Careers360 Logo
RD Sharma Class 12 Exercise 10.8 Differentiation Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise 10.8 Differentiation Solutions Maths - Download PDF Free Online

Updated on Jan 20, 2022 05:45 PM IST

RD Sharma class 12th exercise 10.8 is the holy grail of many students preparing for board exams. Since maths is a complex subject, the RD Sharma class 12 chapter 10 exercise 10.8 solution is a must-have for students who cannot get their doubts cleared. To score high in exams, students need to practice maths daily and prepare beforehand instead of stressing out the last few months. With the help of RD Sharma solutions, they can practice at home and check their answers to see if they have their concepts cleared.

This Story also Contains
  1. RD Sharma Class 12 Solutions Chapter 10 Differentiation - Other Exercise
  2. Differentiation Excercise: 10.8
  3. RD Sharma Chapter-wise Solutions

Students can also use the class 12 RD Sharma chapter 10 exercise 10.8 solution to solve their homework. Teachers tend to give homework questions from RD Sharma solutions so students can answer even complex questions by using the book. If students are thorough with the RD Sharma solutions, they might find some common questions from the book in their board exams.

Also Read - RD Sharma Solution for Class 9 to 12 Maths
The RD Sharma class 12th exercise 10.8 is a top choice for hundreds of students who have excelled in their exams after practicing the book. The 10th chapter of the Class 12 maths book has the topic Differentiations. This part will discuss in detail the basic concept of differentiation of inverse trigonometric functions. It will also teach students about Differentiation of a function with respect to another function, Differentiation by using trigonometric substitutions, Differentiation of implicit functions, and the like. Exercise 10.8 includes 15 on linear trigonometric equations that need to be solved by students.

RD Sharma Class 12 Solutions Chapter 10 Differentiation - Other Exercise

NEET Highest Scoring Chapters & Topics
This ebook serves as a valuable study guide for NEET exams, specifically designed to assist students in light of recent changes and the removal of certain topics from the NEET exam.
Download E-book

Differentiation Excercise: 10.8

Differentiation exercise 10.8 question 1

Answer: 2sec2(x2)tan(x2)
Hint:
 Let u=sec2(x2);v=x2dudv=dudxdvdx

Given: sec2(x2) w.r.t x2
Explanation:
 Let u=sec2(x2),v=x2dudx=2sec(x2)[secx2tanx2×2x]
=4xsec2(x2)tan(x2) (chain rule)
dvdx=2xdudv=dudxdvdx=4xsec2(x2)tan(x2)2x
=2sec2(x2)tan(x2)

Differentiation exercise 10.8 question 3

Answer: x(logx)x1{1+logxlog(logx)}
Hint:  Let u=(logx)x,v=logx
dudv=dudxdvdx

Given: (logx)x w.r.t logx
Explanation:
 Let u=(logx)x,v=logx
u=(logx)x
Taking log both sides,
logu=log(logx)xlogu=xlog(logx)
Differentiate both sides w.r.t. x
1ududx=x[1logx×1x]+log(logx)×11ududx=(logx)1+log(logx)dudx=u[(logx)1+log(logx)]
dudx=u[1logx+log(logx)]dudx=ulogx[1+logxlog(logx)]dudx=(logx)x1[1+logxlog(logx)]
v=logxdvdx=1x
dudv=dudxdvdx=(logx)x1[1+logxlog(logx)]1x
=x(logx)x1{1+logxlog(logx)}

Differentiation exercise 10.8 question 4(i)

Answer: 1
Hint: u=sin11x2,v=cos1x
dudv=dudxdvdx

Given: sin11x2 w.r.t cos1x,x(0,1)
Explanation:
 Let u=sin11x2,v=cos1x
 Let u=sin11x2,v=cos1xu=sin11x2 Let x=cosθu=sin11cos2θu=sin1(sinθ)
x(0,1)cosθ(0,1)θ(0,π2)u=sin1(sinθ)=θ
u=cos1xdudx=11x2v=cos1x
dvdx=11x2dudv=dudxdvdx=11x21x2=1

Differentiation exercise 10.8 question 4(ii)

Answer: 1
Hint:  Let u=sin11x2,v=cos1x
dudv=dudxdvdx

Given: sin11x2 w.r.t cos1x,x(1,0)
Explanation:
 Let u=sin11x2,v=cos1x
u=sin11x2 Let x=cosθu=sin11cos2θ
u=sin1(sinθ)x(1,0)cosθ(1,0)θ(π2,0)
u=sin1(sinθ)=θθ(π2,0)u=cos1x
dudx=11x2v=cos1xdvdx=11x2
dudv=dudxdvdx=11x211x2=1

Differentiation exercise 10.8 question 5(i)

Answer: 1x
Hint:  Let u=sin1(4x14x2),v=14x2
Given: sin1(4x14x2) w.r.t 14x2
Explanation:
 Let 2x=cosθ
u=sin1(4x14x2)u=sin1(2cosθ1(cosθ)2)
=sin1(2cosθ1cos2θ)=sin1(2cosθsinθ)=sin1(sin2θ)
Now we try to find range of θ
x(122,122)
2x(12,12)
cosθ(12,12)[cos1(12)=π4&cos1(12)=3π4]
θ(π4,3π4)2θ(π2,3π2)
u=sin1(sin2θ)=π2θ=π2cos1(2x) [2x=cosθθ=cos1(2x)]
dudx=02[11(2x)2×2]
=41x2
v=14x2dvdx=1214x2(8x)=4x1x2
dudv=dudxdvdx=41x24x1x2=1x

Differentiation exercise 10.8 question 5(ii)

Answer: 1x
Hint:  : Let u=sin1(4x14x2),v=14x2

Given: sin1(4x14x2) w.r.t 14x2

Explanation:  Let 2x=cosθ
u=sin1(4x14x2)u=sin1(2cosθ1(cosθ)2)
=sin1(2cosθ1cos2θ)=sin1(2cosθsinθ)=sin1(sin2θ)
Now we try to find the range of θ
x(122,12)2x(12,1)cosθ(12,1)
θ(0,π4)2θ(0,π2)u=sin1(sin2θ)
=2θ[2x=cosθθ=cos1(2x)]
u=2cos1(2x)dudx=2[11(2x)2×2]
=414x2
v=14x2dvdx=1214x2(8x)
=4x14x2
dudv=dudxdvdx=41x24x14x2=1x

Differentiation exercise 10.8 question 5(iii)

Answer: 1x
Hint:  Let u=sin1(4x14x2),v=14x2

Given: sin1(4x14x2) w.r.t 14x2
Explanation:  Let 2x=cosθ
u=sin1(4x14x2)u=sin1(2cosθ1(cosθ)2)
=sin1(2cosθ1cos2θ)=sin1(2cosθsinθ)=sin1(sin2θ)
u=2θ[2x=cosθθ=cos1(2x)]
=2cos1(2x)dudx=2[11(2x)2×2]
=414x2
v=14x2dvdx=1214x2(8x)
=4x14x2
dudv=dudxdvdx=414x24x14x2=1x

Differentiation exercise 10.8 question 6

Answer: 14
Hint:  Let u=tan1[1+x21x],
v=sin1[2x1+x2]
Given: tan1[1+x21x] w.r.t sin1[2x1+x2]
1<x<1,x0
Explanation:  Let x=tanθ
u=tan1[1+x21x]
=tan1[1+tan2θ1tanθ]=tan1[sec2θ1tanθ]=tan1[secθ1tanθ]
=tan1[1cosθ1sinθcosθ]=tan1[1cosθsinθ] .......................(1)
 Now cos2θ=12sin2θ2sin2θ=1cos2θ2sin2θ2=1cosθ
sin2θ=2sinθcosθsinθ=2sinθ2cosθ2
Put in (1)
u=tan1[2sin2θ22sinθ2cosθ2]u=tan1[tanθ2]
Now,
1<x<11<tanθ<1π4<θ<π4 .........(2)
π8<θ2<π8u=θ2 as θ2(π8,π8)
u=tan1x2dudx=12[11+x2]
=12(1+x2)
v=sin1[2x1+x2]x=tanθv=sin1[2(tanθ)1+tan2θ]
=sin1(sin2θ)
π4<θ<π4 ........From (2)
π2<2θ<π2
v=sin1(sin2θ)2θ(π2,π2)
=2θ
v=2tan1xdvdx=21+x2
dudv=dudxdvdx=12(1+x2)21+x2=14

Differentiation exercise 10.8 question 7(i)

Answer: 2
Hint:  Let u=sin1[2x1x2]
v=sec1[11x2]

Given: sin1[2x1x2] w.r.t sec1[11x2]
x(0,12)
Explanation:
 Let x=sinθ
u=sin1[2x1x2]v=sec1[11x2]
u=sin1[2sinθ1sin2θ]
=sin1[2sinθcosθ]=sin1[sin2θ]
x(0,12)sinθ(0,12)θ(0,π4)2θ(0,π2)
u=sin1[sin2θ]=2θ when 2θ(0,π2)u=2sin1x
=21x2
v=sec1[11sin2θ]sec1(1cosθ)=sec1(secθ)=θ when θ(0,π4)
=sin1xv=sin1xdvdx=11x2
dudv=dudxdvdx=21x211x2=2

Differentiation exercise 10.8 question 7(ii)

Answer: 2
Hint:  Let u=sin1[2x1x2]
v=sec1[11x2]
Given: sin1[2x1x2] w.r.t sec1[11x2]
x(12,1)
Explanation:
x(12,1)sinθ(12,1)θ(π4,π2)2θ(π2,π)
π2θ(0,π2)u=sin1[sin2θ] when π2θ(0,π2)u=sin1[sin(π2θ)]
=π2θu=π2sin1xdudx=21x2v=sec1[11sin2θ]
sec1(1cosθ)=sec1(secθ)=θ when θ(0,π4)
=sin1xv=sin1xdvdx=11x2
dudv=dudxdvdx=21x211x2=2

Differentiation exercise 10.8 question 8

Answer: (cosx)sinx{cosxlogcosxsinxtanx}(sinx)cosx{sinxlogsinx+cosxcotx}

Hint:  Let u=(cosx)sinx,v=(sinx)cosx

Given: (cosx)sinx w.r.t (sinx)cosx
Explanation: Apply log on both sides
logu=log(cosx)sinxlogu=sinxlog(cosx)
Differentiate both side w.r.t. x
1ududx=sinx[1cosx(sinx)]+log(cosx)cosx
=sinxtanx+cosxlog(cosx)
dudx=(cosx)sinx{sinxtanx+cosxlogcosx}v=(sinx)cosx
Apply log on both sides
logv=log(sinx)cosxlogv=cosxlog(sinx)
Differentiate both side w.r.t. x
1vdvdx=cosx[1sinx(cosx)]+log(sinx)(sinx)
=cosxcotxsinxlogsinx
dvdx=(sinx)cosx{sinxlogsinx+cosxcotx}dudv=dudxdvdx
=(cosx)sinx{cosxlogcosxsinxtanx}(sinx)cosx{sinxlogsinx+cosxcotx}

Differentiation exercise 10.8 question 9

Answer: 1
Hint:  Let u=sin1(2x1+x2),v=cos1(1x21+x2)
Given: sin1(2x1+x2) w.r.t cos1(1x21+x2)
0<x<1
Explanation:  Let u=sin1(2x1+x2)
v=cos1(1x21+x2) Let x=tanθu=sin1(2tanθ1+tan2θ)
=sin1(sin2θ)0<x<10<tanθ<10<θ<π40<2θ<π2
u=sin1(sin2θ)=2θ2θ(0,π2)u=2tan1x
dudx=21+x2v=cos1(1x21+x2)
v=cos1(1tan2θ1+tan2θ)=cos1(1tan2θ1+tan2θ)=cos1(cos2θ)
=2θ2θ(0,π2)v=2tan1xdvdx=21+x2
dudv=dudxdvdx=21+x221+x2=1

Differentiation exercise 10.8 question 10

Answer: 1ax1+a2x2
Hint:  Let u=tan1(1+ax1ax),v=1+a2x2
Given: tan1(1+ax1ax) w.r.t 1+a2x2
Explanation:  Let u=tan1(1+ax1ax)
v=1+a2x2 Let ax=tanθu=tan1(1+tanθ1tanθ)
=tan1(tanπ4+tanθ1tanπ4tanθ)[tanπ4=1]
=tan1tan(π4+θ)=π4+θ
u=π4+tan1(ax)[ax=tanθθ=tan1ax]
dudx=11+(ax)2[a×1]=a1+a2x2v=1+a2x2
dvdx=121+a2x2ddx(a2x2)=2a2x21+a2x2=a2x1+a2x2
dudv=dudxdvdx
=a1+a2x2a2x1+a2x2=1ax1+a2x2

Differentiation exercise 10.8 question 11

Answer: 2
Hint:  Let u=sin1(2x1x2),v=tan1(x1x2)

Given: sin1(2x1x2) w.r.t tan1(x1x2)

Explanation:
 Let u=sin1(2x1x2)
v=tan1(x1x2) Let x=sinθu=sin1(2sinθ1sin2θ)
=sin1(2cosθsinθ)=sin1(sin2θ)
v=tan1(sinθ1sin2θ)=tan1(sinθcosθ)=tan1(tanθ)
Now,
12<x<1212<sinθ<12
π4<θ<π4π2<2θ<π2
u=sin1(sin2θ)=sin1(sin2θ)=2θ=2sin1x
dudx=21x2v=tan1(tanθ)=θv=sin1x
dvdx=11x2dudv=dudxdvdx
=21x211x2=2

Differentiation exercise 10.8 question 12

Answer: 1
Hint:  : Let u=tan1(2x1x2),v=cos1(1x21+x2)

Given: tan1(2x1x2) w.r.t cos1(1x21+x2)
0<x<1
Explanation:
 Let u=tan1(2x1x2)
v=cos1(1x21+x2) Let x=tanθu=tan1(2tanθ1tan2θ)=tan1(tan2θ)
v=cos1(1x21+x2)v=cos1(1tan2θ1+tan2θ)=cos1(1tan2θ1+tan2θ)
=cos1(cos2θ) Now, 0<x<10<tanθ<1
0<θ<π40<2θ<π2u=tan1(tan2θ)
=2θ2θ(0,π2)=2tan1x(tanθ=xθ=tan1x)
v=cos1(cos2θ)=2θ2θ(0,π2)=2tan1x
dudx=21+x2dvdx=21+x2
dudv=dudxdvdx
=21+x221+x2=1

Differentiation exercise 10.8 question 13


Answer: 1x23(1+x2)

Hint:  Let u=tan1(x1x+1),v=sin1(3x4x3)

Given: tan1(x1x+1) w.r.t sin1(3x4x3)
12<x<12
Explanation:  Let u=tan1(x1x+1)
v=sin1(3x4x3)u=tan1(x1x+1)=tan1xtan11=tan1xπ4
dudx=11+x2v=sin1(3x4x3) Let x=sinθ
12<x<1212<sinθ<12π6<θ<π6
v=sin1(3sinθ4sin3θ)=sin1(sin3θ)=3θv=3sin1x
dvdx=31x2dudv=dudxdvdx=11+x231x2=1x23(1+x2)

Differentiation exercise 10.8 question 14

Answer: xx212

Hint:  Let u=tan1(cosx1+sinx),v=sec1x

Given: tan1(cosx1+sinx) w.r.t sec1x
Explanation:
 Let u=tan1(cosx1+sinx)
v=sec1xu=tan1(cos2x2sin2x2cos2x2+sin2x2+2sinx2cosx2)

[cos2x=cos2xsin2xsin2x=2sinxcosx1=cos2x+sin2x]
u=tan1((cosx2sinx2)(cosx2+sinx2)(cosx2+sinx2)2)
u=tan1(cosx2sinx2cosx2+sinx2)
Divide numerator and denominator by cosx2
u=tan1(1tanx21+tanx2)
u=tan1(tanπ4tanx21+tanπ4tanx2)
u=tan1(tan(π4x2))u=π4x2dudx=12
v=sec1xdvdx=1xx21dudv=dudxdvdx=121xx21=xx212

Differentiation exercise 10.8 question 15

Answer: 1
Hint:  Let u=sin1(2x1+x2),v=tan1(2x1x2)

Given: sin1(2x1+x2) w.r.t tan1(2x1x2)
1<x<1
Explanation:
 Let u=sin1(2x1+x2)v=tan1(2x1x2) Let x=tanθ
u=sin1(2tanθ1+tan2θ),v=tan1(2tanθ1tan2θ)u=sin1(sin2θ),v=tan1(tan2θ)
1<x<11<tanθ<1
π4<θ<π4π2<2θ<π2
u=sin1(sin2θ)=2θv=tan1(tan2θ)=2θu=2tan1x
dudx=21+x2v=2tan1x
dvdx=21+x2dudv=dudxdvdx=21+x221+x2=1

Differentiation exercise 10.8 question 16

Answer: 3
Hint:  Let u=cos1(4x33x),v=tan1(1x2x)

Given: cos1(4x33x) w.r.t tan1(1x2x)
12<x<1
Explanation: u=cos1(4x33x)
v=tan1(1x2x) Let x=cosθ
u=cos1(4cos3θ3cosθ)u=cos1(cos3θ) v=tan1(1cos2θcosθ)v=tan1(sinθcosθ)=tan1(tanθ)
12<x<112<cosθ<10<θ<π3
u=cos1(cos3θ)=3θθ(0,π3)v=tan1(tanθ)=θθ(0,π3)
u=3cos1xdudx=31x2v=cos1x
dvdx=11x2dudv=dudxdvdx=31x211x2=3

Differentiation exercise 10.8 question 17

Answer: 12
Hint:  Let u=tan1(x1x2),v=sin1(2x1x2)

Given: tan1(x1x2) w.r.t sin1(2x1x2)
12<x<12
Explanation:
u=tan1(x1x2)
v=sin1(2x1x2) Let x=sinθ
u=tan1(sinθ1sin2θ),u=tan1(sinθcos2θ)u=tan1(tanθ) v=sin1(2sinθ1sin2θ)v=sin1(2sinθcosθ)v=sin1(sin2θ)
Now
12<x<1212<sinθ<12

π4<θ<π4π2<2θ<π2
u=tan1(tanθ)=θθ(π4,π4)v=sin1(sin2θ)=2θ2θ(π2,π2)
u=sin1xdudx=11x2v=2sin1x
dvdx=21x2
dudv=dudxdvdx=11x221x2=12
dudv=12

Differentiation exercise 10.8 question 18

Answer: 1
Hint:  Let x=cosθ

Given: sin11x2 w.r.t cot1(x1x2)
Explanation:
 Let x=cosθ
u=sin11x2=sin11cos2θ=sin1(sinθ)
v=cot1(x1x2)=cot1(cosθ1cos2θ)
=cot1(cosθsinθ)=cot1(cotθ)
Now
0<x<10<cosθ<10<θ<π2
u=sin1(sinθ)=θθ(0,π2)v=cot1(cotθ)=θ2θ(0,π2)
u=cos1x[x=cosθθ=cos1x]dudx=11x2
v=cos1xdvdx=11x2
dudv=dudxdvdx=11x211x2=1
dudv=1

Differentiation exercise 10.8 question 19

Answer: 2ax
Hint:  Let ax=sinθ

Given: sin1(2ax1a2x2) w.r.t 1a2x2
12<ax<12
Explanation:
 Let ax=sinθ
u=sin1(2ax1a2x2)=sin1(2sinθ1sin2θ)=sin1(2sinθcosθ)=sin1(sin2θ)u=sin1(2ax1a2x2)=sin1(2sinθ1sin2θ)=sin1(2sinθcosθ)=sin1(sin2θ)
Now
12<ax<1212<sinθ<12
π4<θ<π4π2<2θ<π2
u=sin1(sin2θ)=2θ2θ(π2,π2)=2sin1ax
dudx=21a2x2(a)=2a1a2x2
v=1a2x2dvdx=121a2x2(a22x)dvdx=a2x1a2x2dudv=dudxdvdx=2a1a2x2a2x1a2x2=2ax

Differentiation exercise 10.8 question 20

Answer: 1x2x(1+x2)
Hint: tan1(aba+b)=tan1atan1b
Given: tan1(1x1+x) w.r.t 1x2
1<x<1
Explanation:
tan1(1x1+x)=u
u=tan1(1)tan1xu=π4tan1xdudx=011+x2=11+x2
v=1x2dvdx=121x2(2x)dvdx=x1x2
dudv=dudxdvdx=11+x2x1x2=1x2x(1+x2)

Differentiation exercise 10.8 question 21

Answer: 2ecosxcosx
Hint:  let u=sin2x,v=ecosx

Given: sin2x w.r.t ecosx
1<x<1
Explanation:
u=sin2x
dudx=2sinxcosxv=ecosxdvdx=ecosx(sinx)=sinxecosx
dudv=dudxdvdx=2sinxcosxsinxecosx=2cosxecosx

RD Sharma solutions come with the latest syllabus and are updated every year to match the NCERT questions. Students can download the latest copy of the pdf online by navigating to the Career360 website. This site has all the RD Sharma solutions that students will require for their exam preparations. The RD Sharma class 12th exercise 10.8 book is available for free and can be accessed anytime. When students use these solutions, they won't require any extra study materials.

One important thing to note about the RD Sharma class 12 solutions Differentiation ex 10.8 book is that the answers are high quality and easy to understand. Math experts from the country have joined hands to write the RD Sharma solutions answers. Hence, the answers will have some special and modern methods of calculations. Students will find these new methods useful as they are not always taught in class. It will also help them improve their problem-solving speed and skill.

RD Sharma Chapter-wise Solutions

Frequently Asked Questions (FAQs)

1. What is the top-rated solution book for class 12 students?

The RD Sharma solutions are the top-rated reference material when it comes to mathematics. Many students find it easy to adapt the solutions given in this book.

2. Are there any ways for the class 12 students to get exam-ready for public mathematics exam?

Students can use the RD Sharma class 12th exercise 10.8 reference material to work out sums, attend mock tests and develop their knowledge to perform well in the exams.

3. How can the RD Sharma class 12 Solutions Chapter 10 ex 10.8 reference book be utilised efficiently?

The students must refer to the RD Sharma class 12th exercise 10.8 from the day 1 to clear all their doubts. Continuous practice with the extra questions present in it will sharpen their knowledge in the subject.

4. Can the RD Sharma solution books be used to prepare for JEE mains?

The set of RD Sharma solution books can be used by the students to prepare for various entrance exams including the JEE Mains.

5. Where can the students find the RD Sharma solutions at low cost?

The current batch students are lucky to access and download the RD Sharma solution books for free of cost.

Articles

Back to top