RD Sharma Class 12th Exercise 10.2 is very important because RD Sharma has always been the best book for every student. RD Sharma Mathematics has set a standard where all the essential concepts and theorems are mentioned to become the teacher's favorite. Moreover, the questions in board exams and competitive exams have come from RD Sharma's book for many years.
Rd Sharma Class 12th Exercise 10.2 has solved every problem of a student regarding differentiation. Differentiation Ex. 10.2 Solutions has 76 questions including subparts, that are formatted in a way that students will enjoy doing them. The exercise includes differentiating the functions w.r.t. to x, recapitulation of the product rule, quotient rule differentiation of the constant, differentiation of inverse trigonometric functions, logarithmic differentiation, etc.
Also Read - RD Sharma Solution for Class 9 to 12 Maths
RD Sharma Class 12 Solutions Chapter 10 Differentiation - Other Exercise
Differentiation Excercise: 10.2
Differentiation exercise 10.2 question 1
Answer: $3 \cos (3 x+5)$
Hint: You must know the values of solving derivative problems.
Given:
$\sin (3 x+5)$Solution:
$\sin (3 x+5)$Let :
$y=\sin (3 x+5)$Differentiating with respect to x,
$\frac{d y}{d x}=\frac{d}{d x}[\sin (3 x+5)]$$\frac{d y}{d x}=\cos (3 x+5) \frac{d}{d x}(3 x+5)$ [using chain rule]
$\begin{aligned} &\frac{d y}{d x}=\cos (3 x+5) \times(3) \\ &\frac{d y}{d x}=3 \cos (3 x+5) \end{aligned}$So,
$\begin{aligned} &\frac{d y}{d x}=\frac{d}{d x}[\sin (3 x+5)] \\ &\frac{d y}{d x}=3 \cos (3 x+5) \end{aligned}$Differentiation exercise 10.2 question 2
Answer:
$2 \tan x \sec ^{2} x$Hint: You must know the rules of solving derivative of trigonometric functions.
Given:
$\tan ^{2} x$Solution:
Let
$y=\tan ^{2} x$Differentiating with respect to x,
$\frac{d y}{d x}=2 \tan \mathrm{x} \frac{d}{d x}(\tan x)$$\frac{d y}{d x}=2 \tan x \times \sec ^{2} x$So,
$\frac{d}{d x}\left(\tan ^{2} x\right)=2 \tan x \sec ^{2} x$ [ using chain rule]
Differentiation exercise 10.2 question 3
Answer:
$\frac{\pi}{180} \sec ^{2}\left(x^{\circ}+45^{\circ}\right)$Hint: You must know the rules of solving derivative of trigonometric function.
Given:
$\tan \left(x^{\circ}+45^{\circ}\right)$Solution:
$y=\tan \left(x^{\circ}+45^{\circ}\right)$$y=\left[\tan (x+45) \cdot \frac{\pi}{180}\right]$...To convert degree into radian multiply by $\frac{\pi }{180}$
Differentiating with respect to x,
$\frac{d y}{d x}=\frac{d}{d x}\left[\tan (x+45) \cdot \frac{\pi}{180}\right]$
$\frac{d y}{d x}=\frac{\pi}{180} \cdot \sec ^{2}[\mathrm{x}+45] \times \frac{d}{d x}(x+45) \frac{\pi}{180}$ [ using chain rule]
$\frac{d y}{d x}=\frac{\pi}{180} \sec ^{2}\left(x^{\circ}+45^{\circ}\right)$
$\text { So, } \frac{d}{d x}\left[\tan \left(x^{\circ}+45^{\circ}\right)\right]=\frac{\pi}{180} \sec ^{2}\left(x^{\circ}+45^{\circ}\right)$.
Differentiation exercise 10.2 question 4
Answer:
$\frac{1}{x} \cos (\log x)$Hint: You must know the rules of solving derivative of logarithm function.
Given:
$\sin (\log x)$Solution:
$y=\sin (\log x)$Differentiating with respect to x,
$\begin{aligned} &\frac{d y}{d x}=\frac{d}{d x} \sin (\log x) \\ &\frac{d y}{d x}=\cos (\log x) \frac{d}{d x}(\log x) \end{aligned}$ [ using chain rule]
$\frac{d y}{d x}=\frac{1}{x} \cos (\log x)$ Differentiation exercise 10.2 question 5
Answer:
$: \frac{\cos \sqrt{x} e^{\sin \sqrt{x}}}{2 \sqrt{x}}$Hint: You must know the rules of solving derivation of exponential function and trigo
nometric function.Given:
$e^{\sin \sqrt{x}}$Solution:
Let
$y=e^{\sin \sqrt{x}}$Differentiating with respect to x,
$\begin{aligned} &\frac{d y}{d x}=\frac{d}{d x}\left(e^{\sin \sqrt{x}}\right) \\ &\frac{d y}{d x}=e^{\sin \sqrt{x}} \frac{d}{d x}(\sin \sqrt{x}) \end{aligned}$ [using chain rule]
$\frac{d y}{d x}=e^{\sin \sqrt{x}} \times \cos \sqrt{x} \frac{d}{d x} \sqrt{x}$ [again using chain rule]
$\begin{aligned} &\frac{d y}{d x}=e^{\sin \sqrt{x}} \times \cos \sqrt{x} \times \frac{1}{2 \sqrt{x}} \\ &\frac{d y}{d x}=\frac{\cos \sqrt{x} e^{\sin \sqrt{x}}}{2 \sqrt{x}} \end{aligned}$Differentiation exercise 10.2 question 6
Answer:
$e^{\tan x} \times \sec ^{2} x$Hint:You must know the rules of solving derivation of exponential function and trigonometric function.
Given:
$e^{\tan x}$Solution:
$y=e^{\tan x}$Differentiating with respect to x,
$\begin{aligned} &\frac{d y}{d x}=\frac{d}{d x} e^{\tan x} \\ &\frac{d y}{d x}=e^{\tan x} \frac{d}{d x}(\tan x) \end{aligned}$ [ using chain rule] and
$\frac{d}{d x}(\tan x)=\sec ^{2} x$$\frac{d y}{d x}=e^{\tan x} \times \sec ^{2} x$Differentiation exercise 10.2 question 7
Answer:
$2 \sin (4 x+2)$Hint: You must know the rules of solving derivation of trigonometric function.
Given:
$\sin ^{2}(2 x+1)$Solution:
Let
$y=\sin ^{2}(2 x+1)$Differentiating with respect to x,
$\frac{d y}{d x}=\frac{d}{d x}\left[\sin ^{2}(2 x+1)\right]$$\frac{d y}{d x}=2 \sin (2 x+1) \frac{d}{d x} \sin (2 x+1)$ [ using chain rule ]
$\frac{d y}{d x}=2 \sin (2 x+1) \cos (2 x+1) \frac{d}{d x}(2 x+1)$ $\left[\frac{d}{d x} \sin x=\cos x\right]$$\begin{aligned} &\frac{d y}{d x}=4 \sin (2 x+1) \cos (2 x+1) \\ &\frac{d y}{d x}=2 \sin (4 x+2) \end{aligned}$ $[\therefore \sin 2 A=2 \sin A \cos A]$$\frac{d y}{d x}=2 \sin (4 x+2)$.
Differentiation exercise 10.2 question 8
Answer:
$\frac{2}{(2 x-3) \log 7}$Hint:
You must know the rules of solving derivative of logarithm function.
Given:
$\log _{7}(2 x-3)$Solution:
Let
$y=\log _{7}(2 x-3)$Differentiating with respect to x,
$\frac{d y}{d x}=\frac{d}{d x}\left[\log _{7}(2 x-3)\right]$$\frac{d y}{d x}=\frac{d}{d x}\left[\frac{\log (2 x-3)}{\log 7}\right]$ $\left[\therefore \log _{a} b=\frac{\log b}{\log a}\right]$$\begin{aligned} &\frac{d y}{d x}=\frac{1}{\log 7} \frac{d}{d x}[\log (2 x-3)] \\ &\frac{d y}{d x}=\frac{1}{\log 7} \times \frac{1}{(2 x-3)} \frac{d}{d x}(2 x-3) \end{aligned}$ [ using chain rule ]
$\frac{d y}{d x}=\frac{2}{(2 x-3) \log 7}$Differentiation exercise 10.2 question 9
Answer:
$\frac{5 \pi}{180} \sec ^{2}\left(5 x^{\circ}\right)$Hint: You must know the rules of solving derivative of logarithm function.
Given:
$\tan 5 x^{\circ}$Solution:
Let
$y=\tan 5 x^{\circ}$or
$y=\left(\tan 5 x \times \frac{\pi}{180}\right)$Differentiating with respect to x
$\frac{d y}{d x}=\frac{d y}{d x} \tan \left(5 x \times \frac{\pi}{180}\right)$$\frac{d y}{d x}=\sec ^{2}\left(5 x \times \frac{\pi}{180}\right) \frac{d}{d x}\left(5 x \times \frac{\pi}{180}\right)$ [ using chain rule ]
$\begin{aligned} &\frac{d y}{d x}=\left(\frac{5 \pi}{180}\right) \sec ^{2}\left(5 x \times \frac{\pi}{180}\right) \\ &\frac{d y}{d x}=\frac{5 \pi}{180} \sec ^{2}\left(5 x^{\circ}\right) \end{aligned}$Differentiation exercise 10.2 question 10
Answer:
$3 x^{2} \times 2^{x^{3}} \times \log _{e} 2$Hint: You must know the rules of solving derivative of polynomial function.
Given:
$2^{x^{8}}$Solution:
Let
$y=2^{x^{3}}$Differentiating with respect to x
$\begin{aligned} &\frac{d y}{d x}=\frac{d}{d x}\left(2^{x^{3}}\right) \\ &\frac{d y}{d x}=2^{x^{3}} \times \log _{e} 2 \frac{d}{d x}\left(x^{3}\right) \end{aligned}$$\frac{d}{d x} a^{x}=a^{x} \log a$ [using chain rule]
$\frac{d y}{d x}=3 x^{2} \times 2^{x^{3}} \times \log _{e} 2$Differentiation exercise 10.2 question 11
Answer:
$e^{x} \times 3^{e^{x}} \log (3)$Hint: You must know the rules of solving derivative of exponential function.
Given:
$3^{e^{x}}$Solution:
Let
$y=3^{e^{x}}$Differentiating with respect to x
$\begin{aligned} &\frac{d y}{d x}=\frac{d}{d x}\left(3^{x^{x}}\right) \\ &\frac{d y}{d x}=3^{e^{x}} \log (3) \frac{d}{d x}\left(e^{x}\right) \end{aligned}$ $\frac{d}{d x} a^{x}=a^{x} \log a$ [ using chain rule]
$\frac{d y}{d x}=e^{x} \times 3^{e^{x}} \log (3)$Differentiation exercise 10.2 question 12
Answer:
$\frac{-1}{x \log 3\left(\log _{8} x\right)^{2}}$Hint: You must know the rules of solving derivative of logarithm function
Given:
$\log _{x} 3$Solution:
Let
$y=\log _{x} 3$$y=\frac{\log 3}{\log x}$ $\left[\therefore \log _{a} b=\frac{\log b}{\log a}\right]$Differentiating with respect to x
$\begin{aligned} &\frac{d y}{d x}=\frac{d}{d x}\left(\frac{\log 3}{\log x}\right) \\ &\frac{d y}{d x}=\log 3 \frac{d}{d x}(\log x)^{-1} \end{aligned}$ [ using chain rule]
$\begin{aligned} &\frac{d y}{d x}=\log 3 \times\left[-1(\log x)^{-2}\right] \frac{d}{d x}(\log x) \\ &\frac{d y}{d x}=\frac{-\log 3}{(\log x)^{2}} \times \frac{1}{x} \end{aligned}$$\begin{aligned} &\frac{d y}{d x}=-\left(\frac{\log 3}{\log x}\right)^{2} \times \frac{1}{x} \times \frac{1}{\log 3} \\ &\frac{d y}{d x}=\frac{-1}{x \log 3\left(\log _{3} x\right)^{2}} \end{aligned}$ $\left[\therefore \frac{\log b}{\log a}=\log _{a} b\right]$Differentiation exercise 10.2 question 13
Answer:
$(2 x+2) 3^{x^{2}+2 x} \log _{e} 3$Hint: You must know the rules of solving derivative of polynomial function
Given: $3^{x^{2}+2 x}$
Solution:
Let $y=3^{x^{2}+2 x}$
Differentiating with respect to x
$\begin{aligned} &\frac{d y}{d x}=\frac{d}{d x}\left(3^{x^{2}+2 x}\right) \\ &\frac{d y}{d x}=3^{x^{2}+2 x} \times \log _{e} 3 \frac{d}{d x}\left(x^{2}+2 x\right) \end{aligned}$ $\frac{d}{d x} a^{x}=a^{x} \log a$ [using chain rule]
$\frac{d y}{d x}=(2 x+2) 3^{x^{2}+2 x} \log _{e} 3$
Differentiation exercise 10.2 question 14
Answer:
$\frac{-2 x a^{2}}{\sqrt{a^{2}-x^{2}}\left(a^{2}+x^{2}\right)^{\frac{3}{2}}}$Hint: You must know the rules of solving derivative of polynomial function
Given:
$\sqrt{\frac{a^{2}-x^{2}}{a^{2}+x^{2}}}$Solution:
Let
$y=\sqrt{\frac{a^{2}-x^{2}}{a^{2}+x^{2}}}$$y=\left(\frac{a^{2}-x^{2}}{a^{2}+x^{2}}\right)^{\frac{1}{2}}$Differentiating with respect to x
$\frac{d y}{d x}=\frac{d}{d x}\left(\frac{a^{2}-x^{2}}{a^{2}+x^{2}}\right)^{\frac{1}{2}}$$\frac{d y}{d x}=\frac{1}{2}\left(\frac{a^{2}-x^{2}}{a^{2}+x^{2}}\right)^{\frac{1}{2}-1} \times \frac{d}{d x}\left(\frac{a^{2}-x^{2}}{a^{2}+x^{2}}\right)$$\frac{d y}{d x}=\frac{1}{2}\left(\frac{a^{2}-x^{2}}{a^{2}+x^{2}}\right)^{-\frac{1}{2}} \times\left\{\frac{\left(a^{2}+x^{2}\right) \frac{d}{d x}\left(a^{2}-x^{2}\right)-\left(a^{2}-x^{2}\right) \frac{d}{d x}\left(a^{2}+x^{2}\right)}{\left(a^{2}+x^{2}\right)^{2}}\right\}$$..........\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$$\frac{d y}{d x}=\frac{1}{2}\left(\frac{a^{2}+x^{2}}{a^{2}-x^{2}}\right)^{\frac{1}{2}}\left\{\frac{-2 x\left(a^{2}+x^{2}\right)-2 x\left(a^{2}-x^{2}\right)}{\left(a^{2}+x^{2}\right)^{2}}\right\}$$\frac{d y}{d x}=\frac{1}{2}\left(\frac{a^{2}+x^{2}}{a^{2}-x^{2}}\right)^{\frac{1}{2}}\left\{\frac{-2 x a^{2}-2 x^{3}-2 x a^{2}+2 x^{3}}{\left(a^{2}+x^{2}\right)^{2}}\right\}$$\frac{d y}{d x}=\frac{1}{2}\left(\frac{a^{2}+x^{2}}{a^{2}-x^{2}}\right)^{\frac{1}{2}}\left\{\frac{-4 x a^{2}}{\left(a^{2}+x^{2}\right)^{2}}\right\}$$\frac{d y}{d x}=\frac{-2 x a^{2}}{\sqrt{a^{2}-x^{2}}\left(a^{2}+x^{2}\right)^{\frac{3}{2}}}$Differentiation exercise 10.2 question 15
Answer:
$3^{x \log ^{x}}(1+\log x) \times \log _{e} 3$Hint: You must know the rules of solving derivative of logarithm and polynomial function.
Given:
$3^{x \log x}$Solution:
Let
$y=3^{x \log x}$Differentiating with respect to x
$\begin{aligned} &\frac{d y}{d x}=\frac{d}{d x}\left(3^{x \log x}\right) \\ &\frac{d y}{d x}=3^{x \log x} \times \log _{e} 3 \frac{d}{d x}(x \log x) \end{aligned}$$\frac{d y}{d x}=3^{x \log x} \times \log _{e} 3\left[x \frac{d}{d x}(\log x)+\log x \frac{d}{d x}(x)\right]$$\frac{d y}{d x}=3^{x \log x} \times \log _{e} 3\left[x \times \frac{1}{x}+\log x(1)\right]$$\begin{aligned} &\frac{d y}{d x}=3^{x \log x} \times \log _{e} 3[1+\log x] \\ &\frac{d y}{d x}=3^{x \log x}(1+\log x) \times \log _{e} 3 \end{aligned}$Differentiation exercise 10.2 question 16
Answer:
$\sec x(\sec x+\tan x)$Hint: You must know the rules of solving derivative of trigonometric function.
Given:
$\sqrt{\frac{1+\sin x}{1-\sin x}}$Solution:
Let
$y=\sqrt{\frac{1+\sin x}{1-\sin x}}$Differentiating with respect to x
$\frac{d y}{d x}=\frac{d}{d x}\left(\frac{1+\sin x}{1-\sin x}\right)^{\frac{1}{2}}$$\frac{d y}{d x}=\frac{1}{2}\left(\frac{1+\sin x}{1-\sin x}\right)^{\frac{1}{2}-1} \times \frac{d}{d x}\left(\frac{1+\sin x}{1-\sin x}\right)$$\frac{d y}{d x}=\frac{1}{2}\left(\frac{1-\sin x}{1+\sin x}\right)^{\frac{1}{2}} \times\left\{\frac{(1-\sin x)(\cos x)-(1+\sin x)(-\cos x)}{(1-\sin x)^{2}}\right\}$$\ldots \frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$$\frac{d y}{d x}=\frac{1}{2}\left(\frac{1-\sin x}{1+\sin x}\right)^{\frac{1}{2}}\left\{\frac{(\cos x)(1-\sin x)-(1+\sin x)(-\cos x)}{(1-\sin x)^{2}}\right\}$$\frac{d y}{d x}=\frac{1}{2}\left(\frac{1-\sin x}{1+\sin x}\right)^{\frac{1}{2}}\left\{\frac{2 \cos x}{(1-\sin x)^{2}}\right\}$$\frac{d y}{d x}=\frac{\cos x}{\sqrt{1+\sin x}(1-\sin x)^\frac{3}{2}}$$\frac{d y}{d x}=\frac{\cos x}{\sqrt{1+\sin x} \sqrt{1-\sin x}(1-\sin x)}$$\frac{d y}{d x}=\frac{\cos x}{\sqrt{1-\sin ^{2} x} \times(1-\sin x)}$$\frac{d y}{d x}=\frac{\cos x}{\cos x(1-\sin x)}$$\begin{aligned} &\frac{d y}{d x}=\frac{1}{(1-\sin x)} \times\left(\frac{1+\sin x}{1-\sin x}\right) \\ &\frac{d y}{d x}=\frac{(1+\sin x)}{\left(1-\sin ^{2} x\right)} \end{aligned}$$\frac{d y}{d x}=\frac{(1+\sin x)}{\left(\cos ^{2} x\right)}$$\frac{d y}{d x}=\frac{1}{(\cos x)}\left(\frac{1}{\cos x}+\frac{\sin x}{\cos x}\right)$$\frac{d y}{d x}=\sec x(\sec x+\tan x)$Differentiation exercise 10.2 question 17
Answer:
$\frac{-2 x}{\sqrt{1-x^{2}}\left(1+x^{2}\right)^{\frac{3}{2}}}$Hint: You must know the rules of solving derivative of polynomial function
Given:
$\sqrt{\frac{1-x^{2}}{1+x^{2}}}$Solution:
Let
$y=\sqrt{\frac{1-x^{2}}{1+x^{2}}}$$y=\left(\frac{1-x^{2}}{1+x^{2}}\right)^{\frac{1}{2}}$Differentiating with respect to x
$\frac{d y}{d x}=\frac{d}{d x}\left(\frac{1-x^{2}}{1+x^{2}}\right)^{\frac{1}{2}}$$\frac{d y}{d x}=\frac{1}{2}\left(\frac{1-x^{2}}{1+x^{2}}\right)^{\frac{1}{2}-1} \times \frac{d}{d x}\left(\frac{1-x^{2}}{1+x^{2}}\right)$ [ using chain rule]
$\frac{d y}{d x}=\frac{1}{2}\left(\frac{1-x^{2}}{1+x^{2}}\right)^{-\frac{1}{2}} \times\left\{\frac{\left(1+x^{2}\right) \frac{d}{d x}\left(1-x^{2}\right)-\left(1-x^{2}\right) \frac{d}{d x}\left(1+x^{2}\right)}{\left(1+x^{2}\right)^{2}}\right\}$$\cdot \cdot \frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$$\frac{d y}{d x}=\frac{1}{2}\left(\frac{1+x^{2}}{1-x^{2}}\right)^{\frac{1}{2}} \times\left\{\frac{-2 x\left(1+x^{2}\right)-2 x\left(1-x^{2}\right)}{\left(1+x^{2}\right)^{2}}\right\}$$\frac{d y}{d x}=\frac{1}{2}\left(\frac{1+x^{2}}{1-x^{2}}\right)^{\frac{1}{2}} \times\left\{\frac{-2 x-2 x^{3}-2 x+2 x^{3}}{\left(1+x^{2}\right)^{2}}\right\}$$\frac{d y}{d x}=\frac{1}{2}\left(\frac{1+x^{2}}{1-x^{2}}\right)^{\frac{1}{2}} \times\left\{\frac{-4 x}{\left(1+x^{2}\right)^{2}}\right\}$$\frac{d y}{d x}=\frac{-2 x}{\sqrt{1-x^{2}}\left(1+x^{2}\right)^{\frac{3}{2}}}$Differentiation exercise 10.2 question 18
Answer:
$2(\log \sin x) \cot x$Hint: You must know the value of solving logarithm and trigonometric function.
Given:
$(\log \sin x)^{2}$Solution:
Let
$y=(\log \sin x)^{2}$Differentiating with respect to x
$\frac{d y}{d x}=\frac{d}{d x}(\log \sin x)^{2}$$\frac{d y}{d x}=2(\log \sin x) \frac{d}{d x}(\log \sin x)$$\frac{d y}{d x}=2(\log \sin x) \times \frac{1}{\sin x} \frac{d}{d x}(\sin x)$$\begin{aligned} &\frac{d y}{d x}=2(\log \sin x) \times \frac{1}{\sin x} \times \cos x \\ &\frac{d y}{d x}=2(\log \sin x) \times \cot x \end{aligned}$Differentiation exercise 10.2 question 19
Answer:
$\frac{1}{\sqrt{1+x}(1-x)^{\frac{3}{2}}}$Hint: You must know the rule of solving derivative of polynomial function.
Given:
$\sqrt{\frac{1+x}{1-x}}$Solution:
Let
$y=\sqrt{\frac{1+x}{1-x}}$$y=\left(\frac{1+x}{1-x}\right)^{\frac{1}{2}}$Differentiating with respect to x
$\begin{aligned} &\frac{d y}{d x}=\frac{d}{d x}\left(\frac{1+x}{1-x}\right)^{\frac{1}{2}} \\ &\frac{d y}{d x}=\frac{1}{2}\left(\frac{1+x}{1-x}\right)^{\frac{1}{2}-1} \times \frac{d}{d x}\left(\frac{1+x}{1-x}\right) \end{aligned}$ [ using chain rule]
$\frac{d y}{d x}=\frac{1}{2}\left(\frac{1+x}{1-x}\right)^{-\frac{1}{2}} \times\left\{\frac{(1-x) \frac{d}{d x}(1+x)-(1+x) \frac{d}{d x}(1-x)}{(1-x)^{2}}\right\}$$...\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$$\frac{d y}{d x}=\frac{1}{2}\left(\frac{1-x}{1+x}\right)^{\frac{1}{2}} \times\left\{\frac{(1-x)(1)-(1+x)(-1)}{(1-x)^{2}}\right\}$$\frac{d y}{d x}=\frac{1}{2}\left(\frac{1-x}{1+x}\right)^{\frac{1}{2}} \times\left\{\frac{1-x+1+x}{(1-x)^{2}}\right\}$$\begin{aligned} &\frac{d y}{d x}=\frac{1}{2}\left(\frac{1-x}{1+x}\right)^{\frac{1}{2}} \times\left\{\frac{2}{(1-x)^{2}}\right\} \\ &\frac{d y}{d x}=\frac{1}{\sqrt{1+x}(1-x)^{\frac{3}{2}}} \end{aligned}$Differentiation exercise 10.2 question 20
Answer:
$\frac{4 x}{\left(1-x^{2}\right)^{2}} \cos \left(\frac{1+x^{2}}{1-x^{2}}\right)$Hint: You must know the rules of solving derivative of trigonometric functions.
Given:
$\sin \left(\frac{1+x^{2}}{1-x^{2}}\right)$Solution:
Let
$y=\sin \left(\frac{1+x^{2}}{1-x^{2}}\right)$Differentiating with respect to x
$\frac{d y}{d x}=\frac{d}{d x}\left[\sin \left(\frac{1+x^{2}}{1-x^{2}}\right)\right]$$\frac{d y}{d x}=\cos \left(\frac{1+x^{2}}{1-x^{2}}\right) \frac{d}{d x}\left(\frac{1+x^{2}}{1-x^{2}}\right)$ [ using chain rule]
$\frac{d y}{d x}=\cos \left(\frac{1+x^{2}}{1-x^{2}}\right)\left[\frac{\left(1-x^{2}\right) \frac{d}{d x}\left(1+x^{2}\right)-\left(1+x^{2}\right) \frac{d}{d x}\left(1-x^{2}\right)}{\left(1-x^{2}\right)^{2}}\right]$$...\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$$\frac{d y}{d x}=\cos \left(\frac{1+x^{2}}{1-x^{2}}\right)\left[\frac{\left(1-x^{2}\right)(2 x)-\left(1+x^{2}\right)(-2 x)}{\left(1-x^{2}\right)^{2}}\right]$$\frac{d y}{d x}=\cos \left(\frac{1+x^{2}}{1-x^{2}}\right)\left[\frac{2 x-2 x^{3}+2 x+2 x^{3}}{\left(1-x^{2}\right)^{2}}\right]$$\frac{d y}{d x}=\frac{4 x}{\left(1-x^{2}\right)^{2}} \cos \left(\frac{1+x^{2}}{1-x^{2}}\right)$Differentiation exercise 10.2 question 21
Answer:
$e^{3 x} \cos 2 x$Hint: You must know the rules of solving exponential and trigonometric functions.
Given:
$e^{3 x} \cos 2 x$Solution:
Let
$y=e^{3 x} \cos 2 x$Differentiating with respect to x
$\frac{d y}{d x}=\frac{d}{d x} e^{3 x} \cos 2 x$$\frac{d y}{d x}=e^{3 x} \times \frac{d}{d x}(\cos 2 x)+\cos 2 x \frac{d}{d x}\left(e^{3 x}\right)$$\frac{d y}{d x}=e^{3 x} \times(-\sin 2 x) \frac{d}{d x}(2 x)+\cos 2 x e^{3 x} \frac{d}{d x}(3 x)$$\begin{aligned} &\frac{d y}{d x}=-2 e^{3 x} \sin 2 x+3 e^{3 x} \cos 2 x \\ &\frac{d y}{d x}=e^{3 x}[3 \cos 2 x-2 \sin 2 x] \end{aligned}$Differentiation exercise 10.2 question 22
Answer:
$\cos (\log \sin x) \cdot \cot x$Hint: You must know the rules of solving derivative of trigonometric and logarithm function.
Given:
$\sin (\log \sin x)$Solution:
Let
$y=\sin (\log \sin x)$Differentiating with respect to x
$\frac{d y}{d x}=\frac{d}{d x} \sin (\log \sin x)$Using chain rule
$\begin{aligned} &\frac{d y}{d x}=\cos (\log \sin x) \frac{d}{d x}(\log \sin x) \\ &\frac{d y}{d x}=\cos (\log \sin x) \cdot \frac{1}{\sin x} \frac{d}{d x}(\sin x) \end{aligned}$$\frac{d y}{d x}=\cos (\log \sin x) \cdot \frac{1}{\sin x} \cdot \cos x$$\frac{d y}{d x}=\cos (\log \sin x) \cdot \cot x$Differentiation exercise 10.2 question 23
Answer:
$3 e^{\tan 3 x} \sec ^{2} 3 x$Hint: You must know the rules of solving derivative of exponential and trigonometric
Given:
$e^{\tan 3 x}$Solution:
Let
$y=e^{\tan 3 x}$Differentiating with respect to x
$\frac{d y}{d x}=\frac{d}{d x}\left(e^{\tan 3 x}\right)$$\frac{d y}{d x}=e^{\tan 3 x} \frac{d}{d x}(\tan 3 x)$ $\left[\therefore \frac{d}{d x} e^{x}=e^{x}\right] e^{a x}=e^{x} \frac{d}{d x}(a)$$\frac{d y}{d x}=e^{\tan 3 x} \sec ^{2} 3 x \times \frac{d}{d x}(3 x)$ $\left[\therefore \frac{d}{d x} \tan a x=s \sec ^{2} a x\right]$$\begin{aligned} &\frac{d y}{d x}=e^{\tan 3 x} \cdot \sec ^{2} 3 x \times 3 \\ &\frac{d y}{d x}=3 e^{\tan 3 x} \sec ^{2} 3 x \end{aligned}$ $\left[\therefore \frac{d}{d x} \tan a x=a \sec ^{2} a x\right]$Differentiation exercise 10.2 question 24
Answer:
$\frac{e^{\sqrt{\cot x}} \times(\operatorname{cosec})^{2} x}{2 \sqrt{\cot x}}$Hint: You must know the rules of solving derivative of trigonometric and exponential function.
Given:
$e^{\sqrt{\cot x}}$Solution:
Let
$y=e^{\sqrt{\cot x}}$$y=e^{(\cot x)^{\frac{1}{2}}}$Differentiate both sides
$\frac{d y}{d x}=\frac{d}{d x} e^{(\cot x)^{\frac{1}{2}}}$Using Chain Rule,
$\frac{d y}{d x}=e^{(\cot x)^{\frac{1}{2}}} \times \frac{1}{2}(\cot x)^{\frac{1}{2}-1} \frac{d}{d x}(\cot x)$$\frac{d y}{d x}=\frac{e^{\sqrt{\cot x}} \times(\operatorname{cosec})^{2} x}{2 \sqrt{\cot x}}$Differentiation exercise 10.2 question 25
Answer: $\operatorname{cosec} x$
Hint: You must know the rules of solving derivative of logarithm trigonometric function.
Given:
$\log \left(\frac{\sin x}{1+\cos x}\right)$Solution:
Let
$y=\log \left(\frac{\sin x}{1+\cos x}\right)$Differentiating with respect to x
$\frac{d y}{d x}=\frac{d}{d x} \log \left(\frac{\sin x}{1+\cos x}\right)$$\frac{d y}{d x}=\frac{1}{\left(\frac{\sin x}{1+\cos x}\right)} \cdot\left[\frac{(1+\cos x) \frac{d}{d x} \sin x-\sin x \frac{d}{d x}(1+\cos x)}{(1+\cos x)^{2}}\right]$ $\cdot \cdot \frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$$\frac{d y}{d x}=\frac{1+\cos x}{\sin x} \cdot\left[\frac{(1+\cos x)(\cos x)-\sin x(-\sin x)}{(1+\cos x)^{2}}\right]$$\frac{d y}{d x}=\left(\frac{1+\cos x}{\sin x}\right) \cdot\left[\frac{\cos x+\cos ^{2} x+\sin ^{2} x}{(1+\cos x)^{2}}\right]$$\frac{d y}{d x}=\left(\frac{1+\cos x}{\sin x}\right)\left(\frac{\cos x+1}{(1+\cos x)^{2}}\right)$$\begin{aligned} &\frac{d y}{d x}=\frac{(1+\cos x)^{2}}{\sin x(1+\cos x)^{2}} \\ &\frac{d y}{d x}=\frac{1}{\sin x} \end{aligned}$$\frac{d y}{d x}=\operatorname{cosec} x$Differentiation exercise 10.2 question 26
Answer:
$\operatorname{cosec} x$Hint: You must know the rules of solving derivative of logarithm and trigonometric function.
Given:
$\log \sqrt{\frac{1-\cos x}{1+\cos x}}$Solution:
Let
$y=\log \sqrt{\frac{1-\cos x}{1+\cos x}}$$y=\frac{1}{2} \log \left(\frac{1-\cos x}{1+\cos x}\right)$ using
$\log a^{b}=b \log a$ Differentiate with respect to x
$\frac{d y}{d x}=\frac{d}{d x}\left\{\frac{1}{2} \log \left(\frac{1-\cos x}{1+\cos x}\right)\right\}$$\frac{d y}{d x}=\frac{1}{2} \times \frac{1}{\left(\frac{1-\cos x}{1+\cos x}\right)} \times \frac{d}{d x}\left(\frac{1-\cos x}{1+\cos x}\right)$$\frac{d y}{d x}=\frac{1}{2} \times\left(\frac{1+\cos x}{1-\cos x}\right)\left[\frac{(1+\cos x) \frac{d}{d x}(1-\cos x)-(1-\cos x) \frac{d}{d x}(1+\cos x)}{(1+\cos x)^{2}}\right]$ $\cdot \frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$Using quotient rule
$\frac{d y}{d x}=\frac{1}{2}\left(\frac{1+\cos x}{1-\cos x}\right)\left[\frac{(1+\cos x)(\sin x)-(1-\cos x)(-\sin x)}{(1+\cos x)^{2}}\right]$$\frac{d y}{d x}=\frac{1}{2}\left(\frac{1+\cos x}{1-\cos x}\right)\left[\frac{2 \sin x}{(1+\cos x)^{2}}\right]$$\frac{d y}{d x}=\frac{\sin x}{(1-\cos x)(1+\cos x)}$$\begin{aligned} &\frac{d y}{d x}=\frac{\sin x}{\left(1-\cos ^{2} x\right)} \\ &\frac{d y}{d x}=\frac{\sin x}{\sin ^{2} x} \end{aligned}$$\begin{aligned} &\frac{d y}{d x}=\frac{1}{\sin x} \\ &\frac{d y}{d x}=\operatorname{cosec} x \end{aligned}$Differentiation exercise 10.2 question 27
Answer:
$\cos x \sec ^{2}\left(e^{\sin x}\right) e^{\sin x}$Hint: You must know the rules of solving derivative of exponential and trigonometric function.
Given:
$\tan \left(e^{\sin x}\right)$Solution:
Let
$y=\tan \left(e^{\sin x}\right)$Differentiate with respect to x
$\begin{aligned} &\frac{d y}{d x}=\frac{d}{d x}\left[\tan \left(e^{\sin x}\right)\right] \\ &\frac{d y}{d x}=\sec ^{2}\left(e^{\sin x}\right) \frac{d}{d x}\left(e^{\sin x}\right) \end{aligned}$$\begin{aligned} &\frac{d y}{d x}=\sec ^{2}\left(e^{\sin x}\right) \times e^{\sin x} \frac{d}{d x}(\sin x) \\ &\frac{d y}{d x}=\cos x \cdot \sec ^{2}\left(e^{\sin x}\right) \cdot e^{\sin x} \end{aligned}$Differentiation exercise 10.2 question 28
Answer:
$\frac{1}{\sqrt{x^{2}+1}}$Hint:
You must know the rules of solving derivative of logarithm function.
Given:
$\log \left(x+\sqrt{x^{2}+1}\right)$Solution:
Differentiate with respect to x
$\frac{d y}{d x}=\frac{d}{d x}\left[\log \left(x+\sqrt{x^{2}+1}\right)\right]$$\frac{d y}{d x}=\frac{1}{x+\sqrt{x^{2}+1}} \frac{d}{d x}\left(x+\left(x^{2}+1\right)^{\frac{1}{2}}\right)$$\frac{d y}{d x}=\frac{1}{x+\sqrt{x^{2}+1}}\left[1+\frac{1}{2}\left(x^{2}+1\right)^{\frac{1}{2}-1} \frac{d}{d x}\left(x^{2}+1\right)\right]$$\frac{d y}{d x}=\frac{1}{x+\sqrt{x^{2}+1}}\left[1+\frac{1}{2 \sqrt{x^{2}+1}} \times 2 x\right]$$\begin{aligned} &\frac{d y}{d x}=\frac{1}{x+\sqrt{x^{2}+1}}\left[\frac{\sqrt{x^{2}+1}+x}{\sqrt{x^{2}+1}}\right] \\ &\frac{d y}{d x}=\frac{1}{\sqrt{x^{2}+1}} \end{aligned}$Differentiation exercise 10.2 question 29
Answer:
$e^{x} x^{-2}\left[\frac{1}{x}+\log x-\frac{2}{x} \log x\right]$Hint: You must know about the rules of solving derivative of exponential and logarithm functions.
Given:
$\frac{e^{x} \log x}{x^{2}}$Solution:
Let
$y=\frac{e^{x} \log x}{x^{2}}$Differentiate with respect to x,
$\frac{d y}{d x}=\frac{x^{2} \frac{d}{d x}\left(e^{x} \log x\right)-\left(e^{x} \log x\right) \frac{d}{d x} x^{2}}{\left(x^{2}\right)^{2}} \cdot \cdot \frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$ [using quotient rule]
$\frac{d y}{d x}=\frac{x^{2}\left\{e^{x} \frac{d}{d x}(\log x)+(\log x) \frac{d}{d x}\left(e^{x}\right)\right\}-e^{x} \log x \times 2 x}{x^{4}}$$\frac{d y}{d x}=\frac{x^{2}\left\{\frac{e^{x}}{x}+e^{x}(\log x)\right\}-2 x e^{x} \log x}{x^{4}}$$\frac{d y}{d x}=\frac{x^{2} e^{x}\left\{\frac{(1+x \log x)}{x}-2 x e^{x} \log x\right\}}{x^{4}}$$\frac{d y}{d x}=\frac{x e^{x}\{1+x \log x-2 \log x\}}{x^{4}}$$\frac{d y}{d x}=\frac{x e^{x}}{x^{3}}\left[\frac{1}{x}+\frac{x \log x}{x}-\frac{2 \log x}{x}\right]$$\frac{d y}{d x}=e^{x} x^{-2}\left[\frac{1}{x}+\log x-\frac{2}{x} \log x\right]$Differentiation exercise 10.2 question 30
Answer:
$\operatorname{cosec} x$Hint: You must know the rules of solving derivation of logarithm and trigonometric function.
Given:
$\log (\operatorname{cosec} x-\cot x)$Solution:
Let
$y=\log (\operatorname{cosec} x-\cot x)$Differentiate both sides,
$\frac{d y}{d x}=\frac{d}{d x} \log (\operatorname{cosec} x-\cot x)$
$\frac{d y}{d x}=\frac{1}{(\operatorname{cosec} x-\cot x)} \frac{d}{d x}(\operatorname{cosec} x-\cot x)$
$\frac{d y}{d x}=\frac{1}{(\operatorname{cosec} x-\cot x)} \times\left(-\operatorname{cosec} x \cot x+\operatorname{cosec}^{2} x\right)$
$\begin{aligned} &\frac{d y}{d x}=\frac{\operatorname{cosec} x(\operatorname{cosec} x-\cot x)}{(\operatorname{cosec} x-\cot x)} \\ &\frac{d y}{d x}=\operatorname{cosec} x \end{aligned}$
Differentiation exercise 10.2 question 31
Answer:
$\frac{-8}{\left(e^{2 x}-e^{-2 x}\right)^{2}}$Hint:
You must know the rules of solving derivative of exponential function.
Given:
$\frac{e^{2 x}+e^{-2 x}}{e^{2 x}-e^{-2 x}}$Solution:
Let
$y=\frac{e^{2 x}+e^{-2 x}}{e^{2 x}-e^{-2 x}}$
Differentiate with respect to x,
$\frac{d y}{d x}=\frac{d}{d x}\left[\frac{e^{2 x}+e^{-2 x}}{e^{2 x}-e^{-2 x}}\right]$
$\frac{d y}{d x}=\left\{\frac{\left(e^{2 x}-e^{-2 x}\right) \frac{d}{d x}\left(e^{2 x}+e^{-2 x}\right)-\left(e^{2 x}+e^{-2 x}\right) \frac{d}{d x}\left(e^{2 x}-e^{-2 x}\right)}{\left(e^{2 x}+e^{-2 x}\right)^{2}}\right\}$$\cdot \cdot \frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$
Using quotient rule,
$\frac{d y}{d x}=\frac{\left(e^{2 x}-e^{-2 x}\right)\left(2 e^{2 x}-2 e^{-2 x}\right)-\left(e^{2 x}+e^{-2 x}\right)\left(2 e^{2 x}+2 e^{-2 x}\right)}{\left(e^{2 x}+e^{-2 x}\right)^{2}}$
$\frac{d y}{d x}=\frac{2\left(e^{4 x}+e^{-4 x}-2 e^{2 x} e^{-2 x}-e^{4 x}-e^{-4 x}-2 e^{2 x} e^{-2 x}\right)}{\left(e^{2 x}+e^{-2 x}\right)^{2}}$
$\frac{d y}{d x}=\frac{-8}{\left(e^{2 x}+e^{-2 x}\right)^{2}}$
Differentiation exercise 10.2 question 32
Answer:
$\frac{-2\left(x^{2}-1\right)}{x^{4}+x^{2}+1}$Hint: You must know about the rules of solving derivative of logarithm functions.
Given:
$\log \left(\frac{x^{2}+x+1}{x^{2}-x+1}\right)$Solution:
Let
$y=\log \left(\frac{x^{2}+x+1}{x^{2}-x+1}\right)$Differentiate with respect to x,
$\frac{d y}{d x}=\frac{d}{d x}\left[\log \left(\frac{x^{2}+x+1}{x^{2}-x+1}\right)\right]$$\frac{d y}{d x}=\frac{1}{\left(\frac{x^{2}+x+1}{x^{2}-x+1}\right)} \frac{d}{d x}\left(\frac{x^{2}+x+1}{x^{2}-x+1}\right)$Now apply quotient rule,
$\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$$\frac{d y}{d x}=\left(\frac{x^{2}-x+1}{x^{2}+x+1}\right)\left[\frac{\left(x^{2}-x+1\right) \frac{d}{d x}\left(x^{2}+x+1\right)-\left(x^{2}+x+1\right) \frac{d}{d x}\left(x^{2}-x+1\right)}{\left(x^{2}-x+1\right)^{2}}\right]$$\frac{d y}{d x}=\left(\frac{x^{2}-x+1}{x^{2}+x+1}\right)\left[\frac{\left(x^{2}-x+1\right)(2 x+1)-\left(x^{2}+x+1\right)(2 x-1)}{\left(x^{2}-x+1\right)^{2}}\right]$$\frac{d y}{d x}=\left(\frac{x^{2}-x+1}{x^{2}+x+1}\right)\left[\frac{\left(2 x^{3}-2 x^{2}+2 x+x^{2}-x+1-2 x^{3}-2 x^{2}-2 x+x^{2}+x+1\right)}{\left(x^{2}-x+1\right)^{2}}\right]$$\frac{d y}{d x}=\frac{-4 x^{2}+2 x^{2}+2}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}$$\frac{d y}{d x}=\frac{-4 x^{2}+2 x^{2}+2}{\left(x^{2}+1\right)^{2}-(x)^{2}}$$\begin{aligned} &\frac{d y}{d x}=\frac{-2\left(x^{2}-1\right)}{x^{4}+1+2 x^{2}-x^{2}} \\ &\frac{d y}{d x}=\frac{-2\left(x^{2}-1\right)}{x^{4}+x^{2}+1} \end{aligned}$Differentiation exercise 10.2 question 33
Answer:
$\frac{e^{x}}{1+e^{2 x}}$Hint: You must know about the rules of solving derivative of Inverse trigonometric function and exponential
Given:
$\tan ^{-1}\left(e^{x}\right)$Solution:
Let
$y=\tan ^{-1}\left(e^{x}\right)$Differentiate with respect to x,
$\begin{aligned} &\frac{d y}{d x}=\frac{d}{d x}\left[\tan ^{-1}\left(e^{x}\right)\right] \\ \\&\frac{d y}{d x}=\frac{1}{1+\left(e^{x}\right)^{2}} \frac{d}{d x}\left(e^{x}\right) \end{aligned}$$\begin{aligned} &\frac{d y}{d x}=\frac{1}{1+e^{2 x}} \times e^{x} \\\\ &\frac{d y}{d x}=\frac{e^{x}}{1+e^{2 x}} \end{aligned}$Differentiation exercise 10.2 question 34
Answer:
$\frac{2 e^{\sin ^{-1} 2 x}}{\sqrt{1-4 x^{2}}}$Hint: You must know about the rules of solving derivative of Inverse trigonometric function.
Given:
$e^{\sin ^{-1} 2 x}$Solution:
Let
$y=e^{\sin ^{-1} 2 x}$Differentiate with respect to x,
$\begin{aligned} &\frac{d y}{d x}=\frac{d}{d x}\left[e^{\sin ^{-1} 2 x}\right] \\\\ &\frac{d y}{d x}=e^{\sin ^{-1} 2 x} \times \frac{d}{d x}\left(\sin ^{-1} 2 x\right) \end{aligned}$$\begin{aligned} &\frac{d y}{d x}=e^{\sin ^{-1} 2 x} \times \frac{1}{\sqrt{1-(2 x)^{2}}} \frac{d}{d x}(2 x) \\\\ &\frac{d y}{d x}=\frac{2 e^{\sin ^{-1} 2 x}}{\sqrt{1-4 x^{2}}} \end{aligned}$Differentiation exercise 10.2 question 35
Answer:
$\frac{2 \cos \left(2 \sin ^{-1} x\right)}{\sqrt{1-x^{2}}}$Hint: You must know about the rules of solving derivative of Trigonometry and Inverse trigonometric function
Given:
$\sin \left(2 \sin ^{-1} x\right)$Solution:
Let
$y=\sin \left(2 \sin ^{-1} x\right)$Differentiate with respect to x,
$\begin{aligned} &\frac{d y}{d x}=\frac{d}{d x}\left[\sin \left(2 \sin ^{-1} x\right)\right] \\\\ &\frac{d y}{d x}=\cos \left(2 \sin ^{-1} x\right) \frac{d}{d x}\left(2 \sin ^{-1} x\right) \end{aligned}$$\begin{aligned} &\frac{d y}{d x}=\cos \left(2 \sin ^{-1} x\right) \times 2 \times \frac{1}{\sqrt{1-x^{2}}} \\\\ &\frac{d y}{d x}=\frac{2 \cos \left(2 \sin ^{-1} x\right)}{\sqrt{1-x^{2}}} \end{aligned}$Differentiation exercise 10.2 question 36
Answer:
$\frac{e^{\tan ^{-1 \sqrt{x}}}}{2 \sqrt{x}(1+x)}$Hint: You must know about the rules of solving derivative of Exponential and Inverse trigonometric function.
Given:
$e^{\tan ^{-1} \sqrt{x}}$Solution:
Let
$y=e^{\tan ^{-1} \sqrt{x}}$Differentiate with respect to x,
$\begin{aligned} &\frac{d y}{d x}=\frac{d}{d x}\left[e^{\tan ^{-1} \sqrt{x}}\right] \\\\ &\frac{d y}{d x}=e^{\tan ^{-1} \sqrt{x}} \frac{d}{d x}\left(\tan ^{-1} \sqrt{x}\right) \end{aligned}$$\begin{aligned} &\frac{d y}{d x}=\frac{e^{\tan ^{-1} \sqrt{x}}}{1+x} \times \frac{1}{2 \sqrt{x}}\\\\ &\frac{d y}{d x}=\frac{e^{\tan ^{-1 \sqrt{x}}}}{2 \sqrt{x}(1+x)} \end{aligned}$Differentiation exercise 10.2 question 37
Answer:
$\frac{1}{\left(4+x^{2}\right) \sqrt{\tan ^{-1}\left(\frac{x}{2}\right)}}$Hint: You must know about the rules of solving derivative of Inverse trigonometric function.
Given:
$\sqrt{\tan ^{-1}\left(\frac{x}{2}\right)}$Solution:
Let
$y=\sqrt{\tan ^{-1}\left(\frac{x}{2}\right)}$$y=\left\{\tan ^{-1}\left(\frac{x}{2}\right)\right\}^{\frac{1}{2}}$Differentiate with respect to x,
$\frac{d y}{d x}=\frac{d}{d x}\left\{\tan ^{-1}\left(\frac{x}{2}\right)\right\}^{\frac{1}{2}}$$\frac{d y}{d x}=\frac{1}{2}\left\{\tan ^{-1}\left(\frac{x}{2}\right)\right\}^{\frac{1}{2}-1} \frac{d}{d x} \tan ^{-1}\left(\frac{x}{2}\right)$$\frac{d y}{d x}=\frac{1}{2}\left\{\tan ^{-1}\left(\frac{x}{2}\right)\right\}^{-\frac{1}{2}} \times \frac{1}{1+\left(\frac{x}{2}\right)^{2}} \times \frac{d}{d x}\left(\frac{x}{2}\right)$$\begin{aligned} &\frac{d y}{d x}=\frac{4}{4\left(4+x^{2}\right) \sqrt{\tan ^{-1}\left(\frac{x}{2}\right)}} \\\\ &\frac{d y}{d x}=\frac{1}{\left(4+x^{2}\right) \sqrt{\tan ^{-1}\left(\frac{x}{2}\right)}} \end{aligned}$Differentiation exercise 10.2 question 38
Answer:
$\frac{1}{\left(1+x^{2}\right) \tan ^{-1}(x)}$Hint: You must know about the rules of solving derivative of logarithm and Inverse trigonometric function.
Given:
$\log \left(\tan ^{-1} x\right)$Solution:
Let
$y=\log \left(\tan ^{-1} x\right)$Differentiate with respect to x,
$\begin{aligned} &\frac{d y}{d x}=\frac{d}{d x} \log \left(\tan ^{-1} x\right) \\\\ &\frac{d y}{d x}=\frac{1}{\left(\tan ^{-1} x\right)} \times \frac{d}{d x}\left(\tan ^{-1} x\right) \\\\ &\frac{d y}{d x}=\frac{1}{\left(1+x^{2}\right) \tan ^{-1}(x)} \end{aligned}$Differentiation exercise 10.2 question 39
Answer:
$\frac{2^{x}}{\left(x^{2}+3\right)^{2}}\left[\cos x \log _{e} 2-\sin x-\frac{4 x \cos x}{\left(x^{2}+3\right)}\right]$Hint: You must know about the rules of solving derivative of trigonometric function.
Given:
$\frac{2^{x} \cos x}{\left(x^{2}+3\right)^{2}}$Solution:
Let
$y=\frac{2^{x} \cos x}{\left(x^{2}+3\right)^{2}}$Differentiate with respect to x,
$\frac{d y}{d x}=\frac{d}{d x}\left[\frac{2^{x} \cos x}{\left(x^{2}+3\right)^{2}}\right]$$\frac{d y}{d x}=\left[\frac{\left(x^{2}+3\right)^{2} \frac{d}{d x}\left(2^{x} \cos x\right)-\left(2^{x} \cos x\right) \frac{d}{d x}\left(x^{2}+3\right)^{2}}{\left[\left(x^{2}+3\right)^{2}\right]^{2}}\right]$$... \frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$$\frac{d y}{d x}=\left[\frac{\left(x^{2}+3\right)^{2}\left\{2^{x} \frac{d}{d x} \cos x+\cos x \frac{d}{d x} 2^{x}\right\}-\left(2^{x} \cos x\right) 2\left(x^{2}+3\right) \frac{d}{d x}\left(x^{2}+3\right)}{\left[x^{2}+3\right]^{4}}\right]$$\frac{d y}{d x}=\left[\frac{\left(x^{2}+3\right)^{2}\left\{-2^{x} \sin x+\cos x 2^{x} \log _{e} 2\right\}-2\left(2^{x} \cos x\right)\left(x^{2}+3\right)(2 x)}{\left[x^{2}+3\right]^{4}}\right]$$\frac{d y}{d x}=\left[\frac{2^{x}\left(x^{2}+3\right)^{2}\left\{\left(\cos x \log _{e} 2-\sin x\right\}-\frac{4 x \cos x}{\left(x^{2}+3\right)}\right.}{\left[x^{2}+3\right]^{4}}\right]$$\frac{d y}{d x}=\frac{2^{x}}{\left(x^{2}+3\right)^{2}}\left[\cos x \log _{e} 2-\sin x-\frac{4 x \cos x}{\left(x^{2}+3\right)}\right]$Differentiation exercise 10.2 question 40
Answer:
$2 x \cos 2 x+\sin 2 x+5^{x} \log _{e} 5+6 \tan ^{5} x \sec ^{2} x$Hint: You must know about the rules of solving derivative of trigonometric function.
Given:
$x \sin 2 x+5^{x}+k^{k}+\left(\tan ^{6} x\right)$Solution:
Let
$y=x \sin 2 x+5^{x}+k^{k}+\left(\tan ^{6} x\right)$Differentiate with respect to x,
$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left[\mathrm{x} \sin 2 \mathrm{x}+5^{\mathrm{x}}+\mathrm{k}^{\mathrm{k}}+\left(\tan ^{6} \mathrm{x}\right)\right]$$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{xsin} 2 \mathrm{x})+\frac{\mathrm{d}}{\mathrm{dx}}\left(5^{\mathrm{x}}\right)+\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{k}^{\mathrm{k}}\right)+\frac{\mathrm{d}}{\mathrm{dx}}\left(\tan ^{6} \mathrm{x}\right)$$\frac{\mathrm{dy}}{\mathrm{dx}}=\left[\mathrm{x}\left\{\cos 2 \mathrm{x} \frac{\mathrm{d}}{\mathrm{dx}}(2 \mathrm{x})\right\}+\sin 2 \mathrm{x}\right]+5^{\mathrm{x}} \log _{\mathrm{e}} 5+6 \tan ^{5} \mathrm{x}+\frac{\mathrm{d}}{\mathrm{dx}}(\tan \mathrm{x})$$\frac{d y}{d x}=\left[x\left\{\cos 2 x \frac{d}{d x}(2 x)\right\}+\sin 2 x\right]+5^{x} \log _{e} 5+6 \tan ^{5} x \sec ^{2} x$$\frac{d y}{d x}=2 x \cos 2 x+\sin 2 x+5^{x} \log _{e} 5+6 \tan ^{5} x \sec ^{2} x$Differentiation exercise 10.2 question 41
Answer:
$\frac{3}{3 x+2}-\frac{2 x^{2}}{(2 x-1)}-2 x \log (2 x-1)$Hint: You must know about the rules of solving derivative of logarithm function.
Given:
$\log (3 x+2)-x^{2} \log (2 x-1)$Solution:
Let
$y=\log (3 x+2)-x^{2} \log (2 x-1)$Differentiate with respect to x,
$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left[\log (3 x+2)-\mathrm{x}^{2} \log (2 x-1)\right]$$\frac{d y}{d x}=\frac{d}{d x} \log (3 x+2)-\frac{d}{d x}\left\{x^{2} \log (2 x-1)\right\}$$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{(3 x+2)} \frac{\mathrm{d}}{\mathrm{dx}}(3 x+2)-\left\{\mathrm{x}^{2} \frac{\mathrm{d}}{\mathrm{dx}} \log (2 x-1)+\log (2 x-1) \frac{\mathrm{d}}{\mathrm{dx}} \mathrm{x}^{2}\right\}$$\frac{d y}{d x}=: \frac{3}{3 x+2}-\frac{2 x^{2}}{(2 x-1)}-2 x \log (2 x-1)$Differentiation exercise 10.2 question 42
Answer:
$\left[\frac{6 x \sin x+3 x^{2} \cos x}{\sqrt{\left(7-x^{2}\right)}}+\frac{3 x^{3} \sin x}{\left(7-x^{2}\right)^{\frac{3}{2}}}\right]$Hint: You must know about the rules of solving derivative of trigonometric function.
Given:
$y=\frac{3 x^{2} \sin x}{\sqrt{\left(7-x^{2}\right)}}$Solution:
Let
$y=\frac{3 x^{2} \sin x}{\sqrt{\left(7-x^{2}\right)}}$Differentiate with respect to x,
$\frac{d y}{d x}=\frac{d}{d x}\left[\frac{3 x^{2} \sin x}{\left(7-x^{2}\right)^{\frac{1}{2}}}\right]$$\frac{dy}{dx}=\frac{\left(7-x^{2}\right)^{\frac{1}{2}} \times \frac{\mathrm{d}}{\mathrm{dx}}\left(3 x^{2} \sin x\right)-\left(3 x^{2} \sin x\right) \frac{\mathrm{d}}{\mathrm{dx}}\left(7-x^{2}\right)^{\frac{1}{2}}}{\left[\left(7-x^{2}\right)^{\frac{1}{2}}\right]^{2}} \ldots \frac{d}{d x}\left(\frac{u}{v}\right)=$ $\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$$\frac{\mathrm{dy}}{\mathrm{dx}}=\left[\frac{\left(7-x^{2}\right)^{\frac{1}{2}}\left(3 x^{2} \cos x+6 x \sin x\right)-3 x^{2} \sin x \times \frac{1}{2}\left(7-x^{2}\right)^{\frac{1}{2}-1}(-2 x)}{7-x^{2}}\right]$$\frac{\mathrm{dy}}{\mathrm{dx}}=\left[\frac{\left(7-x^{2}\right)^{\frac{1}{2}}\left(3 x^{2} \cos x+6 x \sin x\right)-3 x^{2} \sin x \times \frac{1}{2}\left(7-x^{2}\right)^{-\frac{1}{2}}(-2 x)}{7-x^{2}}\right]$$\frac{\mathrm{dy}}{\mathrm{dx}}=\left[\frac{6 x \sin x+3 x^{2} \cos x}{\sqrt{\left(7-x^{2}\right)}}+\frac{3 x^{3} \sin x}{\left(7-x^{2}\right)^{\frac{3}{2}}}\right]$Differentiation exercise 10.2 question 43
Answer:
$\sin \{2 \log (2 x+3)\}\left(\frac{2}{(2 x+3)}\right)$Hint: you must know the rules of solving derivative of trigonometric and logarithm function,
Given:
$\sin ^{2}\{\log (2 x+3)\}$Solution:
Let
$y=\sin ^{2}\{\log (2 x+3)\}$Differentiate with respect to x,
$\begin{aligned} &\frac{d y}{d x}=\frac{d}{d x}\left[\sin ^{2} \log (2 x+3)\right] \\ \\&=2 \sin \{\log (2 x+3)\} \frac{d}{d x} \sin \{\log (2 x+3)\} \end{aligned}$$\begin{aligned} &=2 \sin \{\log (2 x+3)\} \cos \{\log (2 x+3)\} \frac{\mathrm{d}}{\mathrm{dx}} \log (2 x+3) \\\\ &\frac{\mathrm{dy}}{\mathrm{dx}}=\sin \{2 \log (2 x+3)\}\left(\frac{2}{(2 x+3)}\right) \end{aligned}$Differentiation exercise 10.2 question 44
Answer:
$2 e^{x} \cot 2 x+e^{x} \log \sin 2 x$Hint: you must know about the rules of solving derivative of exponential logarithm and trigon function
Given:
$e^{x} \log \sin 2 x$Solution:
Let
$y=e^{x} \log \sin 2 x$Differentiate with respect to x
$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left[e^{x} \log \sin 2 x\right]$$\begin{aligned} &=e^{x} \frac{\mathrm{d}}{\mathrm{dx}}(\log \sin 2 x)+(\log \sin 2 x) \frac{\mathrm{d}}{\mathrm{dx}}\left(e^{x}\right) \\\\ &=e^{x} \frac{1}{\sin 2 x} \frac{\mathrm{d}}{\mathrm{dx}} \sin 2 x+\log \sin 2 x\left(e^{x}\right) \end{aligned}$$\begin{aligned} &=\frac{e^{x}}{\sin 2 x} \cos 2 x \frac{\mathrm{d}}{\mathrm{dx}}(2 x)+e^{x} \log \sin 2 x \\\\ &=\frac{2 \cos 2 x e^{x}}{\sin 2 x}+e^{x} \log \sin 2 x \\\\ &\Rightarrow 2 e^{x} \cot 2 x+e^{x} \log \sin 2 x \end{aligned}$Differentiation exercise 10.2 question 45
Answer:
$2 x+\frac{2 e^{x}}{\sqrt{x^{4}-1}}$Hint: you must know the rules of solving derivative of polynomials
Given:
$\frac{\sqrt{x^{2}+1}+\sqrt{x^{2}-1}}{\sqrt{x^{2}+1}-\sqrt{x^{2}-1}}$Solution:
Let
$y=\frac{\sqrt{x^{2}+1}+\sqrt{x^{2}-1}}{\sqrt{x^{2}+1}-\sqrt{x^{2}-1}}$By rationalizing,
$\frac{\sqrt{x^{2}+1}+\sqrt{x^{2}-1}}{\sqrt{x^{2}+1}-\sqrt{x^{2}-1}} \times \frac{\sqrt{x^{2}+1}+\sqrt{x^{2}-1}}{\sqrt{x^{2}+1}+\sqrt{x^{2}-1}}$$\Rightarrow \frac{\left(\sqrt{x^{2}+1}+\sqrt{\left.x^{2}-1\right)}\right)^{2}}{\left(\left(\sqrt{\left.x^{2}+1\right)^{2}}-\left(\sqrt{\left.\left.x^{2}-1\right)^{2}\right)}\right.\right.\right.}$$\Rightarrow \frac{\left(\sqrt{x^{2}+1}\right)^{2}+\left(\sqrt{x^{2}-1}\right)^{2}+2\left(\sqrt { x ^ { 2 } + 1 ) } \left(\sqrt{\left.x^{2}-1\right)}\right.\right.}{x^{2}+1-x^{2}+1}$$=\frac{x^{2}+1+x^{2}-1+2 \sqrt{x^{4}-1}}{2}$$=x^{2}+\sqrt{x^{4}-1}$Now, let
$y=x^{2}+\sqrt{x^{4}-1}$Now, differentiate
$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(x^{2}+\sqrt{x^{4}-1}\right)$$\begin{aligned} &\Rightarrow 2 x+\frac{1}{2 \sqrt{x^{4}-1}} \times\left(4 x^{3}\right) \\\\ &\Rightarrow 2 x+\frac{2 x^{3}}{\sqrt{x^{4}-1}} \end{aligned}$Differentiation exercise 10.2 question 46
Answer:
$\frac{1}{\sqrt{x^{2}+4 x+1}}$Hint: you must know the rules of solving derivative of logarithm function
Given:
$\log \left[x+2+\sqrt{x^{2}+4 x+1}\right]$Solution:
Let
$y=\log \left[x+2+\sqrt{x^{2}+4 x+1}\right]$Differentiate both side with respect to x
$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}} \log \left[x+2+\sqrt{x^{2}+4 x+1}\right]$$=\frac{1}{\left[x+2+\sqrt{x^{4}+4 x+1}\right]} \times\left[1+0+\frac{1}{2}\left(x^{2}+4 x+1\right)^{\frac{-1}{2}} \frac{\mathrm{d}}{\mathrm{dx}}\left(x^{2}+4 x+1\right)\right]$$\Rightarrow \frac{1+\frac{2 x+4}{2\left(\sqrt{x^{2}+4 x+1}\right)}}{\left[x+2+\sqrt{x^{2}+4 x+1}\right]}$$=\frac{\sqrt{x^{2}+4 x+1}+x+2}{\left[x+2+\sqrt{x^{2}+4 x+1}\right] \times \sqrt{x^{2}+4 x+1}}$$\Rightarrow \frac{1}{\sqrt{x^{2}+4 x+1}}$Differentiation exercise 10.2 question 47
Answer:
$\frac{16 x^{3}\left(\sin ^{-1} x^{4}\right)^{3}}{\sqrt{1-x^{8}}}$Hint: you must know the rules of solving derivative of inverse trigonometric function
Given:
$\left(\sin ^{-1} x^{4}\right)^{4}$Solution:
Let
$y=\left(\sin ^{-1} x^{4}\right)^{4}$Differentiate with respect to x
$\frac{d y}{d x}=\frac{d}{d x}\left(\sin ^{-1} x^{4}\right)^{4}$$\begin{aligned} &=4\left(\sin ^{-1} x^{4}\right)^{3} \frac{\mathrm{d}}{\mathrm{dx}}\left(\sin ^{-1} x^{4}\right) \\\\ &=4\left(\sin ^{-1} x^{4}\right)^{3} \frac{1}{\sqrt{1-\left(x^{4}\right)^{2}}} \frac{\mathrm{d}}{\mathrm{dx}}\left(x^{4}\right) \end{aligned}$$\begin{aligned} &=4\left(\sin ^{-1} x^{4}\right)^{3} \frac{4 x^{3}}{\sqrt{1-x^{8}}} \\\\ &\frac{d y}{d x} \Rightarrow \frac{16 x^{3}\left(\sin ^{-1} x^{4}\right)^{3}}{\sqrt{1-x^{8}}} \end{aligned}$Differentiation exercise 10.2 question 48
Answer:
$\frac{a}{\left(x^{2}+a^{2}\right)}$Hint: you must know the rules of solving derivative of inverse trigonometric function
Given:
$\sin ^{-1}\left(\frac{x}{\sqrt{x^{2}+a^{2}}}\right)$Solution:
Let
$y=\sin ^{-1}\left(\frac{x}{\sqrt{x^{2}+a^{2}}}\right)$Differentiate with respect to x
$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left\{\sin ^{-1}\left(\frac{x}{\sqrt{x^{2}+a^{2}}}\right)\right\}$$=\frac{1}{\sqrt{1-\left(\frac{x}{\sqrt{x^{2}+a^{2}}}\right)^{2}}} \times\left[\frac{\left(x^{2}+a^{2}\right)^{\frac{1}{2} \frac{\mathrm{d}}{\mathrm{dx}}(x)-x \frac{\mathrm{d}}{\mathrm{dx}}\left(x^{2}+a^{2}\right)^{\frac{1}{2}}}}{\left[\left(x^{2}+a^{2}\right)^{\frac{1}{2}}\right]^{2}}\right] \cdot \frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$$=\frac{\sqrt{x^{2}+a^{2}}}{a}\left[\frac{\sqrt{x^{2}+a^{2}}-\frac{x}{2 \sqrt{x^{2}+a^{2}}} \frac{\mathrm{d}}{\mathrm{dx}}\left(x^{2}+a^{2}\right)}{\left(x^{2}+a^{2}\right)}\right]$$=\frac{\sqrt{x^{2}+a^{2}}}{a\left(x^{2}+a^{2}\right)} \quad\left[\sqrt{x^{2}+a^{2}}-\frac{x}{2 \sqrt{x^{2}+a^{2}}} \times 2 x\right]$$\Rightarrow \frac{\sqrt{x^{2}+a^{2}}}{a\left(x^{2}+a^{2}\right)} \quad\left[\frac{2\left(x^{2}+a^{2}-x^{2}\right)}{2 \sqrt{x^{2}+a^{2}}}\right]$$\begin{aligned} &\Rightarrow \frac{a^{2}}{a\left(x^{2}+a^{2}\right)} \\\\ &\Rightarrow \frac{a}{\left(x^{2}+a^{2}\right)} \end{aligned}$Differentiation exercise 10.2 question 49
Answer:
$\frac{e^{x} \sin x+e^{x} \cos x}{\left(x^{2}+2\right)^{3}}-\frac{6 x e^{x} \sin x}{\left(x^{2}+2\right)^{4}}$Hint: you must know the rules of solving exponential derivative
Given:
$\frac{e^{x} \sin x}{\left(x^{2}+2\right)^{3}}$Solution:
Let
$y=\frac{e^{x} \sin x}{\left(x^{2}+2\right)^{3}}$Differentiate with respect to x
$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\left(x^{2}+2\right)^{3} \frac{\mathrm{d}}{\mathrm{dx}}\left(e^{x} \sin x\right)-e^{x} \sin x \frac{\mathrm{d}}{\mathrm{dx}}\left(x^{2}+2\right)^{3}}{\left[\left(x^{2}+2\right)^{3}\right]^{2}} \cdot \cdot \frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$$=\frac{\left(x^{2}+2\right)^{3}\left[e^{x} \cos x+\sin x e^{x}\right]-e^{x} \sin x 3\left(x^{2}+2\right)^{2}(2 x)}{\left(x^{2}+2\right)^{6}}$$=\frac{\left(x^{2}+2\right)^{2}\left[\left(x^{2}+2\right)\left[e^{x} \cos x+e^{x} \sin x\right]-6 x e^{x} \sin x\right]}{\left(x^{2}+2\right)^{6}}$$\Rightarrow \frac{\left(x^{2}+2\right)\left(e^{x} \cos x+e^{x} \sin x\right)-6 x e^{x} \sin x}{\left(x^{2}+2\right)^{4}}$$\Rightarrow \frac{e^{x} \sin x+e^{x} \cos x}{\left(x^{2}+2\right)^{3}}-\frac{6 x e^{x} \sin x}{\left(x^{2}+2\right)^{4}}$Differentiation exercise 10.2 question 50
Answer:
$3 e^{-3 x}\left\{\frac{1}{1+x}-3 \log (1+x)\right\}$Hint: you must know the rule of solving exponential and logarithm functions
Given:
$3 e^{-3 x} \log (1+x)$Solution:
Let
$y=3 e^{-3 x} \log (1+x)$Differentiate with respect to x
$\frac{\mathrm{dy}}{\mathrm{dx}}=3 \frac{\mathrm{d}}{\mathrm{dx}}\left[e^{-3 x} \log (1+x)\right]$$\begin{aligned} &=3\left\{e^{-3 x} \frac{1}{(1+x)}+\log (1+x)\left(-3 e^{-3 x}\right)\right\} \\\\ &\Rightarrow 3\left\{\frac{e^{-3 x}}{1+x}-3 e^{-3 x} \log (1+x)\right\} \\\\ &\Rightarrow 3 e^{-3 x}\left\{\frac{1}{1+x}-3 \log (1+x)\right\} \end{aligned}$Differentiation exercise 10.2 question 51
Answer:
$\frac{1}{\sqrt{\cos x}}\left\{2 x+\frac{x^{2}}{2 \cos x}+\tan x\right\}$Hint: you must know the rule of solving derivative of trigonometric function
Given:
$\frac{x^{2}+2}{\sqrt{\cos x}}$Solution:
Let
$y= \frac{x^{2}+2}{\sqrt{\cos x}}$Differentiate with respect to x
$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\sqrt{\cos x} \frac{\mathrm{d}}{\mathrm{dx}}\left(x^{2}+2\right)-\left(x^{2}+2\right) \frac{\mathrm{d}}{\mathrm{dx}}(\sqrt{\cos x})}{(\sqrt{\cos x})^{2}} \cdot \cdot \frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$$\begin{aligned} &=\frac{2 x \sqrt{\cos x}-\left(x^{2}+2\right)\left(\frac{1}{2} \frac{-\sin x}{\sqrt{\cos x}}\right)}{\cos x} \\\\ &\Rightarrow \frac{2 x \sqrt{\cos x}+\frac{\left(x^{2}+2\right) \sin x}{2 \sqrt{\cos x}}}{\cos x} \end{aligned}$$\begin{aligned} &\Rightarrow \frac{4 x \cos x+\left(x^{2}+2\right) \sin x}{2 \cos x^{\frac{3}{2}}} \\\\ &\Rightarrow \frac{2 x}{\sqrt{\cos x}}+\frac{1}{2} \frac{\left(x^{2}+2\right) \sin x}{(\cos x)^{\frac{3}{2}}} \end{aligned}$$\begin{aligned} &\Rightarrow \frac{1}{\sqrt{\cos x}}\left\{2 x+\frac{1}{2} \frac{\left(x^{2}+2\right) \sin x}{\cos x}\right\} \\\\ &\Rightarrow \frac{1}{\sqrt{\cos x}}\left\{2 x+\frac{x^{2}}{2 \cos x}+\tan x\right\} \end{aligned}$Differentiation exercise 10.2 question 52
Answer:
$2 x\left(1-x^{2}\right)^{2} \sec 2 x\left\{\left(1-x^{2}\right)-3 x^{2}+x\left(1-x^{2}\right) \tan 2 x\right\}$Hint: you must know the rule of solving derivative of trigonometric functions
Given:
$\frac{x^{2}\left(1-x^{2}\right)^{3}}{\cos 2 x}$Solution:
Let
$y=\frac{x^{2}\left(1-x^{2}\right)^{3}}{\cos 2 x}$Differentiate with respect to x
$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\cos 2 x \frac{\mathrm{d}}{\mathrm{dx}}\left\{x^{2}\left(1-x^{2}\right)^{3}-x^{2}\left(1-x^{2}\right)^{3} \frac{\mathrm{d}}{\mathrm{dx}} \cos 2 x\right\}}{\cos ^{2} 2 x} \cdot \cdot \frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$$\Rightarrow \frac{\cos 2 x\left\{x^{2} \frac{\mathrm{d}}{\mathrm{dx}}\left(1-x^{2}\right)^{3}+\left(1-x^{2}\right)^{3} \frac{\mathrm{d}}{\mathrm{dx}} x^{2}\right\}-x^{2}\left(1-x^{2}\right)^{3}(-2 \sin 2 x)}{\cos ^{2} 2 x}$$\Rightarrow \frac{\cos 2 x\left\{-6 x^{3}\left(1-x^{2}\right)^{2}+\left(1-x^{2}\right)^{3} 2 x\right\}+2 x^{2}\left(1-x^{2}\right)^{3} \sin 2 x}{\cos ^{2} 2 x}$$\Rightarrow-\frac{6 x^{3}\left(1-x^{2}\right)^{2}}{\cos 2 x}+\frac{2 x\left(1-x^{2}\right)^{3}}{\cos 2 x}+\frac{2 x^{2}\left(1-x^{2}\right)^{3} \sin 2 x}{\cos ^{2} 2 x}$$\Rightarrow 2 x\left(1-x^{2}\right)^{2} \sec 2 x\left\{\left(1-x^{2}\right)-3 x^{2}+x\left(1-x^{2}\right) \tan 2 x\right\}$Differentiation exercise 10.2 question 53
Answer:
$-\sec x$Hint: you must know the rule of solving derivative of logarithm and trigonometric functions
Given:
$\log \left\{\cot \left(\frac{\pi}{4}+\frac{x}{2}\right)\right\}$Solution:
Let
$y=\log \left\{\cot \left(\frac{\pi}{4}+\frac{x}{2}\right)\right\}$Differentiate with respect to x
$\frac{d y}{d x}=\frac{1}{\cot \left(\frac{\pi}{4}+\frac{x}{2}\right)} \cdot \frac{d}{d x} \cot \left(\frac{x}{2}+\frac{\pi}{4}\right)$$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{\cot \left(\frac{\pi}{4}+\frac{x}{2}\right)} \cdot-\operatorname{cosec}^{2}\left(\frac{\pi}{4}+\frac{x}{2}\right) \frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\pi}{4}+\frac{x}{2}\right)$$\begin{aligned} &\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-\operatorname{cosec}^{2}\left(\frac{\pi}{4}+\frac{x}{2}\right)}{\cot \left(\frac{\pi}{4}+\frac{x}{2}\right)} \times \frac{1}{2} \\\\ &\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-\operatorname{cosec}^{2}\left(\frac{\pi}{4}+\frac{x}{2}\right)}{2 \cot \left(\frac{\pi}{4}+\frac{x}{2}\right)} \end{aligned}$$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-1}{\sin ^{2}\left(\frac{\pi}{4}+\frac{x}{2}\right)} \times \frac{\sin \left(\frac{\pi}{4}+\frac{x}{2}\right)}{2 \cos \left(\frac{\pi}{4}+\frac{x}{2}\right)}$$\frac{d y}{d x}=\frac{-1}{2 \cos \left(\frac{\pi}{4}+\frac{x}{2}\right) \sin \left(\frac{\pi}{4}+\frac{x}{2}\right)}$ $[\therefore 2 \sin x \cos x=\sin 2 x]$$\frac{d y}{d x}=\frac{-1}{\sin \left(\frac{\pi}{2}+x\right)}$$\begin{aligned} &\frac{d y}{d x}=-\frac{1}{\cos x} \\\\ &\frac{d y}{d x}=-\sec x \end{aligned}$Differentiation exercise 10.2 question 54
Answer:
$e^{a x} \sec x\left\{\mathrm{a} \tan 2 x+\tan x \tan 2 x+2 \sec ^{2} 2 x\right\}$Hint: you must know the rule of solving derivative of exponential and trigonometric functions
Given:
$e^{a x} \sec x \tan 2 x$Solution:
Let
$y=e^{a x} \sec x \tan 2 x$Differentiate with respect to x
$\begin{aligned} &\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}} e^{a x} \sec x \tan 2 x \\\\ &\frac{\mathrm{dy}}{\mathrm{dx}}=e^{a x} \frac{d}{d x}\{\sec x \tan 2 x\}+\sec x \tan 2 x \frac{d}{d x}\left\{e^{a x}\right\} \end{aligned}$$\begin{aligned} &\frac{\mathrm{dy}}{\mathrm{dx}}=e^{a x}\left[\sec x \tan x \tan 2 x+2 \sec ^{2} 2 x \sec x\right]+a e^{a x} \sec x \tan 2 x \\\\ &\frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{a} e^{a x} \sec x \tan 2 x+e^{a x} \sec x \tan x \tan 2 x+2 \sec ^{2} 2 x \sec x e^{a x} \end{aligned}$$\frac{\mathrm{dy}}{\mathrm{dx}}=e^{a x} \sec x\left\{\mathrm{a} \tan 2 x+\tan x \tan 2 x+2 \sec ^{2} 2 x\right\}$Differentiation exercise 10.2 question 55
Answer:
$-2 x \tan x^{2}$Hint: you must know the rule of solving derivative of logarithm and trigonometric functions
Given:
$\log \left(\cos x^{2}\right)$Solution:
Let
$y=\log \left(\cos x^{2}\right)$Differentiate with respect to x
$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{d}{d x}\left\{\log \left(\cos x^{2}\right)\right\}$ $\left[\therefore \frac{d}{d x} \log x=\frac{1}{x}\right]$$\frac{d y}{d x}=\frac{-2 x \sin x^{2}}{\cos x^{2}}$ [ Using chain rule ]
$\frac{d y}{d x}=-2 x \tan x^{2}$Differentiation exercise 10.2 question 56
Answer:
$\frac{-2 \log x \sin (\log x)^{2}}{x}$Hint: you must know the rule of solving derivative of logarithm and trigonometric functions
Given:
$\cos (\log x)^{2}$Solution:
Let
$y=\cos (\log x)^{2}$Differentiate with respect to x
$\begin{aligned} &\frac{d y}{d x}=\frac{d}{d x}\left[\cos (\log x)^{2}\right] \\\\ &\frac{d y}{d x}=-\sin (\log x)^{2} \cdot \frac{d}{d x}\left[(\log x)^{2}\right] \end{aligned}$$\begin{aligned} &\frac{d y}{d x}=-\sin (\log x)^{2} \cdot 2 \log x \frac{d}{d x} \log x \\\\ &\frac{d y}{d x}=-\sin (\log x)^{2} \cdot \frac{2 \log x}{x} \\\\ &\frac{d y}{d x}=\frac{-2 \log x \sin (\log x)^{2}}{x} \end{aligned}$Differentiation exercise 10.2 question 57
Answer:
$\frac{1}{x^{2}-1}$Hint: you must know the rule of solving derivative of logarithm functions
Given:
$\log \sqrt{\frac{x-1}{x+1}}$Solution:
Let
$y=\log \left(\frac{x-1}{x+1}\right)^{\frac{1}{2}}$$\begin{aligned} &y=\frac{1}{2} \log \left(\frac{x-1}{x+1}\right) \\\\ &y=\frac{1}{2}\{\log (x-1)-\log (x+1)\} \end{aligned}$Differentiate with respect to x
$\frac{d y}{d x}=\frac{1}{2}\left\{\frac{d}{d x}[\log (x-1)]-\frac{d}{d x}[\log (x+1)]\right\}$$\begin{aligned} &\frac{d y}{d x}=\frac{1}{2}\left[\frac{1}{(x-1)}-\frac{1}{(x+1)}\right] \\\\ &\frac{d y}{d x}=\frac{1}{2}\left[\frac{x+1-(x-1)}{\left(x^{2}-1\right)}\right] \end{aligned}$$\begin{aligned} &\frac{d y}{d x}=\frac{1}{2}\left[\frac{x+1-x+1}{\left(x^{2}-1\right)}\right] \\\\ &\frac{d y}{d x}=\frac{1}{2}\left[\frac{2}{\left(x^{2}-1\right)}\right] \\\\ &\frac{d y}{d x}=\frac{1}{\left(x^{2}-1\right)} \end{aligned}$Differentiation exercise 10.2 question 58
Answer: Proved
Hint: you must know the rule of solving derivative of logarithm functions
Given:
$\log (\sqrt{x-1}-\sqrt{x+1})$Solution:
Let
$y=\log (\sqrt{x-1}-\sqrt{x+1})$Differentiate with respect to x
$\begin{aligned} &\frac{d y}{d x}=\frac{d}{d x} \log (\sqrt{x-1}-\sqrt{x+1}) \\\\ &\frac{d y}{d x}=\frac{1}{(\sqrt{x-1}-\sqrt{x+1})} \cdot \frac{d}{d x}(\sqrt{x-1}-\sqrt{x+1}) \end{aligned}$$\begin{aligned} &\frac{d y}{d x}=\frac{1}{(\sqrt{x-1}-\sqrt{x+1})} \cdot\left[\frac{d}{d x}(\sqrt{x-1})-\frac{d}{d x} \sqrt{x+1}\right] \\\\ &\frac{d y}{d x}=\frac{1}{(\sqrt{x-1}-\sqrt{x+1})} \cdot\left[\frac{1}{2}(x-1)^{\frac{-1}{2}}-\frac{1}{2}(x+1)^{\frac{-1}{2}}\right] \end{aligned}$$\frac{d y}{d x}=\frac{1}{2} \frac{1}{(\sqrt{x-1}-\sqrt{x+1})}\left(\frac{1}{\sqrt{x-1}}-\frac{1}{\sqrt{x+1}}\right)$$\begin{aligned} &\frac{d y}{d x}=\frac{1}{2(\sqrt{x-1}-\sqrt{x+1})}\left(\frac{\sqrt{x+1}-\sqrt{x-1}}{(\sqrt{x-1})(\sqrt{x+1})}\right) \\\\ &\frac{d y}{d x}=\frac{-1}{2 \sqrt{x^{2}-1}} \end{aligned}$∴ Proved
Differentiation exercise 10.2 question 59
Answer: Proved
Hint: you must know the rule of solving derivation of functions
Given:
$\mathrm{y}=\sqrt{x+1}+\sqrt{x-1}$Prove : $\sqrt{x^{2}-1} \frac{d y}{d x}=\frac{1}{2} y$Solution:
Let
$\mathrm{y}=\sqrt{x+1}+\sqrt{x-1}$Differentiate with respect to x
$\begin{aligned} &\frac{d y}{d x}=\frac{d}{d x}(\sqrt{x+1})+\frac{d}{d x}(\sqrt{x-1}) \\\\ &\frac{d y}{d x}=\frac{1}{2}(x+1)^{\frac{-1}{2}}+\frac{1}{2}(x-1)^{\frac{-1}{2}} \end{aligned}$$\begin{aligned} &\frac{d y}{d x}=\frac{1}{2}\left(\frac{1}{\sqrt{x+1}}+\frac{1}{\sqrt{x-1}}\right) \\\\ &\frac{d y}{d x}=\frac{1}{2}\left(\frac{\sqrt{x-1}+\sqrt{x+1}}{\sqrt{x+1} \sqrt{x-1}}\right) \end{aligned}$ $[\mathrm{y}=\sqrt{x+1}+\sqrt{x-1}]$$\begin{aligned} &\frac{d y}{d x}=\frac{1}{2}\left(\frac{\mathrm{y}}{\sqrt{x+1} \sqrt{x-1}}\right) \\\\ &\frac{d y}{d x}=\frac{1}{2}\left(\frac{\mathrm{y}}{\sqrt{\mathrm{x}^{2}-1}}\right) \\\\ &\sqrt{\mathrm{x}^{2}-1} \frac{d y}{d x}=\frac{1}{2} \mathrm{y} \end{aligned}$∴ Proved
Differentiation exercise 10.2 question 60
Answer: Proved
Hint: you must know the rule of solving derivation of functions.
Given:
$y=\frac{x}{x+2}$Prove :
$x \frac{d y}{d x}=(1-y) y$Solution:
Let
$y=\frac{x}{x+2}$Differentiate with respect to x and apply quotient rule
$\frac{d y}{d x}=\frac{d}{d x}\left(\frac{x}{x+2}\right)$$\frac{d y}{d x}=\frac{(x+2) \frac{d}{d x}(x)-x \frac{d}{d x}(x+2)}{(x+2)^{2}} \ldots \frac{d}{d x} \text { u. } v=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$$\begin{aligned} &\frac{d y}{d x}=\frac{x+2-x}{(x+2)^{2}} \\\\ &\frac{d y}{d x}=\frac{x+2}{(x+2)^{2}}-\frac{x}{(x+2)^{2}} \end{aligned}$$\begin{aligned} &\frac{d y}{d x}=\frac{1}{x+2}-\frac{x y^{2}}{x^{2}} \\\\ &\frac{d y}{d x}=\frac{y}{x}-\frac{y^{2}}{x} \end{aligned}$$\begin{aligned} &\frac{d y}{d x}=\frac{y-y^{2}}{x} \\\\ &x \frac{d y}{d x}=y(1-y) \end{aligned}$∴ Proved
Differentiation exercise 10.2 question 61
Answer:
Proved
Hint: you must know the rule of solving logarithm functions.
Given:
$\mathrm{y}=\log \left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)$Prove
$\frac{d y}{d x}=\frac{x-1}{2 x(x+1)}$Solution:
Let
$\mathrm{y}=\log \left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)$Differentiate with respect to x
$\begin{aligned} &\frac{d y}{d x}=\frac{1}{\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)} \cdot \frac{d}{d x}\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right) \\\\ &\frac{d y}{d x}=\frac{\sqrt{x}}{x+1}\left(\frac{1}{2 \sqrt{x}}-\frac{1}{2 x \sqrt{x}}\right) \end{aligned}$$\begin{aligned} &\frac{d y}{d x}=\frac{1}{2} \frac{\sqrt{x}}{(x+1)}\left(\frac{x-1}{x \sqrt{x}}\right) \\\\ &\frac{d y}{d x}=\frac{x-1}{2 x(x+1)} \end{aligned}$∴ Proved
Differentiation exercise 10.2 question 62
Answer:
ProvedHint:
: you must know the rules of solving derivation of logarithm functions.Given:
$y=\log \left(\sqrt{\frac{1+\tan x}{1-\tan x}}\right)$Prove
$\frac{d y}{d x}=\sec 2 x$Solution:
Let
$y=\log \left(\sqrt{\frac{1+\tan x}{1-\tan x}}\right)$$\mathrm{y}=\log \left(\frac{1+\tan x}{1-\tan x}\right)^{\frac{1}{2}}$ $\left[\therefore \log a^{x}=x \log a\right]$$\mathrm{y}=\frac{1}{2}[\log (1+\tan \mathrm{x})-\log (1-\tan \mathrm{x})]$ $\left[\therefore \log \frac{m}{n}=\log m-\log n\right]$Differentiate with respect to x,
$\begin{aligned} &\frac{d y}{d x}=\frac{1}{2}\left\{\frac{d}{d x}\left[\log (1+\tan x)-\frac{d}{d x} \log (1-\tan x)\right]\right\} \\\\ &\frac{d y}{d x}=\frac{1}{2}\left\{\frac{1}{1+\tan x} \frac{d}{d x}(1+\tan x)-\frac{1}{1-\tan x} \frac{d}{d x}(1-\tan x)\right\} \end{aligned}$$\begin{aligned} &\frac{d y}{d x}=\frac{1}{2}\left\{\frac{1}{1+\tan x}\left(\sec ^{2} x\right)-\frac{1}{1-\tan x}\left(-\sec ^{2} x\right)\right\} \\\\ &\frac{d y}{d x}=\frac{1}{2}\left\{\frac{\left(\sec ^{2} x\right)}{1+\tan x}+\frac{\sec ^{2} x}{1-\tan x}\right\} \end{aligned}$$\begin{aligned} &\frac{d y}{d x}=\frac{\sec ^{2} x}{2}\left[\frac{1-\tan x+1+\tan x}{1-\tan ^{2} x}\right] \\\\ &\frac{d y}{d x}=\frac{1}{2} \sec ^{2} x\left[\frac{2}{1-\tan ^{2} x}\right] \end{aligned}$$\frac{d y}{d x}=\frac{\sec ^{2} x}{1-\tan ^{2} x}$ $\left[\therefore \sec ^{2} x=1+\tan ^{2} x\right]$$\begin{aligned} &\frac{d y}{d x}=\frac{1+\tan ^{2} x}{1-\tan ^{2} x} \\\\ &\frac{d y}{d x}=\frac{1}{\left(\frac{1-\tan ^{2} x}{1+\tan ^{2} x}\right)} \end{aligned}$ $\left[\therefore \text { Tigonometric Property } \frac{1-\tan ^{2} x}{1+\tan ^{2} \mathrm{x}}=\cos 2 x\right]$$\begin{aligned} &\frac{d y}{d x}=\frac{1}{\cos 2 \mathrm{x}} \\\\ &\frac{d y}{d x}=\sec 2 x \end{aligned}$∴ Proved
Differentiation exercise 10.2 question 63
Answer: Proved
Hint: you must know the rule of solving derivation of functions.
Given:
$y=\sqrt{x}+\frac{1}{\sqrt{x}}$Prove
$2 x \frac{d y}{d x}=\sqrt{x}-\frac{1}{\sqrt{x}}$Solution:
Let
$y=\sqrt{x}+\frac{1}{\sqrt{x}}$Differentiate with respect to x,
$\begin{aligned} &\frac{d y}{d x}=\frac{d}{d x}\left\{\sqrt{x}+\frac{1}{\sqrt{x}}\right\} \\\\ &\frac{d y}{d x}=\frac{d}{d x}(\sqrt{x})+\frac{d}{d x}\left(\frac{1}{\sqrt{x}}\right) \end{aligned}$$\begin{aligned} &\frac{d y}{d x}=\frac{1}{2 \sqrt{x}}+\left(\frac{-1}{2 x \sqrt{x}}\right) \\\\ &\frac{d y}{d x}=\frac{1}{2 \sqrt{x}}-\frac{1}{2 x \sqrt{x}} \end{aligned}$$\begin{aligned} &\frac{d y}{d x}=\frac{x-1}{2 x \sqrt{x}} \\\\ &2 x \frac{d y}{d x}=\frac{x-1}{\sqrt{x}} \end{aligned}$$\begin{aligned} &2 x \frac{d y}{d x}=\frac{x}{\sqrt{x}}-\frac{1}{\sqrt{x}} \\\\ &2 x \frac{d y}{d x}=\sqrt{x}-\frac{1}{\sqrt{x}} \end{aligned}$$\therefore$ Proved
Differentiation exercise 10.2 question 64
Answer: Proved
Hint: you must know the rules of derivative of inverse trigonometric functions.
Given:
$y=\frac{x \sin ^{-1} x}{\sqrt{1-x^{2}}}$Prove
$\left(1-x^{2}\right) \frac{d y}{d x}=x+\frac{y}{x}$Solution:
Let
$y=\frac{x \sin ^{-1} x}{\sqrt{1-x^{2}}}$Differentiate with respect to x,
$\frac{d y}{d x}=\frac{d}{d x}\left(\frac{x \sin ^{-1} x}{\sqrt{1-x^{2}}}\right)$ [ quotient rule ]
$\frac{d y}{d x}=\frac{d}{d x}\left[\frac{\sqrt{1-x^{2}} \frac{d}{d x}\left(x \sin ^{-1} x\right)-\left(x \sin ^{-1} x\right) \frac{d}{d x}\left(\sqrt{1-x^{2}}\right)}{\left(\sqrt{1-x^{2}}\right)^{2}}\right] . \cdot \frac{d}{d x} u \cdot v=$$\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$$\frac{d y}{d x}=\left[\frac{\sqrt{1-x^{2}}\left\{x \frac{d}{d x}\left(\sin ^{-1} x\right)+\left(\sin ^{-1} x\right) \frac{d}{d x}(x)\right\}-\left(x \sin ^{-1} x\right)\left(\frac{1}{2 \sqrt{1-x^{2}}}\right) \frac{d\left(1-x^{2}\right)}{d x}}{\left(\sqrt{1-x^{2}}\right)^{2}}\right]$$\frac{d y}{d x}=\left[\frac{\sqrt{1-x^{2}}\left\{\frac{x}{\sqrt{1-x^{2}}}+\sin ^{-1} x\right\}-\frac{x \sin ^{-1} x(-2 x)}{2\left(\sqrt{1-x^{2}}\right)}}{\left(\sqrt{1-x^{2}}\right)^{2}}\right]$$\frac{d y}{d x}=\left[\frac{x+\sqrt{1-x^{2}}\left(\sin ^{-1} x\right)+\frac{x^{2} \sin ^{-1} x}{\sqrt{1-x^{2}}}}{\left(1-x^{2}\right)}\right]$$\left(1-x^{2}\right) \frac{d y}{d x}=x+\frac{\sqrt{1-x^{2}}\left(\sin ^{-1} x\right)}{1}+\frac{x^{2} \sin ^{-1} x}{\sqrt{1-x^{2}}}$$\left(1-x^{2}\right) \frac{d y}{d x}=x+\left(\frac{\sin ^{-1} x-x^{2}\left(\sin ^{-1} x\right)+x^{2}\left(\sin ^{-1} x\right)}{\sqrt{1-x^{2}}}\right)$$\left(1-x^{2}\right) \frac{d y}{d x}=x+\left(\frac{\sin ^{-1} x}{\sqrt{1-x^{2}}}\right)$Where
$y=\frac{x \sin ^{-1} x}{\sqrt{1-x^{2}}}$$\left(1-x^{2}\right) \frac{d y}{d x}=x+\frac{y}{x}$∴ Proved
Differentiation exercise 10.2 question 65
Answer: Proved
Hint: you must know the rules of derivative of exponential functions.
Given: $y=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$
Prove $\frac{d y}{d x}=1-y^{2}$
Solution:
Let $y=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$
Differentiate with respect to x,use quotient rule
$\frac{d y}{d x}=\frac{d}{d x}\left(\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}\right)$
$\frac{d y}{d x}=\left[\frac{\left(e^{x}+e^{-x}\right) \frac{d}{d x}\left(e^{x}-e^{-x}\right)-\left(e^{x}-e^{-x}\right) \frac{d}{d x}\left(e^{x}+e^{-x}\right)}{\left(e^{x}+e^{-x}\right)^{2}}\right] \cdot \cdot \frac{d}{d x} u \cdot v=$$\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$
$\frac{d y}{d x}=\left\{\frac{\left(e^{x}+e^{-x}\right)\left[\left(e^{x}-e^{-x}(-1)\right)\right]-\left(e^{x}-e^{-x}\right)\left[\left(e^{x}+e^{-x}(-1)\right)\right]}{\left(e^{x}+e^{-x}\right)^{2}}\right\}$
$\frac{d y}{d x}=\left[\frac{\left(e^{x}+e^{-x}\right)\left(e^{x}+e^{-x}\right)-\left(e^{x}-e^{-x}\right)\left(e^{x}-e^{-x}\right)}{\left(e^{x}+e^{-x}\right)^{2}}\right]$
$\frac{d y}{d x}=\left[\frac{\left(e^{x}+e^{-x}\right)^{2}-\left(e^{x}-e^{-x}\right)^{2}}{\left(e^{x}+e^{-x}\right)^{2}}\right]$
$\frac{d y}{d x}=1-\frac{\left(e^{x}-e^{-x}\right)^{2}}{\left(e^{x}+e^{-x}\right)^{2}}$ $\left[y=\frac{\left(e^{x}-e^{-x}\right)}{e^{x}+e^{-x}}\right]$
$\frac{d y}{d x}=1-y^{2}$
∴ Proved
Differentiation exercise 10.2 question 66
Answer: Proved
Hint: you must know the rules of derivative of logarithm functions.
Given:
$\mathrm{y}=(\mathrm{x}-1) \log (x-1)-(x+1) \log (x+1)$Prove:
$\frac{d y}{d x}=\log \left(\frac{x-1}{1+x}\right)$Solution:
Let
$\mathrm{y}=(\mathrm{x}-1) \log (x-1)-(x+1) \log (x+1)$Differentiate with respect to x, use product rule
$\frac{d y}{d x}=\frac{d}{d x}[(\mathrm{x}-1) \log (x-1)-(x+1) \log (x+1)]$$\frac{d y}{d x}=\left[(x-1) \times \frac{1}{(x-1)}+\log (x-1)\right]-\left[(x+1) \times \frac{1}{(x+1)}+\log (x+1)\right]$ [ use product rule]
$\frac{d y}{d x}=[1+\log (x-1)]-[1+\log (x+1)]$$\frac{d y}{d x}=\log \left(\frac{x-1}{1+x}\right)$∴ Proved
Differentiation exercise 10.2 question 67
Answer:Proved
Hint: you must know the rules of derivative of exponential and trigonometric functions.
Given:
$y=e^{x} \cos x$Prove:
$\frac{d y}{d x}=\sqrt{2} e^{x} \cdot \cos \left(x+\frac{\pi}{4}\right)$Solution:
Let
$y=e^{x} \cos x$Differentiate with respect to x,use product rule
$\begin{aligned} &\frac{d y}{d x}=\frac{d}{d x}\left(e^{x} \cos x\right) \\\\ &\frac{d y}{d x}=e^{x} \frac{d}{d x}(\cos x)+\cos x \frac{d}{d x} e^{x} \end{aligned}$$\begin{aligned} &\frac{d y}{d x}=e^{x}(-\sin x)+e^{x}(\cos x) \\\\ &\frac{d y}{d x}=e^{x}(\cos x-\sin x) \end{aligned}$Multiply and divide by
$\sqrt{2}$$\begin{aligned} &\frac{d y}{d x}=\sqrt{2} e^{x}\left(\frac{\cos x}{\sqrt{2}}-\frac{\sin x}{\sqrt{2}}\right) \\\\ &\frac{d y}{d x}=\sqrt{2} e^{x}\left(\cos \frac{\pi}{4} \cos x-\sin \frac{\pi}{4} \sin x\right) \end{aligned}$ $\frac{d y}{d x}=\sqrt{2} e^{x} \cos \left(x+\frac{\pi}{4}\right)$ [ ∴using property
$\operatorname{cos \; a\; cos} b-\operatorname{sin\: a\; sin} b=\cos (a+b)$]
∴ Proved
Differentiation exercise 10.2 question 68
Answer:Proved
Hint: you must know the rules of derivative of logarithm and trigonometric functions.
Given:
$y=\frac{1}{2} \log \left(\frac{1-\cos 2 x}{1+\cos 2 x}\right)$Prove:
$\frac{d y}{d x}=2 \operatorname{cosec} 2 x$Solution:
$y=\frac{1}{2} \log \left(\frac{1-\cos 2 x}{1+\cos 2 x}\right)$ $\left[\therefore 1-\cos 2 x=2 \sin ^{2} x ; 1+\cos 2 x=2 \cos ^{2} x\right]$$\begin{aligned} &y=\frac{1}{2} \log \left(\frac{2 \sin ^{2} x}{2 \cos ^{2} x}\right) \\\\ &y=\frac{1}{2} \log \tan ^{2} x \end{aligned}$$\begin{aligned} &y=\frac{1}{2} \times 2 \log \tan x \\\\ &y=\log \tan x \end{aligned}$Differentiate with respect to x,use chain rule
$\begin{aligned} &\frac{d y}{d x}=\frac{d}{d x}(\log \tan x) \\\\ &\frac{d y}{d x}=\frac{1}{\tan x} \frac{d}{d x}(\tan x) \end{aligned}$$\begin{aligned} &\frac{d y}{d x}=\frac{1}{\tan x} \times \sec ^{2} x \\\\ &\frac{d y}{d x}=\frac{\cos x}{\sin x} \times \frac{1}{\cos ^{2} x} \\\\ &\frac{d y}{d x}=\frac{1}{\sin x \cos x} \end{aligned}$Multiply and divide by 2
$\frac{d y}{d x}=\frac{2}{2 \sin x \cos x}$ $[\therefore 2 \sin x \cos x=\sin 2 x]$$\frac{d y}{d x}=\frac{2}{\sin 2 x}$ $\left[\therefore \frac{1}{\sin x}=\operatorname{cosec} x\right]$$\frac{d y}{d x}=2 \operatorname{cosec} 2 x$∴ Proved
Differentiation exercise 10.2 question 69
Answer: Proved
Hint: you must know the rules of solving derivative of inverse trigonometric functions.
Given:
$y=x \sin ^{-1} x+\sqrt{1-x^{2}}$Prove:
$\frac{d y}{d x}=\sin ^{-1} x$Solution:
$y=x \sin ^{-1} x+\sqrt{1-x^{2}}$Differentiate with respect to x,use product rule
$\begin{aligned} &\frac{d y}{d x}=\frac{d}{d x}\left(x \sin ^{-1} x\right)+\frac{d}{d x}\left(\sqrt{1-x^{2}}\right) \\\\ &\frac{d y}{d x}=(x) \frac{d}{d x} \sin ^{-1} x+\sin ^{-1} x \frac{d}{d x}(x)+\frac{d}{d x}\left(\sqrt{1-x^{2}}\right) \end{aligned}$$\begin{aligned} &\frac{d y}{d x}=\left(\frac{x}{\sqrt{1-x^{2}}}+\sin ^{-1} x\right)-\frac{2 x}{2 \sqrt{1-x^{2}}} \\\\ &\frac{d y}{d x}=\frac{x}{\sqrt{1-x^{2}}}+\sin ^{-1} x-\frac{x}{\sqrt{1-x^{2}}} \\\\ &\frac{d y}{d x}=\sin ^{-1} x \end{aligned}$∴ Proved
Differentiation exercise 10.2 question 70
Answer:Proved
Hint: you must know the rules of solving derivatives.
Given:
$y=\sqrt{x^{2}+a^{2}}$Prove:
$y \frac{d y}{d x}-x=0$Solution:
$y=\sqrt{x^{2}+a^{2}}$Squaring both sides,
$y^{2}=x^{2}+a^{2}$Differentiate both sides,
$\begin{aligned} &2 y \frac{d y}{d x}=\frac{d}{d x}\left(x^{2}+a^{2}\right) \\\\ &2 y \frac{d y}{d x}=2 x+0 \end{aligned}$$\begin{aligned} &y \frac{d y}{d x}=x\\\\ &\text { Or }\\\\ &y \frac{d y}{d x}-x=0 \end{aligned}$∴ Proved
Differentiation exercise 10.2 question 71
Answer:Proved
Hint: you must know the rules of solving derivatives of exponential functions.
Given:
$y=e^{x}+e^{-x}$Prove:
$\frac{d y}{d x}=\sqrt{y^{2}-4}$Solution:
$y=e^{x}+e^{-x}$Differentiate with respect to x,
$\frac{d y}{d x}=\frac{d}{d x}\left(e^{x}+e^{-x}\right)$ $\left[\therefore \frac{d}{d x} e^{x}=e^{x} ; \frac{d}{d x} e^{-x}=-e^{-x}\right]$$\begin{aligned} &\frac{d y}{d x}=e^{x}-e^{-x} \\\\ &\frac{d y}{d x}=\sqrt{\left(e^{x}-e^{-x}\right)^{2}-4 e^{x} \times e^{-x}} \end{aligned}$ $\left[\therefore(a-b)=\sqrt{\left(a^{2}+b^{2}\right)-2 a b}=\sqrt{(a+b)^{2}-4 a b}\right]$$\frac{d y}{d x}=\sqrt{y^{2}-4}$ $[\because \left.e^{x}+e^{-x}=y\right]$∴ Proved
Differentiation exercise 10.2 question 72
Answer:Proved
Hint: you must know the rules of solving derivatives.
Given:
$y=\sqrt{a^{2}-x^{2}}$Prove:
$y \frac{d y}{d x}+x=0$Solution:
$y=\sqrt{a^{2}-x^{2}}$Squaring both sides,
$y^{2}=a^{2}-x^{2}$Differentiate with respect to x,
$\begin{aligned} &2 y \frac{d y}{d x}=0-2 x \\\\ &2 y \frac{d y}{d x}=-2 x \end{aligned}$$\begin{aligned} &y \frac{d y}{d x}=-x \\\\ &y \frac{d y}{d x}+x=0 \end{aligned}$∴ Proved
Differentiation exercise 10.2 question 73
Answer:Proved
Hint: you must know the rules of solving derivatives.
Given:
$x y=4$Prove:
$x\left(\frac{d y}{d x}+y^{2}\right)=3 y$Solution:
$\begin{gathered} x y=4 \\\\ y=\frac{4}{x} \end{gathered}$Differentiate with respect to x,
$\begin{aligned} &\frac{d y}{d x}=4 \frac{d}{d x}\left(x^{-1}\right) \\\\ &\frac{d y}{d x}=4(-1) \times\left(x^{-1-1}\right) \end{aligned}$$\frac{d y}{d x}=-\frac{4}{x^{2}}$$\frac{d y}{d x}=-\frac{y^{2}}{4}$ ( multiplying by 4 in num. & den.)
$\begin{aligned} &4 \frac{d y}{d x}=-y^{2} \\\\ &4 \frac{d y}{d x}=3 y^{2}-4 y^{2} \\\\ &4 \frac{d y}{d x}+4 y^{2}=3 y^{2} \\\\ &4\left(\frac{d y}{d x}+4 y^{2}\right)=3 y^{2} \end{aligned}$Dividing both sides with x,
$\begin{aligned} &\frac{4}{x}\left(\frac{d y}{d x}+y^{2}\right)=\frac{3 y^{2}}{x} \\\\ &y\left(\frac{d y}{d x}+y^{2}\right)=\frac{3 y^{2}}{x} \\\\ &x\left(\frac{d y}{d x}+y^{2}\right)=\frac{3 y^{2}}{y} \\ &x\left(\frac{d y}{d x}+y^{2}\right)=3 y \end{aligned}$∴ Proved
Differentiation exercise 10.2 question 74
Answer:Proved
Hint: you must know the rules of solving derivatives.
Given: Prove that
$\frac{d}{d x}\left\{\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}\right\}=\sqrt{a^{2}-x^{2}}$Solution:
$\text { L.H.S } \Rightarrow \frac{d}{d x}\left\{\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}\right\}$$\Rightarrow \frac{d}{d x}\left(\frac{x}{2} \sqrt{a^{2}-x^{2}}\right)+\frac{d}{d x}\left(\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}\right)$$\Rightarrow \frac{1}{2}\left[x \frac{d}{d x} \sqrt{a^{2}-x^{2}}+\sqrt{a^{2}-x^{2}} \frac{d}{d x}(x)\right]+\frac{a^{2}}{2} \times \frac{1}{\sqrt{1-\left(\frac{x}{a}\right)^{2}}}\left(\frac{1}{a}\right)$$\Rightarrow \frac{1}{2}\left[x \times \frac{1}{2 \sqrt{a^{2}-x^{2}}} \frac{d}{d x}\left(a^{2}-x^{2}\right)+\sqrt{a^{2}-x^{2}}\right]+\frac{a^{2}}{2} \times \frac{1}{\sqrt{\frac{a^{2}-x^{2}}{a^{2}}}}\left(\frac{1}{a}\right)$$\Rightarrow \frac{1}{2}\left[\frac{-2 x^{2}}{2 \sqrt{a^{2}-x^{2}}}+\sqrt{a^{2}-x^{2}}\right]+\left(\frac{a^{2}}{2}\right) \frac{a}{\sqrt{a^{2}-x^{2}}} \times\left(\frac{1}{a}\right)$$\Rightarrow \frac{1}{2}\left[\frac{-2 x^{2}+2\left|a^{2}-x^{2}\right|}{2 \sqrt{a^{2}-x^{2}}}\right]+\frac{a^{2}}{2 \sqrt{a^{2}-x^{2}}}$$\Rightarrow \frac{a^{2}-x^{2}-x^{2}}{2 \sqrt{a^{2}-x^{2}}}+\frac{a^{2}}{2 \sqrt{a^{2}-x^{2}}}$$\Rightarrow \frac{2 a^{2}-2 x^{2}}{2 \sqrt{a^{2}-x^{2}}} \quad[\therefore x=\sqrt{x} \times \sqrt{x}]$$\begin{aligned} &\Rightarrow \frac{\left(a^{2}-x^{2}\right)}{\sqrt{a^{2}-x^{2}}} \\\\ &\Rightarrow \sqrt{a^{2}-x^{2}} \quad \Rightarrow \text { R.H.S } \end{aligned}$∴ Proved
Differentiation exercise 10.2 question 75
Answer:
$\frac{2}{3}$Hint: you must know the rules of solving derivatives of trigonometric function
Given:
$f(x)=\sqrt{\frac{\sec x-1}{\sec x+1}}$Find :
$f^{\prime}\left(\frac{\pi}{3}\right)$Solution:
$f(x)=\sqrt{\frac{\sec x-1}{\sec x+1}}$$=\sqrt{\frac{1-\cos x}{1+\cos x}} \quad\left[\therefore \sec x=\frac{1}{\cos x}\right]$Now rationalize
$=\sqrt{\frac{1-\cos x}{1+\cos x} \times \frac{1-\cos x}{1-\cos x}}$$f(x)=\frac{1-\cos x}{\sin x}$$=\frac{1}{\sin x}-\frac{\cos x}{\sin x}$$f(x)=\operatorname{cosec} x-\cot x$Differentiate with respect to x,
$\begin{aligned} &f^{\prime}(x)=-\operatorname{cosec} x \cot x-\left(-\operatorname{cosec}^{2} x\right)\\ \\ &f^{\prime}\left(\frac{\pi}{3}\right)=-\operatorname{cosec}\left(\frac{\pi}{3}\right) \cot \left(\frac{\pi}{3}\right)+\operatorname{cosec}^{2}\left(\frac{\pi}{3}\right) \end{aligned}$$\begin{aligned} &=\frac{-2}{\sqrt{3}} \times \frac{1}{\sqrt{3}}+\left(\frac{2}{\sqrt{3}}\right)^{2} \\\\ &=\frac{-2}{3}+\frac{4}{3} \\\\ &\Rightarrow \frac{-2+4}{3} \Rightarrow \frac{2}{3} \end{aligned}$Differentiation exercise 10.2 question 76
Answer:
$\frac{2}{\pi }$Hint: you must know the rules of solving derivative of trigonometric functions
Given:
$f(x)=\sqrt{\tan \sqrt{x}}$Find:
$f^{'}\left(\frac{\pi^{2}}{16}\right)$Solution:
$f(x)=\sqrt{\tan (\sqrt{x})}$Differentiate with respect to x,
$f^{\prime}(x)=\frac{1}{2 \sqrt{\tan (\sqrt{x})}} \frac{d}{d x} \tan \sqrt{x}$$=\frac{1}{2 \sqrt{\tan (\sqrt{x})}} \sec ^{2} \sqrt{x} \times \frac{1}{2 \sqrt{x}}$$f^{\prime}(x) \Rightarrow \frac{\sec ^{2} \sqrt{x}}{4 \sqrt{x \tan (\sqrt{x})}}$Now,
$f^{\prime}\left(\frac{\pi^{2}}{16}\right)=\frac{\sec ^{2} \sqrt{\frac{\pi^{2}}{16}}}{4 \sqrt{\frac{\pi^{2}}{16} \tan \left(\sqrt{\frac{\pi^{2}}{16}}\right)}}$$=\frac{\sec ^{2}\left(\frac{\pi}{4}\right)}{4\left(\frac{\pi}{4}\right) \sqrt{\tan \left(\frac{\pi}{4}\right)}}$$\Rightarrow \frac{\sec ^{2}\left(\frac{\pi}{4}\right)}{\pi \times(1)} \quad\left[B u t \tan \frac{\pi}{4} \quad \Rightarrow 1\right]$$\begin{aligned} &\Rightarrow \frac{\sec ^{2}\left(\frac{\pi}{4}\right)}{\pi} \\\\ &\Rightarrow \frac{\left(\sec \left(\frac{\pi}{4}\right)\right)^{2}}{\pi} \end{aligned}$$\begin{aligned} &=\frac{(\sqrt{2})^{2}}{\pi} \\\\ &f^{\prime}\left(\frac{\pi^{2}}{16}\right)=\frac{2}{\pi} \end{aligned}$Rd Sharma Class 12th Exercise 10.2 solutions will help every student, and they will be able to clear the concepts and learn according to an exam point of view. The benefits of these solutions are:
Created by experts
Rd Sharma Class 12th Exercise 10.2 solutions are created not by a single person but by a team. The team discusses every question in detail and then provides it to the student. Therefore, a student will never face any difficulty in mathematics after going for Rd Sharma Class 12th Chapter 10.2 Exercise 10.2 solutions.
Best Solutions for preparation
Rd Sharma Class 12th Exercise 10.2 solutions help students to prepare better for exams as every concept is cleared in a precise manner. The students will be ready to face any exam with Class 12th RD Sharma Chapter 10.2 Exercise 10.2 Solutions.
NCERT based questions
The solutions help a student do the homework quite easily and effectively as these solutions are primarily based on NCERT questions. In addition, these solutions make every student an expert in solving these questions.
Different ways to solve a question
RD Sharma Class 12 Solutions Chapter 10 ex 10.2 helps students find alternative ways to solve a question. The concepts are interconnected and solved by experts that a student finds it easy to understand and solve questions in a different manner.
Benchmark performance
The solutions help a student perform well in exams. RD Sharma Class 12 Solutions Differentiation Ex. 10.2 covers all the important questions that usually come in exams, which helps the student set a benchmark score in exams.
Free of cost
Students will find all these solutions free of cost at Career360, the best site to grab the benefits and score well with flying colors. At Career360, a student will understand, learn and perform exceptionally in exams. Thousands of students have benefitted from these solutions, and now it is your turn to shine.