Careers360 Logo
RD Sharma Class 12 Exercise 10.4 Differentiation Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise 10.4 Differentiation Solutions Maths - Download PDF Free Online

Updated on Jan 20, 2022 05:24 PM IST

RD Sharma is considered the best material for CBSE students. They are used all over the country and are extremely helpful for exam preparation. They are preferred over NCERT due to their syllabus coverage and detail of answers.
RD Sharma Class 12th Exercise 10.4 deals with the chapter ' Differentiation.' This is a fundamental chapter with its applications across many subjects. This is why students need to familiarise themselves with the basics of this chapter.

This Story also Contains
  1. RD Sharma Class 12 Solutions Chapter 10 Differentiation - Other Exercise
  2. Differentiation Excercise: 10.4
  3. Differentiation exercise 10.4 question 31
  4. RD Sharma Chapter-wise Solutions

Also Read - RD Sharma Solution for Class 9 to 12 Maths

RD Sharma Class 12 Solutions Chapter 10 Differentiation - Other Exercise

Background wave

Differentiation Excercise: 10.4

Differentiation exercise 10.4 question 1

Answer:

(yx)
Hint:
Use product rule to find dydx
Given:
xy=C2
Solution:
Differentiate the given equation xy=C2 w.r.t x
xdydx+y=0xdydx=ydydx=yx [d(constant)dx=0d(uv)dx=udvdx+vdudx]

Hence dydx=yx is the required answer.

Differentiation exercise 10.4 question 2

Answer:
(x+y)2y22xyx2
Hint:
Use product rule to find dydx
Given:
y33xy2=x3+3x2y
Solution:
Differentiating the given equation w.r.t x
ddx(y33xy2)=ddx(x3+3x2y)
ddx(y3)ddx(3xy2)=ddx(x3)+ddx(3x2y)

3y2dydx3[xdy2dx+y2dxdx]=3x2+3[x2dydx+ydx2dx] [d(uv)dx=udvdx+vdudx]
3y2dydx3[xdy2dy×dydx+y2]=3x2+3[x2dydx+y(2x)]
3y2dydx3[x(2y)dydx+y2]=3x2+3x2dydx+6xy [d(xn)dx=nxn1]
3y2dydx6xydydx3y2=3x2+3x2dydx+6xy
3y2dydx6xydydx3x2dydx=3x2+6xy+3y2
3dydx[y22xyx2]=3(x2+2xy+y2)
dydx=3(x2+2xy+y2)3(y22xyx2)
dydx=(x+y)2y22xyx2 [(a+b)2=a2+2ab+b2]
Is the required answer.
Hence dydx=(x+y)2y22xyx2

Differentiation exercise 10.4 question 3

Answer:
(yx)13
Hint:
Use the differentiation formula of (xn)
i.e. d(xn)dx=nxn1
Given:
x23+y23=a23
Solution:
Differentiate the given equation w.r.t x
ddx(x23+y23)=ddx(a23)
ddx(x23)+ddx(y23)=0[d(constant)dx=0]
23(x)231+d(y23)dy×dydx=0[d(xn)dx=nxn1]
23(x)13+23(y)231dydx=0
23(x)13+23(y)13dydx=0
dydx=23(x)1323(y)13=(x)13(y)13
dydx=(y)13(x)13[(x)n=1(x)n]
dydx=(yx)13
Hence dydx=(yx)13is required answer

Differentiation exercise 10.4 question 4

Answer:
43(14x+3y4x3y+1)
Hint:
Use chain rule to find the differentiation
Given:
4x+3y=log(4x3y)
Solution:
Differentiate the given equation w.r.t x
ddx(4x+3y)=ddx(log(4x3y))
ddx(4x)+ddx(3y)=d(log(4x3y))d(4x3y)×d(4x3y)dx
[Using the chain d(f(x+y))dx=d(f(x+y))d(x+y)×d(x+y)dx ]

4dxdx+3dydx=1(4x3y)×[d(4x)dxd(3y)dx][d(logx)dx=1x]
4+3dydx=14x3y[4d(3y)dy×dydx]
4+3dydx=14x3y[43×dydx]
4+3dydx=44x3y34x3ydydx
3dydx+34x3ydydx=44x3y4
3dydx(1+14x3y)=44(4x3y)4x3y
3dydx×(4x3y+14x3y)=416x+12y4x3y
dydx=416x+12y(4x3y)×4x3y(4x3y+1)×13
dydx=13(416x+12y)(4x3y+1)
dydx=43(14x+3y4x3y+1)
Hence
dydx=43(14x+3y4x3y+1) Is the required answer

Differentiation exercise 10.4 question 5

Answer:
b2xa2y
Hint:
Use chain rule and differentiation formulas like dxndx=nxn1
Given:
x2a2+y2b2=1
Solution:
Differentiate the given equation w.r.t x
ddx(x2a2+y2b2)=d(1)dx
ddx(x2a2)+ddx(y2b2)=0[d(constant)dx=0]
1a2d(x2)dx+1b2d(y2)dx=0
1a2×2x+1b2×(dy2dy×dydx)=0[dxndx=nxn1]
2xa2+1b2(2ydydx)=0
2xa2+2yb2dydx=0
dydx=2xa22yb2=2x×b22y×a2
dydx=xb2ya2
dydx=b2xa2y
Hence dydx=b2xa2y is the required answer

Differentiation exercise 10.4 question 6

Answer:
dydx=yx4y4x
Hint:
Use chain rule to find the differentiation formula like d(xn)dx=nxn1
Given:
x5+y5=5xy
Solution:
Differentiate the given equation w.r.t x
ddx(x5+y5)=ddx(5xy)
ddx(x5)+ddx(y5)=5d(xy)dx
5x4+(dy5dy×dydx)=5[xdydx+ydxdx] [d(xn)dx=nxn1,d(uv)dx=udvdx+vdudx]
5x4+5y4dydx=5[xdydx+y]
5x4+5y4dydx=5xdydx+5y
5y4dydx5xdydx=5y5x4
dydx(5y45x)=5y5x4
dydx=5y5x45y45x
dydx=5(yx4)5(y4x)dydx=yx4y4x
Hence dydx=yx4y4x is the required answer

Differentiation exercise 10.4 question 7

Answer:
(ayxyx+yax)
Hint:
Use chain rule and product rule
Given:
(x+y)2=2axy
Solution:
Differentiate the given equation w.r.t x
ddx[(x+y)2]=ddx[2axy]
ddx[x2+2xy+y2]=2addx(xy)[(a+b)2=a2+2ab+b2]
d(x2)dx+d(2xy)dx+dy2dx=2a[xdydx+ydxdx][d(uv)dx=udvdx+vdudx]
2x+2d(xy)dx+dy2dy×dydx=2a[xdydx+y]
2x+2[xdydx+ydxdx]+2ydydx=2axdydx+2ay[d(xn)dx=nxn1]
2x+2xdydx+2y+2ydydx=2axdydx+2ay
2xdydx+2ydydx2axdydx=2ay2x2y
dydx[2x+2y2ax]=2ay2x2y
dydx=2ay2x2y2x+2y2ax
dydx=2(ayxy)2(x+yax)
dydx=ayxyx+yax
Hence dydx=ayxyx+yax is the required answer

Differentiation exercise 10.4 question 8

Answer:
y4x34xy24yx2+4y3x
Hint:
Use chain rule and the product rule of differentiation
Given:
(x2+y2)2=xy
Solution:
Differentiate the given equation w.r.t x
ddx[(x2+y2)2]=ddx(xy)
ddx[(x2)2+(y2)2+2x2×y2]=xdydx+ydxdx[(a+b)2=a2+2ab+b2]
[Product Rule d(uv)dx=udvdx+vdudx]

ddx[x4+y4+2x2y2]=xdydx+y
ddx(x4)+ddx(y4)+ddx(2x2y2)=xdydx+y
4x3+(dy4dy×dydx)+2(d(x2y2)dx)=xdydx+y
4x3+4y3dydx+2[x2×dy2dx+y2dx2dx]=xdydx+y[d(xn)dx=nxn1]
4x3+4y3dydx+2[x2×dy2dy×dydx+y2(2x)]=xdydx+y
4x3+4y3dydx+2[x2×(2y)dydx+2xy2]=xdydx+y
4x3+4y3dydx+4x2ydydx+4xy2=xdydx+y
4y3dydx+4x2ydydxxdydx=y4x34xy2
dydx=y4x34xy24yx2+4y3x
Hence dydx=y4x34xy24yx2+4y3x is the required answer.

Differentiation exercise 10.4 question 9

Answer:[(xy)]
Hint:
Use chain rule and d(tan1x)dx=11+x2
Given:
tan1(x2+y2)=a
Solution:
Differentiate the given equation w.r.t x
ddx(tan1(x2+y2))=d(a)dx
d(tan1(x2+y2))d(x2+y2)×d(x2+y2)dx=0 [Using chain rule] [d(constant)dx=0]
11+(x2+y2)2×(dx2dx+dy2dx)=0 [d(tan1x)dx=11+x2]
11+(x2+y2)2×(2x+dy2dy×dydx)=0
11+(x2+y2)2×(2x+2ydydx)=0
2x1+(x2+y2)2+2y1+(x2+y2)2dydx=0
2y1+(x2+y2)2dydx=2x1+(x2+y2)2
dydx=2x[1+(x2+y2)2]×1+(x2+y2)22y
dydx=2x2y=xy
dydx=xy
Hence dydx=xy is the required answer

Differentiation exercise 10.4 question 10

Answer:

Answer:yx[xe(xy)1ye(xy)1]
Hint:
Use chain rule and quotient rule
Given:
exy=log(xy)
Solution:
Differentiate the given equation w.r.t x
d(exy)dx=d(log(xy))dx
d(exy)d(xy)×d(xy)dx=d(log(xy))d(xy)×d(xy)dx
(exy)×[dxdxdydx]=1(xy)×[ydxdxxdydxy2] [d(ex)dx=ex]
[Using quotient rule d(uv)dx=vdudxudvdxv2 ]
exy×[1dydx]=yx×[yxdydxy2]
exyexydydx=1xy(yxdydx)
exyexydydx=yxyxxydydx
xxydydxexydydx=yxyexy
dydx(xxyexy)=yxyexy
dydx=[yxyexyxxyexy]
dydx=[1xexy1yexy]
=(1xexyx)(1yexyy)
=y(1xexy)x(1yexy)
=y(xexy1)x(yexy1)
dydx=yx(xexy1yexy1)
Hence dydx=yx[xexy1yexy1] is the required differentiation.

Differentiation exercise 10.4 question 11

Answer:
[sin(x+y)ycosxyxcosxysin(x+y)]
Hint:
Use chain rule and product rule
Given:
sin(xy)+cos(x+y)=1
Solution:
Differentiate the given equation w.r.t x
ddx[sinxy+cos(x+y)]=d(1)dx
ddx[sinxy]+ddx[cos(x+y)]=0[d(constant)dx=0]
d(sinxy)dxy×dxydx+dcos(x+y)d(x+y)×d(x+y)dx=0 [Using chain rule]
cos(xy)×[xdydx+ydxdx]+(sin(x+y))[dxdx+dydx]=0 [d(sinx)dx=cosxd(cosx)dx=sinxd(uv)dx=udvdx+vdudx]
cosxy[xdydx+y]+(sin(x+y))[1+dydx]=0
xcosxydydx+ycosxysin(x+y)sin(x+y)dydx=0
dydx(xcosxysin(x+y))=sin(x+y)ycosxy
dydx=sin(x+y)ycosxyxcosxysin(x+y)
Hence, dydx=sin(x+y)ycosxyxcosxysin(x+y) is the required answer.

Differentiation exercise 10.4 question 12

Answer:

1y21x2
Hint:
Use (sinAsinB) and (cosA+cosB) to formulas and use d(sin1x)dx=11x2
Given:
1x2+1y2=a(xy)
Solution:
Let x=sinA,y=sinB
So, the equation will become
1sin2A+1sin2B=a(sinAsinB)
cos2A+cos2B=a(sinAsinB)[sin2θ+cos2θ=1]
cosA+cosB=a(sinAsinB)a=cosA+cosBsinAsinB
a=2cos(A+B2)cos(AB2)2cos(A+B2)sin(AB2) [sinAsinB=2cos(A+B2)sin(AB2)cosA+cosB=2cos(A+B2)cos(AB2)]
a=cot(AB2)
cot1a=AB22cot1a=AB [cosθsinθ=cotθ]
2cot1a=sin1xsin1y[x=sinA,y=sinB]
Differentiate the above equation w.r.t x
d(2cot1a)dx=d(sin1xsin1y)dx
2d(cot1a)dx=d(sin1x)dxd(sin1y)dx
2×0=11x2d(sin1y)dy×dydx [d(sin1x)dx=11x2,d(constant)dx=0]
0=11x211y2dydx
11y2dydx=11x2
dydx=1y21x2
Hence, if 1x2+1y2=a(xy)
Then,dydx=1y21x2 is the required answer
Hence proved

Differentiation exercise 10.4 question 13

Answer:
1y21x2
Hint:
Use trigonometric identities and differentiation formula of inverse trigonometric functions
Given:
y1x2+x1y2=1
Solution:
Let x=sinA,y=sinB
The given equation becomes
sinB1sin2A+sinA1sin2B=1
sinBcos2A+sinAcos2B=1[sin2θ+cos2θ=1]
sinBcosA+sinAcosB=1
sin(A+B)=1[sin(A+B)=sinAcosB+cosAsinB]
A+B=sin1(1)A+B=π2
sin1x+sin1y=π2[x=sinA,y=sinB]
Differentiate (sin1x+sin1y=π2) w.r.t x
d(sin1x+sin1y)dx=d(π2)dx
d(sin1x)dx+d(sin1y)dx=0[d(constant)dx=0]
11x2+d(sin1y)dy×dydx=0[d(sin1x)dx=11x2]
11x2+11y2dydx=0
11y2dydx=11x2
dydx=1y21x2
dydx=1y21x2
Hence if y1x2+x1y2=1
Then, dydx=1y21x2 Is the required answer

Differentiation exercise 10.4 question 14

Answer:
dydx+y2=0
Hint:
Use product rule
Given:
xy=1
Solution:
Differentiate xy=1 w.r.t x
d(xy)dx=d(1)dx
xdydx+ydxdx=0 [d(constant)dx=0d(uv)dx=udvdx+vdudx]
xdydx+y=0
xdydx=ydydx=yx
dydx=y(1y)[xy=1x=1y]
dydx=y2[dydx+y2=0]
Hence, if xy=1
Then dydx+y2=0 hence proved

Differentiation exercise 10.4 question 15

Answer:
2dydx+y3=0
Hint:
Use product rule and d(xn)dx=nxn1
Given:
xy2=1
Solution:
Differentiate [xy2=1] w.r.t x
d(xy2)dx=d(1)dx
xdy2dx+y2dxdx=0 [d(constant)dx=0] [Product rule d(uv)dx=udvdx+vdudx]
xdy2dy×dydx+y2=0
x(2y)×dydx+y2=0 [d(xn)dx=nxn1]
2xydydx+y2=0
dydx=y22xy=y2x2dydx=yx
2dydx=y(1y2) [xy2=1x=1y2]
2dydx+y3=0
Hence, if xy2=1 then 2dydx+y3=0 is the required answer
Hence proved

Differentiation exercise 10.4 question 16

Answer:
(1+x)2dydx+1=0
Hint:
Use quotient rule and algebraic identities
Given:
x1+y+y1+x=0
Solution:
x1+y+y1+x=0x1+y=y1+x
Squaring both the side,
(x1+y)2=(y1+x)2
x2(1+y)=y2(1+x)x2+x2y=y2+xy2
x2y2=xy2x2y
(x+y)(xy)=xy(yx) [a2b2=(a+b)(ab)]
(x+y)=xyy+xy=xy(1+x)=x
y=x1+x
Differentiate this above equation w.r.t x
dydx=ddx(x1+x)
dydx=(1+x)d(x)dx(x)d(1+x)dx(1+x)2 [Using quotient rule]
dydx=(1+x)+x(0+1)(1+x)2 [d(xn)dx=nxn1]
dydx=(1+x)+x(1+x)2dydx=1x+x(1+x)2
dydx=1(1+x)2
(1+x)2dydx=1
(1+x)2dydx+1=0
Hence proved

Differentiation exercise 10.4 question 17

Answer:
dydx=x+yxy
Hint:
Use quotient rule and properties of logarithm
Given:
logx2+y2=tan1(yx)
Solution:
logx2+y2=tan1(yx)
log(x2+y2)12=tan1(yx)
12log(x2+y2)=tan1(yx)[logam=mloga]
Differentiate this above equation w.r.t x
12ddx(log(x2+y2))=ddx(tan1(yx))
12dlog(x2+y2)d(x2+y2)×(dx2dx+dy2dx)=11+(yx)2×xdydxydxdxx2
[dlogxdx=1x,dtan1xdx=11+x2,ddx(uv)=vdudxudvdxv2]
12×(1x2+y2)×(2x+dy2dy×dydx)=11+(y2x2)×xdydxyx2
 - 12(x2+y2)×(2x+2ydydx)=1(x2+y2x2)(xx2dydxyx2)
12(x2+y2)×2(x+ydydx)=x2x2+y2×(1xdydxyx2)

xx2+y2+yx2+y2dydx=[x2x2+y2×1xdydx]x2x2+y2×yx2
xx2+y2+yx2+y2dydx=[xx2+y2dydx]yx2+y2
xx2+y2dydxyx2+y2dydx=xx2+y2+yx2+y2
dydx(xyx2+y2)=x+y(x2+y2)
dydx=x+yxy
Hence proved

Differentiation exercise 10.4 question 18

Answer:
dydx=yx
Hint:
Use quotient rule
Given:
sec(x+yxy)=a
Solution:
sec(x+yxy)=asec1a=x+yxy
Differentiating [sec1a=x+yxy] w.r.t x
d(sec1a)dx=ddx(x+yxy)
0=(xy)d(x+y)dx(x+y)d(xy)dx(xy)2 [Use quotient rule]
(xy)(dxdx+dydx)(x+y)(dxdxdydx)(xy)2=0
(xy)(1+dydx)(x+y)(1dydx)=0
(xy)+(xy)dydx(x+y)+(x+y)dydx=0
dydx[(xy)+(x+y)]=x+y(xy)
dydx[xy+x+y]=x+yx+y
dydx(2x)=2y
dydx=2y2x=yxdydx=yx
Thus, proved

Differentiation exercise 10.4 question 19


Answer:
dydx=xy(1tana1+tana)
Hint:
Use differentiation formulas
Given:
tan1(x2y2x2+y2)=a
Solution:
tan1(x2y2x2+y2)=a
tana=x2y2x2+y2
(x2+y2)tana=x2y2x2y2=(tana)(x2+y2)
Differentiate the given equation w.r.t x
ddx(x2y2)=tanaddx(x2+y2)
d(x2)dxdy2dx=tana[dx2dx+dy2dx]
2xdy2dy×dydx=tana[2x+dy2dy×dydx]
2x2ydydx=tana[2x+2ydydx]
2x2ydydx=2xtana+2ytanadydx
2ytanadydx+2ydydx=2x2xtana
2ydydx(tana+1)=2x(1tana)
dydx=(1tana)(1+tana)×2x2y
dydx=(1tana1+tana)×xy
Thus, proved

Differentiation exercise 10.4 question 20

Answer:
dydx=y(x2y+x+y)x(xy2+x+y)
Hint:
Use product rule and chain rule
Given:
xylog(x+y)=1
Solution:
xylog(x+y)=1
Differentiate the given equation w.r.t x
ddx[xylog(x+y)]=d(1)dx
xyddx(log(x+y))+log(x+y)d(xy)dx=0 [d(constant)dx=0]
xy[dlog(x+y)d(x+y)×d(x+y)dx]+log(x+y)[xdydx+ydxdx]=0 [Use product rule and chain rule]
xy[1x+y×(dxdx+dydx)]+log(x+y)[xdydx+y]=0
xy[1x+y+1x+ydydx]+xlog(x+y)dydx+ylog(x+y)=0
xyx+y+xyx+ydydx+xlog(x+y)dydx+ylog(x+y)=0
dydx[xyx+y+xlog(x+y)]=xyx+yylog(x+y)
Also xylog(x+y)=1 [log(x+y)=1xy]
Put log(x+y)=1xy in the above equation
dydx[xyx+y+x1xy]=xyx+yy1xy
dydx[xyx+y+1y]=(xyx+y+1x)
dydx[xy2+(x+y)y(x+y)]=(x2y+(x+y)x(x+y))
dydx[(xy2+(x+y))y]=[(x2y+(x+y))x]
dydx=(x2y+x+y)(xy2+x+y)×yxdydx=yx(x2y+x+yxy2+x+y)
Thus, proved

Differentiation exercise 10.4 question 21


Answer:
dydx=sin2(a+y)sin(a+y)ycos(a+y)
Hint:
Use chain rule
Given:
y=xsin(a+y)
Solution:
y=xsin(a+y)
Differentiate the given equation w.r.t x
dydx=d(xsin(a+y))dx
dydx=xdsin(a+y)dx+sin(a+y)dxdx
dydx=x[dsin(a+y)d(a+y)×d(a+y)dy×dydx]+sin(a+y) [Using chain rule]

=x[cos(a+y)×(dady+dydy)×dydx]+sin(a+y)
=x[cos(a+y)×(0+1)×dydx]+sin(a+y)
dydx=xcos(a+y)dydx+sin(a+y)
dydxxcos(a+y)dydx=sin(a+y)
dydx(1xcos(a+y))=sin(a+y)
dydx=sin(a+y)1xcos(a+y)
y=xsin(a+y)
x=ysin(a+y)
Put x=ysin(a+y) in the above equation
dydx=sin(a+y)1ysin(a+y)×cos(a+y)
dydx=sin(a+y)[sin(a+y)ycos(a+y)sin(a+y)]
dydx=sin2(a+y)sin(a+y)ycos(a+y)
Thus, proved

Differentiation exercise 10.4 question 22

Answer:
dydx=sin2(a+y)sina
Hint:
Use chain rule
Given:
xsin(a+y)+sinacos(a+y)=0
Solution:
xsin(a+y)+sinacos(a+y)=0xsin(a+y)=sinacos(a+y)
xsina=cos(a+y)sin(a+y)
xsina=cot(a+y)
Differentiating equation w.r.t x
ddx(xsina)=ddxcot(a+y)
1sinadxdx=dcot(a+y)d(a+y)×d(a+y)dx [Use chain rule]
1sina=cosec2(a+y)×(dadx+dydx) [d(cotθ)dθ=cosec2θ]
1sina=cosec2(a+y)[0+dydx]
1sina=cosec2(a+y)dydx
dydx=1sinacosec2(a+y)
dydx=1sina(1sin2(a+y)) [cosecθ=1sinθ]
dydx=sin2(a+y)sina
Thus, proved

Differentiation exercise 10.4 question 23

Answer:
dydx=siny1xcosy
Hint:
Use product rule and chain rule
Given:
y=xsiny
Solution:
y=xsiny
Differentiate w.r.t x
dydx=d(xsiny)dx
dydx=xd(siny)dx+sinydxdx [Using product rule]
dydx=xdsinydydydx+siny [Using chain rule]
dydx=xcosydydx+siny
dydxxcosydydx=siny
dydx(1xcosy)=siny
dydx=siny1xcosy
Thus, proved

Differentiation exercise 10.4 question 24

Answer:
(x2+1)dydx+xy+1=0
Hint:
Use product rule and chain rule
Given:
yx2+1=log(x2+1x)
Solution:
yx2+1=log(x2+1x)
Differentiate w.r.t x
ddx(yx2+1)=ddx(log(x2+1x))
yddx(x2+1)+(x2+1)dydx=d(log(x2+1x))d(x2+1x)×d(x2+1x)dx
[Use product rule and chain rule]
y[d(x2+1)d(x2+1)×d(x2+1)dx]+x2+1dydx=1(x2+1x)×((x2+1)dxdxdx)
y12x2+12x+x2+1dydx=1(x2+1x)×[dx2+1d(x2+1)×d(x2+1)dx1]
xyx2+1+x2+1dydx=1(x2+1x)[12x2+1×2x1]
xyx2+1+x2+1dydx=1(x2+1x)[xx2+1x2+1]
xyx2+1+x2+1dydx=1x2+1
x2+1dydx=1x2+1xyx2+1
x2+1dydx=1xyx2+1
(x2+1)dydx=(1+xy)
(x2+1)dydx+1+xy=0
Thus, proved

Differentiation exercise 10.4 question 25

Answer:
dydx=2x3+yx2ycosxyx(x2cosxy+1+2xy)
Hint:
Use chain rule and d(xn)dx=nxn1
Given:
sin(xy)+yx=x2y2
Solution:
sin(xy)+yx=x2y2
Differentiate w.r.t x
ddx(sinxy)+ddx(yx)=d(x2)dxd(y2)dx
d(sinxy)d(xy)×d(xy)dx+ddx(yx)=2xdy2dy×dydx [Using chain rule and d(xn)dx=nxn1]
cosxy×(xdydx+ydxdx)+xdydxydxdxx2=2x2ydydx
xcosxydydx+ycosxy+xdydxyx2=2x2ydydx
xcosxydydx+ycosxy+1xdydxyx2=2x2ydydx
xcosxydydx+1xdydx+2ydydx=2x+yx2ycosxy
dydx(xcosxy+1x+2y)=2x+yx2ycosxy
dydx(x2cosxy+1+2xyx)=2x3+yx2ycosxyx2
dydx(x2cosxy+2xy+1)=1x(2x3+yx2ycosxy)
dydx=2x3+yx2ycosxyx(x2cosxy+1+2xy)
Hence proved

Differentiation exercise 10.4 question 26

Answer:
dydx=sec2(x+y)+sec2(xy)sec2(xy)sec2(x+y)
Hint:
Use chain rule
Given:
tan(x+y)+tan(xy)=1
Solution:
tan(x+y)+tan(xy)=1
Differentiate w.r.t x
d(tan(x+y))dx+d(tan(xy))dx=d(1)dx
d(tanx+y)d(x+y)×d(x+y)dx+d(tan(xy))d(xy)×d(xy)dx=0
[Using chain rule and d(constant)dx=0]
sec2(x+y)×(dxdx+dydx)+sec2(xy)(dxdxdydx)=0
sec2(x+y)+sec2(x+y)dydx+sec2(xy)sec2(xy)dydx=0
dydx(sec2(x+y)sec2(xy))=(sec2(x+y)+sec2(xy))
dydx=sec2(x+y)+sec2(xy)sec2(xy)sec2(x+y)

Differentiation exercise 10.4 question 27

Answer:
dydx=ex(ey1)ey(ex1)
Hint:
Use chain rule
Given:
ex+ey=ex+y
Solution:
ex+ey=ex+y
Differentiate w.r.t x
ddx(ex+ey)=d(ex+y)dx
d(ex)dx+d(ey)dx=d(ex+y)d(x+y)×d(x+y)dx [Using chain rule]
ex+d(ey)dy×dydx=ex+y×(dxdx+dydx) [d(ex)dx=ex]
ex+eydydx=ex+y+ex+ydydx
eydydxex+ydydx=ex+yex
dydx(eyex+y)=(ex+yex)
dydx=ex+yexeyex+y
dydx=exeyexeyexey
=ex(ey1)ey(1ex)
=ex(ey1)ey((ex1))
dydx=ex(ey1)ey(ex1)
Thus proved

Differentiation exercise 10.4 question 28

Answer:
dydx=cos2(a+y)sina
Hint:
Use chain rule and product rule
Given:
cosy=xcos(a+y)
Solution:
Differentiate the given equation w.r.t x
dcosydx=d(xcos(a+y))dx
d(cosy)dy×dydx=xd(cos(a+y))dx+cos(a+y)dxdx [Use chain rule and product rule]
(siny)×dydx=x×[dcos(a+y)d(a+y)×d(a+y)dx]+cos(a+y)
sinydydx=x(sin(a+y)×(dadx+dydx))+cos(a+y)
sinydydx=xsin(a+y)(0+dydx)+cos(a+y) [d(constant)dx=0]
sinydydx=xsin(a+y)dydx+cos(a+y)
xsin(a+y)dydxsinydydx=cos(a+y)
dydx(xsin(a+y)siny)=cos(a+y)
Also cosy=xcos(a+y)
x=cosycos(a+y)
Put this values of x in the above equation
dydx[cosycos(a+y)sin(a+y)siny]=cos(a+y)
dydx[cosysin(a+y)sinycos(a+y)cos(a+y)]=cos(a+y)
dydx[sin((a+y)y)cos(a+y)]=cos(a+y) [sin(AB)=sinAcosBcosAsinB]
dydx×[sinacos(a+y)]=cos(a+y)
dydx=cos2(a+y)sina
Thus, proved

Differentiation exercise 10.4 question 29


Answer:
dydx=π4(2+1)
Hint:
Use chain rule and product rule
Given:
sin2y+cosxy=K
Solution:
sin2y+cosxy=K
Differentiate the given equation w.r.t x
ddx(sin2y+cosxy)=d(k)dx
dsin2ydx+dcosxydx=0 [d(constant)dx=0]
(dsin2ydsiny×dsinydy×dydx)+(dcosxydxy)×dxydx=0 [Using chain rule]
2siny×cosy×dydx+(sinxy)×[xdydx+ydxdx]=0 [Using product rule]
sin2ydydxsinxy(xdydx)ysinxy=0
dydx(sin2yxsinxy)=ysinxy
dydx=ysinxysin2yxsinxy
At x=1,y=π4
dydx=(π4)sin(1×π4)sin(2×π4)1×sin(1×π4)
=π4(12)sinπ212 [sinπ4=12,sinπ2=1]
=π42112
=π42(21)2
=π×2(21)42=π4(21)×2+12+1=π(2+1)4
Hence at x=1,y=π4
dydx=π4(2+1)

Differentiation exercise 10.4 question 30

Answer:
dydx=8[416+π21log2]Atx=π4
Hint:
Use chain rule and differentiation of inverse trigonometric function
Given:
y=[logcosxsinx][logsinxcosx]1+sin1(2x1+x2)
Solution:
y=[logcosxsinx][logsinxcosx]1+sin1(2x1+x2)
y=[logcosxsinx][logcosxsinx]+sin1(2x1+x2) [logba=(logab)1]
y=[logcosxsinx]2+sin1(2x1+x2)
y=(logsinxlogcosx)2+sin1(2x1+x2) [logab=logbloga]
y=(logsinxlogcosx)2+sin1(2x1+x2)

Differentiate w.r.t x
dydx=ddx(logsinxlogcosx)2+ddx(sin1(2x1+x2))
=[d(logsinxlogcosx)2d(logsinxlogcosx)×d(logsinxlogcosx)dx]+dsin1(2x1+x2)d(2x1+x2)×d(2x1+x2)dx [Using chain rule]
dydx=2(logsinxlogcosx)×ddx(logsinxlogcosx)+11(2x1+x2)2×ddx(2x1+x2)
=2logsinxlogcosx×logcosxd(logsinx)dxlogsinxd(logcosx)dx(logcosx)2+114x2(1+x2)2×(1+x2)d(2x)dx2xd(1+x2)dx(1+x2)2
=2logsinxlogcosx×logcosxd(log(sinx))dsinx×d(sinx)dxlogsinxd(logcosx)dx(logcosx)2+11+x4+2x24x2(1+x2)2×(1+x2)×2(2x)(2x)(1+x2)2
dydx=2logsinxlogcosx×logcosx×1sinxcosxlogsinxd(logcosx)dcosx×dcosxdx(log(cosx))2+1+x2(1x2)2×[2+2x24x2(1+x2)2]
dydx=2logsinxlogcosx×(logcosx)cotx+(logsinx)×tanx(logcosx)2+1+x21x2×22x2(1+x2)2
dydx=2logsinx(logcosx)3×[cotx×(logcosx)+tanx×(logsinx)]1+21+x2
dydx=2logsinx(logcosx)3×(cotxlogcosx+tanxlogsinx)+21+x2

Put x=π4

dydx=2(log(sinπ4)(log(cosπ4))3)×(cotπ4×logcosπ4+tanπ4logsinπ4)+2[1+(π4)2] [sinπ4=cosπ4=12];[tanπ4=cotπ4=1]
dydx=2[log(12)(log(12))3][1×log12+1×log12]+2(1+π216)dydx=2(log12)2[2log12]+3216+π2
=4(log12)+3216+π2
=4log(2)12+3216+π2
=412log2+3216+π2
=8log2+3216+π2
(dydx)x=π4=8[416+π21log2]

Differentiation exercise 10.4 question 31

Answer:
dydx=yxy2x21 At x=π4
Hint:
Use chain rule
Given:
y+x+yx=c
Solution:
y+x+yx=c
Differentiate the given equation w.r.t x
ddx(y+x+yx)=d(c)dx
d(y+x)dx+d(yx)dx=0 [d(constant)dx=0]

d(y+x)d(y+x)×d(y+x)dx+d(yx)d(yx)×d(yx)dx=0 [Using chain rule]

12y+x×(dydx+dxdx)+12yx×(dydxdxdx)=0 [d(xn)dx=nxn1]

12y+x(dydx+1)+12yx(dydx1)=0
dydx(12y+x+12yx)=12yx12y+x
dydx(yx+y+x2y+xyx)=y+xyx(2yxy+x)
dydx×[yx+y+x]=[y+xyx]
dydx=y+xyxy+x+yx

Rationalizing the denominator

dydx=(y+xyx)(y+xyx)(y+x+yx)(y+xyx)
=(y+xyx)2(y+x)2(yx)2 [a2b2=(a+b)(ab)]
dydx=(y+x)2+(yx)22y+xyx(y+x)(yx)
=y+x+yx2y+xyxy+xy+x
=2y2y+xyx2x
=2(yy+xyx)2x
=yy+xyxx
=yy2x2x
=yxy2x2x2
dydx=yxy2x21
Thus proved


RD Sharma Class 12th Exercise 10.4 has a total of 31 questions including subparts, that are divided into two levels. Level 1 sums are less complex and can be solved using the fundamentals. In contrast, Level 2 sums are lengthy and require additional knowledge. Therefore, students should divide their work and study accordingly because they cannot cover the entire topic in one go.

The Level 1 questions in example 10.4 cover topics like finding dy/dx of quadratic and trigonometric equations, prove that sums, evaluation sums, etc. Level 2, On the other hand, contains questions mainly consisting of finding dy/dx at given parameters.

As Differentiation is a vast chapter, students should study efficiently to cover all topics within the stipulated time. Otherwise, it gets very strenuous to complete at the last moment. As RD Sharma's books are pretty extensive, solving all the problems is not an option. Instead, students should refer to this material to quickly gain an understanding of the concepts.

As RD Sharma Class 12th Exercise 10.4 material contains all the solutions in one place, it is very easy for revision. Teachers won't be able to cover hundreds of problems in their lectures. Students can compare their progress and stay on top of their Class with the help of RD Sharma Class 12 Chapter 10 Exercise 10.4 solutions.

After the introduction of such precise solved materials, The traditional textbook reference method is long gone. Instead, it has been found that students understand topics even better and can study efficiently with the help of solved materials. These materials are the key to scoring good marks, which is why students should start preparing from these sources without wasting any time.

As there are different ways towards solving a problem in Differentiation, students can find the easiest of them and solve accordingly with the help of this material. These expert-created solutions are updated to the latest version of the book, which means there would be no missing questions or additional questions. Moreover, the answers are provided by Brainly to help students in their exam preparation. This is why RD Sharma Class 12th Exercise 10.4 is free and accessible through their website. This means that you can access them anywhere, anytime, with an internet connection.

RD Sharma Chapter-wise Solutions

Frequently Asked Questions (FAQs)

1. What is the benefit of this material from an exam standpoint?

Class 12 RD Sharma Chapter 10 Exercise 10.4 Solution material has solutions that cover all important topics and are essential for exam preparation.

2. Do we have to pay any hidden charges?

No, RD Sharma Class 12 solutions Differentiation Ex 10.4 material is provided by Brainly free of cost for students to study hassle-free.

3. What is differentiation?

Differentiation is the process of finding derivatives of a function that helps determine its rate of change.

4. What are the applications of differentiation?

Differentiation and the maxima and minima concept is widely used in economics and finding the rate of growth of businesses. You can refer to RD Sharma Class 12 Solutions Chapter 10 Ex 10.4 to learn more about this topic.

5. Can I score good marks in exams through this material?

RD Sharma Class 12th Exercise 10.4 material will help students get a better understanding of the chapter and score gold marks in exams.

Articles

Upcoming School Exams

View All School Exams
Back to top