 1 − sin x × 1 + sin x + 1 − sin x 1 + sin x + 1 − sin x ( 1 + sin x + 1 + sin x ) 2 ( 1 + sin x ) − ( 1 − sin x ) Using ( a − b ) ( a + b ) = a 2 − b 2 ( a + b ) 2 = a 2 + b 2 + 2 a b ( 1 + sin x ) + ( 00 ( 1 − sin x ) + 2 ( 1 − sin x ) ( 1 + sin x ) ( 1 + sin x ) − ( 1 − sin x ) 1 + sin x + 1 − sin x + 2 ( 1 − sin x ) ( 1 + sin x ) 1 + sin x − 1 + sin x ⇒ 2 + 2 1 + sin x − sin x − sin 2 x 2 sin x ⇒ 2 + 2 1 − sin 2 x 2 sin x ⇒ 2 ( 1 + 1 − sin 2 x ) 2 sin x ⇒ 1 + 1 sin 2 x sin x Using
cos 2 x + sin 2 x = 1 ⇒ 1 + cos 2 x sin x ⇒ 1 + cos x sin x Using sin 2 θ = 2 sin θ cos θ 1 + Cos 2 θ = 2 cos 2 θ ⇒ 2 cos 2 x 2 2 sin x 2 cos x 2 ⇒ cot x 2 { cos x sin x = cot x } Therefore, equation (1) becomes
y = cot − 1 ( cot x 2 ) y = x 2 { cot − 1 ( cot θ ) = θ if θ ε [ − π 2 , π 2 ] }
Differentiating it with respect to x
d y d x = 1 2 d d x ( x )
d y d x = 1 2
Differentiation Exercise 10.3 Question 39
Answer:
d y d x = 4 1 + x 2 Hint:
d dx ( constiant ) = 0 d d x ( x n ) = nx n − 1 Given:
y = tan − 1 ( 2 x 1 − x 2 ) + sec − 1 ( 1 + x 2 1 − x 2 ) x = 0 Prove
d y d x = 1 1 + x 2 Solution:
Here,
$y=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)+\sec ^{-1}\left(\frac{1+x^{2}}{1-x^{2}}\right) $ Using
sec − 1 x = cos − 1 ( 1 x ) y = tan − 1 ( 2 x 1 − x 2 ) + cos − 1 ( 1 − x 2 1 + x 2 ) Put
x = tan θ y = tan − 1 ( 2 tan θ 1 − tan 2 θ ) + cos − 1 ( 1 − tan 2 θ 1 + tan 2 θ ) y = tan − 1 ( tan 2 θ ) + cos − 1 ( cos 2 θ ) − ( 1 ) Using,
tan 2 θ = 2 tan θ 1 − tan 2 θ
1 − tan 2 θ 1 + tan 2 θ = cos 2 θ Here, 0 < x < ∞ 0 < tan θ < ∞ 0 < θ < π 2 0 < 2 θ < π
So From eq(i)
y = 2 θ + 2 θ
{ Since, tan − 1 ( tan θ ) = θ if θ ∈ [ − π 2 , π 2 ] and cos − 1 ( cos θ ) = θ if θ [ 0 , π ] }
y = 4 θ
y = 4 tan − 1 x [ U s i n g x = tan θ , θ = tan − 1 x ]
Differentiating it with respect t0 x
d y d x = 4 1 + x 2 ⇒ 4 1 + x 2 Using d ( tan − 1 x ) d x = 1 1 + x 2
Differentiation Exercise 10.3 Question 40
Answer:
d y d x = 0 Hint:
d d x ( x n ) = n x n − 1 ; d dx ( constant ) = 0 Given:
y = sec − 1 ( x + 1 x − 1 ) + sin − 1 ( x − 1 x + 1 ) x > 0 Solution:
y = sec − 1 ( x + 1 x − 1 ) + sin − 1 ( x − 1 x + 1 ) x > 0 y = cos − 1 ( x − 1 x + 1 ) + sin − 1 ( x − 1 x + 1 ) Using
sec − 1 x = cos ( 1 x ) Since,
cos − 1 x + sin − 1 x = π 2 y = π 2 Differentiating with respect to x d y d x = 0 [ d d x ( c o n s t a n t ) = a ] ] Differentiation Exercise 10.3 Question 41
Answer:
d y d x = − x 1 − x 2 Hint:
d dx ( constant ) = 0 ; d dx ( x n ) = n x n − 1 Given:
y = sin [ 2 tan − 1 { x 1 + x } ] Solution:
Put
x = cos 2 θ y = sin [ 2 tan − 1 1 − cos 2 θ 1 + cos 2 θ ] y = sin [ 2 tan − 1 2 sin 2 θ 2 cos 2 θ ] Since 1 − cos 2 θ = 2 sin 2 θ 1 + cos 2 θ = 2 cos 2 θ 1 + cos 2 θ = 2 cos 2 θ y = sin [ 2 tan − 1 tan 2 θ ] Since sin θ cos θ = tan θ y = sin [ 2 tan − 1 ( tan θ ) ] y = sin [ 2 θ ] { tan − 1 ( tan θ ) = θ i f θ ε [ − π 2 , π 2 ] } y = sin ( 2 × 1 2 cos − 1 x ) [ S i n c e , x = cos 2 θ , θ = 1 2 cos − 1 x ] y = sin ( cos − 1 x ) y = sin ( sin − 1 1 − x 2 ) y = 1 − x 2 [ sin − 1 ( sin θ ) ⇒ 0 if θ ∈ [ − π 2 , π 2 ] ] Differentiating it with respect to x d y d x = d d x ( 1 − x 2 ) = d d x ( 1 − x 2 ) 1 / 2 As we know, d d x ( x n ) = n x n − 1 d y d x = 1 2 ( 1 − x 2 ) 1 2 d ∂ x ( 1 − x 2 ) d y = 1 d x = 1 2 1 − x 2 ( − 2 x ) d y d x = − x 1 − x 2 Differentiation Exercise 10.3 Question 42
Answer:
d y d x = 2 1 − 4 x 2 Hint:
d d x (constant) = 0 d d x ( x n ) = nx − 1 Given:
y = cos − 1 ( 2 x ) + 2 cos − 1 1 + 4 x 2 , 0 < x < 1 2 Solution:
Put
2 x = cos θ So,
y = cos − 1 ( cos θ ) + 2 cos − 1 1 − cos 2 θ Since cos 2 θ + sin 2 θ = 1 y = cos − 1 ( cos θ ) + 2 cos − 1 sin 2 θ y = cos − 1 ( cos θ ) + 2 cos − 1 ( sin θ ) y = cos ( cos θ ) + 2 cos − 1 ( cos ( π 2 − θ ) ) − ( i ) 0 < x = 1 0 < 2 x < 1 0 < cos θ = 1 0 < θ < π 2 And 0 > − θ > − π 2 n 2 > ( n 2 − θ ) > 0 So From eq (i)
y = θ + 2 ( π 2 − θ ) { S i n c e cos − 1 ( cos θ ) = 0 i f θ ε [ 0 , n ] } y ⇒ θ + π − 2 θ y ⇒ π − C y = π − cos − 1 ( 2 x ) Since, 2 x = cos θ Differentiating it with respect to x d y d x = 0 − [ − 1 1 − ( 2 x ) 2 ] d d x ( 2 x ) Since,
d d x ( c o n s t a n t ) = 0 ; d d x ( cos − 1 x ) = 1 1 − x 2 d y d x = 1 1 − 4 x 2 ( 2 ) d y d x = 2 1 − 4 x 2 Differentiation Exercise 10.3 Question 43
Answer: Hence Prove ,
1 + a 2 = b Hint:
d d x ( x n ) = n x n − 1 d ( constant) d x = 0 Given:
d dx [ tan − 1 ( a + bx ) ] = 1 at x = 0 Solution:
So, using chain rule, we know d d x ( tan − 1 x ) = 1 1 + x 2 [ { 1 1 + ( a + b x ) 2 } d d x ( a + b x ) ] x = 0 = 1 [ 1 1 + ( a + b x ) 2 × ( b ) ] x = 0 = 1 [ b [ 1 + ( a + b x ) 2 ] x = 0 = 1 ∴ ( a + b ) 2 = a 2 + b 2 + 2 a b [ b 1 + ( a 2 + b 2 x 2 + 2 a b x ) ] x = 0 = 1 b 1 + ( a 2 + 0 + 0 ) = 1 b 1 + a 2 = 1 b = 1 + a 2 Hence Proved, Differentiation Exercise 10.3 Question 44
Answer:
d y d x = − 6 1 − 4 x 2 Hint:
d d x ( x n ) = n x n − 1 d d x ( Constant ) = 0 Given:
Solution:
y = cos − 1 ( 2 x ) + 2 cos − 1 1 − 4 x 2 , − 1 2 < x < 0 Put
2 x = cos θ So
y = cos − 1 ( coc θ ) + 2 cos − 1 1 − cos 2 θ Using,
sin 2 θ + cos 2 θ = 1 y = cos − 1 ( cos θ ) + 2 cos sin 2 θ y = cos − 1 ( cos θ ) + 2 cos − ( sin θ ) y = cos − 1 ( cos θ ) + 2 cos ( cos − 1 ( π 2 − θ ) ) − ( i ) Considering limit, − 1 2 < x < 0 − 1 < 2 x < 0 − 1 − cos θ < 0 π 2 < θ < π And, − π 2 > − θ > − π ( π 2 − π 2 ) > ( π 2 − θ ) > ( π 2 − π ) 0 > ( π 2 − θ ) > − π 2 So, from equation (i) y = θ + 2 [ − ( π 2 − θ ) ] { Since , cos − 1 ( cos θ ) = 0 if θ ε [ 0 , π ] , cos − 1 cos ( θ ) = − θ , if θ ε [ − π ⋅ 0 ] } y = θ − 2 × π 2 + 2 θ y = − π + 3 θ y = − π + 3 cos − 1 ( 2 x ) Differentiating its with respect to x using chain rule
d y d x = 0 + 3 [ − 1 1 − ( 2 x ) 2 ] d d x ( 2 x )
As we Know,
d dx ( constant ) = 0 d dx ( cos − 1 x ) = − 1 1 − x 2 dy dx = − 3 1 − 4 x 2 − ( 2 ) dy dx = − 6 1 − 4 x 2
Differentiation Exercise 10.3 Question 45
Answer:
d y d x = 1 2 1 − x 3 Hint:
d d x ( constant ) = 0 d d x ( x n ) = n x n − 1 Given:
y = tan − 1 { 1 + x − 1 − x 1 + x + 1 − x } Solution:
Put,
x = cos 2 θ So,
y = tan − 1 [ 1 + cos 2 θ − 1 − cos 2 θ 1 + cos 2 θ + 1 − cos 2 θ ] = tan − 1 ( 2 cos 2 θ − 2 sin 2 θ 2 cos 2 θ + 2 sin 2 θ ) Using
1 + cos 2 θ = 2 cos 2 θ y = tan − 1 ( 2 cos θ − 2 sin θ 2 cos θ + 2 sin θ ) y = tan − 1 ( 2 ( cos θ − sin θ ) 2 ( cos θ + sin θ ) ) Dividing numerator and denominator by cos θ
y = tan − 1 ( cos θ cos θ − sin θ cos θ cos θ cos θ + sin θ cos θ ) y = tan − 1 ( cos θ − sin θ cos θ cos θ + sin θ cos θ )
Using
tan θ = sin θ cos θ y = tan − 1 ( 1 − tan θ 1 + tan θ ) y = tan − 1 ( tan n 4 − tan θ 1 + tan π 4 tan θ ) y = tan − 1 ( tan ( n 4 − θ ) ) Using tan ( A − B ) = tan A − tan B 1 + tan A tan B
y = π − 0 4 − θ [ U s i n g tan − 1 ( tan θ ) = θ i f θ ε [ − π 2 , π 2 ] ]
y = π 4 − 1 2 cos − 1 x [ Using x = cos 2 θ ] Differentiating it with respect to xdy d x = 0 − 1 2 ( − 1 1 − x 2 ) { d d x ( cos − 1 x ) = − 1 1 − x 2 } d y d x = 1 2 1 − x 2 d y d x = − 1 1 − x 2
Differentiation Exercise 10.3 Question 47
Answer:
d y d x = − 1 1 − x 2 Hint:
d dx ( constsant ) = 0 d dx ( x n ) = n x n − 1 Given:
y = cos − 1 { 2 x − 3 1 − x 2 13 ) Solution:
Let,
x = cos θ y = cos − 1 { 2 cos θ − 3 1 − cos 2 θ 4 } Using cos 2 θ + sin 2 θ = 1 y = cos − 1 { 2 13 cos θ − 3 13 sin 2 θ ] y = cos − 1 { 2 13 cos θ − 3 13 sin θ ] cos ϕ = 2 13 Let,
sin ϕ = 1 − cos 2 ϕ = 1 − ( 2 13 ) 2 + 1 − 4 13 = 13 − 4 13 = 9 13 sin ϕ = 3 13 So,
y = cos − 1 { cos ϕ cos θ − sin ϕ sin θ ] = cos − 1 [ cos ( θ + ϕ ) ] Using, cos ( A + B ) = cos A cos B − sin A sin B y = ϕ + θ [ cos − 1 ( cos θ ) = θ if 0 ε [ 0 , π ] ] y = cos − 1 ( 2 13 ) + cos − 1 x since, x = cos θ cos ϕ = 2 13 Differentiating its with Respect to x , d y d x = − 1 1 − ( 2 13 ) 2 d d x ( 2 13 ) + ( − 1 1 − x 2 ) d y d x = − 1 1 − ( 2 13 ) 2 × 0 + ( − 1 1 − x 2 ) d d x ( cos − 1 x ) = − 1 1 − x 2 d y d x = 0 − 1 1 − x 2 Differentiation Exercise 10.3 Question 48
Answer:
d y d x = 6 1 − 9 x 2 Hint:
d dx (constant ) = 0 d dx ( x n ) = n x n − 1 Given:
y = sin − 1 ( 6 x 1 − 9 x 2 ) 1 3 2 < x < 1 3 2 Solution:
Let
x = 1 3 sin θ y = sin − 1 ( 6 × 1 3 sin θ 1 − 9 ( 1 3 ) 2 sin 2 θ ) y = sin − 1 ( 2 sin θ 1 − 9 × 1 9 sin 2 θ ) y = sin − 1 ( 2 sin θ 1 − sin 2 θ ) U sin g sin 2 θ + cos 2 θ = 1 y = sin − 1 ( 2 sin θ cos 2 θ ) y = sin − 1 ( 2 sin θ cos θ ) y = sin − 1 ( sin 2 θ ) − ( i ) U sin g sin 2 θ = 2 sin θ cos θ Considering limits here 1 3 2 < x < 1 3 2 1 3 × 1 3 2 < 1 3 sin θ < 1 3 2 × 1 3 1 9 2 < 1 3 sin θ < 1 9 2 From Equation (i)
y = 2 θ { sin − 1 ( sin θ ) = θ if θ ε [ − π 2 , π 2 ] }
y = 2 sin − 1 ( 3 x )
Differentiating it with respect tox
d y d x = d d x ( 2 sin − 1 3 x ) As we thow, d d x ( sin − 1 x ) = 1 1 − x 2 d y d x = 2 × 1 1 − ( 3 x ) 2 d d x ( 3 x ) d y d x = 2 1 − 9 x 2 × 3 d y d x = 6 1 − 9 x 2
Rd Sharma Class 12th Exercise 10.3 solutions are an ideal choice for every student because of the following benefits:
Experts format this exclusive material
Rd Sharma Class 12th Exercise 10.3 solutions are created by a group of experts working day and night to make sure that every student understands the concept properly. Therefore, a student will always be confident about the exam after going for Rd Sharma Class 12 Chapter 10.3 Exercise 10.3 solutions.
Best Solutions for preparation and revision
NEET Highest Scoring Chapters & Topics
This ebook serves as a valuable study guide for NEET exams, specifically designed to assist students in light of recent changes and the removal of certain topics from the NEET exam.
Download E-bookRd Sharma Class 12th Exercise 10.3 solutions are the best source for preparation and revision because a lot of time is saved when a student studies from this material. Moreover, the students will be ready to face any exam with RD Sharma Class 12 Solutions Differentiation Ex. 10.3.
Questions from the NCERT book are easy to understand:
It is a well-known fact that NCERT is a book that every teacher follows. Keeping this fact in mind, the students are provided with solutions that abide by NCERT and CBSE guidelines. Rd Sharma Class 12th Exercise 10.3 solutions help students achieve good marks in-class exams also.
Alternative ways to solve a question
RD Sharma Class 12 Solutions Chapter 10 ex 10.3 because they are crafted by experts who have many ways to solve a single question. Every expert has a different way to solve a problem, here also a student will find many forms and can choose what suits them best.
Great performance
These solutions help a student cross their benchmark scores in the exams. The Class 12th RD Sharma Chapter 10.3 Exercise 10.3 Solutions includes all the concepts that are present in the textbook.
Free of cost
The students need not pay any kind of monetary fund to attain the book from the Career 360 website. This is the website that has benefited thousands of students all over the country. A student must follow this website and learn from Career360 to score well academically.
RD Sharma Chapter-wise Solutions