Careers360 Logo
RD Sharma Class 12 Exercise 10.2 Differentiation Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise 10.2 Differentiation Solutions Maths - Download PDF Free Online

Updated on Jan 20, 2022 05:16 PM IST

RD Sharma Class 12th Exercise 10.2 is very important because RD Sharma has always been the best book for every student. RD Sharma Mathematics has set a standard where all the essential concepts and theorems are mentioned to become the teacher's favorite. Moreover, the questions in board exams and competitive exams have come from RD Sharma's book for many years.

This Story also Contains
  1. RD Sharma Class 12 Solutions Chapter 10 Differentiation - Other Exercise
  2. Differentiation Excercise: 10.2
  3. RD Sharma Chapter-wise Solutions

Rd Sharma Class 12th Exercise 10.2 has solved every problem of a student regarding differentiation. Differentiation Ex. 10.2 Solutions has 76 questions including subparts, that are formatted in a way that students will enjoy doing them. The exercise includes differentiating the functions w.r.t. to x, recapitulation of the product rule, quotient rule differentiation of the constant, differentiation of inverse trigonometric functions, logarithmic differentiation, etc.

Background wave

Also Read - RD Sharma Solution for Class 9 to 12 Maths

RD Sharma Class 12 Solutions Chapter 10 Differentiation - Other Exercise

Differentiation Excercise: 10.2

Differentiation exercise 10.2 question 1

Answer: 3cos(3x+5)

Hint: You must know the values of solving derivative problems.
Given: sin(3x+5)
Solution: sin(3x+5)
Let : y=sin(3x+5)

Differentiating with respect to x,
dydx=ddx[sin(3x+5)]
dydx=cos(3x+5)ddx(3x+5) [using chain rule]
dydx=cos(3x+5)×(3)dydx=3cos(3x+5)

So,
dydx=ddx[sin(3x+5)]dydx=3cos(3x+5)

Differentiation exercise 10.2 question 2

Answer: 2tanxsec2x
Hint: You must know the rules of solving derivative of trigonometric functions.
Given: tan2x
Solution:
Let y=tan2x
Differentiating with respect to x,
dydx=2tanxddx(tanx)
dydx=2tanx×sec2x
So, ddx(tan2x)=2tanxsec2x [ using chain rule]

Differentiation exercise 10.2 question 3

Answer: π180sec2(x+45)
Hint: You must know the rules of solving derivative of trigonometric function.
Given: tan(x+45)
Solution:
y=tan(x+45)

y=[tan(x+45)π180]...To convert degree into radian multiply by π180
Differentiating with respect to x,
dydx=ddx[tan(x+45)π180]
dydx=π180sec2[x+45]×ddx(x+45)π180 [ using chain rule]
dydx=π180sec2(x+45)
 So, ddx[tan(x+45)]=π180sec2(x+45).

Differentiation exercise 10.2 question 4

Answer: 1xcos(logx)
Hint: You must know the rules of solving derivative of logarithm function.
Given: sin(logx)
Solution:
y=sin(logx)
Differentiating with respect to x,
dydx=ddxsin(logx)dydx=cos(logx)ddx(logx) [ using chain rule]
dydx=1xcos(logx)

Differentiation exercise 10.2 question 5

Answer: :cosxesinx2x
Hint: You must know the rules of solving derivation of exponential function and trigonometric function.
Given: esinx
Solution:
Lety=esinx
Differentiating with respect to x,
dydx=ddx(esinx)dydx=esinxddx(sinx) [using chain rule]
dydx=esinx×cosxddxx [again using chain rule]
dydx=esinx×cosx×12xdydx=cosxesinx2x

Differentiation exercise 10.2 question 6

Answer: etanx×sec2x
Hint:You must know the rules of solving derivation of exponential function and trigonometric function.
Given: etanx
Solution:
y=etanx
Differentiating with respect to x,
dydx=ddxetanxdydx=etanxddx(tanx) [ using chain rule] and ddx(tanx)=sec2x
dydx=etanx×sec2x

Differentiation exercise 10.2 question 7

Answer: 2sin(4x+2)
Hint: You must know the rules of solving derivation of trigonometric function.
Given: sin2(2x+1)
Solution:
Let y=sin2(2x+1)
Differentiating with respect to x,
dydx=ddx[sin2(2x+1)]
dydx=2sin(2x+1)ddxsin(2x+1) [ using chain rule ]
dydx=2sin(2x+1)cos(2x+1)ddx(2x+1) [ddxsinx=cosx]
dydx=4sin(2x+1)cos(2x+1)dydx=2sin(4x+2) [sin2A=2sinAcosA]
dydx=2sin(4x+2).

Differentiation exercise 10.2 question 8

Answer: 2(2x3)log7
Hint: You must know the rules of solving derivative of logarithm function.
Given: log7(2x3)
Solution:
Let y=log7(2x3)
Differentiating with respect to x,
dydx=ddx[log7(2x3)]
dydx=ddx[log(2x3)log7] [logab=logbloga]
dydx=1log7ddx[log(2x3)]dydx=1log7×1(2x3)ddx(2x3) [ using chain rule ]
dydx=2(2x3)log7

Differentiation exercise 10.2 question 9

Answer: 5π180sec2(5x)
Hint: You must know the rules of solving derivative of logarithm function.
Given: tan5x
Solution:
Let y=tan5xor y=(tan5x×π180)
Differentiating with respect to x
dydx=dydxtan(5x×π180)
dydx=sec2(5x×π180)ddx(5x×π180) [ using chain rule ]
dydx=(5π180)sec2(5x×π180)dydx=5π180sec2(5x)

Differentiation exercise 10.2 question 10

Answer: 3x2×2x3×loge2
Hint: You must know the rules of solving derivative of polynomial function.
Given: 2x8
Solution:
Let y=2x3
Differentiating with respect to x
dydx=ddx(2x3)dydx=2x3×loge2ddx(x3)ddxax=axloga [using chain rule]
dydx=3x2×2x3×loge2

Differentiation exercise 10.2 question 11

Answer: ex×3exlog(3)
Hint: You must know the rules of solving derivative of exponential function.
Given: 3ex
Solution:
Let y=3ex
Differentiating with respect to x
dydx=ddx(3xx)dydx=3exlog(3)ddx(ex) ddxax=axloga [ using chain rule]
dydx=ex×3exlog(3)

Differentiation exercise 10.2 question 12

Answer: 1xlog3(log8x)2
Hint: You must know the rules of solving derivative of logarithm function
Given: logx3
Solution:
Let y=logx3
y=log3logx [logab=logbloga]
Differentiating with respect to x
dydx=ddx(log3logx)dydx=log3ddx(logx)1 [ using chain rule]
dydx=log3×[1(logx)2]ddx(logx)dydx=log3(logx)2×1x
dydx=(log3logx)2×1x×1log3dydx=1xlog3(log3x)2 [logbloga=logab]

Differentiation exercise 10.2 question 13

Answer: (2x+2)3x2+2xloge3

Hint: You must know the rules of solving derivative of polynomial function
Given: 3x2+2x
Solution:
Let y=3x2+2x
Differentiating with respect to x
dydx=ddx(3x2+2x)dydx=3x2+2x×loge3ddx(x2+2x) ddxax=axloga [using chain rule]
dydx=(2x+2)3x2+2xloge3

Differentiation exercise 10.2 question 14

Answer: 2xa2a2x2(a2+x2)32
Hint: You must know the rules of solving derivative of polynomial function
Given: a2x2a2+x2
Solution:
Let y=a2x2a2+x2
y=(a2x2a2+x2)12
Differentiating with respect to x
dydx=ddx(a2x2a2+x2)12
dydx=12(a2x2a2+x2)121×ddx(a2x2a2+x2)

dydx=12(a2x2a2+x2)12×{(a2+x2)ddx(a2x2)(a2x2)ddx(a2+x2)(a2+x2)2}..........ddx(uv)=vdudxudvdxv2
dydx=12(a2+x2a2x2)12{2x(a2+x2)2x(a2x2)(a2+x2)2}
dydx=12(a2+x2a2x2)12{2xa22x32xa2+2x3(a2+x2)2}
dydx=12(a2+x2a2x2)12{4xa2(a2+x2)2}
dydx=2xa2a2x2(a2+x2)32

Differentiation exercise 10.2 question 15

Answer: 3xlogx(1+logx)×loge3
Hint: You must know the rules of solving derivative of logarithm and polynomial function.
Given: 3xlogx
Solution:
Let y=3xlogx
Differentiating with respect to x
dydx=ddx(3xlogx)dydx=3xlogx×loge3ddx(xlogx)
dydx=3xlogx×loge3[xddx(logx)+logxddx(x)]
dydx=3xlogx×loge3[x×1x+logx(1)]
dydx=3xlogx×loge3[1+logx]dydx=3xlogx(1+logx)×loge3

Differentiation exercise 10.2 question 16

Answer:secx(secx+tanx)
Hint: You must know the rules of solving derivative of trigonometric function.
Given: 1+sinx1sinx
Solution:
Let y=1+sinx1sinx
Differentiating with respect to x
dydx=ddx(1+sinx1sinx)12
dydx=12(1+sinx1sinx)121×ddx(1+sinx1sinx)
dydx=12(1sinx1+sinx)12×{(1sinx)(cosx)(1+sinx)(cosx)(1sinx)2}ddx(uv)=vdudxudvdxv2
dydx=12(1sinx1+sinx)12{(cosx)(1sinx)(1+sinx)(cosx)(1sinx)2}
dydx=12(1sinx1+sinx)12{2cosx(1sinx)2}
dydx=cosx1+sinx(1sinx)32
dydx=cosx1+sinx1sinx(1sinx)
dydx=cosx1sin2x×(1sinx)
dydx=cosxcosx(1sinx)
dydx=1(1sinx)×(1+sinx1sinx)dydx=(1+sinx)(1sin2x)
dydx=(1+sinx)(cos2x)
dydx=1(cosx)(1cosx+sinxcosx)
dydx=secx(secx+tanx)

Differentiation exercise 10.2 question 17

Answer: 2x1x2(1+x2)32
Hint: You must know the rules of solving derivative of polynomial function
Given: 1x21+x2
Solution:
Let y=1x21+x2
y=(1x21+x2)12
Differentiating with respect to x
dydx=ddx(1x21+x2)12
dydx=12(1x21+x2)121×ddx(1x21+x2) [ using chain rule]
dydx=12(1x21+x2)12×{(1+x2)ddx(1x2)(1x2)ddx(1+x2)(1+x2)2}ddx(uv)=vdudxudvdxv2
dydx=12(1+x21x2)12×{2x(1+x2)2x(1x2)(1+x2)2}
dydx=12(1+x21x2)12×{2x2x32x+2x3(1+x2)2}
dydx=12(1+x21x2)12×{4x(1+x2)2}
dydx=2x1x2(1+x2)32

Differentiation exercise 10.2 question 18

Answer: 2(logsinx)cotx
Hint: You must know the value of solving logarithm and trigonometric function.
Given: (logsinx)2
Solution:
Let y=(logsinx)2
Differentiating with respect to x
dydx=ddx(logsinx)2
dydx=2(logsinx)ddx(logsinx)
dydx=2(logsinx)×1sinxddx(sinx)
dydx=2(logsinx)×1sinx×cosxdydx=2(logsinx)×cotx

Differentiation exercise 10.2 question 19

Answer: 11+x(1x)32
Hint: You must know the rule of solving derivative of polynomial function.
Given: 1+x1x
Solution:
Let y=1+x1x
y=(1+x1x)12
Differentiating with respect to x
dydx=ddx(1+x1x)12dydx=12(1+x1x)121×ddx(1+x1x) [ using chain rule]
dydx=12(1+x1x)12×{(1x)ddx(1+x)(1+x)ddx(1x)(1x)2}...ddx(uv)=vdudxudvdxv2
dydx=12(1x1+x)12×{(1x)(1)(1+x)(1)(1x)2}
dydx=12(1x1+x)12×{1x+1+x(1x)2}
dydx=12(1x1+x)12×{2(1x)2}dydx=11+x(1x)32

Differentiation exercise 10.2 question 20

Answer: 4x(1x2)2cos(1+x21x2)
Hint: You must know the rules of solving derivative of trigonometric functions.
Given: sin(1+x21x2)
Solution:
Let y=sin(1+x21x2)
Differentiating with respect to x
dydx=ddx[sin(1+x21x2)]
dydx=cos(1+x21x2)ddx(1+x21x2) [ using chain rule]
dydx=cos(1+x21x2)[(1x2)ddx(1+x2)(1+x2)ddx(1x2)(1x2)2]...ddx(uv)=vdudxudvdxv2
dydx=cos(1+x21x2)[(1x2)(2x)(1+x2)(2x)(1x2)2]
dydx=cos(1+x21x2)[2x2x3+2x+2x3(1x2)2]
dydx=4x(1x2)2cos(1+x21x2)

Differentiation exercise 10.2 question 21

Answer: e3xcos2x
Hint: You must know the rules of solving exponential and trigonometric functions.
Given: e3xcos2x
Solution:
Let y=e3xcos2x
Differentiating with respect to x
dydx=ddxe3xcos2x
dydx=e3x×ddx(cos2x)+cos2xddx(e3x)
dydx=e3x×(sin2x)ddx(2x)+cos2xe3xddx(3x)
dydx=2e3xsin2x+3e3xcos2xdydx=e3x[3cos2x2sin2x]

Differentiation exercise 10.2 question 22

Answer: cos(logsinx)cotx
Hint: You must know the rules of solving derivative of trigonometric and logarithm function.
Given: sin(logsinx)
Solution:
Let y=sin(logsinx)
Differentiating with respect to x
dydx=ddxsin(logsinx)
Using chain rule
dydx=cos(logsinx)ddx(logsinx)dydx=cos(logsinx)1sinxddx(sinx)
dydx=cos(logsinx)1sinxcosx
dydx=cos(logsinx)cotx

Differentiation exercise 10.2 question 23

Answer: 3etan3xsec23x
Hint: You must know the rules of solving derivative of exponential and trigonometric
Given: etan3x
Solution:
Let y=etan3x
Differentiating with respect to x
dydx=ddx(etan3x)
dydx=etan3xddx(tan3x) [ddxex=ex]eax=exddx(a)
dydx=etan3xsec23x×ddx(3x) [ddxtanax=ssec2ax]
dydx=etan3xsec23x×3dydx=3etan3xsec23x [ddxtanax=asec2ax]

Differentiation exercise 10.2 question 24

Answer: ecotx×(cosec)2x2cotx
Hint: You must know the rules of solving derivative of trigonometric and exponential function.
Given: ecotx
Solution:
Let y=ecotx
y=e(cotx)12
Differentiate both sides
dydx=ddxe(cotx)12
Using Chain Rule,
dydx=e(cotx)12×12(cotx)121ddx(cotx)
dydx=ecotx×(cosec)2x2cotx

Differentiation exercise 10.2 question 25

Answer: cosecx

Hint: You must know the rules of solving derivative of logarithm trigonometric function.
Given: log(sinx1+cosx)
Solution:
Let y=log(sinx1+cosx)
Differentiating with respect to x
dydx=ddxlog(sinx1+cosx)
dydx=1(sinx1+cosx)[(1+cosx)ddxsinxsinxddx(1+cosx)(1+cosx)2] ddx(uv)=vdudxudvdxv2
dydx=1+cosxsinx[(1+cosx)(cosx)sinx(sinx)(1+cosx)2]
dydx=(1+cosxsinx)[cosx+cos2x+sin2x(1+cosx)2]
dydx=(1+cosxsinx)(cosx+1(1+cosx)2)
dydx=(1+cosx)2sinx(1+cosx)2dydx=1sinx
dydx=cosecx

Differentiation exercise 10.2 question 26

Answer:cosecx
Hint: You must know the rules of solving derivative of logarithm and trigonometric function.
Given: log1cosx1+cosx
Solution:
Let y=log1cosx1+cosx
y=12log(1cosx1+cosx) using logab=bloga

Differentiate with respect to x
dydx=ddx{12log(1cosx1+cosx)}
dydx=12×1(1cosx1+cosx)×ddx(1cosx1+cosx)
dydx=12×(1+cosx1cosx)[(1+cosx)ddx(1cosx)(1cosx)ddx(1+cosx)(1+cosx)2] ddx(uv)=vdudxudvdxv2

Using quotient rule
dydx=12(1+cosx1cosx)[(1+cosx)(sinx)(1cosx)(sinx)(1+cosx)2]
dydx=12(1+cosx1cosx)[2sinx(1+cosx)2]
dydx=sinx(1cosx)(1+cosx)
dydx=sinx(1cos2x)dydx=sinxsin2xdydx=1sinxdydx=cosecx

Differentiation exercise 10.2 question 27

Answer: cosxsec2(esinx)esinx
Hint: You must know the rules of solving derivative of exponential and trigonometric function.
Given: tan(esinx)
Solution:
Let y=tan(esinx)
Differentiate with respect to x
dydx=ddx[tan(esinx)]dydx=sec2(esinx)ddx(esinx)
dydx=sec2(esinx)×esinxddx(sinx)dydx=cosxsec2(esinx)esinx

Differentiation exercise 10.2 question 28

Answer: 1x2+1
Hint: You must know the rules of solving derivative of logarithm function.
Given: log(x+x2+1)
Solution:
Differentiate with respect to x
dydx=ddx[log(x+x2+1)]
dydx=1x+x2+1ddx(x+(x2+1)12)
dydx=1x+x2+1[1+12(x2+1)121ddx(x2+1)]
dydx=1x+x2+1[1+12x2+1×2x]
dydx=1x+x2+1[x2+1+xx2+1]dydx=1x2+1

Differentiation exercise 10.2 question 29

Answer: exx2[1x+logx2xlogx]
Hint: You must know about the rules of solving derivative of exponential and logarithm functions.
Given: exlogxx2
Solution:
Let y=exlogxx2
Differentiate with respect to x,
dydx=x2ddx(exlogx)(exlogx)ddxx2(x2)2ddx(uv)=vdudxudvdxv2 [using quotient rule]
dydx=x2{exddx(logx)+(logx)ddx(ex)}exlogx×2xx4
dydx=x2{exx+ex(logx)}2xexlogxx4
dydx=x2ex{(1+xlogx)x2xexlogx}x4
dydx=xex{1+xlogx2logx}x4
dydx=xexx3[1x+xlogxx2logxx]
dydx=exx2[1x+logx2xlogx]

Differentiation exercise 10.2 question 30

Answer: cosecx
Hint: You must know the rules of solving derivation of logarithm and trigonometric function.
Given: log(cosecxcotx)
Solution:
Let y=log(cosecxcotx)

Differentiate both sides,

dydx=ddxlog(cosecxcotx)

dydx=1(cosecxcotx)ddx(cosecxcotx)

dydx=1(cosecxcotx)×(cosecxcotx+cosec2x)

dydx=cosecx(cosecxcotx)(cosecxcotx)dydx=cosecx

Differentiation exercise 10.2 question 31

Answer: 8(e2xe2x)2
Hint: You must know the rules of solving derivative of exponential function.
Given: e2x+e2xe2xe2x
Solution:
Let y=e2x+e2xe2xe2x


Differentiate with respect to x,

dydx=ddx[e2x+e2xe2xe2x]

dydx={(e2xe2x)ddx(e2x+e2x)(e2x+e2x)ddx(e2xe2x)(e2x+e2x)2}ddx(uv)=vdudxudvdxv2

Using quotient rule,
dydx=(e2xe2x)(2e2x2e2x)(e2x+e2x)(2e2x+2e2x)(e2x+e2x)2
dydx=2(e4x+e4x2e2xe2xe4xe4x2e2xe2x)(e2x+e2x)2
dydx=8(e2x+e2x)2

Differentiation exercise 10.2 question 32

Answer: 2(x21)x4+x2+1
Hint: You must know about the rules of solving derivative of logarithm functions.
Given: log(x2+x+1x2x+1)
Solution:
Let y=log(x2+x+1x2x+1)

Differentiate with respect to x,
dydx=ddx[log(x2+x+1x2x+1)]
dydx=1(x2+x+1x2x+1)ddx(x2+x+1x2x+1)

Now apply quotient rule, ddx(uv)=vdudxudvdxv2
dydx=(x2x+1x2+x+1)[(x2x+1)ddx(x2+x+1)(x2+x+1)ddx(x2x+1)(x2x+1)2]
dydx=(x2x+1x2+x+1)[(x2x+1)(2x+1)(x2+x+1)(2x1)(x2x+1)2]
dydx=(x2x+1x2+x+1)[(2x32x2+2x+x2x+12x32x22x+x2+x+1)(x2x+1)2]
dydx=4x2+2x2+2(x2+x+1)(x2x+1)
dydx=4x2+2x2+2(x2+1)2(x)2
dydx=2(x21)x4+1+2x2x2dydx=2(x21)x4+x2+1

Differentiation exercise 10.2 question 33

Answer:ex1+e2x
Hint: You must know about the rules of solving derivative of Inverse trigonometric function and exponential
Given: tan1(ex)
Solution:
Let y=tan1(ex)
Differentiate with respect to x,
dydx=ddx[tan1(ex)]dydx=11+(ex)2ddx(ex)
dydx=11+e2x×exdydx=ex1+e2x

Differentiation exercise 10.2 question 34

Answer: 2esin12x14x2
Hint: You must know about the rules of solving derivative of Inverse trigonometric function.
Given: esin12x
Solution:
Let y=esin12x
Differentiate with respect to x,
dydx=ddx[esin12x]dydx=esin12x×ddx(sin12x)
dydx=esin12x×11(2x)2ddx(2x)dydx=2esin12x14x2

Differentiation exercise 10.2 question 35

Answer:2cos(2sin1x)1x2
Hint: You must know about the rules of solving derivative of Trigonometry and Inverse trigonometric function
Given: sin(2sin1x)
Solution:
Let y=sin(2sin1x)
Differentiate with respect to x,
dydx=ddx[sin(2sin1x)]dydx=cos(2sin1x)ddx(2sin1x)
dydx=cos(2sin1x)×2×11x2dydx=2cos(2sin1x)1x2

Differentiation exercise 10.2 question 36

Answer: etan1x2x(1+x)
Hint: You must know about the rules of solving derivative of Exponential and Inverse trigonometric function.
Given: etan1x
Solution:
Let y=etan1x
Differentiate with respect to x,
dydx=ddx[etan1x]dydx=etan1xddx(tan1x)
dydx=etan1x1+x×12xdydx=etan1x2x(1+x)

Differentiation exercise 10.2 question 37

Answer:1(4+x2)tan1(x2)
Hint: You must know about the rules of solving derivative of Inverse trigonometric function.
Given: tan1(x2)
Solution:
Let y=tan1(x2)
y={tan1(x2)}12
Differentiate with respect to x,
dydx=ddx{tan1(x2)}12
dydx=12{tan1(x2)}121ddxtan1(x2)
dydx=12{tan1(x2)}12×11+(x2)2×ddx(x2)
dydx=44(4+x2)tan1(x2)dydx=1(4+x2)tan1(x2)

Differentiation exercise 10.2 question 38

Answer: 1(1+x2)tan1(x)
Hint: You must know about the rules of solving derivative of logarithm and Inverse trigonometric function.
Given: log(tan1x)
Solution:
Let y=log(tan1x)
Differentiate with respect to x,
dydx=ddxlog(tan1x)dydx=1(tan1x)×ddx(tan1x)dydx=1(1+x2)tan1(x)

Differentiation exercise 10.2 question 39

Answer: 2x(x2+3)2[cosxloge2sinx4xcosx(x2+3)]
Hint: You must know about the rules of solving derivative of trigonometric function.
Given: 2xcosx(x2+3)2
Solution:
Let y=2xcosx(x2+3)2
Differentiate with respect to x,
dydx=ddx[2xcosx(x2+3)2]
dydx=[(x2+3)2ddx(2xcosx)(2xcosx)ddx(x2+3)2[(x2+3)2]2]...ddx(uv)=vdudxudvdxv2
dydx=[(x2+3)2{2xddxcosx+cosxddx2x}(2xcosx)2(x2+3)ddx(x2+3)[x2+3]4]
dydx=[(x2+3)2{2xsinx+cosx2xloge2}2(2xcosx)(x2+3)(2x)[x2+3]4]
dydx=[2x(x2+3)2{(cosxloge2sinx}4xcosx(x2+3)[x2+3]4]
dydx=2x(x2+3)2[cosxloge2sinx4xcosx(x2+3)]

Differentiation exercise 10.2 question 40

Answer: 2xcos2x+sin2x+5xloge5+6tan5xsec2x
Hint: You must know about the rules of solving derivative of trigonometric function.
Given: xsin2x+5x+kk+(tan6x)
Solution:
Let y=xsin2x+5x+kk+(tan6x)
Differentiate with respect to x,
dydx=ddx[xsin2x+5x+kk+(tan6x)]
dydx=ddx(xsin2x)+ddx(5x)+ddx(kk)+ddx(tan6x)
dydx=[x{cos2xddx(2x)}+sin2x]+5xloge5+6tan5x+ddx(tanx)
dydx=[x{cos2xddx(2x)}+sin2x]+5xloge5+6tan5xsec2x
dydx=2xcos2x+sin2x+5xloge5+6tan5xsec2x

Differentiation exercise 10.2 question 41

Answer: 33x+22x2(2x1)2xlog(2x1)
Hint: You must know about the rules of solving derivative of logarithm function.
Given: log(3x+2)x2log(2x1)
Solution:
Let y=log(3x+2)x2log(2x1)
Differentiate with respect to x,
dydx=ddx[log(3x+2)x2log(2x1)]
dydx=ddxlog(3x+2)ddx{x2log(2x1)}
dydx=1(3x+2)ddx(3x+2){x2ddxlog(2x1)+log(2x1)ddxx2}
dydx=:33x+22x2(2x1)2xlog(2x1)

Differentiation exercise 10.2 question 42

Answer: [6xsinx+3x2cosx(7x2)+3x3sinx(7x2)32]
Hint: You must know about the rules of solving derivative of trigonometric function.
Given: y=3x2sinx(7x2)
Solution:
Let y=3x2sinx(7x2)
Differentiate with respect to x,
dydx=ddx[3x2sinx(7x2)12]
dydx=(7x2)12×ddx(3x2sinx)(3x2sinx)ddx(7x2)12[(7x2)12]2ddx(uv)= vdudxudvdxv2
dydx=[(7x2)12(3x2cosx+6xsinx)3x2sinx×12(7x2)121(2x)7x2]
dydx=[(7x2)12(3x2cosx+6xsinx)3x2sinx×12(7x2)12(2x)7x2]
dydx=[6xsinx+3x2cosx(7x2)+3x3sinx(7x2)32]

Differentiation exercise 10.2 question 43

Answer: sin{2log(2x+3)}(2(2x+3))
Hint: you must know the rules of solving derivative of trigonometric and logarithm function,
Given: sin2{log(2x+3)}
Solution:
Let y=sin2{log(2x+3)}
Differentiate with respect to x,
dydx=ddx[sin2log(2x+3)]=2sin{log(2x+3)}ddxsin{log(2x+3)}
=2sin{log(2x+3)}cos{log(2x+3)}ddxlog(2x+3)dydx=sin{2log(2x+3)}(2(2x+3))

Differentiation exercise 10.2 question 44

Answer: 2excot2x+exlogsin2x
Hint: you must know about the rules of solving derivative of exponential logarithm and trigon function
Given: exlogsin2x
Solution:
Let y=exlogsin2x
Differentiate with respect to x
dydx=ddx[exlogsin2x]
=exddx(logsin2x)+(logsin2x)ddx(ex)=ex1sin2xddxsin2x+logsin2x(ex)
=exsin2xcos2xddx(2x)+exlogsin2x=2cos2xexsin2x+exlogsin2x2excot2x+exlogsin2x

Differentiation exercise 10.2 question 45


Answer: 2x+2exx41
Hint: you must know the rules of solving derivative of polynomials
Given: x2+1+x21x2+1x21
Solution:
Let y=x2+1+x21x2+1x21
By rationalizing,
x2+1+x21x2+1x21×x2+1+x21x2+1+x21
(x2+1+x21))2((x2+1)2(x21)2)
(x2+1)2+(x21)2+2(x2+1)(x21)x2+1x2+1
=x2+1+x21+2x412
=x2+x41
Now, let y=x2+x41
Now, differentiate
dydx=ddx(x2+x41)
2x+12x41×(4x3)2x+2x3x41

Differentiation exercise 10.2 question 46

Answer: 1x2+4x+1
Hint: you must know the rules of solving derivative of logarithm function
Given: log[x+2+x2+4x+1]
Solution:
Let y=log[x+2+x2+4x+1]
Differentiate both side with respect to x
dydx=ddxlog[x+2+x2+4x+1]
=1[x+2+x4+4x+1]×[1+0+12(x2+4x+1)12ddx(x2+4x+1)]
1+2x+42(x2+4x+1)[x+2+x2+4x+1]
=x2+4x+1+x+2[x+2+x2+4x+1]×x2+4x+1
1x2+4x+1

Differentiation exercise 10.2 question 47

Answer: 16x3(sin1x4)31x8
Hint: you must know the rules of solving derivative of inverse trigonometric function
Given: (sin1x4)4
Solution:
Let y=(sin1x4)4
Differentiate with respect to x
dydx=ddx(sin1x4)4
=4(sin1x4)3ddx(sin1x4)=4(sin1x4)311(x4)2ddx(x4)
=4(sin1x4)34x31x8dydx16x3(sin1x4)31x8

Differentiation exercise 10.2 question 48

Answer: a(x2+a2)
Hint: you must know the rules of solving derivative of inverse trigonometric function
Given: sin1(xx2+a2)
Solution:
Let y=sin1(xx2+a2)
Differentiate with respect to x
dydx=ddx{sin1(xx2+a2)}
=11(xx2+a2)2×[(x2+a2)12ddx(x)xddx(x2+a2)12[(x2+a2)12]2]ddx(uv)=vdudxudvdxv2
=x2+a2a[x2+a2x2x2+a2ddx(x2+a2)(x2+a2)]
=x2+a2a(x2+a2)[x2+a2x2x2+a2×2x]
x2+a2a(x2+a2)[2(x2+a2x2)2x2+a2]
a2a(x2+a2)a(x2+a2)

Differentiation exercise 10.2 question 49

Answer: exsinx+excosx(x2+2)36xexsinx(x2+2)4
Hint: you must know the rules of solving exponential derivative
Given: exsinx(x2+2)3
Solution:
Let y=exsinx(x2+2)3
Differentiate with respect to x
dydx=(x2+2)3ddx(exsinx)exsinxddx(x2+2)3[(x2+2)3]2ddx(uv)=vdudxudvdxv2
=(x2+2)3[excosx+sinxex]exsinx3(x2+2)2(2x)(x2+2)6
=(x2+2)2[(x2+2)[excosx+exsinx]6xexsinx](x2+2)6
(x2+2)(excosx+exsinx)6xexsinx(x2+2)4
exsinx+excosx(x2+2)36xexsinx(x2+2)4

Differentiation exercise 10.2 question 50

Answer: 3e3x{11+x3log(1+x)}
Hint: you must know the rule of solving exponential and logarithm functions
Given: 3e3xlog(1+x)
Solution:
Let y=3e3xlog(1+x)
Differentiate with respect to x
dydx=3ddx[e3xlog(1+x)]
=3{e3x1(1+x)+log(1+x)(3e3x)}3{e3x1+x3e3xlog(1+x)}3e3x{11+x3log(1+x)}

Differentiation exercise 10.2 question 51

Answer: 1cosx{2x+x22cosx+tanx}
Hint: you must know the rule of solving derivative of trigonometric function
Given: x2+2cosx
Solution:
Let y=x2+2cosx
Differentiate with respect to x
dydx=cosxddx(x2+2)(x2+2)ddx(cosx)(cosx)2ddx(uv)=vdudxudvdxv2
=2xcosx(x2+2)(12sinxcosx)cosx2xcosx+(x2+2)sinx2cosxcosx
4xcosx+(x2+2)sinx2cosx322xcosx+12(x2+2)sinx(cosx)32
1cosx{2x+12(x2+2)sinxcosx}1cosx{2x+x22cosx+tanx}

Differentiation exercise 10.2 question 52

Answer: 2x(1x2)2sec2x{(1x2)3x2+x(1x2)tan2x}
Hint: you must know the rule of solving derivative of trigonometric functions
Given: x2(1x2)3cos2x
Solution:
Let y=x2(1x2)3cos2x
Differentiate with respect to x
dydx=cos2xddx{x2(1x2)3x2(1x2)3ddxcos2x}cos22xddx(uv)=vdudxudvdxv2
cos2x{x2ddx(1x2)3+(1x2)3ddxx2}x2(1x2)3(2sin2x)cos22x
cos2x{6x3(1x2)2+(1x2)32x}+2x2(1x2)3sin2xcos22x
6x3(1x2)2cos2x+2x(1x2)3cos2x+2x2(1x2)3sin2xcos22x
2x(1x2)2sec2x{(1x2)3x2+x(1x2)tan2x}

Differentiation exercise 10.2 question 53

Answer: secx
Hint: you must know the rule of solving derivative of logarithm and trigonometric functions
Given: log{cot(π4+x2)}
Solution:
Let y=log{cot(π4+x2)}
Differentiate with respect to x
dydx=1cot(π4+x2)ddxcot(x2+π4)
dydx=1cot(π4+x2)cosec2(π4+x2)ddx(π4+x2)
dydx=cosec2(π4+x2)cot(π4+x2)×12dydx=cosec2(π4+x2)2cot(π4+x2)
dydx=1sin2(π4+x2)×sin(π4+x2)2cos(π4+x2)
dydx=12cos(π4+x2)sin(π4+x2) [2sinxcosx=sin2x]
dydx=1sin(π2+x)
dydx=1cosxdydx=secx

Differentiation exercise 10.2 question 54

Answer: eaxsecx{atan2x+tanxtan2x+2sec22x}
Hint: you must know the rule of solving derivative of exponential and trigonometric functions
Given: eaxsecxtan2x
Solution:
Let y=eaxsecxtan2x
Differentiate with respect to x
dydx=ddxeaxsecxtan2xdydx=eaxddx{secxtan2x}+secxtan2xddx{eax}
dydx=eax[secxtanxtan2x+2sec22xsecx]+aeaxsecxtan2xdydx=aeaxsecxtan2x+eaxsecxtanxtan2x+2sec22xsecxeax
dydx=eaxsecx{atan2x+tanxtan2x+2sec22x}

Differentiation exercise 10.2 question 55

Answer: 2xtanx2
Hint: you must know the rule of solving derivative of logarithm and trigonometric functions
Given: log(cosx2)
Solution:
Let y=log(cosx2)
Differentiate with respect to x
dydx=ddx{log(cosx2)} [ddxlogx=1x]
dydx=2xsinx2cosx2 [ Using chain rule ]
dydx=2xtanx2

Differentiation exercise 10.2 question 56


Answer: 2logxsin(logx)2x
Hint: you must know the rule of solving derivative of logarithm and trigonometric functions
Given: cos(logx)2
Solution:
Let y=cos(logx)2
Differentiate with respect to x
dydx=ddx[cos(logx)2]dydx=sin(logx)2ddx[(logx)2]
dydx=sin(logx)22logxddxlogxdydx=sin(logx)22logxxdydx=2logxsin(logx)2x

Differentiation exercise 10.2 question 57

Answer: 1x21
Hint: you must know the rule of solving derivative of logarithm functions
Given: logx1x+1
Solution:
Let y=log(x1x+1)12
y=12log(x1x+1)y=12{log(x1)log(x+1)}
Differentiate with respect to x
dydx=12{ddx[log(x1)]ddx[log(x+1)]}
dydx=12[1(x1)1(x+1)]dydx=12[x+1(x1)(x21)]
dydx=12[x+1x+1(x21)]dydx=12[2(x21)]dydx=1(x21)

Differentiation exercise 10.2 question 58

Answer: Proved
Hint: you must know the rule of solving derivative of logarithm functions
Given: log(x1x+1)
Solution:
Let y=log(x1x+1)
Differentiate with respect to x
dydx=ddxlog(x1x+1)dydx=1(x1x+1)ddx(x1x+1)
dydx=1(x1x+1)[ddx(x1)ddxx+1]dydx=1(x1x+1)[12(x1)1212(x+1)12]
dydx=121(x1x+1)(1x11x+1)
dydx=12(x1x+1)(x+1x1(x1)(x+1))dydx=12x21
∴ Proved

Differentiation exercise 10.2 question 59

Answer: Proved
Hint: you must know the rule of solving derivation of functions
Given: y=x+1+x1
Prove : x21dydx=12y
Solution:
Let y=x+1+x1
Differentiate with respect to x
dydx=ddx(x+1)+ddx(x1)dydx=12(x+1)12+12(x1)12
dydx=12(1x+1+1x1)dydx=12(x1+x+1x+1x1) [y=x+1+x1]
dydx=12(yx+1x1)dydx=12(yx21)x21dydx=12y
∴ Proved

Differentiation exercise 10.2 question 60

Answer: Proved
Hint: you must know the rule of solving derivation of functions.
Given: y=xx+2
Prove : xdydx=(1y)y
Solution:
Let y=xx+2
Differentiate with respect to x and apply quotient rule
dydx=ddx(xx+2)
dydx=(x+2)ddx(x)xddx(x+2)(x+2)2ddx u. v=vdudxudvdxv2
dydx=x+2x(x+2)2dydx=x+2(x+2)2x(x+2)2
dydx=1x+2xy2x2dydx=yxy2x
dydx=yy2xxdydx=y(1y)
∴ Proved

Differentiation exercise 10.2 question 61

Answer: Proved
Hint: you must know the rule of solving logarithm functions.
Given: y=log(x+1x)
Prove dydx=x12x(x+1)
Solution:
Let y=log(x+1x)
Differentiate with respect to x
dydx=1(x+1x)ddx(x+1x)dydx=xx+1(12x12xx)
dydx=12x(x+1)(x1xx)dydx=x12x(x+1)
∴ Proved

Differentiation exercise 10.2 question 62

Answer: Proved
Hint:: you must know the rules of solving derivation of logarithm functions.
Given:y=log(1+tanx1tanx)
Prove dydx=sec2x
Solution:
Let y=log(1+tanx1tanx)
y=log(1+tanx1tanx)12 [logax=xloga]
y=12[log(1+tanx)log(1tanx)] [logmn=logmlogn]
Differentiate with respect to x,
dydx=12{ddx[log(1+tanx)ddxlog(1tanx)]}dydx=12{11+tanxddx(1+tanx)11tanxddx(1tanx)}
dydx=12{11+tanx(sec2x)11tanx(sec2x)}dydx=12{(sec2x)1+tanx+sec2x1tanx}
dydx=sec2x2[1tanx+1+tanx1tan2x]dydx=12sec2x[21tan2x]
dydx=sec2x1tan2x [sec2x=1+tan2x]
dydx=1+tan2x1tan2xdydx=1(1tan2x1+tan2x) [ Tigonometric Property 1tan2x1+tan2x=cos2x]
dydx=1cos2xdydx=sec2x
∴ Proved

Differentiation exercise 10.2 question 63

Answer: Proved
Hint: you must know the rule of solving derivation of functions.
Given: y=x+1x
Prove 2xdydx=x1x
Solution:
Let y=x+1x
Differentiate with respect to x,
dydx=ddx{x+1x}dydx=ddx(x)+ddx(1x)
dydx=12x+(12xx)dydx=12x12xx
dydx=x12xx2xdydx=x1x
2xdydx=xx1x2xdydx=x1x
Proved

Differentiation exercise 10.2 question 64

Answer: Proved
Hint: you must know the rules of derivative of inverse trigonometric functions.
Given: y=xsin1x1x2
Prove (1x2)dydx=x+yx
Solution:
Let y=xsin1x1x2
Differentiate with respect to x,
dydx=ddx(xsin1x1x2) [ quotient rule ]
dydx=ddx[1x2ddx(xsin1x)(xsin1x)ddx(1x2)(1x2)2].ddxuv=vdudxudvdxv2
dydx=[1x2{xddx(sin1x)+(sin1x)ddx(x)}(xsin1x)(121x2)d(1x2)dx(1x2)2]
dydx=[1x2{x1x2+sin1x}xsin1x(2x)2(1x2)(1x2)2]
dydx=[x+1x2(sin1x)+x2sin1x1x2(1x2)]
(1x2)dydx=x+1x2(sin1x)1+x2sin1x1x2
(1x2)dydx=x+(sin1xx2(sin1x)+x2(sin1x)1x2)
(1x2)dydx=x+(sin1x1x2)
Where y=xsin1x1x2
(1x2)dydx=x+yx
∴ Proved

Differentiation exercise 10.2 question 65

Answer: Proved

Hint: you must know the rules of derivative of exponential functions.
Given: y=exexex+ex
Prove dydx=1y2
Solution:
Let y=exexex+ex
Differentiate with respect to x,use quotient rule
dydx=ddx(exexex+ex)

dydx=[(ex+ex)ddx(exex)(exex)ddx(ex+ex)(ex+ex)2]ddxuv=vdudxudvdxv2
dydx={(ex+ex)[(exex(1))](exex)[(ex+ex(1))](ex+ex)2}
dydx=[(ex+ex)(ex+ex)(exex)(exex)(ex+ex)2]
dydx=[(ex+ex)2(exex)2(ex+ex)2]
dydx=1(exex)2(ex+ex)2 [y=(exex)ex+ex]
dydx=1y2
∴ Proved

Differentiation exercise 10.2 question 66

Answer: Proved
Hint: you must know the rules of derivative of logarithm functions.
Given: y=(x1)log(x1)(x+1)log(x+1)
Prove: dydx=log(x11+x)
Solution:
Let y=(x1)log(x1)(x+1)log(x+1)
Differentiate with respect to x, use product rule
dydx=ddx[(x1)log(x1)(x+1)log(x+1)]
dydx=[(x1)×1(x1)+log(x1)][(x+1)×1(x+1)+log(x+1)] [ use product rule]
dydx=[1+log(x1)][1+log(x+1)]
dydx=log(x11+x)
∴ Proved

Differentiation exercise 10.2 question 67

Answer:Proved
Hint: you must know the rules of derivative of exponential and trigonometric functions.
Given: y=excosx
Prove: dydx=2excos(x+π4)

Solution:
Let y=excosx

Differentiate with respect to x,use product rule
dydx=ddx(excosx)dydx=exddx(cosx)+cosxddxex
dydx=ex(sinx)+ex(cosx)dydx=ex(cosxsinx)

Multiply and divide by2
dydx=2ex(cosx2sinx2)dydx=2ex(cosπ4cosxsinπ4sinx)
dydx=2excos(x+π4) [ ∴using property cosacosbsinasinb=cos(a+b)]
∴ Proved

Differentiation exercise 10.2 question 68

Answer:Proved
Hint: you must know the rules of derivative of logarithm and trigonometric functions.
Given: y=12log(1cos2x1+cos2x)

Prove: dydx=2cosec2x

Solution:
y=12log(1cos2x1+cos2x) [1cos2x=2sin2x;1+cos2x=2cos2x]
y=12log(2sin2x2cos2x)y=12logtan2x
y=12×2logtanxy=logtanx

Differentiate with respect to x,use chain rule
dydx=ddx(logtanx)dydx=1tanxddx(tanx)
dydx=1tanx×sec2xdydx=cosxsinx×1cos2xdydx=1sinxcosx

Multiply and divide by 2
dydx=22sinxcosx [2sinxcosx=sin2x]
dydx=2sin2x [1sinx=cosecx]
dydx=2cosec2x
∴ Proved

Differentiation exercise 10.2 question 69

Answer: Proved
Hint: you must know the rules of solving derivative of inverse trigonometric functions.
Given: y=xsin1x+1x2

Prove: dydx=sin1x

Solution:
y=xsin1x+1x2
Differentiate with respect to x,use product rule
dydx=ddx(xsin1x)+ddx(1x2)dydx=(x)ddxsin1x+sin1xddx(x)+ddx(1x2)
dydx=(x1x2+sin1x)2x21x2dydx=x1x2+sin1xx1x2dydx=sin1x
∴ Proved

Differentiation exercise 10.2 question 70

Answer:Proved
Hint: you must know the rules of solving derivatives.
Given: y=x2+a2

Prove:ydydxx=0

Solution:
y=x2+a2
Squaring both sides,
y2=x2+a2
Differentiate both sides,
2ydydx=ddx(x2+a2)2ydydx=2x+0
ydydx=x Or ydydxx=0

∴ Proved

Differentiation exercise 10.2 question 71

Answer:Proved
Hint: you must know the rules of solving derivatives of exponential functions.
Given: y=ex+ex
Prove:dydx=y24

Solution:
y=ex+ex
Differentiate with respect to x,
dydx=ddx(ex+ex) [ddxex=ex;ddxex=ex]
dydx=exexdydx=(exex)24ex×ex [(ab)=(a2+b2)2ab=(a+b)24ab]
dydx=y24 [ex+ex=y]
∴ Proved

Differentiation exercise 10.2 question 72

Answer:Proved
Hint: you must know the rules of solving derivatives.
Given: y=a2x2

Prove:ydydx+x=0

Solution:
y=a2x2
Squaring both sides,
y2=a2x2
Differentiate with respect to x,
2ydydx=02x2ydydx=2x
ydydx=xydydx+x=0

∴ Proved

Differentiation exercise 10.2 question 73

Answer:Proved
Hint: you must know the rules of solving derivatives.
Given:xy=4

Prove: x(dydx+y2)=3y

Solution:
xy=4y=4x
Differentiate with respect to x,
dydx=4ddx(x1)dydx=4(1)×(x11)
dydx=4x2
dydx=y24 ( multiplying by 4 in num. & den.)

4dydx=y24dydx=3y24y24dydx+4y2=3y24(dydx+4y2)=3y2
Dividing both sides with x,
4x(dydx+y2)=3y2xy(dydx+y2)=3y2xx(dydx+y2)=3y2yx(dydx+y2)=3y
∴ Proved

Differentiation exercise 10.2 question 74

Answer:Proved
Hint: you must know the rules of solving derivatives.
Given: Prove that
ddx{x2a2x2+a22sin1xa}=a2x2
Solution:
 L.H.S ddx{x2a2x2+a22sin1xa}
ddx(x2a2x2)+ddx(a22sin1xa)
12[xddxa2x2+a2x2ddx(x)]+a22×11(xa)2(1a)
12[x×12a2x2ddx(a2x2)+a2x2]+a22×1a2x2a2(1a)
12[2x22a2x2+a2x2]+(a22)aa2x2×(1a)
12[2x2+2|a2x2|2a2x2]+a22a2x2
a2x2x22a2x2+a22a2x2
2a22x22a2x2[x=x×x]
(a2x2)a2x2a2x2 R.H.S 

∴ Proved

Differentiation exercise 10.2 question 75

Answer:23
Hint: you must know the rules of solving derivatives of trigonometric function
Given: f(x)=secx1secx+1

Find : f(π3)

Solution:
f(x)=secx1secx+1
=1cosx1+cosx[secx=1cosx]

Now rationalize
=1cosx1+cosx×1cosx1cosx
f(x)=1cosxsinx
=1sinxcosxsinx
f(x)=cosecxcotx

Differentiate with respect to x,
f(x)=cosecxcotx(cosec2x)f(π3)=cosec(π3)cot(π3)+cosec2(π3)
=23×13+(23)2=23+432+4323

Differentiation exercise 10.2 question 76

Answer:2π
Hint: you must know the rules of solving derivative of trigonometric functions
Given: f(x)=tanx

Find: f(π216)

Solution:
f(x)=tan(x)
Differentiate with respect to x,
f(x)=12tan(x)ddxtanx
=12tan(x)sec2x×12x
f(x)sec2x4xtan(x)
Now, f(π216)=sec2π2164π216tan(π216)
=sec2(π4)4(π4)tan(π4)
sec2(π4)π×(1)[Buttanπ41]
sec2(π4)π(sec(π4))2π
=(2)2πf(π216)=2π

Rd Sharma Class 12th Exercise 10.2 solutions will help every student, and they will be able to clear the concepts and learn according to an exam point of view. The benefits of these solutions are:

  1. Created by experts

Rd Sharma Class 12th Exercise 10.2 solutions are created not by a single person but by a team. The team discusses every question in detail and then provides it to the student. Therefore, a student will never face any difficulty in mathematics after going for Rd Sharma Class 12th Chapter 10.2 Exercise 10.2 solutions.

  1. Best Solutions for preparation

Rd Sharma Class 12th Exercise 10.2 solutions help students to prepare better for exams as every concept is cleared in a precise manner. The students will be ready to face any exam with Class 12th RD Sharma Chapter 10.2 Exercise 10.2 Solutions.

  1. NCERT based questions

The solutions help a student do the homework quite easily and effectively as these solutions are primarily based on NCERT questions. In addition, these solutions make every student an expert in solving these questions.

  1. Different ways to solve a question

RD Sharma Class 12 Solutions Chapter 10 ex 10.2 helps students find alternative ways to solve a question. The concepts are interconnected and solved by experts that a student finds it easy to understand and solve questions in a different manner.

  1. Benchmark performance

The solutions help a student perform well in exams. RD Sharma Class 12 Solutions Differentiation Ex. 10.2 covers all the important questions that usually come in exams, which helps the student set a benchmark score in exams.

  1. Free of cost

Students will find all these solutions free of cost at Career360, the best site to grab the benefits and score well with flying colors. At Career360, a student will understand, learn and perform exceptionally in exams. Thousands of students have benefitted from these solutions, and now it is your turn to shine.

RD Sharma Chapter-wise Solutions

Frequently Asked Questions (FAQs)

1. Are these solutions enough to prepare for board and competitive exams?

Yes, these solutions cover every concept, and a student will learn these concepts quickly and in different ways; these solutions are enough.

2. Why should I refer to these solutions?

These solutions will make every student shine in exams as understanding and learning have become easy. Every question is created by a team of experts who take utmost care to make the solutions perfect.

3. Are these solutions free?

Yes, these solutions are free of cost at Career360, and anyone can download them and grab the benefits.

4. What is differentiation?

The instant rate of change in the function based on one of the two variables is called differentiation in mathematics.

5. What are some examples of differentiation?

Velocity equal to the rate of change of displacement to time, acceleration equal to the rate of change of velocity to time are some examples of differentiation.

Articles

Back to top