RD Sharma Class 12 Exercise 10.8 Differentiation Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise 10.8 Differentiation Solutions Maths - Download PDF Free Online

Edited By Satyajeet Kumar | Updated on Jan 20, 2022 05:45 PM IST

RD Sharma class 12th exercise 10.8 is the holy grail of many students preparing for board exams. Since maths is a complex subject, the RD Sharma class 12 chapter 10 exercise 10.8 solution is a must-have for students who cannot get their doubts cleared. To score high in exams, students need to practice maths daily and prepare beforehand instead of stressing out the last few months. With the help of RD Sharma solutions, they can practice at home and check their answers to see if they have their concepts cleared.

Students can also use the class 12 RD Sharma chapter 10 exercise 10.8 solution to solve their homework. Teachers tend to give homework questions from RD Sharma solutions so students can answer even complex questions by using the book. If students are thorough with the RD Sharma solutions, they might find some common questions from the book in their board exams.

Also Read - RD Sharma Solution for Class 9 to 12 Maths
The RD Sharma class 12th exercise 10.8 is a top choice for hundreds of students who have excelled in their exams after practicing the book. The 10th chapter of the Class 12 maths book has the topic Differentiations. This part will discuss in detail the basic concept of differentiation of inverse trigonometric functions. It will also teach students about Differentiation of a function with respect to another function, Differentiation by using trigonometric substitutions, Differentiation of implicit functions, and the like. Exercise 10.8 includes 15 on linear trigonometric equations that need to be solved by students.

RD Sharma Class 12 Solutions Chapter 10 Differentiation - Other Exercise

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download E-book

Differentiation Excercise: 10.8

Differentiation exercise 10.8 question 1

Answer: 2 \sec ^{2}\left(x^{2}\right) \tan \left(x^{2}\right)
Hint:
\begin{aligned} &\text { Let } u=\sec ^{2}\left(x^{2}\right) ; v=x^{2} \\\\ &\frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}} \end{aligned}

Given: \sec ^{2}\left(x^{2}\right) \text { w.r.t } x^{2}
Explanation:
\begin{aligned} &\text { Let } u=\sec ^{2}\left(x^{2}\right), v=x^{2} \\\\ &\frac{d u}{d x}=2 \sec \left(x^{2}\right)\left[\sec x^{2} \tan x^{2} \times 2 x\right] \end{aligned}
=4 x \sec ^{2}\left(x^{2}\right) \tan \left(x^{2}\right) (chain rule)
\begin{aligned} &\frac{d v}{d x}=2 x \\\\ &\frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}=\frac{4 x \sec ^{2}\left(x^{2}\right) \tan \left(x^{2}\right)}{2 x} \end{aligned}
=2 \sec ^{2}\left(x^{2}\right) \tan \left(x^{2}\right)

Differentiation exercise 10.8 question 3

Answer: x(\log x)^{x-1}\{1+\log x \cdot \log (\log x)\}
Hint: \text { Let } u=(\log x)^{x}, v=\log x
\frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}

Given: (\log x)^{x} \text { w.r.t } \log x
Explanation:
\text { Let } u=(\log x)^{x}, v=\log x
u=(\log x)^{x}
Taking log both sides,
\begin{aligned} &\log u=\log (\log x)^{x} \\\\ &\log u=x \log (\log x) \end{aligned}
Differentiate both sides w.r.t. x
\begin{aligned} &\frac{1}{u} \frac{d u}{d x}=x\left[\frac{1}{\log x} \times \frac{1}{x}\right]+\log (\log x) \times 1 \\\\ &\frac{1}{u} \frac{d u}{d x}=(\log x)^{-1}+\log (\log x) \\\\ &\frac{d u}{d x}=u\left[(\log x)^{-1}+\log (\log x)\right] \end{aligned}
\begin{aligned} &\frac{d u}{d x}=u\left[\frac{1}{\log x}+\log (\log x)\right] \\\\ &\frac{d u}{d x}=\frac{u}{\log x}[1+\log x \log (\log x)] \\\\ &\frac{d u}{d x}=(\log x)^{x-1}[1+\log x \cdot \log (\log x)] \end{aligned}
\begin{aligned} &v=\log x \\\\ &\frac{d v}{d x}=\frac{1}{x} \end{aligned}
\frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}=\frac{(\log x)^{x-1}[1+\log x \cdot \log (\log x)]}{\frac{1}{x}}
=x(\log x)^{x-1}\{1+\log x \cdot \log (\log x)\}

Differentiation exercise 10.8 question 4(i)

Answer: 1
Hint: u=\sin ^{-1} \sqrt{1-x^{2}}, v=\cos ^{-1} x
\frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}

Given: \sin ^{-1} \sqrt{1-x^{2}} \text { w.r.t } \cos ^{-1} x, x \in(0,1)
Explanation:
\text { Let } u=\sin ^{-1} \sqrt{1-x^{2}}, v=\cos ^{-1} x
\begin{aligned} &\text { Let } u=\sin ^{-1} \sqrt{1-x^{2}}, v=\cos ^{-1} x \\\\ &u=\sin ^{-1} \sqrt{1-x^{2}} \\\\ &\text { Let } x=\cos \theta \\\\ &u=\sin ^{-1} \sqrt{1-\cos ^{2} \theta} \\\\ &u=\sin ^{-1}(\sin \theta) \end{aligned}
\begin{aligned} &x \in(0,1) \\\\ &\cos \theta \in(0,1) \quad \theta \in\left(0, \frac{\pi}{2}\right) \\\\ &u=\sin ^{-1}(\sin \theta)=\theta \end{aligned}
\begin{aligned} &u=\cos ^{-1} x \\\\ &\frac{d u}{d x}=\frac{-1}{\sqrt{1-x^{2}}} \\\\ &v=\cos ^{-1} x \end{aligned}
\begin{aligned} &\frac{d v}{d x}=\frac{-1}{\sqrt{1-x^{2}}} \\\\ &\frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}=\frac{-1}{\frac{\sqrt{1-x^{2}}}{\sqrt{1-x^{2}}}}=1 \end{aligned}

Differentiation exercise 10.8 question 4(ii)

Answer: -1
Hint: \text { Let } u=\sin ^{-1} \sqrt{1-x^{2}}, v=\cos ^{-1} x
\frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}

Given: \sin ^{-1} \sqrt{1-x^{2}} \text { w.r.t } \cos ^{-1} x, x \in(-1,0)
Explanation:
\text { Let } u=\sin ^{-1} \sqrt{1-x^{2}}, v=\cos ^{-1} x
\begin{aligned} &u=\sin ^{-1} \sqrt{1-x^{2}} \\\\ &\text { Let } x=\cos \theta \\\\ &u=\sin ^{-1} \sqrt{1-\cos ^{2} \theta} \end{aligned}
\begin{aligned} &u=\sin ^{-1}(\sin \theta) \\\\ &x \in(-1,0) \\\\ &\cos \theta \in(-1,0) \quad \theta \in\left(-\frac{\pi}{2}, 0\right) \end{aligned}
\begin{aligned} &u=\sin ^{-1}(\sin \theta)=-\theta \quad \theta \in\left(-\frac{\pi}{2}, 0\right) \\\\ &u=-\cos ^{-1} x \end{aligned}
\begin{aligned} &\frac{d u}{d x}=\frac{-1}{\sqrt{1-x^{2}}} \\\\ &v=\cos ^{-1} x \\\\ &\frac{d v}{d x}=\frac{1}{\sqrt{1-x^{2}}} \end{aligned}
\frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}=\frac{\frac{-1}{\sqrt{1-x^{2}}}}{\frac{1}{\sqrt{1-x^{2}}}}=-1

Differentiation exercise 10.8 question 5(i)

Answer: \frac{-1}{x}
Hint: \text { Let } u=\sin ^{-1}\left(4 x \sqrt{1-4 x^{2}}\right), v=\sqrt{1-4 x^{2}}
Given: \sin ^{-1}\left(4 x \sqrt{1-4 x^{2}}\right) \text { w.r.t } \sqrt{1-4 x^{2}}
Explanation:
\text { Let } 2 x=\cos \theta
\begin{aligned} &u=\sin ^{-1}\left(4 x \sqrt{1-4 x^{2}}\right) \\\\ &u=\sin ^{-1}\left(2 \cos \theta \sqrt{1-(\cos \theta)^{2}}\right) \end{aligned}
\begin{aligned} &=\sin ^{-1}\left(2 \cos \theta \sqrt{1-\cos ^{2} \theta}\right) \\\\ &=\sin ^{-1}(2 \cos \theta \sin \theta) \\\\ &=\sin ^{-1}(\sin 2 \theta) \end{aligned}
Now we try to find range of \theta
x \in\left(\frac{-1}{2 \sqrt{2}}, \frac{1}{2 \sqrt{2}}\right)
2 x \in\left(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)
\cos \theta \in\left(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)\; \; \; \; \; \; \; \; \; \left[\begin{array}{l} \cos ^{-1}\left(\frac{1}{\sqrt{2}}\right)=\frac{\pi}{4} \\ \& \cos ^{-1}\left(\frac{-1}{\sqrt{2}}\right)=\frac{3 \pi}{4} \end{array}\right]
\begin{aligned} &\theta \in\left(\frac{\pi}{4}, \frac{3 \pi}{4}\right) \\\\ &2 \theta \in\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right) \end{aligned}
\begin{aligned} &u=\sin ^{-1}(\sin 2 \theta) \\\\ &=\pi-2 \theta \\\\ &=\pi-2 \cos ^{-1}(2 x) \end{aligned} \left[\begin{array}{l} 2 x=\cos \theta \\ \theta=\cos ^{-1}(2 x) \end{array}\right]
\frac{d u}{d x}=0-2\left[\frac{-1}{\sqrt{1-(2 x)^{2}}} \times 2\right]
=\frac{4}{\sqrt{1-x^{2}}}
\begin{aligned} &v=\sqrt{1-4 x^{2}} \\\\ &\frac{d v}{d x}=\frac{1}{2 \sqrt{1-4 x^{2}}}(-8 x) \\\\ &=\frac{-4 x}{\sqrt{1-x^{2}}} \end{aligned}
\frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}=\frac{\frac{4}{\sqrt{1-x^{2}}}}{\frac{-4 x}{\sqrt{1-x^{2}}}}=\frac{-1}{x}

Differentiation exercise 10.8 question 5(ii)

Answer: \frac{1}{x}
Hint: \text { : Let } u=\sin ^{-1}\left(4 x \sqrt{1-4 x^{2}}\right), v=\sqrt{1-4 x^{2}}

Given: \sin ^{-1}\left(4 x \sqrt{1-4 x^{2}}\right) \text { w.r.t } \sqrt{1-4 x^{2}}

Explanation: \text { Let } 2 x=\cos \theta
\begin{aligned} &u=\sin ^{-1}\left(4 x \sqrt{1-4 x^{2}}\right) \\\\ &u=\sin ^{-1}\left(2 \cos \theta \sqrt{1-(\cos \theta)^{2}}\right) \end{aligned}
\begin{aligned} &=\sin ^{-1}\left(2 \cos \theta \sqrt{1-\cos ^{2} \theta}\right) \\\\ &=\sin ^{-1}(2 \cos \theta \sin \theta) \\\\ &=\sin ^{-1}(\sin 2 \theta) \end{aligned}
Now we try to find the range of \theta
\begin{aligned} &x \in\left(\frac{1}{2 \sqrt{2}}, \frac{1}{2}\right) \\\\ &2 x \in\left(\frac{1}{\sqrt{2}}, 1\right) \\\\ &\cos \theta \in\left(\frac{1}{\sqrt{2}}, 1\right) \end{aligned}
\begin{aligned} &\theta \in\left(0, \frac{\pi}{4}\right) \\\\ &2 \theta \in\left(0, \frac{\pi}{2}\right) \\\\ &u=\sin ^{-1}(\sin 2 \theta) \end{aligned}
=2 \theta \quad\left[\begin{array}{l} 2 x=\cos \theta \\ \theta=\cos ^{-1}(2 x) \end{array}\right]
\begin{aligned} &u=2 \cos ^{-1}(2 x) \\\\ &\frac{d u}{d x}=2\left[\frac{-1}{\sqrt{1-(2 x)^{2}}} \times 2\right] \end{aligned}
=\frac{-4}{\sqrt{1-4 x^{2}}}
\begin{aligned} &v=\sqrt{1-4 x^{2}} \\\\ &\frac{d v}{d x}=\frac{1}{2 \sqrt{1-4 x^{2}}}(-8 x) \end{aligned}
=\frac{-4 x}{\sqrt{1-4 x^{2}}}
\frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}=\frac{\frac{-4}{\sqrt{1-x^{2}}}}{\frac{-4 x}{\sqrt{1-4 x^{2}}}}=\frac{1}{x}

Differentiation exercise 10.8 question 5(iii)

Answer: -\frac{1}{x}
Hint: \text { Let } u=\sin ^{-1}\left(4 x \sqrt{1-4 x^{2}}\right), v=\sqrt{1-4 x^{2}}

Given: \sin ^{-1}\left(4 x \sqrt{1-4 x^{2}}\right) \text { w.r.t } \sqrt{1-4 x^{2}}
Explanation: \text { Let } 2 x=\cos \theta
\begin{aligned} &u=\sin ^{-1}\left(4 x \sqrt{1-4 x^{2}}\right) \\\\ &u=\sin ^{-1}\left(2 \cos \theta \sqrt{1-(\cos \theta)^{2}}\right) \end{aligned}
\begin{aligned} &=\sin ^{-1}\left(2 \cos \theta \sqrt{1-\cos ^{2} \theta}\right) \\\\ &=\sin ^{-1}(2 \cos \theta \sin \theta) \\\\ &=\sin ^{-1}(\sin 2 \theta) \end{aligned}
u=2 \theta \quad\left[\begin{array}{l} 2 x=\cos \theta \\\; \theta=\cos ^{-1}(2 x) \end{array}\right]
\begin{aligned} &=2 \cos ^{-1}(2 x) \\\\ &\frac{d u}{d x}=2\left[\frac{-1}{\sqrt{1-(2 x)^{2}}} \times 2\right] \end{aligned}
=\frac{4}{\sqrt{1-4 x^{2}}}
\begin{aligned} &v=\sqrt{1-4 x^{2}} \\\\ &\frac{d v}{d x}=\frac{1}{2 \sqrt{1-4 x^{2}}}(-8 x) \end{aligned}
=\frac{-4 x}{\sqrt{1-4 x^{2}}}
\frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}=\frac{\frac{4}{\sqrt{1-4 x^{2}}}}{\frac{-4 x}{\sqrt{1-4 x^{2}}}}=\frac{-1}{x}

Differentiation exercise 10.8 question 6

Answer: \frac{1}{4}
Hint: \text { Let } u=\tan ^{-1}\left[\frac{\sqrt{1+x^{2}}-1}{x}\right],
v=\sin ^{-1}\left[\frac{2 x}{1+x^{2}}\right]
Given: \tan ^{-1}\left[\frac{\sqrt{1+x^{2}}-1}{x}\right] \text { w.r.t } \sin ^{-1}\left[\frac{2 x}{1+x^{2}}\right]
-1<x<1, x \neq 0
Explanation: \text { Let } x=\tan \theta
u=\tan ^{-1}\left[\frac{\sqrt{1+x^{2}}-1}{x}\right]
\begin{aligned} &=\tan ^{-1}\left[\frac{\sqrt{1+\tan ^{2} \theta}-1}{\tan \theta}\right] \\\\ &=\tan ^{-1}\left[\frac{\sqrt{\sec ^{2} \theta}-1}{\tan \theta}\right] \\\\ &=\tan ^{-1}\left[\frac{\sec \theta-1}{\tan \theta}\right] \end{aligned}
\begin{aligned} &=\tan ^{-1}\left[\frac{\frac{1}{\cos \theta}-1}{\frac{\sin \theta}{\cos \theta}}\right] \\\\ &=\tan ^{-1}\left[\frac{1-\cos \theta}{\sin \theta}\right] \end{aligned} .......................(1)
\begin{aligned} &\text { Now } \cos 2 \theta=1-2 \sin ^{2} \theta \\\\ &2 \sin ^{2} \theta=1-\cos 2 \theta \\\\ &2 \sin ^{2} \frac{\theta}{2}=1-\cos \theta \end{aligned}
\begin{aligned} &\sin 2 \theta=2 \sin \theta \cos \theta \\\\ &\sin \theta=2 \sin \frac{\theta}{2} \cos \frac{\theta}{2} \end{aligned}
Put in (1)
\begin{aligned} &u=\tan ^{-1}\left[\frac{2 \sin ^{2} \frac{\theta}{2}}{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}\right] \\\\ &u=\tan ^{-1}\left[\tan \frac{\theta}{2}\right] \end{aligned}
Now,
\begin{aligned} &-1<x<1 \\\\ &-1<\tan \theta<1 \\\\ &-\frac{\pi}{4}<\theta<\frac{\pi}{4} \end{aligned} .........(2)
\begin{aligned} &-\frac{\pi}{8}<\frac{\theta}{2}<\frac{\pi}{8} \\\\ &u=\frac{\theta}{2} \text { as } \frac{\theta}{2} \in\left(-\frac{\pi}{8}, \frac{\pi}{8}\right) \end{aligned}
\begin{aligned} &u=\frac{\tan ^{-1} x}{2} \\\\ &\frac{d u}{d x}=\frac{1}{2}\left[\frac{1}{1+x^{2}}\right] \end{aligned}
=\frac{1}{2\left(1+x^{2}\right)}
\begin{aligned} &v=\sin ^{-1}\left[\frac{2 x}{1+x^{2}}\right] \\\\ &x=\tan \theta \\\\ &v=\sin ^{-1}\left[\frac{2(\tan \theta)}{1+\tan ^{2} \theta}\right] \end{aligned}
=\sin ^{-1}(\sin 2 \theta)
-\frac{\pi}{4}<\theta<\frac{\pi}{4} ........From (2)
-\frac{\pi}{2}<2 \theta<\frac{\pi}{2}
v=\sin ^{-1}(\sin 2 \theta) \; \; \; \; \; \quad 2 \theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)
=2 \theta
\begin{aligned} &v=2 \tan ^{-1} x \\\\ &\frac{d v}{d x}=\frac{2}{1+x^{2}} \end{aligned}
\begin{aligned} &\frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}=\frac{\frac{1}{2\left(1+x^{2}\right)}}{\frac{2}{1+x^{2}}} \\\\ &=\frac{1}{4} \end{aligned}

Differentiation exercise 10.8 question 7(i)

Answer: 2
Hint: \text { Let } u=\sin ^{-1}\left[2 x \sqrt{1-x^{2}}\right]
v=\sec ^{-1}\left[\frac{1}{\sqrt{1-x^{2}}}\right]

Given: \sin ^{-1}\left[2 x \sqrt{1-x^{2}}\right] \text { w.r.t } \sec ^{-1}\left[\frac{1}{\sqrt{1-x^{2}}}\right]
x \in\left(0, \frac{1}{\sqrt{2}}\right)
Explanation:
\text { Let } x=\sin \theta
\begin{aligned} &u=\sin ^{-1}\left[2 x \sqrt{1-x^{2}}\right] \\ &v=\sec ^{-1}\left[\frac{1}{\sqrt{1-x^{2}}}\right] \end{aligned}
u=\sin ^{-1}\left[2 \sin \theta \sqrt{1-\sin ^{2} \theta}\right]
\begin{aligned} &=\sin ^{-1}[2 \sin \theta \cos \theta] \\\\ &=\sin ^{-1}[\sin 2 \theta] \end{aligned}
\begin{aligned} &x \in\left(0, \frac{1}{\sqrt{2}}\right) \\\\ &\sin \theta \in\left(0, \frac{1}{\sqrt{2}}\right) \\\\ &\theta \in\left(0, \frac{\pi}{4}\right) \quad 2 \theta \in\left(0, \frac{\pi}{2}\right) \end{aligned}
\begin{aligned} &u=\sin ^{-1}[\sin 2 \theta]=2 \theta \quad \text { when } 2 \theta \in\left(0, \frac{\pi}{2}\right) \\\\ &u=2 \sin ^{-1} x \end{aligned}
=\frac{2}{\sqrt{1-x^{2}}}
\begin{aligned} &v=\sec ^{-1}\left[\frac{1}{\sqrt{1-\sin ^{2} \theta}}\right] \\\\ &\sec ^{-1}\left(\frac{1}{\cos \theta}\right)=\sec ^{-1}(\sec \theta) \\\\ &=\theta \quad \text { when } \theta \in\left(0, \frac{\pi}{4}\right) \end{aligned}
\begin{aligned} &=\sin ^{-1} x \\\\ &v=\sin ^{-1} x \\\\ &\frac{d v}{d x}=\frac{1}{\sqrt{1-x^{2}}} \end{aligned}
\frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}=\frac{\frac{2}{\sqrt{1-x^{2}}}}{\frac{1}{\sqrt{1-x^{2}}}}=2

Differentiation exercise 10.8 question 7(ii)

Answer: -2
Hint: \text { Let } u=\sin ^{-1}\left[2 x \sqrt{1-x^{2}}\right]
v=\sec ^{-1}\left[\frac{1}{\sqrt{1-x^{2}}}\right]
Given: \sin ^{-1}\left[2 x \sqrt{1-x^{2}}\right] \text { w.r.t } \sec ^{-1}\left[\frac{1}{\sqrt{1-x^{2}}}\right]
x \in\left(\frac{1}{\sqrt{2}}, 1\right)
Explanation:
\begin{aligned} &x \in\left(\frac{1}{\sqrt{2}}, 1\right) \\\\ &\sin \theta \in\left(\frac{1}{\sqrt{2}}, 1\right) \\\\ &\theta \in\left(\frac{\pi}{4}, \frac{\pi}{2}\right) \quad 2 \theta \in\left(\frac{\pi}{2}, \pi\right) \end{aligned}
\begin{aligned} &\pi-2 \theta \in\left(0, \frac{\pi}{2}\right) \\\\ &u=\sin ^{-1}[\sin 2 \theta] \quad \text { when } \pi-2 \theta \in\left(0, \frac{\pi}{2}\right) \\\\ &u=\sin ^{-1}[\sin (\pi-2 \theta)] \end{aligned}
\begin{aligned} &=\pi-2 \theta \\\\ &u=\pi-2 \sin ^{-1} x \\\\ &\frac{d u}{d x}=\frac{-2}{\sqrt{1-x^{2}}} \\\\ &v=\sec ^{-1}\left[\frac{1}{\sqrt{1-\sin ^{2} \theta}}\right] \end{aligned}
\begin{aligned} &\sec ^{-1}\left(\frac{1}{\cos \theta}\right)=\sec ^{-1}(\sec \theta) \\\\ &=\theta \quad \text { when } \theta \in\left(0, \frac{\pi}{4}\right) \end{aligned}
\begin{aligned} &=\sin ^{-1} x \\\\ &v=\sin ^{-1} x \\\\ &\frac{d v}{d x}=\frac{1}{\sqrt{1-x^{2}}} \end{aligned}
\frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}=\frac{\frac{-2}{\sqrt{1-x^{2}}}}{\frac{1}{\sqrt{1-x^{2}}}}=-2

Differentiation exercise 10.8 question 8

Answer: \frac{(\cos x)^{\sin x}\{\cos x \cdot \log \cos x-\sin x \tan x\}}{(\sin x)^{\cos x}\{-\sin x \log \sin x+\cos x \cot x\}}

Hint: \text { Let } u=(\cos x)^{\operatorname{sin} x}, v=(\sin x)^{\cos x}

Given: (\cos x)^{\sin x} \text { w.r.t }(\sin x)^{\cos x}
Explanation: Apply log on both sides
\begin{aligned} &\log u=\log (\cos x)^{\sin x} \\\\ &\log u=\sin x \log (\cos x) \end{aligned}
Differentiate both side w.r.t. x
\frac{1}{u} \frac{d u}{d x}=\sin x\left[\frac{1}{\cos x}(-\sin x)\right]+\log (\cos x) \cos x
=-\sin x \tan x+\cos x \log (\cos x)
\begin{aligned} &\frac{d u}{d x}=(\cos x)^{\sin x}\{-\sin x \tan x+\cos x \cdot \log \cos x\} \\\\ &v=(\sin x)^{\cos x} \end{aligned}
Apply log on both sides
\begin{aligned} &\log v=\log (\sin x)^{\cos x} \\\\ &\log v=\cos x \cdot \log (\sin x) \end{aligned}
Differentiate both side w.r.t. x
\frac{1}{v} \frac{d v}{d x}=\cos x\left[-\frac{1}{\sin x}(\cos x)\right]+\log (\sin x)(-\sin x)
=\cos x \cot x-\sin x \log \sin x
\begin{aligned} &\frac{d v}{d x}=(\sin x)^{\cos x}\{-\sin x \log \sin x+\cos x \cot x\} \\\\ &\frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}} \end{aligned}
=\frac{(\cos x)^{\sin x}\{\cos x \cdot \log \cos x-\sin x \tan x\}}{(\sin x)^{\cos x}\{-\sin x \log \sin x+\cos x \cot x\}}

Differentiation exercise 10.8 question 9

Answer: 1
Hint: \text { Let } u=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right), v=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)
Given: \sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right) \text { w.r.t } \cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)
0<x<1
Explanation: \text { Let } u=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)
\begin{aligned} &v=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right) \\\\ &\text { Let } x=\tan \theta \\\\ &u=\sin ^{-1}\left(\frac{2 \tan \theta}{1+\tan ^{2} \theta}\right) \end{aligned}
\begin{aligned} &=\sin ^{-1}(\sin 2 \theta) \\\\ &0<x<1 \\\\ &0<\tan \theta<1 \\\\ &0<\theta<\frac{\pi}{4} \\ &0<2 \theta<\frac{\pi}{2} \end{aligned}
\begin{aligned} &u=\sin ^{-1}(\sin 2 \theta)=2 \theta\; \; \; \; \; \; \quad 2 \theta \in\left(0, \frac{\pi}{2}\right) \\ &u=2 \tan ^{-1} x \end{aligned}
\begin{aligned} &\frac{d u}{d x}=\frac{2}{1+x^{2}} \\\\ &v=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right) \end{aligned}
\begin{aligned} &v=\cos ^{-1}\left(\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}\right) \\\\ &=\cos ^{-1}\left(\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}\right) \\\\ &=\cos ^{-1}(\cos 2 \theta) \end{aligned}
\begin{aligned} &=2 \theta\; \; \; \; \; \; \; \; \quad 2 \theta \in\left(0, \frac{\pi}{2}\right) \\\\ &v=2 \tan ^{-1} x \\\\ &\frac{d v}{d x}=\frac{2}{1+x^{2}} \end{aligned}
\begin{aligned} &\frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}} \\\\ &=\frac{\frac{2}{1+x^{2}}}{\frac{2}{1+x^{2}}}=1 \end{aligned}

Differentiation exercise 10.8 question 10

Answer: \frac{1}{a x \sqrt{1+a^{2} x^{2}}}
Hint: \text { Let } u=\tan ^{-1}\left(\frac{1+a x}{1-a x}\right), v=\sqrt{1+a^{2} x^{2}}
Given: \tan ^{-1}\left(\frac{1+a x}{1-a x}\right) \text { w.r.t } \sqrt{1+a^{2} x^{2}}
Explanation: \text { Let } u=\tan ^{-1}\left(\frac{1+a x}{1-a x}\right)
\begin{aligned} &v=\sqrt{1+a^{2} x^{2}} \\\\ &\text { Let } a x=\tan \theta \\\\ &u=\tan ^{-1}\left(\frac{1+\tan \theta}{1-\tan \theta}\right) \end{aligned}
=\tan ^{-1}\left(\frac{\tan \frac{\pi}{4}+\tan \theta}{1-\tan \frac{\pi}{4} \tan \theta}\right) \quad\left[\tan \frac{\pi}{4}=1\right]
\begin{aligned} &=\tan ^{-1} \tan \left(\frac{\pi}{4}+\theta\right) \\\\ &=\frac{\pi}{4}+\theta \end{aligned}
u=\frac{\pi}{4}+\tan ^{-1}(a x) \; \; \; \; \; \; \; \quad\left[\begin{array}{l} a x=\tan \theta \\ \theta=\tan ^{-1} a x \end{array}\right]
\begin{aligned} &\frac{d u}{d x}=\frac{1}{1+(a x)^{2}}[a \times 1] \\\\ &=\frac{a}{1+a^{2} x^{2}} \\\\ &v=\sqrt{1+a^{2} x^{2}} \end{aligned}
\begin{aligned} &\frac{d v}{d x}=\frac{1}{2 \sqrt{1+a^{2} x^{2}}} \frac{d}{d x}\left(a^{2} x^{2}\right) \\\\ &=\frac{2 a^{2} x}{2 \sqrt{1+a^{2} x^{2}}}=\frac{a^{2} x}{\sqrt{1+a^{2} x^{2}}} \end{aligned}
\frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}
=\frac{\frac{a}{1+a^{2} x^{2}}}{\frac{a^{2} x}{\sqrt{1+a^{2} x^{2}}}}=\frac{1}{a x \sqrt{1+a^{2} x^{2}}}

Differentiation exercise 10.8 question 11

Answer: 2
Hint: \text { Let } u=\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right), v=\tan ^{-1}\left(\frac{x}{\sqrt{1-x^{2}}}\right)

Given: \sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right) \text { w.r.t } \tan ^{-1}\left(\frac{x}{\sqrt{1-x^{2}}}\right)

Explanation:
\text { Let } u=\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)
\begin{aligned} &v=\tan ^{-1}\left(\frac{x}{\sqrt{1-x^{2}}}\right) \\\\ &\text { Let } x=\sin \theta \\\\ &u=\sin ^{-1}\left(2 \sin \theta \sqrt{1-\sin ^{2} \theta}\right) \end{aligned}
\begin{aligned} &=\sin ^{-1}(2 \cos \theta \sin \theta) \\\\ &=\sin ^{-1}(\sin 2 \theta) \end{aligned}
\begin{aligned} &v=\tan ^{-1}\left(\frac{\sin \theta}{\sqrt{1-\sin ^{2} \theta}}\right) \\\\ &=\tan ^{-1}\left(\frac{\sin \theta}{\cos \theta}\right)=\tan ^{-1}(\tan \theta) \end{aligned}
Now,
\begin{aligned} &\frac{-1}{\sqrt{2}}<x<\frac{1}{\sqrt{2}} \\\\ &\frac{-1}{\sqrt{2}}<\sin \theta<\frac{1}{\sqrt{2}} \end{aligned}
\begin{aligned} &\frac{-\pi}{4}<\theta<\frac{\pi}{4} \\\\ &\frac{-\pi}{2}<2 \theta<\frac{\pi}{2} \end{aligned}
\begin{aligned} &u=\sin ^{-1}(\sin 2 \theta) \\\\ &=\sin ^{-1}(\sin 2 \theta) \\\\ &=2 \theta \\\\ &=2 \sin ^{-1} x \end{aligned}
\begin{aligned} &\frac{d u}{d x}=\frac{2}{\sqrt{1-x^{2}}} \\\\ &v=\tan ^{-1}(\tan \theta) \\\\ &=\theta \\\\ &v=\sin ^{-1} x \end{aligned}
\begin{aligned} &\frac{d v}{d x}=\frac{1}{\sqrt{1-x^{2}}} \\\\ &\frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}} \end{aligned}
=\frac{\frac{2}{\sqrt{1-x^{2}}}}{\frac{1}{\sqrt{1-x^{2}}}}=2

Differentiation exercise 10.8 question 12

Answer: 1
Hint: \text { : Let } u=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right), v=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)

Given: \tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right) \text { w.r.t } \cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)
0<x<1
Explanation:
\text { Let } u=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)
\begin{aligned} &v=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right) \\\\ &\text { Let } x=\tan \theta \\\\ &u=\tan ^{-1}\left(\frac{2 \tan \theta}{1-\tan ^{2} \theta}\right) \\\\ &=\tan ^{-1}(\tan 2 \theta) \end{aligned}
\begin{aligned} &v=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right) \\\\ &v=\cos ^{-1}\left(\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}\right) \\\\ &=\cos ^{-1}\left(\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}\right) \end{aligned}
\begin{aligned} &=\cos ^{-1}(\cos 2 \theta)\\\\ &\text { Now, }\\\\ &0<x<1\\\\ &0<\tan \theta<1 \end{aligned}
\begin{aligned} &0<\theta<\frac{\pi}{4} \\\\ &0<2 \theta<\frac{\pi}{2} \\\\ &u=\tan ^{-1}(\tan 2 \theta) \end{aligned}
\begin{array}{ll} =2 \theta & 2 \theta \in\left(0, \frac{\pi}{2}\right) \\\\ =2 \tan ^{-1} x & \left(\begin{array}{l} \tan \theta=x \\ \theta=\tan ^{-1} x \end{array}\right) \end{array}
\begin{aligned} &v=\cos ^{-1}(\cos 2 \theta) \\\\ &=2 \theta \quad 2 \theta \in\left(0, \frac{\pi}{2}\right) \\\\ &=2 \tan ^{-1} x \end{aligned}
\begin{aligned} &\frac{d u}{d x}=\frac{2}{1+x^{2}} \\\\ &\frac{d v}{d x}=\frac{2}{1+x^{2}} \end{aligned}
\frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}
=\frac{\frac{2}{1+x^{2}}}{\frac{2}{1+x^{2}}}=1

Differentiation exercise 10.8 question 13


Answer: \frac{\sqrt{1-x^{2}}}{3\left(1+x^{2}\right)}

Hint: \text { Let } u=\tan ^{-1}\left(\frac{x-1}{x+1}\right), v=\sin ^{-1}\left(3 x-4 x^{3}\right)

Given: \tan ^{-1}\left(\frac{x-1}{x+1}\right) \text { w.r.t } \sin ^{-1}\left(3 x-4 x^{3}\right)
\frac{-1}{2}<x<\frac{1}{2}
Explanation: \text { Let } u=\tan ^{-1}\left(\frac{x-1}{x+1}\right)
\begin{aligned} &v=\sin ^{-1}\left(3 x-4 x^{3}\right) \\\\ &u=\tan ^{-1}\left(\frac{x-1}{x+1}\right) \\\\ &=\tan ^{-1} x-\tan ^{-1} 1 \\\\ &=\tan ^{-1} x-\frac{\pi}{4} \end{aligned}
\begin{aligned} &\frac{d u}{d x}=\frac{1}{1+x^{2}} \\\\ &v=\sin ^{-1}\left(3 x-4 x^{3}\right) \\\\ &\text { Let } x=\sin \theta \end{aligned}
\begin{aligned} &\frac{-1}{2}<x<\frac{1}{2} \\\\ &\frac{-1}{2}<\sin \theta<\frac{1}{2} \\\\ &-\frac{\pi}{6}<\theta<\frac{\pi}{6} \end{aligned}
\begin{aligned} &v=\sin ^{-1}\left(3 \sin \theta-4 \sin ^{3} \theta\right) \\\\ &=\sin ^{-1}(\sin 3 \theta) \\\\ &=3 \theta \\\\ &v=3 \sin ^{-1} x \end{aligned}
\begin{aligned} &\frac{d v}{d x}=\frac{3}{\sqrt{1-x^{2}}} \\\\ &\frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}=\frac{\frac{1}{1+x^{2}}}{\frac{3}{\sqrt{1-x^{2}}}}=\frac{\sqrt{1-x^{2}}}{3\left(1+x^{2}\right)} \end{aligned}

Differentiation exercise 10.8 question 14

Answer: \frac{-x \sqrt{x^{2}-1}}{2}

Hint: \text { Let } u=\tan ^{-1}\left(\frac{\cos x}{1+\sin x}\right), v=\sec ^{-1} x

Given: \tan ^{-1}\left(\frac{\cos x}{1+\sin x}\right) \text { w.r.t } \sec ^{-1} x
Explanation:
\text { Let } u=\tan ^{-1}\left(\frac{\cos x}{1+\sin x}\right)
\begin{aligned} &v=\sec ^{-1} x \\\\ &u=\tan ^{-1}\left(\frac{\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}}{\cos ^{2} \frac{x}{2}+\sin ^{2} \frac{x}{2}+2 \sin \frac{x}{2} \cos \frac{x}{2}}\right) \end{aligned}

\left[\begin{array}{l} \cos 2 x=\cos ^{2} x-\sin ^{2} x \\ \sin 2 x=2 \sin x \cos x \\ 1=\cos ^{2} x+\sin ^{2} x \end{array}\right]
u=\tan ^{-1}\left(\frac{\left(\cos \frac{x}{2}-\sin \frac{x}{2}\right)\left(\cos \frac{x}{2}+\sin \frac{x}{2}\right)}{\left(\cos \frac{x}{2}+\sin \frac{x}{2}\right)^{2}}\right)
u=\tan ^{-1}\left(\frac{\cos \frac{x}{2}-\sin \frac{x}{2}}{\cos \frac{x}{2}+\sin \frac{x}{2}}\right)
Divide numerator and denominator by \cos \frac{x}{2}
u=\tan ^{-1}\left(\frac{1-\tan \frac{x}{2}}{1+\tan \frac{x}{2}}\right)
u=\tan ^{-1}\left(\frac{\tan \frac{\pi}{4}-\tan \frac{x}{2}}{1+\tan \frac{\pi}{4} \tan \frac{x}{2}}\right)
\begin{aligned} &u=\tan ^{-1}\left(\tan \left(\frac{\pi}{4}-\frac{x}{2}\right)\right) \\\\ &u=\frac{\pi}{4}-\frac{x}{2} \\\\ &\frac{d u}{d x}=\frac{-1}{2} \end{aligned}
\begin{aligned} &v=\sec ^{-1} x \\\\ &\frac{d v}{d x}=\frac{1}{x \sqrt{x^{2}-1}} \\\\ &\frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}=\frac{\frac{-1}{2}}{\frac{1}{x\sqrt{x^{2}-1}}}=\frac{-x \sqrt{x^{2}-1}}{2} \end{aligned}

Differentiation exercise 10.8 question 15

Answer: 1
Hint: \text { Let } u=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right), v=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)

Given: \sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right) \text { w.r.t } \tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)
-1<x<1
Explanation:
\begin{aligned} &\text { Let } u=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right) \\\\ &v=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right) \\\\ &\text { Let } x=\tan \theta \end{aligned}
\begin{aligned} &u=\sin ^{-1}\left(\frac{2 \tan \theta}{1+\tan ^{2} \theta}\right), v=\tan ^{-1}\left(\frac{2 \tan \theta}{1-\tan ^{2} \theta}\right) \\\\ &u=\sin ^{-1}(\sin 2 \theta), v=\tan ^{-1}(\tan 2 \theta) \end{aligned}
\begin{aligned} &-1<x<1 \\\\ &-1<\tan \theta<1 \end{aligned}
\begin{aligned} &-\frac{\pi}{4}<\theta<\frac{\pi}{4} \\\\ &-\frac{\pi}{2}<2 \theta<\frac{\pi}{2} \end{aligned}
\begin{aligned} &u=\sin ^{-1}(\sin 2 \theta)=2 \theta \\\\ &v=\tan ^{-1}(\tan 2 \theta)=2 \theta \\\\ &u=2 \tan ^{-1} x \end{aligned}
\begin{aligned} &\frac{d u}{d x}=\frac{2}{1+x^{2}} \\\\ &v=2 \tan ^{-1} x \end{aligned}
\begin{aligned} &\frac{d v}{d x}=\frac{2}{1+x^{2}} \\\\ &\frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}=\frac{\frac{2}{1+x^{2}}}{\frac{2}{1+x^{2}}}=1 \end{aligned}

Differentiation exercise 10.8 question 16

Answer: 3
Hint: \text { Let } u=\cos ^{-1}\left(4 x^{3}-3 x\right), v=\tan ^{-1}\left(\frac{\sqrt{1-x^{2}}}{x}\right)

Given: \cos ^{-1}\left(4 x^{3}-3 x\right) \text { w.r.t } \tan ^{-1}\left(\frac{\sqrt{1-x^{2}}}{x}\right)
\frac{1}{2}<x<1
Explanation: u=\cos ^{-1}\left(4 x^{3}-3 x\right)
\begin{aligned} &v=\tan ^{-1}\left(\frac{\sqrt{1-x^{2}}}{x}\right) \\\\ &\text { Let } x=\cos \theta \end{aligned}
\begin{aligned} &u=\cos ^{-1}\left(4 \cos ^{3} \theta-3 \cos \theta\right) \\\\ &u=\cos ^{-1}(\cos 3 \theta) \end{aligned} \begin{aligned} &v=\tan ^{-1}\left(\frac{\sqrt{1-\cos ^{2} \theta}}{\cos \theta}\right) \\ &v=\tan ^{-1}\left(\frac{\sin \theta}{\cos \theta}\right)=\tan ^{-1}(\tan \theta) \end{aligned}
\begin{aligned} &\frac{1}{2}<x<1 \\\\ &\frac{1}{2}<\cos \theta<1 \\\\ &0<\theta<\frac{\pi}{3} \end{aligned}
\begin{array}{ll} u=\cos ^{-1}(\cos 3 \theta)=3 \theta & \theta \in\left(0, \frac{\pi}{3}\right) \\\\ v=\tan ^{-1}(\tan \theta)=\theta & \theta \in\left(0, \frac{\pi}{3}\right) \end{array}
\begin{aligned} &u=3 \cos ^{-1} x \\\\ &\frac{d u}{d x}=\frac{-3}{\sqrt{1-x^{2}}} \\\\ &v=\cos ^{-1} x \end{aligned}
\begin{aligned} &\frac{d v}{d x}=\frac{-1}{\sqrt{1-x^{2}}} \\\\ &\frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}=\frac{\frac{-3}{\sqrt{1-x^{2}}}}{\frac{-1}{\sqrt{1-x^{2}}}}=3 \end{aligned}

Differentiation exercise 10.8 question 17

Answer: \frac{1}{2}
Hint: \text { Let } u=\tan ^{-1}\left(\frac{x}{\sqrt{1-x^{2}}}\right), v=\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)

Given: \tan ^{-1}\left(\frac{x}{\sqrt{1-x^{2}}}\right) \text { w.r.t } \sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)
-\frac{1}{\sqrt{2}}<x<\frac{1}{\sqrt{2}}
Explanation:
u=\tan ^{-1}\left(\frac{x}{\sqrt{1-x^{2}}}\right)
\begin{aligned} &v=\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right) \\\\ &\text { Let } x=\sin \theta \end{aligned}
\begin{aligned} &u=\tan ^{-1}\left(\frac{\sin \theta}{\sqrt{1-\sin ^{2} \theta}}\right), \\\\ &u=\tan ^{-1}\left(\frac{\sin \theta}{\sqrt{\cos ^{2} \theta}}\right) \\\\ &u=\tan ^{-1}(\tan \theta) \end{aligned} \begin{aligned} &v=\sin ^{-1}\left(2 \sin \theta \sqrt{1-\sin ^{2} \theta}\right) \\\\ &v=\sin ^{-1}(2 \sin \theta \cos \theta) \\\\ &v=\sin ^{-1}(\sin 2 \theta) \end{aligned}
Now
\begin{aligned} &-\frac{1}{\sqrt{2}}<x<\frac{1}{\sqrt{2}} \\\\ &-\frac{1}{\sqrt{2}}<\sin \theta<\frac{1}{\sqrt{2}} \end{aligned}

\begin{aligned} &-\frac{\pi}{4}<\theta<\frac{\pi}{4} \\\\ &-\frac{\pi}{2}<2 \theta<\frac{\pi}{2} \end{aligned}
\begin{array}{ll} u=\tan ^{-1}(\tan \theta)=\theta & \theta \in\left(-\frac{\pi}{4}, \frac{\pi}{4}\right) \\\\ v=\sin ^{-1}(\sin 2 \theta)=2 \theta & 2 \theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \end{array}
\begin{aligned} &u=\sin ^{-1} x \\\\ &\frac{d u}{d x}=\frac{1}{\sqrt{1-x^{2}}} \\\\ &v=2 \sin ^{-1} x \end{aligned}
\frac{d v}{d x}=\frac{2}{\sqrt{1-x^{2}}}
\frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}=\frac{\frac{1}{\sqrt{1-x^{2}}}}{\frac{2}{\sqrt{1-x^{2}}}}=\frac{1}{2}
\frac{d u}{d v}=\frac{1}{2}

Differentiation exercise 10.8 question 18

Answer: 1
Hint: \text { Let } x=\cos \theta

Given: \sin ^{-1} \sqrt{1-x^{2}} \text { w.r.t } \cot ^{-1}\left(\frac{x}{\sqrt{1-x^{2}}}\right)
Explanation:
\text { Let } x=\cos \theta
\begin{aligned} &u=\sin ^{-1} \sqrt{1-x^{2}} \\\\ &=\sin ^{-1} \sqrt{1-\cos ^{2} \theta} \\\\ &=\sin ^{-1}(\sin \theta) \end{aligned}
\begin{aligned} &v=\cot ^{-1}\left(\frac{x}{\sqrt{1-x^{2}}}\right) \\\\ &=\cot ^{-1}\left(\frac{\cos \theta}{\sqrt{1-\cos ^{2} \theta}}\right) \end{aligned}
=\cot ^{-1}\left(\frac{\cos \theta}{\sin \theta}\right)=\cot ^{-1}(\cot \theta)
Now
\begin{aligned} &0<x<1 \\\\ &0<\cos \theta<1 \\\\ &0<\theta<\frac{\pi}{2} \end{aligned}
\begin{array}{ll} u=\sin ^{-1}(\sin \theta)=\theta & \quad \theta \in\left(0, \frac{\pi}{2}\right) \\\\ v=\cot ^{-1}(\cot \theta)=\theta & 2 \theta \in\left(0, \frac{\pi}{2}\right) \end{array}
\begin{aligned} &u=\cos ^{-1} x \quad\left[\begin{array}{l} x=\cos \theta \\ \theta=\cos ^{-1} x \end{array}\right] \\ &\frac{d u}{d x}=\frac{-1}{\sqrt{1-x^{2}}} \end{aligned}
\begin{aligned} &v=\cos ^{-1} x \\\\ &\frac{d v}{d x}=\frac{-1}{\sqrt{1-x^{2}}} \end{aligned}
\frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}=\frac{\frac{-1}{\sqrt{1-x^{2}}}}{\frac{-1}{\sqrt{1-x^{2}}}}=1
\frac{d u}{d v}=1

Differentiation exercise 10.8 question 19

Answer: \frac{-2}{ax}
Hint: \text { Let } a x=\sin \theta

Given: \sin ^{-1}\left(2 a x \sqrt{1-a^{2} x^{2}}\right) \text { w.r.t } \sqrt{1-a^{2} x^{2}}
\frac{-1}{\sqrt{2}}<a x<\frac{1}{\sqrt{2}}
Explanation:
\text { Let } \mathrm{a} x=\sin \theta
\begin{aligned} &u=\sin ^{-1}\left(2 a x \sqrt{1-a^{2} x^{2}}\right) \\\\ &=\sin ^{-1}\left(2 \sin \theta \sqrt{1-\sin ^{2} \theta}\right) \\\\ &=\sin ^{-1}(2 \sin \theta \cos \theta) \\\\ &=\sin ^{-1}(\sin 2 \theta) \end{aligned}\begin{aligned} &u=\sin ^{-1}\left(2 a x \sqrt{1-a^{2} x^{2}}\right) \\\\ &=\sin ^{-1}\left(2 \sin \theta \sqrt{1-\sin ^{2} \theta}\right) \\\\ &=\sin ^{-1}(2 \sin \theta \cos \theta) \\ &=\sin ^{-1}(\sin 2 \theta) \end{aligned}
Now
\begin{aligned} &\frac{-1}{\sqrt{2}}<a x<\frac{1}{\sqrt{2}} \\\\ &\frac{-1}{\sqrt{2}}<\sin \theta<\frac{1}{\sqrt{2}} \end{aligned}
\begin{aligned} &-\frac{\pi}{4}<\theta<\frac{\pi}{4} \\\\ &-\frac{\pi}{2}<2 \theta<\frac{\pi}{2} \end{aligned}
\begin{aligned} &u=\sin ^{-1}(\sin 2 \theta)=2 \theta \quad 2 \theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \\ &=2 \sin ^{-1} a x \end{aligned}
\begin{aligned} &\frac{d u}{d x}=\frac{2}{\sqrt{1-a^{2} x^{2}}}(a) \\\\ &=\frac{2 a}{\sqrt{1-a^{2} x^{2}}} \end{aligned}
\begin{aligned} &v=\sqrt{1-a^{2} x^{2}} \\\\ &\frac{d v}{d x}=\frac{1}{2 \sqrt{1-a^{2} x^{2}}}\left(-a^{2} 2 x\right) \\\\ &\frac{d v}{d x}=\frac{-a^{2} x}{\sqrt{1-a^{2} x^{2}}} \end{aligned}\frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}=\frac{\frac{2 a}{\sqrt{1-a^{2} x^{2}}}}{\frac{-a^{2} x}{\sqrt{1-a^{2} x^{2}}}}=\frac{-2}{a x}

Differentiation exercise 10.8 question 20

Answer: \frac{\sqrt{1-x^{2}}}{x\left(1+x^{2}\right)}
Hint: \tan ^{-1}\left(\frac{a-b}{a+b}\right)=\tan ^{-1} a-\tan ^{-1} b
Given: \tan ^{-1}\left(\frac{1-x}{1+x}\right) \text { w.r.t } \sqrt{1-x^{2}}
-1<x<1
Explanation:
\tan ^{-1}\left(\frac{1-x}{1+x}\right)=u
\begin{aligned} &u=\tan ^{-1}(1)-\tan ^{-1} x \\\\ &u=\frac{\pi}{4}-\tan ^{-1} x \\\\ &\frac{d u}{d x}=0-\frac{1}{1+x^{2}}=-\frac{1}{1+x^{2}} \end{aligned}
\begin{aligned} &v=\sqrt{1-x^{2}} \\\\ &\frac{d v}{d x}=\frac{1}{2 \sqrt{1-x^{2}}}(-2 x) \\\\ &\frac{d v}{d x}=\frac{-x}{\sqrt{1-x^{2}}} \end{aligned}
\frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}=\frac{-\frac{1}{1+x^{2}}}{\frac{-x}{\sqrt{1-x^{2}}}}=\frac{\sqrt{1-x^{2}}}{x\left(1+x^{2}\right)}

Differentiation exercise 10.8 question 21

Answer: -2 e^{-\cos x} \cos x
Hint: \text { let } u=\sin ^{2} x, v=e^{\cos x}

Given: \sin ^{2} x \text { w.r.t } e^{\cos x}
-1<x<1
Explanation:
u=\sin ^{2} x
\begin{aligned} &\frac{d u}{d x}=2 \sin x \cos x \\\\ &v=e^{\cos x} \\\\ &\frac{d v}{d x}=e^{\cos x}(-\sin x)=-\sin x e^{\cos x} \end{aligned}
\frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}=\frac{2 \sin x \cos x}{-\sin x e^{\cos x}}=-2 \cos x e^{-\cos x}

RD Sharma solutions come with the latest syllabus and are updated every year to match the NCERT questions. Students can download the latest copy of the pdf online by navigating to the Career360 website. This site has all the RD Sharma solutions that students will require for their exam preparations. The RD Sharma class 12th exercise 10.8 book is available for free and can be accessed anytime. When students use these solutions, they won't require any extra study materials.

One important thing to note about the RD Sharma class 12 solutions Differentiation ex 10.8 book is that the answers are high quality and easy to understand. Math experts from the country have joined hands to write the RD Sharma solutions answers. Hence, the answers will have some special and modern methods of calculations. Students will find these new methods useful as they are not always taught in class. It will also help them improve their problem-solving speed and skill.

RD Sharma Chapter-wise Solutions

Frequently Asked Questions (FAQs)

1. What is the top-rated solution book for class 12 students?

The RD Sharma solutions are the top-rated reference material when it comes to mathematics. Many students find it easy to adapt the solutions given in this book.

2. Are there any ways for the class 12 students to get exam-ready for public mathematics exam?

Students can use the RD Sharma class 12th exercise 10.8 reference material to work out sums, attend mock tests and develop their knowledge to perform well in the exams.

3. How can the RD Sharma class 12 Solutions Chapter 10 ex 10.8 reference book be utilised efficiently?

The students must refer to the RD Sharma class 12th exercise 10.8 from the day 1 to clear all their doubts. Continuous practice with the extra questions present in it will sharpen their knowledge in the subject.

4. Can the RD Sharma solution books be used to prepare for JEE mains?

The set of RD Sharma solution books can be used by the students to prepare for various entrance exams including the JEE Mains.

5. Where can the students find the RD Sharma solutions at low cost?

The current batch students are lucky to access and download the RD Sharma solution books for free of cost.

Articles

Upcoming School Exams

Application Date:07 October,2024 - 22 November,2024

Application Date:07 October,2024 - 22 November,2024

Application Correction Date:08 October,2024 - 27 November,2024

View All School Exams
Get answers from students and experts
Back to top