Careers360 Logo
RD Sharma Solutions Class 12 Mathematics Chapter 10 MCQ

RD Sharma Solutions Class 12 Mathematics Chapter 10 MCQ

Updated on Jan 20, 2022 06:06 PM IST

It is pretty well-known among high school students that RD Sharma class 12th exercise MCQ is one of the best exercise solutions found in the market. The RD Sharma class 12 chapter 10 exercise MCQ solution is a fantastic study partner for students who practice diligently before exams. Experts in mathematics have joined hands to create some unique answers found in the RD Sharma solutions. Moreover, students can learn some new methods of calculations from these solutions, which would help them solve questions faster and more accurately.

This Story also Contains
  1. RD Sharma Class 12 Solutions Chapter 10 MCQ Differentiation - Other Exercise
  2. Differentiation Excercise: MCQ
  3. RD Sharma Chapter wise Solutions

Also Read - RD Sharma Solution for Class 9 to 12 Maths

The RD Sharma class 12 chapter 10 exercise MCQ is one of the best NCERT solutions trusted and recommended by hundreds of students in their exams. It can be used for both school and board exams. The 10th chapter of the maths book deals with Differentiations in trigonometric equations. It will teach students about Logarithmic differentiation, differentiation of inverse trigonometric functions, Differentiation of a function. Exercise MCQ includes 33 questions on all the concepts that students have learned in this chapter.

Background wave

RD Sharma Class 12 Solutions Chapter 10 MCQ Differentiation - Other Exercise

Differentiation Excercise: MCQ

Differentiation exercise Multiple choice question 1

Answer:
12e
Hint:
Use quotient rule to differentiate the function
Given:
f(x)=logx2(loge)x
Solution:
f(x)=logx2(loge)x
=log(logx)(log(x))2
f(x)=log(logx)2logx
Use quotient rule
f(x)=12[log(1logx)(1x)log(log(x))(1x)](logx)2
=12[(1log(logx))x](logx)2
Put x=e
f(e)=(12)[(1log(loge))e](loge)2
=(12)(10)e[ Since loge=1]f(e)=12e


Differentiation exercise Multiple choice question 2

Answer:
(xlog)1
Hint:
Use differential formula
Given:
f(x)=logx
Solution:
We have
f(x)=logxf(logx)=log(logx)f(logx)=1logxddx(logx)
=1xlogx
f(logx)=(xlogx)1


Differentiation exercise Multiple choice question 3

Answer:
(23)12
Hint:
Differentiate the given function and replace x by π6 and solve
Given:
cot1{(cos2x)12} at x=π6
Solution:
y=cot1(cos2x)dydx=11+cos2xddxcos2x
dydx=[11+cos2x][12(cos2x)](2sin2x)
=sin2x(1+cos2x)cos2x
 At x=π6
dydx=sinπ3(1+cosπ3)cosπ3
=(32)(1+12)12
=23=(23)12


Differentiation exercise Multiple choice question 4

Answer:
x1+x2
Hint:
Differentiate the function w.r.t x
Given:
sec(tan1x)
Solution:
y=sec(tan1x)dydx=sec(tan1x)tan(tan1x)×ddx(tan1x)
=sec(tan1x)tan(tan1x)×11+x2=ytan(tan1x)×11+x2
=y(x1+x2)[tan(tan1x)=x]
This is the equation of differential equation which have co-efficient= (x1+x2)


Differentiation exercise Multiple choice question 5

Answer:
12
Hint:
Differentiate the function and replace x by π6 solve
Given:
f(x)=tan11+sinx1sinx,0xπ2,f(π6)
Solution:
y=tan1(1+sinx1sinx)
=tan1(1cos(π2+x)1+cos(π2+x))
=tan1(2sin2(π4+x2)2cos2(π4+x2))
y=tan1(tan(π4+x2))=π4+x2[tan1(tanx)=x]
dydx=12


Differentiation exercise Multiple choice question 6

Answer:
(1+1x)x(1+1x)1x+1
Hint:
Differentiate the function w.r.t x
Given:
y=(1+1x)x
Solution:
Let
y=(1+1x)x
Taking log on both sides
logy=xlog(1+1x)1ydydx=xddxlog(1+1x)+log(1+1x)ddx(x)
=x(11+1x)ddx(1+1x)+log(1+1x)
=x×xx+1(1x2)+log(1+1x)=x2x+1×1x2+log(1+1x)
1ydydx=1x+1+log(1+1x)dydx=y[1x+1+log(1+1x)]
=(1+1x)x[log(1+1x)1x+1]


Differentiation exercise Multiple choice question 7

Answer:
logx(1+logx)2
Hint:
Differentiate the function w.r.t x
Given:
xy=exy
Solution:
xy=exy
Taking log on both sides
logxy=log(exy)
ylogx=(xy)loge[logmn=nlogm]
ylogx=(xy)1[loge=1]ylogx=xy
x=y+ylogxx=y(1+logx)y=x1+logx
Differentiating y w.r.t x then
dydx=ddx(x1+logx)
=(1+logx)d(x)dxxddx(1+logx)(1+logx)2[ddx(uv)=vdudxudvdxv2]
=(1+logx)1x{d(1)dx+d(logx)dx}(1+logx)2[ddx{f(x)+g(x)}=ddxf(x)+ddxg(x),d(x)dx=1]
=1+logxx(0+1x)(1+logx)2[ddxlogx=1x,ddx(constant)=0]
=1+logxx1x(1+logx)2=1+logx1(1+logx)2
=logx(1+logx)2


Differentiation exercise Multiple choice question 9

Answer:
|secθ|
Hint:
Differentiate x and y w.r.t θ, then divide and solve
Given:
x=acos3θ,y=asin3θ,1+(dydx)2=
Solution:
x=acos3θdxdθ=addθ(cos3θ)dxdθ=a(3)cos2ddθ(cosθ)
dxdθ=3acos2θsinθ ....................(1)
y=asinθdydθ=addθ(sin3θ)
=3asin2θddθ(sinθ)
dydθ=3asin2θcosθ ......................(2)
Dividing (2) by (1) we get
dydθdxdθ=3asin2θcosθ3acos2θsinθ
dydx=sinθcosθ=tanθ1+(dydx)2=1+tan2θ=sec2θ=|secθ|


Differentiation exercise Multiple choice question 10

Answer:
21+x2
Hint:
Differentiate y function w.r.t x
Given:
y=sin1(1x21+x2)
Solution:
Let
y=sin1(1x21+x2)
Differentiate y w.r.t x then
dydx=ddx(sin1(1x21+x2))
=11(1x21+x2)2{(1+x2)ddx(1x2)(1x2)ddx(1+x2)(1+x2)2} [ddx(sin1x)=11x2,ddx(uv)=vdudxudvdx]
=1(1+x2)2(1x2)2(1+x2)2[(1+x2){ddx(1)ddx(x2)}(1x2){ddx(1)+ddx(x2)}(1+x2)2] [ddx{f(x)+g(x)}=ddxf(x)+ddxg(x)]
=(1+x2)2(1+x4+2x2)(1+x42x2)[(1+x2)(02x)(1x2)(0+2x)(1+x2)2]
[ddx(xn)=nxn1,(a2+b2+2ab)=(a+b)2&(ab)2=a2+b22ab]
=(1+x2)1+x4+2x21x4+2x2[2x2x3(2x2x3)(1+x2)2]
=1+x24x2[2x2x32x+2x3(1+x2)2]
=1+x2(2x)2[4x(1+x2)2]=(1+x2)2x×4x(1+x2)2=2(1+x2)dydx=21+x2


Differentiation exercise Multiple choice question 11

Answer:
Does not exist
Hint:
sec1αis not defined
Given:
sec1(12x2+1) W.r.t 1+3x at x=13
Solution:
We know that sec1α is not defined for α(1,1)
Here for x=13,12x2+1=911(1,1)
sec1(12x2+1) Is not defined at x=13
Derivative of sec1(12x2+1) does not exist at x=13


Differentiation exercise Multiple choice question 12

Answer:
1
Hint:
Differentiate the function w.r.t x
Given:
x+y=1,dydxat(14,14)
Solution:
x+y=1
Differentiating w.r.t x
12x+12ydydx=012ydydx=12x
dydx=12x×2y1=yx
Now,
[dydx](1414)=1414=1


Differentiation exercise Multiple choice question 13

Answer:
1
Hint:
Differentiate the function w.r.t x
Given:
sin(x+y)=log(x+y)
Solution:
sin(x+y)=log(x+y)cos(x+y)(1+dydx)=1(x+y)(1+dydx)
cos(x+y)+cos(x+y)dydx=1(x+y)+1(x+y)dydxcos(x+y)dydx1(x+y)dydx=1(x+y)cos(x+y)
[cos(x+y)1(x+y)]dydx=1(x+y)cos(x+y)[1(x+y)cos(x+y)]dydx=1(x+y)cos(x+y)dydx=1


Differentiation exercise Multiple choice question 14

Answer:
1
Hint:
Differentiate the function w.r.t x
Given:
u=sin1(2x1+x2),v=tan1(2x1x2)
Solution:
u=sin1(2x1+x2),v=tan1(2x1x2)
Differentiating u w.r.t x then
dydx=ddx(sin1(2x1+x2))
=11(2x1+x2)2[(1+x2)ddx(2x)2xddx(1+x2)(1+x2)2] [ddx(sin1x)=11x2ddx(uv)=vdudxudvdxv2]
=1(1+x2)2(2x)2(1+x2)2[(1+x2)2d(x)dx2x{ddx(1)+ddx(x2)}(1+x2)2] [ddx{f(x)+g(x)}=ddxf(x)+ddxg(x)ddx(axn)=addx(xn)]
=(1+x2)21+x4+2x24x2×[(1+x2)212x(0+2x)(1+x2)2] [ddx(constant)=0,ddx(xn)=nxn1]
=(1+x2)1+x22x2[(1+x2)22x(2x)(1+x2)2]
=(1+x2)(1x2)2[2+2x24x2(1+x2)2][a2+b22ab=(ab)2]
=(1+x2)(1x2)×22x2(1+x2)2=2(1x2)(1x2)(1+x2)=21+x2dudx=21+x2 ................(1)
Differentiating v w.r.t x then,
dvdx=ddx(tan1(2x1x2))
=11+(2x1x2)2[(1x2)ddx(2x)ddx(1x2)2x(1x2)2] [ddx(tan1x)=11+x2,ddx(uv)=vdudxudvdxv2]
=1(1x2)2+(2x)2(1x2)2[(1x2)2ddx(x)2x{ddx(1)ddx(x2)}(1x2)2] [ddx{f(x)+g(x)}=ddxf(x)+ddxg(x)ddx(axn)=addx(xn)]
=(1x2)21+x42x2+4x2[(1x2)212x(02x)(1x2)2] [ddx(xn)=nxn1,ddx(constant)=0,d(x)dx=1(ab)2=a2+b22ab]
=11+x4+2x2[22x2+4x21]
=2+2x2(1+x2)2=2(1+x2)(1+x2)2[a2+b2+2ab=(a+b)2]
dvdx=21+x2 ..............................(2)
Thus
dydx=dudxdvdx=dudx×dxdv
=21+x2×1+x22 [Using (1) and (2)]
dydx=1


Differentiation exercise Multiple choice question 15

Answer:
12
Hint:
Differentiate the function w.r.t x
Given:
ddx[tan1(cosx1+sinx)]
Solution:
u=tan1(cosx1+sinx)
=tan1(cos2(x2)sin2(x2)cos2(x2)sin2(x2)+2sinx2cosx2)
=tan1(cosx2sinx2)(cosx2+sinx2)(cosx2+sinx2)2
=tan1[1tanx21+tanx2]
u=tan1[tanπ4tanx21+tanπ4×tanx2]
=tan1[tan(π4x2)]
u=π4x2dudx=012dudx=12


Differentiation exercise Multiple choice question 16

Answer:
x21x24
Hint:
Differentiate the function w.r.t x
Given:
ddx[log{ex(x2x+2)34}]
Solution:
y=ddx[log(ex(x2x+2)2)]
=ddx[xloge+34log(x2x+2)]
y=ddx[x+34log(x2x+2)]
dydx=1+34(x2x+2)×(x+2)(x2)(x+2)2
=1+34(x+2)(x2)×x+2x+2(x+2)2=1+34(x+2)(x2)×4(x+2)
=1+3(x24)dydx=x24+3x24=x21x24


Differentiation exercise Multiple choice question 17

Answer:
cos2x2y1
Hint:
Differentiate the function w.r.t x
Given:
y=sinx+y
Solution:
y=sinx+y
Squaring both side
y2=sinx+yy2y=sinx2ydydxdydx=cosx


Differentiation exercise Multiple choice question 18

Answer:
yx
Hint:
Differentiate the function w.r.t x
Given:
3sin(xy)+4cos(xy)=5
Solution:
3sin(xy)+4cos(xy)=5
3cos(xy)[xdydx+y]4sin(xy)[xdydx+y]=0[xdydx+y][3cos(xy)4sin(xy)]=0
xdydx+y=0xdydx=ydydx=yx


Differentiation exercise Multiple choice question 19

Answer:
sin2(a+y)sina
Hint:
Differentiate the function w.r.t x
Given:
siny=xsin(a+y), then dyαx
Solution:
siny=xsin(a+y)ddx(siny)=ddx[(a+y)sinx]
cosydydx=sin(a+y)ddx(x)+xddx[sin(a+y)]
=sin(a+y)×1+xcos(a+y)dydx=sin(a+y)+xcos(a+y)dydx
cosydydx=xcos(a+y)dydx=sin(a+y)
(cosysinysin(a+y)×cos(a+y))dydx=sin(a+y) [siny=2sinxcosxx=sinysin(a+y)]
(sin(a+y)cosysinycos(a+y)sin(a+y))dydx=sin(a+y)
sin(a+yy)sin(a+y)×dydx=sin(a+y)dydx=sin2(a+y)sina


Differentiation exercise Multiple choice question 20

Answer:
2
Hint:
Differentiate the function w.r.t cos1x
Given:
cos1(2x21) With respect to cos1x
Solution:
u=cos1(2x21)x=cosθθ=cos1xdθdx=11x2
u=cos1(cos2θ)u=2θdudx=2dθdxdudx=21x2 ...............(1)
v=cos1xv=cos1(cosθ),v=θdvdx=dθdxdvdx=11x2 ..................(2)
Divide (1) by (2)
dudx=2dvdx1x2×1x21dudv=2


Differentiation exercise Multiple choice question 21

Answer:
1 for x<3
Hint:
Differentiate the function w.r.t x
Given:
f(x)=x2+6x+9,f(x)
Solution:
f(x)=x2+6x+9x2+6x+9=(x+3)(x+3)=(x+3)2
f(x)=(x+3)2=|x+3|f(x)={x+3x3x3x<3
f(x)={1x31x<3f(x)=1 For x<3


Differentiation exercise Multiple choice question 22

Answer:
2x+9, If 4<x<5
Hint:
Differentiate the function w.r.t x
Given:
f(x)=|x29x+20| Then f(x)=
Solution:
f(x)=|x29x+20|
f(x)={x29x+20<x4(x29x+20)4<x<5x29x+205x<
f(x)={2x9<x42x+94<x<52x95x<
f(x)=2x+9 for 4<x<5


Differentiation exercise Multiple choice question 23

Answer:
None of these
Hint:
In case of function of one variable it’s a function that doesn’t have finite derivation
Given:
f(x)=x210x+25,f(x)=
Solution:
f(x)=x210x+25
=(x5)2=|x5|
f(x)={x5 for x>5(x5) for x<5
LHD=limx5f(x)f(a)xa
=limx5x210x+255210(5)+25x5
=limx5|x5|(x5)=limx5(x5)x5=1
RHD=limx5+f(x)f(a)xa
=limx5+x210x+255210(5)+25x5
=limx5+|x5|x5=limx5+x5x5=1
LHDRHD, so function is not differentiable .


Differentiation exercise Multiple choice question 25

Answer:
0
Hint:
Differentiate the function w.r.t x
Given:
f(x)=(xlxm)l+m(xmxn)m+n(xnx3)n+l
Solution:
f(x)=(xlxm)l+m(xmxn)m+n(xnxl)n+l
=x(lm)(l+m)×x(mn)(m+n)×x(nl)(n+l)=xl2m2×xm2n2×xn2l2
f(x)=x(l2m2+m2n2+n2l2)=x0f(x)=1f(x)=0


Differentiation exercise Multiple choice question 26

Answer:
0
Hint:
Differentiate the function w.r.t x
Given:
y=11+xab+xcb+11+xbc+xac+11+xba+xca
Solution:
y=11+xab+xcb+11+xbc+xac+11+xba+xca
=11+xaxb+xcxb+11+xbxc+xaxc+11+xbxa+xcxa
=xbxa+xb+xc+xcxa+xb+xc+xaxa+xb+xc
=xb+xc+xaxa+xb+xcy=1dydx=d(1)dx=0


Differentiation exercise Multiple choice question 27

Answer:
x2y21y61x6
Hint:
Differentiate the function w.r.t x
Given:
1x6+1y6=a3(x3y3)
Solution:
We have, 1x6+1y6=a3(x3y3)
Putting x3=sinA,y3=sinB
1sin2A+1sin2B=a(sinAsinB)cosA+cosB=a(sinAsinB)
2cos(A+B2)cos(AB2)=2asin(AB2)cos(A+B2)cot(AB2)=a3
AB2=cot1(a3)AB=2cot1(a3)sin1x3sin1y3=2cot1(a3)
11x6×ddx(x3)11y6×ddx(y3)=011x6×3x211y6×3y2×dydx=0
dydx=x2y21y61x6


Differentiation exercise Multiple choice question 28

Answer:
1
Hint:
Differentiate the function w.r.t x
Given:
y=logtanx
Solution:
y=logtanxdydx=1tanx×ddx(tanx)
=1tanx×12tanx×ddx(tanx)
dydx=sec2x2tanx
Now
(dydx)x=π4=(secπ4)22tan(π4)=22×1=1


Differentiation exercise Multiple choice question 29

Answer:
yx
Hint:
Differentiate the function w.r.t x
Given:
sin1(x2y2x2+y2)=loga
Solution:
sin1(x2y2x2+y2)=loga
x2y2x2+y2=sinloga
(x2+y2)(2x2ydydx)(x2y2)(2x+2ydydx)(x2+y2)2=0
2x32x2ydy+2xy22y3dydx2x32x2ydydx+2xy2+2y3dydx(x2+y2)2=0
4x2ydydx+4xy2=04x2ydydx=4xy2dydx=4xy24x2y=yx


Differentiation exercise Multiple choice question 30

Answer:
cos2(a+y)cosa
Hint:
Differentiate the function w.r.t x
Given:
siny=xcos(a+y)
Solution:
siny=xcos(a+y)ddx(siny)=ddx[xcos(a+y)]
cosydydx=1×cos(a+y)xsin(a+y)ddx(a+y)cosydydx=cos(a+y)xsin(a+y)dydx
cosydydx+xsin(a+y)dydx=cos(a+y)[cosy+xsin(a+y)]dydx=cos(a+y)
[cosy+sinycos(a+y)×sin(a+y)]dydx=cos(a+y) [siny=xcos(a+y)x=sinycos(a+y)]
[cos(a+y)cosy+sinysin(a+y)cos(a+y)]dydx=cos(a+y)
cos(a+yy)cos(a+y)×dydx=cos(a+y)dydx=cos2(a+y)cosa


Differentiation exercise Multiple choice question 31

Answer:
4x1x4
Hint:
Differentiate the function w.r.t x
Given:
y=log(1x21+x2)
Solution:
y=log(1x21+x2)
dydx=11x21+x2ddx(1x21+x2)
=1+x21x2[(1+x2)(2x)(1x2)(2x)(1+x2)2]
=11x2[2x2x32x+2x31+x4]dydx=4x1x4


Differentiation exercise Multiple choice question 32

Answer:
1
Hint:
Differentiate the function w.r.t x
Given:
y=tan1(sinx+cosxcosxsinx)
Solution:
y=tan1(sinx+cosxcosxsinx)
dydx=11+(sinx+cosxcosxsinx)2ddx(sinx+cosxcosxsinx)
dydx=(cosxsinx)2(cosxsinx)2+(sinx+cosx)2× [(cosxsinx)ddx(sinx+cosx)(sinx+cosx)ddx(cosxsinx)(cosxsinx)2]
=(cosxsinx)2(cosxsinx)2+(sinx+cosx)2[(cosxsinx)(cosxsinx)(sinx+cosx)(sinxcosx)(cosxsinx)2]
=(cosxsinx)2(cosxsinx)2+(sinx+cosx)2[(cosxsinx)(cosxsinx)+(sinx+cosx)(sinx+cosx)(cosxsinx)2]
=(cosxsinx)2(cosxsinx)2(sinx+cosx)2×(cosxsinx)2+(sinx+cosx)2(cosxsinx)2dydx=1


Differentiation exercise Multiple choice question 33

Answer:
 (c) dydx=y1x+1
Hint:
Differentiate the function w.r.t x
Given:
sec1(1+x1y)
Solution:
sec1(1+x1y)=a
seca=1+x1y(1y)seca=1+x
Differentiate w.r.t x
secadydx=1[d(1)dx=0,d(x)dx=1]
dydx=1seca
=(1y)(1+x)=y11+x
Hence, option (c) is correct.

The class 12 RD Sharma chapter 10 exercise MCQ solution can be practiced for school, board, and JEE exams. The syllabus covered in the book includes all the latest updates that NCERT Books receive every year. The RD Sharma class 12 solutions Differentiation ex MCQ book is also updated periodically to include updates so that students may not miss out on any question.

RD Sharma class 12 solutions chapter 10 ex MCQ is the ultimate guidebook for students who want to improve their knowledge on this particular chapter. The MCQ portion has numerous questions which might appear in board exams as it has in the past. Teachers also use RD Sharma class 12th exercise MCQ to give home assignments to students, so using the book will make it easier for them to get the answers correct.

The RD Sharma class 12th exercise MCQ book should be available by all students as study material. They can download the free copy of the pdf from Career360. Unlike expensive study materials that don't have much information, the RD Sharma solutions are valuable and free of cost. Zero financial investment means everyone will be able to download this book.

RD Sharma Chapter wise Solutions

NEET Highest Scoring Chapters & Topics
This ebook serves as a valuable study guide for NEET exams, specifically designed to assist students in light of recent changes and the removal of certain topics from the NEET exam.
Download E-book

Frequently Asked Questions (FAQs)

1. Can I use RD Sharma class 12th exercise MCQ for school exams?

RD Sharma class 12th exercise MCQ contains the latest syllabus present in NCERT school textbooks. Therefore, students can use these solutions to prepare for school exams as well.

2. What are the benefits of using RD Sharma solutions?

RD Sharma Solutions are highly recommended by students and teachers who have experienced the benefits of using this NCERT solution for boards. The answers provided in the book are detailed and easy to understand. You might find common questions in boards if you use this book.

3. How many questions are there in RD Sharma class 12 solutions chapter 10 ex MCQ?

In RD Sharma class 12 solutions chapter 10 ex MCQ, there are 33 questions that include concepts from the entire Differentiations chapter. 

4. Is It necessary to buy the physical copy of the RD Sharma class 12th exercise MCQ?

Students do not have to buy the RD Sharma class 12th exercise MCQ book. Students can simply download the soft copy of the book from Career360. If required, they can also print out this pdf for a physical copy.

5. Will I get common questions in boards if I practice RD Sharma solutions?

Students who have thoroughly practiced and followed the RD Sharma solutions for exam preparations have asserted that they have found common questions in their board exams.

Articles

Get answers from students and experts
Back to top